1
|
Machine learning discovery of missing links that mediate alternative branches to plant alkaloids. Nat Commun 2022; 13:1405. [PMID: 35296652 PMCID: PMC8927377 DOI: 10.1038/s41467-022-28883-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
Engineering the microbial production of secondary metabolites is limited by the known reactions of correctly annotated enzymes. Therefore, the machine learning discovery of specialized enzymes offers great potential to expand the range of biosynthesis pathways. Benzylisoquinoline alkaloid production is a model example of metabolic engineering with potential to revolutionize the paradigm of sustainable biomanufacturing. Existing bacterial studies utilize a norlaudanosoline pathway, whereas plants contain a more stable norcoclaurine pathway, which is exploited in yeast. However, committed aromatic precursors are still produced using microbial enzymes that remain elusive in plants, and additional downstream missing links remain hidden within highly duplicated plant gene families. In the current study, machine learning is applied to predict and select plant missing link enzymes from homologous candidate sequences. Metabolomics-based characterization of the selected sequences reveals potential aromatic acetaldehyde synthases and phenylpyruvate decarboxylases in reconstructed plant gene-only benzylisoquinoline alkaloid pathways from tyrosine. Synergistic application of the aryl acetaldehyde producing enzymes results in enhanced benzylisoquinoline alkaloid production through hybrid norcoclaurine and norlaudanosoline pathways. Producing plant secondary metabolites by microbes is limited by the known enzymatic reactions. Here, the authors apply machine learning to predict missing link enzymes of benzylisoquinoline alkaloid (BIA) biosynthesis in Papaver somniferum, and validate the specialized activities through heterologous production.
Collapse
|
2
|
Nagler J, Schriever SC, Romanov A, Vogt-Weisenhorn D, Wurst W, Pfluger PT, Schramm KW. Determination of morphine and norlaudanosoline in murine brain regions by dispersive liquid-liquid micro-extraction and liquid chromatograpy-electrochemical detection. Neurochem Int 2021; 150:105174. [PMID: 34474098 DOI: 10.1016/j.neuint.2021.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022]
Abstract
Morphine can be synthesized endogenously by mammals from dopamine via the intermediate norlaudanosoline. Previously, both compounds have been detected separately in whole brains of mice and brain regions of rats, and in urine of humans. Here, we report a novel method for the analysis of both compounds in single murine brain regions. Initially, a variant of dispersive liquid-liquid microextraction was established by using methanol as an extractant, cyclohexane as solvent, and tributylphosphate as disperser. The extraction method was applied to murine brain regions homogenized with perchloric acid while the subsequent detection was carried out by HPLC with electrochemical detection. In the thalamus of C57Bl/6J mice (n = 3, male, age 4-8 months), morphine and norlaudanosoline could be detected at levels of 19 ± 3.9 and 7.2 ± 2.3 pg/mg, respectively. Overall, we provide a novel method for the simultaneous extraction and detection of both morphine and norlaudanosoline in single murine brain regions.
Collapse
Affiliation(s)
- Joachim Nagler
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstädter Landstr.1, 85764, Neuherberg, Germany.
| | - Sonja C Schriever
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Research Unit NeuroBioloy of Diabetes (NBD), Ingolstädter Landstr.1, 85764, Neuherberg, Germany
| | - Artem Romanov
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Institute of Developmental Genetics (IDG), Ingolstädter Landstr.1, 85764, Neuherberg, Germany
| | - Daniela Vogt-Weisenhorn
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Institute of Developmental Genetics (IDG), Ingolstädter Landstr.1, 85764, Neuherberg, Germany; Technichal University Munich Weihenstephan, Developmental Genetics c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg/Munich, Germany
| | - Wolfgang Wurst
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Institute of Developmental Genetics (IDG), Ingolstädter Landstr.1, 85764, Neuherberg, Germany; Technichal University Munich Weihenstephan, Developmental Genetics c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Paul T Pfluger
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Research Unit NeuroBioloy of Diabetes (NBD), Ingolstädter Landstr.1, 85764, Neuherberg, Germany
| | - Karl-Werner Schramm
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstädter Landstr.1, 85764, Neuherberg, Germany; Technichal University Munich, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Biowissenschaftliche Grundlagen, Weihenstephaner Steig 23, 85350, Freising, Germany
| |
Collapse
|
3
|
Esch T, Kream RM, Stefano GB. Emerging regulatory roles of opioid peptides, endogenous morphine, and opioid receptor subtypes in immunomodulatory processes: Metabolic, behavioral, and evolutionary perspectives. Immunol Lett 2020; 227:28-33. [DOI: 10.1016/j.imlet.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/06/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022]
|
4
|
Osmakov DI, Khasanov TA, Andreev YA, Lyukmanova EN, Kozlov SA. Animal, Herb, and Microbial Toxins for Structural and Pharmacological Study of Acid-Sensing Ion Channels. Front Pharmacol 2020; 11:991. [PMID: 32733241 PMCID: PMC7360831 DOI: 10.3389/fphar.2020.00991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are of the most sensitive molecular sensors of extracellular pH change in mammals. Six isoforms of these channels are widely represented in membranes of neuronal and non-neuronal cells, where these molecules are involved in different important regulatory functions, such as synaptic plasticity, learning, memory, and nociception, as well as in various pathological states. Structural and functional studies of both wild-type and mutant ASICs are essential for human care and medicine for the efficient treatment of socially significant diseases and ensure a comfortable standard of life. Ligands of ASICs serve as indispensable tools for these studies. Such bioactive compounds can be synthesized artificially. However, to date, the search for such molecules has been most effective amongst natural sources, such as animal venoms or plants and microbial extracts. In this review, we provide a detailed and comprehensive structural and functional description of natural compounds acting on ASICs, as well as the latest information on structural aspects of their interaction with the channels. Many of the examples provided in the review demonstrate the undoubted fundamental and practical successes of using natural toxins. Without toxins, it would not be possible to obtain data on the mechanisms of ASICs' functioning, provide detailed study of their pharmacological properties, or assess the contribution of the channels to development of different pathologies. The selectivity to different isoforms and variety in the channel modulation mode allow for the appraisal of prospective candidates for the development of new drugs.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
5
|
Blum K, Baron D, McLaughlin T, Gold MS. Molecular neurological correlates of endorphinergic/dopaminergic mechanisms in reward circuitry linked to endorphinergic deficiency syndrome (EDS). J Neurol Sci 2020; 411:116733. [DOI: 10.1016/j.jns.2020.116733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/19/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
|
6
|
Hagos FT, Empey PE, Wang P, Ma X, Poloyac SM, Bayır H, Kochanek PM, Bell MJ, Clark RSB. Exploratory Application of Neuropharmacometabolomics in Severe Childhood Traumatic Brain Injury. Crit Care Med 2018; 46:1471-1479. [PMID: 29742587 PMCID: PMC6095742 DOI: 10.1097/ccm.0000000000003203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To employ metabolomics-based pathway and network analyses to evaluate the cerebrospinal fluid metabolome after severe traumatic brain injury in children and the capacity of combination therapy with probenecid and N-acetylcysteine to impact glutathione-related and other pathways and networks, relative to placebo treatment. DESIGN Analysis of cerebrospinal fluid obtained from children enrolled in an Institutional Review Board-approved, randomized, placebo-controlled trial of a combination of probenecid and N-acetylcysteine after severe traumatic brain injury (Trial Registration NCT01322009). SETTING Thirty-six-bed PICU in a university-affiliated children's hospital. PATIENTS AND SUBJECTS Twelve children 2-18 years old after severe traumatic brain injury and five age-matched control subjects. INTERVENTION Probenecid (25 mg/kg) and N-acetylcysteine (140 mg/kg) or placebo administered via naso/orogastric tube. MEASUREMENTS AND MAIN RESULTS The cerebrospinal fluid metabolome was analyzed in samples from traumatic brain injury patients 24 hours after the first dose of drugs or placebo and control subjects. Feature detection, retention time, alignment, annotation, and principal component analysis and statistical analysis were conducted using XCMS-online. The software "mummichog" was used for pathway and network analyses. A two-component principal component analysis revealed clustering of each of the groups, with distinct metabolomics signatures. Several novel pathways with plausible mechanistic involvement in traumatic brain injury were identified. A combination of metabolomics and pathway/network analyses showed that seven glutathione-centered pathways and two networks were enriched in the cerebrospinal fluid of traumatic brain injury patients treated with probenecid and N-acetylcysteine versus placebo-treated patients. Several additional pathways/networks consisting of components that are known substrates of probenecid-inhibitable transporters were also identified, providing additional mechanistic validation. CONCLUSIONS This proof-of-concept neuropharmacometabolomics assessment reveals alterations in known and previously unidentified metabolic pathways and supports therapeutic target engagement of the combination of probenecid and N-acetylcysteine treatment after severe traumatic brain injury in children.
Collapse
Affiliation(s)
- Fanuel T. Hagos
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Philip E. Empey
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Pengcheng Wang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA
| | - Xiaochao Ma
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA
| | - Samuel M. Poloyac
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
- Brain Care Institute, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
- Brain Care Institute, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Michael J. Bell
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
- Brain Care Institute, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, Children’s National Health System, Washington, DC
| | - Robert S. B. Clark
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
- Brain Care Institute, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
7
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
8
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vollmer G, Wallace H, Benford D, Calò G, Dahan A, Dusemund B, Mulder P, Németh-Zámboriné É, Arcella D, Baert K, Cascio C, Levorato S, Schutte M, Vleminckx C. Update of the Scientific Opinion on opium alkaloids in poppy seeds. EFSA J 2018; 16:e05243. [PMID: 32625895 PMCID: PMC7009406 DOI: 10.2903/j.efsa.2018.5243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Poppy seeds are obtained from the opium poppy (Papaver somniferum L.). They are used as food and to produce edible oil. The opium poppy plant contains narcotic alkaloids such as morphine and codeine. Poppy seeds do not contain the opium alkaloids, but can become contaminated with alkaloids as a result of pest damage and during harvesting. The European Commission asked EFSA to provide an update of the Scientific Opinion on opium alkaloids in poppy seeds. The assessment is based on data on morphine, codeine, thebaine, oripavine, noscapine and papaverine in poppy seed samples. The CONTAM Panel confirms the acute reference dose (ARfD) of 10 μg morphine/kg body weight (bw) and concluded that the concentration of codeine in the poppy seed samples should be taken into account by converting codeine to morphine equivalents, using a factor of 0.2. The ARfD is therefore a group ARfD for morphine and codeine, expressed in morphine equivalents. Mean and high levels of dietary exposure to morphine equivalents from poppy seeds considered to have high levels of opium alkaloids (i.e. poppy seeds from varieties primarily grown for pharmaceutical use) exceed the ARfD in most age groups. For poppy seeds considered to have relatively low concentrations of opium alkaloids (i.e. primarily varieties for food use), some exceedance of the ARfD is also seen at high levels of dietary exposure in most surveys. For noscapine and papaverine, the available data do not allow making a hazard characterisation. However, comparison of the dietary exposure to the recommended therapeutical doses does not suggest a health concern for these alkaloids. For thebaine and oripavine, no risk characterisation was done due to insufficient data. However, for thebaine, limited evidence indicates a higher acute lethality than for morphine and the estimated exposure could present a health risk.
Collapse
|
9
|
Osmakov DI, Koshelev SG, Andreev YA, Kozlov SA. Endogenous Isoquinoline Alkaloids Agonists of Acid-Sensing Ion Channel Type 3. Front Mol Neurosci 2017; 10:282. [PMID: 28955199 PMCID: PMC5602355 DOI: 10.3389/fnmol.2017.00282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022] Open
Abstract
Acid-sensing ion channels (ASICs) ASIC3 expressed mainly in peripheral sensory neurons play an important role in pain perception and inflammation development. In response to acidic stimuli, they can generate a unique biphasic current. At physiological pH 7.4, human ASIC3 isoform (hASIC3) is desensitized and able to generate only a sustained current. We found endogenous isoquinoline alkaloids (EIAs), which restore hASIC3 from desensitization and recover the transient component of the current. Similarly, rat ASIC3 isoform (rASIC3) can also be restored from desensitization (at pH < 7.0) by EIAs with the same potency. At physiological pH and above, EIAs at high concentrations were able to effectively activate hASIC3 and rASIC3. Thus, we found first endogenous agonists of ASIC3 channels that could both activate and prevent or reverse desensitization of the channel. The decrease of EIA levels could be suggested as a novel therapeutic strategy for treatment of pain and inflammation.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical UniversityMoscow, Russia
| | - Sergey G Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical UniversityMoscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
10
|
Stefano GB, Pilonis N, Ptacek R, Kream RM. Reciprocal Evolution of Opiate Science from Medical and Cultural Perspectives. Med Sci Monit 2017; 23:2890-2896. [PMID: 28609429 PMCID: PMC5478244 DOI: 10.12659/msm.905167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the course of human history, it has been common to use plants for medicinal purposes, such as for providing relief from particular maladies and self-medication. Opium represents one longstanding remedy that has been used to address a range of medical conditions, alleviating discomfort often in ways that have proven pleasurable. Opium is a combination of compounds obtained from the mature fruit of opium poppy, papaver somniferum. Morphine and its biosynthetic precursors thebaine and codeine constitute the main bioactive opiate alkaloids contained in opium. Opium usage in ancient cultures is well documented, as is its major extract morphine. The presence of endogenous opiate alkaloids and opioid peptides in animals owe their discovery to their consistent actions at particular concentrations via stereo select receptors. In vitro expression of morphine within a microbiological industrial setting underscores the role it plays as a multi-purpose pharmacological agent, as well as reinforcing why it can also lead to long-term social dependence. Furthermore, it clearly establishes a reciprocal effect of human intelligence on modifying evolutionary processes in papaver somniferum and related plant species.
Collapse
Affiliation(s)
- George B Stefano
- Department of Psychiatry, Charles University First Faculty of Medicine and General Teaching Hospital, Center for Cognitive Molecular Neuroscience, Prague, Czech Republic
| | - Nastazja Pilonis
- Warsaw Medical University, Public Central Teaching Hospital, Warsaw, Poland
| | - Radek Ptacek
- Department of Psychiatry, Charles University First Faculty of Medicine and General Teaching Hospital, Center for Cognitive Molecular Neuroscience, Prague, Czech Republic
| | - Richard M Kream
- Department of Psychiatry, Charles University First Faculty of Medicine and General Teaching Hospital, Center for Cognitive Molecular Neuroscience, Prague, Czech Republic
| |
Collapse
|
11
|
Klink VP, Sharma K, Pant SR, McNeece B, Niraula P, Lawrence GW. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense. PLANT SIGNALING & BEHAVIOR 2017; 12:e1274481. [PMID: 28010187 PMCID: PMC5351740 DOI: 10.1080/15592324.2016.1274481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/23/2023]
Abstract
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural and physiological defense apparatus defined genetically through the identification of the penetration (pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed of the β-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3). While important in inhibiting pathogen infection, limited observations have been made regarding the transcriptional regulation of regulon genes until now. Experiments made using the model agricultural Glycine max (soybean) have identified co-regulated gene expression of regulon components. The results explain the observation of hundreds of genes expressed specifically in the root cells undergoing the natural process of defense. Data regarding additional G. max genes functioning within the context of the regulon are presented here, including Sec 14, Sec 4 and Sec 23. Other examined G. max homologs of membrane fusion genes include an endosomal bromo domain-containing protein1 (Bro1), syntaxin6 (SYP6), SYP131, SYP71, SYP8, Bet1, coatomer epsilon (ϵ-COP), a coatomer zeta (ζ-COP) paralog and an ER to Golgi component (ERGIC) protein. Furthermore, the effectiveness of biochemical pathways that would function within the context of the regulon ave been examined, including xyloglucan xylosyltransferase (XXT), reticuline oxidase (RO) and galactinol synthase (GS). The experiments have unveiled the importance of the regulon during defense in the root and show how the deposition of callose relates to the process.
Collapse
Affiliation(s)
- Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brant McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
12
|
Kramlinger VM, Alvarado Rojas M, Kanamori T, Guengerich FP. Cytochrome P450 3A Enzymes Catalyze the O6-Demethylation of Thebaine, a Key Step in Endogenous Mammalian Morphine Biosynthesis. J Biol Chem 2015; 290:20200-10. [PMID: 26157146 DOI: 10.1074/jbc.m115.665331] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid L-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O(3)- and the O(6)-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O(3)-demethylation and the O(6)-demethylation are members of the Fe(II)/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O(3)-demethylation. We report that demethylation of thebaine at the O(6)-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O(6)-demethylation of thebaine by an Fe(II)/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O(6)-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O(6)-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified.
Collapse
Affiliation(s)
- Valerie M Kramlinger
- From the Department of Biochemistry, School of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Mónica Alvarado Rojas
- From the Department of Biochemistry, School of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Tatsuyuki Kanamori
- From the Department of Biochemistry, School of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, School of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
13
|
Ford KA, Ryslik G, Sodhi J, Halladay J, Diaz D, Dambach D, Masuda M. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47:291-319. [DOI: 10.3109/03602532.2015.1047026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Fricchione G. The Neurocircuitry of Attachment and Recovery in Alcoholics Anonymous. ALCOHOLISM TREATMENT QUARTERLY 2014. [DOI: 10.1080/07347324.2014.907019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
16
|
Heinz N, Møller BL. Homage to Professor Meinhart H. Zenk: Crowd accelerated research and innovation. PHYTOCHEMISTRY 2013; 91:20-28. [PMID: 22683315 DOI: 10.1016/j.phytochem.2012.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/31/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
Professor Meinhart H. Zenk has had an enormous impact within the plant biochemistry area. Throughout his entire career he was able to identify and address key scientific issues within chemistry and plant secondary metabolism. Meinhart H. Zenk and his research associates have provided seminal scientific contributions within a multitude of research topics. A hallmark in Meinhart H. Zenk's research has been to rapidly introduce and apply new technologies and to initiate cross-disciplinary collaborations to provide groundbreaking new knowledge within research areas that at the time appeared highly complex and inaccessible to experimentation. He strived and managed to reach scientific excellence. In this way, he was an eminent key mentor within the plant biochemistry research community. Today, few single individuals possess so much knowledge. However, web-based social platforms enable fast and global distribution and sharing of information also including science related matters, unfortunately often prior to assessment of its correctness. Thus the demand of scientific mentoring that Meinhart H. Zenk offered the science community is as important as ever. In the honor of Meinhart H. Zenk, let us keep up that tradition and widen our engagement to encompass the new social media and benefit from the opportunities offered by crowd accelerated innovation.
Collapse
Affiliation(s)
- Nanna Heinz
- Plant Biochemistry Laboratory, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
17
|
Amrhein N. Meinhart H. Zenk. 04 February 1933-05 July 2011. PHYTOCHEMISTRY 2013; 91:10-19. [PMID: 23901397 DOI: 10.1016/j.phytochem.2012.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Nikolaus Amrhein
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
18
|
Laux-Biehlmann A, Mouheiche J, Vérièpe J, Goumon Y. Endogenous morphine and its metabolites in mammals: History, synthesis, localization and perspectives. Neuroscience 2013; 233:95-117. [DOI: 10.1016/j.neuroscience.2012.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
|
19
|
Duncan MW. Good mass spectrometry and its place in good science. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:795-809. [PMID: 22707172 DOI: 10.1002/jms.3038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The mass spectrometry community has expanded as instruments became more powerful, user-friendly, affordable and readily available. This opens up opportunities for novice users to perform high impact research, using highly advanced instrumentation. This introductory tutorial is targeted at the novice user working in a research setting. It aims to offer the benefit of other people's experiences and to help newcomers avoid known pitfalls and problematic issues. It discusses some of the essential features of sound analytical chemistry and highlights the need to use validated analytical methods that provide high quality results along with a measure of their uncertainty. Examples are used to illustrate potential pitfalls and their consequences.
Collapse
Affiliation(s)
- Mark W Duncan
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver-School of Medicine, Aurora, Colorado 80045, USA.
| |
Collapse
|
20
|
Laux A, Delalande F, Mouheiche J, Stuber D, Van Dorsselaer A, Bianchi E, Bezard E, Poisbeau P, Goumon Y. Localization of endogenous morphine-like compounds in the mouse spinal cord. J Comp Neurol 2012; 520:1547-61. [DOI: 10.1002/cne.22811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Aggarwal SK, Carter GT, Zumbrunnen C, Morrill R, Sullivan M, Mayer JD. Psychoactive substances and the political ecology of mental distress. Harm Reduct J 2012; 9:4. [PMID: 22257499 PMCID: PMC3278374 DOI: 10.1186/1477-7517-9-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/18/2012] [Indexed: 11/10/2022] Open
Abstract
The goal of this paper is to both understand and depathologize clinically significant mental distress related to criminalized contact with psychoactive biotic substances by employing a framework known as critical political ecology of health and disease from the subdiscipline of medical geography. The political ecology of disease framework joins disease ecology with the power-calculus of political economy and calls for situating health-related phenomena in their broad social and economic context, demonstrating how large-scale global processes are at work at the local level, and giving due attention to historical analysis in understanding the relevant human-environment relations. Critical approaches to the political ecology of health and disease have the potential to incorporate ever-broadening social, political, economic, and cultural factors to challenge traditional causes, definitions, and sociomedical understandings of disease. Inspired by the patient-centered medical diagnosis critiques in medical geography, this paper will use a critical political ecology of disease approach to challenge certain prevailing sociomedical interpretations of disease, or more specifically, mental disorder, found in the field of substance abuse diagnostics and the related American punitive public policy regimes of substance abuse prevention and control, with regards to the use of biotic substances. It will do this by first critically interrogating the concept of "substances" and grounding them in an ecological context, reviewing the history of both the development of modern substance control laws and modern substance abuse diagnostics, and understanding the biogeographic dimensions of such approaches. It closes with proposing a non-criminalizing public health approach for regulating human close contact with psychoactive substances using the example of cannabis use.
Collapse
Affiliation(s)
- Sunil K Aggarwal
- Department of Physical Medicine and Rehabilitation, New York University, Rusk Institute of Rehabilitation Medicine, 400 E 34th St, New York, NY 10016 USA.
| | | | | | | | | | | |
Collapse
|
22
|
Scientific Opinion on the risks for public health related to the presence of opium alkaloids in poppy seeds. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
23
|
Laux A, Muller AH, Miehe M, Dirrig-Grosch S, Deloulme JC, Delalande F, Stuber D, Sage D, Van Dorsselaer A, Poisbeau P, Aunis D, Goumon Y. Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells. J Comp Neurol 2011; 519:2390-416. [PMID: 21456021 DOI: 10.1002/cne.22633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endogenous morphine, morphine-6-glucuronide, and codeine, which are structurally identical to vegetal alkaloids, can be synthesized by mammalian cells from dopamine. However, the role of brain endogenous morphine and its derivative compounds is a matter of debate, and knowledge about its distribution is lacking. In this study, by using a validated antibody, we describe a precise mapping of endogenous morphine-like compounds (morphine and/or its glucuronides and/or codeine) in the mouse brain. First, a mass spectrometry approach confirmed the presence of morphine and codeine in mouse brain, but also, of morphine-6-glucuronide and morphine-3-glucuronide representing two metabolites of morphine. Second, light microscopy allowed us to observe immunopositive cell somas and cytoplasmic processes throughout the mouse brain. Morphine-like immunoreactivity was present in various structures including the hippocampus, olfactory bulb, band of Broca, basal ganglia, and cerebellum. Third, by using confocal microscopy and immunofluroscence co-localization, we characterized cell types containing endogenous opiates. Interestingly, we observed that morphine-like immunoreactivity throughout the encephalon is mainly present in γ-aminobutyric acid (GABA)ergic neurons. Astrocytes were also labeled throughout the entire brain, in the cell body, in the cytoplasmic processes, and in astrocytic feet surrounding blood vessels. Finally, ultrastructural localization of morphine-like immunoreactivity was determined by electron microscopy and showed the presence of morphine-like label in presynaptic terminals in the cerebellum and postsynaptic terminals in the rest of the mouse brain. In conclusion, the presence of endogenous morphine-like compounds in brain regions not usually involved in pain modulation opens the exciting opportunity to extend the role and function of endogenous alkaloids far beyond their analgesic functions.
Collapse
Affiliation(s)
- Alexis Laux
- Nociception and Pain Department, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, F-67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Charron G, Doudnikoff E, Laux A, Berthet A, Porras G, Canron MH, Barroso-Chinea P, Li Q, Qin C, Nosten-Bertrand M, Giros B, Delalande F, Van Dorsselaer A, Vital A, Goumon Y, Bezard E. Endogenous morphine-like compound immunoreactivity increases in parkinsonism. Brain 2011; 134:2321-38. [PMID: 21742735 DOI: 10.1093/brain/awr166] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Morphine is endogenously synthesized in the central nervous system and endogenous dopamine is thought to be necessary for endogenous morphine formation. As Parkinson's disease results from the loss of dopamine and is associated with central pain, we considered how endogenous morphine is regulated in the untreated and l-DOPA-treated parkinsonian brain. However, as the cellular origin and overall distribution of endogenous morphine remains obscure in the pathological adult brain, we first characterized the distribution of endogenous morphine-like compound immunoreactive cells in the rat striatum. We then studied changes in the endogenous morphine-like compound immunoreactivity of medium spiny neurons in normal, Parkinson's disease-like and l-DOPA-treated Parkinson's disease-like conditions in experimental (rat and monkey) and human Parkinson's disease. Our results reveal an unexpected dramatic upregulation of neuronal endogenous morphine-like compound immunoreactivity and levels in experimental and human Parkinson's disease, only partially normalized by l-DOPA treatment. Our data suggest that endogenous morphine formation is more complex than originally proposed and that the parkinsonian brain experiences a dramatic upregulation of endogenous morphine immunoreactivity. The functional consequences of such endogenous morphine upregulation are as yet unknown, but based upon the current knowledge of morphine signalling, we hypothesize that it is involved in fatigue, depression and pain symptoms experienced by patients with Parkinson's disease.
Collapse
Affiliation(s)
- Giselle Charron
- University of Bordeaux, Institut des Maladies Neurodegeneratives, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Love and compassion exert pleasant feelings and rewarding effects. Besides their emotional role and capacity to govern behavior, appetitive motivation, and a general ‘positive state’, even ‘spiritual’ at times, the behaviors shown in love and compassion clearly rely on neurobiological mechanisms and underlying molecular principles. These processes and pathways involve the brain’s limbic motivation and reward circuits, that is, a finely tuned and profound autoregulation. This capacity to self-regulate emotions, approach behaviors and even pair bonding, as well as social contact in general, i.e., love, attachment and compassion, can be highly effective in stress reduction, survival and overall health. Yet, molecular biology is the basis of interpersonal neurobiology, however, there is no answer to the question of what comes first or is more important: It is a cybernetic capacity and complex circuit of autoregulation that is clearly ‘amazing’.
Collapse
Affiliation(s)
- Tobias Esch
- Division of Integrative Health Promotion, Coburg University of Applied Sciences, Coburg, Germany.
| | | |
Collapse
|
26
|
Lamshöft M, Grobe N, Spiteller M. Picomolar concentrations of morphine in human urine determined by dansyl derivatization and liquid chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:933-7. [DOI: 10.1016/j.jchromb.2011.02.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/23/2010] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
|
27
|
Frölich N, Dees C, Paetz C, Ren X, Lohse MJ, Nikolaev VO, Zenk MH. Distinct pharmacological properties of morphine metabolites at G(i)-protein and β-arrestin signaling pathways activated by the human μ-opioid receptor. Biochem Pharmacol 2011; 81:1248-54. [PMID: 21396918 DOI: 10.1016/j.bcp.2011.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/27/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
Morphine and several other opioids are important drugs for the treatment of acute and chronic pain. Opioid-induced analgesia is predominantly mediated by the μ-opioid receptor (MOR). When administered to humans, complex metabolic pathways lead to generation of many metabolites, nine of which may be considered major metabolites. While the properties of the two main compounds, morphine-6-glucuronide and morphine-3-glucuronide, are well described, the activity of other morphine metabolites is largely unknown. Here we performed an extensive pharmacological characterization by comparing efficacies and potencies of morphine and its nine major metabolites for the two main signaling pathways engaged by the human MOR, which occur via G(i)-protein activation and β-arrestins, respectively. We used radioligand binding studies and FRET-based methods to monitor MOR-mediated G(i)-protein activation and β-arrestin recruitment in single intact 293T cells. This approach identified two major groups of morphine metabolites, which we classified into "strong" and "weak" receptor ligands. Strong partial agonists morphine, morphine-6-glucuronide, normorphine, morphine-6-sulfate, 6-acetylmorphine and 3-acetylmorphine showed efficacies in the nanomolar range, while the weak metabolites morphine-N-oxide, morphine-3-sulfate, morphine-3-glucuronide and pseudomorphine activated MOR pathways only in the micromolar range. Interestingly, three metabolites, normorphine, 6-acetylmorphine and morphine-6-glucuronide, had lower potencies for Gi-protein activation but higher potencies and efficacies for β-arrestin recruitment than morphine itself, suggesting that they are biased towards β-arrestin pathways.
Collapse
Affiliation(s)
- Nadine Frölich
- Institute of Pharmacology, University of Würzburg, Versbacher Strasse 9, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Charlet A, Muller AH, Laux A, Kemmel V, Schweitzer A, Deloulme JC, Stuber D, Delalande F, Bianchi E, Van Dorsselaer A, Aunis D, Andrieux A, Poisbeau P, Goumon Y. Abnormal nociception and opiate sensitivity of STOP null mice exhibiting elevated levels of the endogenous alkaloid morphine. Mol Pain 2010; 6:96. [PMID: 21172011 PMCID: PMC3017033 DOI: 10.1186/1744-8069-6-96] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 12/20/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mice deficient for the stable tubule only peptide (STOP) display altered dopaminergic neurotransmission associated with severe behavioural defects including disorganized locomotor activity. Endogenous morphine, which is present in nervous tissues and synthesized from dopamine, may contribute to these behavioral alterations since it is thought to play a role in normal and pathological neurotransmission. RESULTS In this study, we showed that STOP null brain structures, including cortex, hippocampus, cerebellum and spinal cord, contain high endogenous morphine amounts. The presence of elevated levels of morphine was associated with the presence of a higher density of mu opioid receptor with a higher affinity for morphine in STOP null brains. Interestingly, STOP null mice exhibited significantly lower nociceptive thresholds to thermal and mechanical stimulations. They also had abnormal behavioural responses to the administration of exogenous morphine and naloxone. Low dose of morphine (1 mg/kg, i.p.) produced a significant mechanical antinociception in STOP null mice whereas it has no effect on wild-type mice. High concentration of naloxone (1 mg/kg) was pronociceptive for both mice strain, a lower concentration (0.1 mg/kg) was found to increase the mean mechanical nociceptive threshold only in the case of STOP null mice. CONCLUSIONS Together, our data show that STOP null mice displayed elevated levels of endogenous morphine, as well as an increase of morphine receptor affinity and density in brain. This was correlated with hypernociception and impaired pharmacological sensitivity to mu opioid receptor ligands.
Collapse
Affiliation(s)
- Alexandre Charlet
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Université de Strasbourg, Strasbourg, F-67084, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mantione KJ, Kream RM, Stefano GB. Catechol-O-methyltransferase: potential relationship to idiopathic hypertension. Arch Med Sci 2010; 6:291-5. [PMID: 22371762 PMCID: PMC3282503 DOI: 10.5114/aoms.2010.14246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/07/2010] [Accepted: 06/19/2010] [Indexed: 12/03/2022] Open
Abstract
Catecholamine signaling pathways in the peripheral and central nervous systems (PNS, CNS, respectively) utilize catechol-O-methyltransferase (COMT) as a major regulatory enzyme responsible for deactivation of dopamine (DA), norepinephrine (NE) and epinephrine (E). Accordingly, homeostasis of COMT gene expression is hypothesized to be functionally linked to regulation of autonomic control of normotensive vascular events. Recently, we demonstrated that morphine administration in vitro resulted in decreased cellular concentrations of COMT-encoding mRNA levels, as compared to control values. In contrast, cells treated with E up regulated their COMT gene expression. In sum, these observations indicate a potential reciprocal linkage between end product inhibition of COMT gene expression by E and morphine. Interestingly, the observed effects of administered E on COMT gene expression suggest an enhancement of its own catabolism or, reciprocally, a stimulation morphine biosynthesis.
Collapse
Affiliation(s)
- Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, New York, USA
| | | | | |
Collapse
|
30
|
Guengerich FP, Tang Z, Salamanca-Pinzón SG, Cheng Q. Characterizing proteins of unknown function: orphan cytochrome p450 enzymes as a paradigm. Mol Interv 2010; 10:153-63. [PMID: 20539034 PMCID: PMC2895278 DOI: 10.1124/mi.10.3.6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the rapid completion of genomic sequences of organisms today, we have far more gene products than functions we can ascribe. A number of experimental strategies have been developed and applied, both in vitro and in vivo, to put functions to these orphan proteins. The "deorphanization" of human and Streptomyces cytochrome P450 enzymes is considered quite important for pharmacology, with ramifications for the use of clinical therapeutics. The myriad of possibilities is too enormous to screen one reaction at a time, thus metabolomic or proteomic screens with complex biological samples are promising current strategies.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
It has been firmly established that humans excrete a small but steady amount of the isoquinoline alkaloid morphine in their urine. It is unclear whether it is of dietary or endogenous origin. There is no doubt that a simple isoquinoline alkaloid, tetrahydropapaveroline (THP), is found in human and rodent brain as well as in human urine. This suggests a potential biogenetic relationship between both alkaloids. Unlabeled THP or [1,3,4-D(3)]-THP was injected intraperitoneally into mice and the urine was analyzed. This potential precursor was extensively metabolized (96%). Among the metabolites found was the phenol-coupled product salutaridine, the known morphine precursor in the opium poppy plant. Synthetic [7D]-salutaridinol, the biosynthetic reduction product of salutaridine, injected intraperitoneally into live animals led to the formation of [7D]-thebaine, which was excreted in urine. [N-CD(3)]-thebaine was also administered and yielded [N-CD(3)]-morphine and the congeners [N-CD(3)]-codeine and [N-CD(3)]-oripavine in urine. These results show for the first time that live animals have the biosynthetic capability to convert a normal constituent of rodents, THP, to morphine. Morphine and its precursors are normally not found in tissues or organs, presumably due to metabolic breakdown. Hence, only that portion of the isoquinoline alkaloids excreted in urine unmetabolized can be detected. Analysis of urine by high resolution-mass spectrometry proved to be a powerful method for tracking endogenous morphine and its biosynthetic precursors.
Collapse
|
32
|
Weaver J. Mice may make morphine. Nature 2010. [DOI: 10.1038/news.2010.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Mann A, Tyndale RF. Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells. Eur J Neurosci 2010; 31:1185-93. [PMID: 20345925 PMCID: PMC5262472 DOI: 10.1111/j.1460-9568.2010.07142.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 (CYP) 2D6 is an enzyme that is expressed in liver and brain. It can inactivate neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroisoquinoline and beta-carbolines. Genetically slow CYP2D6 metabolizers are at higher risk for developing Parkinson's disease, a risk that increases with exposure to pesticides. The goal of this study was to investigate the neuroprotective role of CYP2D6 in an in-vitro neurotoxicity model. SH-SY5Y human neuroblastoma cells express CYP2D6 as determined by western blotting, immunocytochemistry and enzymatic activity. CYP2D6 metabolized 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin and the CYP2D6-specific inhibitor quinidine (1 microM) blocked 96 +/- 1% of this metabolism, indicating that CYP2D6 is functional in this cell line. Treatment of cells with CYP2D6 inhibitors (quinidine, propanolol, metoprolol or timolol) at varying concentrations significantly increased the neurotoxicity caused by 1-methyl-4-phenylpyridinium (MPP+) at 10 and 25 microM by between 9 +/- 1 and 22 +/- 5% (P < 0.01). We found that CYP3A is also expressed in SH-SY5Y cells and inhibiting CYP3A with ketoconazole significantly increased the cell death caused by 10 and 25 microM of MPP+ by between 8 +/- 1 and 30 +/- 3% (P < 0.001). Inhibiting both CYP2D6 and CYP3A showed an additive effect on MPP+ neurotoxicity. These data further support a possible role for CYP2D6 in neuroprotection from Parkinson's disease-causing neurotoxins, especially in the human brain where expression of CYP2D6 is high in some regions (e.g. substantia nigra).
Collapse
Affiliation(s)
- Amandeep Mann
- The Centre for Mental Helath and Addictions, and Centre for Addiction and Mental Health Room 4326, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada, M5S 1A8
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Rachel F. Tyndale
- The Centre for Mental Helath and Addictions, and Centre for Addiction and Mental Health Room 4326, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada, M5S 1A8
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| |
Collapse
|
34
|
Endogenous morphine levels are increased in sepsis: a partial implication of neutrophils. PLoS One 2010; 5:e8791. [PMID: 20098709 PMCID: PMC2808358 DOI: 10.1371/journal.pone.0008791] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 12/26/2009] [Indexed: 11/19/2022] Open
Abstract
Background Mammalian cells synthesize morphine and the respective biosynthetic pathway has been elucidated. Human neutrophils release this alkaloid into the media after exposure to morphine precursors. However, the exact role of endogenous morphine in inflammatory processes remains unclear. We postulate that morphine is released during infection and can be determined in the serum of patients with severe infection such as sepsis. Methodology The presence and subcellular immunolocalization of endogenous morphine was investigated by ELISA, mass spectrometry analysis and laser confocal microscopy. Neutrophils were activated with Interleukin-8 (IL-8) or lipopolysaccharide (LPS). Morphine secretion was determined by a morphine-specific ELISA. μ opioid receptor expression was assessed with flow cytometry. Serum morphine concentrations of septic patients were determined with a morphine-specific ELISA and morphine identity was confirmed in human neutrophils and serum of septic patients by mass spectrometry analysis. The effects of the concentration of morphine found in serum of septic patients on LPS-induced release of IL-8 by human neutrophils were tested. Principal Findings We confirmed the presence of morphine in human neutrophil extracts and showed its colocalisation with lactoferrin within the secondary granules of neutrophils. Morphine secretion was quantified in the supernatant of activated human polymorphonuclear neutrophils in the presence and absence of Ca2+. LPS and IL-8 were able to induce a significant release of morphine only in presence of Ca2+. LPS treatment increased μ opioid receptor expression on neutrophils. Low concentration of morphine (8 nM) significantly inhibited the release of IL-8 from neutrophils when coincubated with LPS. This effect was reversed by naloxone. Patients with sepsis, severe sepsis and septic shock had significant higher circulating morphine levels compared to patients with systemic inflammatory response syndrome and healthy controls. Mass spectrometry analysis showed that endogenous morphine from serum of patient with sepsis was identical to poppy-derived morphine. Conclusions Our results indicate that morphine concentrations are increased significantly in the serum of patients with systemic infection and that morphine is, at least in part, secreted from neutrophils during sepsis. Morphine concentrations equivalent to those found in the serum of septic patients significantly inhibited LPS-induced IL-8 secretion in neutrophils.
Collapse
|
35
|
Gender-related differences in the pharmacokinetics of opiates. Forensic Sci Int 2010; 194:28-33. [DOI: 10.1016/j.forsciint.2009.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/28/2009] [Accepted: 10/08/2009] [Indexed: 11/18/2022]
|
36
|
Stöckigt J, Chen Z, Ruppert M. Enzymatic and Chemo-Enzymatic Approaches Towards Natural and Non-Natural Alkaloids: Indoles, Isoquinolines, and Others. NATURAL PRODUCTS VIA ENZYMATIC REACTIONS 2010; 297:67-103. [DOI: 10.1007/128_2010_80] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Abstract
Morphine biosynthesis in relatively simple and complex integrated animal systems has been demonstrated. Key enzymes in the biosynthetic pathway have also been identified, that is, CYP2D6 and COMT. Endogenous morphine appears to exert highly selective actions via novel mu opiate receptor subtypes, that is, mu3,-4, which are coupled to constitutive nitric oxide release, exerting general yet specific down regulatory actions in various animal tissues. The pivotal role of dopamine as a chemical intermediate in the morphine biosynthetic pathway in plants establishes a functional basis for its expansion into an essential role as the progenitor catecholamine signaling molecule underlying neural and neuroendocrine transmission across diverse animal phyla. In invertebrate neural systems, dopamine serves as the preeminent catecholamine signaling molecule, with the emergence and limited utilization of norepinephrine in newly defined adaptational chemical circuits required by a rapidly expanding set of physiological demands, that is, motor and motivational networks. In vertebrates epinephrine, emerges as the major end of the catecholamine synthetic pathway consistent with a newly incorporated regulatory modification. Given the striking similarities between the enzymatic steps in the morphine biosynthetic pathway and those driving the evolutionary adaptation of catecholamine chemical species to accommodate an expansion of interactive but distinct signaling systems, it is our overall contention that the evolutionary emergence of catecholamine systems required conservation and selective "retrofit" of specific enzyme activities, that is, COMT, drawn from cellular morphine expression. Our compelling hypothesis promises to initiate the reexamination of clinical studies, adding new information and treatment modalities in biomedicine.
Collapse
|
38
|
Grobe N, Zhang B, Fisinger U, Kutchan TM, Zenk MH, Guengerich FP. Mammalian cytochrome P450 enzymes catalyze the phenol-coupling step in endogenous morphine biosynthesis. J Biol Chem 2009; 284:24425-31. [PMID: 19561069 PMCID: PMC2782035 DOI: 10.1074/jbc.m109.011320] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/27/2009] [Indexed: 11/06/2022] Open
Abstract
A cytochrome P450 (P450) enzyme in porcine liver that catalyzed the phenol-coupling reaction of the substrate (R)-reticuline to salutaridine was previously purified to homogeneity (Amann, T., Roos, P. H., Huh, H., and Zenk, M. H. (1995) Heterocycles 40, 425-440). This reaction was found to be catalyzed by human P450s 2D6 and 3A4 in the presence of (R)-reticuline and NADPH to yield not a single product, but rather (-)-isoboldine, (-)-corytuberine, (+)-pallidine, and salutaridine, the para-ortho coupled established precursor of morphine in the poppy plant and most likely also in mammals. (S)-Reticuline, a substrate of both P450 enzymes, yielded the phenol-coupled alkaloids (+)-isoboldine, (+)-corytuberine, (-)-pallidine, and sinoacutine; none of these serve as a morphine precursor. Catalytic efficiencies were similar for P450 2D6 and P450 3A4 in the presence of cytochrome b(5) with (R)-reticuline as substrate. The mechanism of phenol coupling is not yet established; however, we favor a single cycle of iron oxidation to yield salutaridine and the three other alkaloids from (R)-reticuline. The total yield of salutaridine formed can supply the 10 nm concentration of morphine found in human neuroblastoma cell cultures and in brain tissues of mice.
Collapse
Affiliation(s)
- Nadja Grobe
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Baichen Zhang
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Ursula Fisinger
- the Lehrstuhl für Pharmazeutische Biologie, Universität München, Karlstrasse 29, 80333 München, Germany, and
| | - Toni M. Kutchan
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Meinhart H. Zenk
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - F. Peter Guengerich
- the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
39
|
Arsequell G, Salvatella M, Valencia G, Fernández-Mayoralas A, Fontanella M, Venturi C, Jiménez-Barbero J, Marrón E, Rodríguez RE. Synthesis, conformation, and biological characterization of a sugar derivative of morphine that is a potent, long-lasting, and nontolerant antinociceptive. J Med Chem 2009; 52:2656-66. [PMID: 19351163 DOI: 10.1021/jm8011245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic mannoside derivative, namely, 6-morphinyl-alpha-D-mannopyranoside, shows a naloxone-reversible antinociception that is 100-fold more potent and twice as long lasting compared to morphine when administered intraperitoneally to rats in paw pressure and tail flick tests. The compound does not produce tolerance and binds to rat mu opioid receptors with twice the affinity of morphine. NMR studies suggest that differences of activity between the derivative and its parent compound M6G might be related to their differing molecular dynamic behavior.
Collapse
Affiliation(s)
- Gemma Arsequell
- Unit of Glycoconjugate Chemistry, Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Jordi Girona 18-26, E08034-Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Stefano GB, Cadet P, Kream RM, Zhu W. The presence of endogenous morphine signaling in animals. Neurochem Res 2008; 33:1933-9. [PMID: 18777209 DOI: 10.1007/s11064-008-9674-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/13/2008] [Indexed: 11/28/2022]
Abstract
Recent empirical findings have contributed valuable mechanistic information in support of a regulated de novo biosynthetic pathway for chemically authentic morphine and related morphinan alkaloids within animal cells. Importantly, we and others have established that endogenously expressed morphine represents a key regulatory molecule effecting local circuit autocrine/paracrine cellular signaling via a novel mu(3) opiate receptor coupled to constitutive nitric oxide production and release. The present report provides an integrated review of the biochemical, pharmacological, and molecular demonstration of mu(3) opiate receptors in historical linkage to the elucidation of mechanisms of endogenous morphine production by animal cells and organ systems. Ongoing research in this exciting area provides a rare window of opportunity to firmly establish essential biochemical linkages between dopamine, a morphine precursor, and animal biosynthetic pathways involved in morphine biosynthesis that have been conserved throughout evolution.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York-College at Old Westbury, P.O. Box 210, Old Westbury, NY 11568, USA.
| | | | | | | |
Collapse
|
42
|
Neri C, Ghelardini C, Sotak B, Palmiter RD, Guarna M, Stefano G, Bianchi E. Dopamine is necessary to endogenous morphine formation in mammalian brainin vivo. J Neurochem 2008; 106:2337-44. [DOI: 10.1111/j.1471-4159.2008.05572.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Abstract
It is probable that nearly every natural product structure results from interactions between organisms. Symbiosis, a subset of inter-organism interactions involving closely associated partners, has recently provided new and interesting experimental systems for the study of these interactions. This review discusses new observations about natural product function and structural evolution that emerge from the study of symbiotic systems. In particular, these advances directly address long-standing 'how' and 'why' questions about natural products, providing fundamental insights about the evolution, origin and purpose of natural products that are inaccessible by other methods.
Collapse
Affiliation(s)
- Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
44
|
Gookin TE, Kim J, Assmann SM. Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling. Genome Biol 2008; 9:R120. [PMID: 18671868 PMCID: PMC2530877 DOI: 10.1186/gb-2008-9-7-r120] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 04/19/2008] [Accepted: 07/31/2008] [Indexed: 11/10/2022] Open
Abstract
Computational prediction and in vivo protein coupling experiments identify candidate plant G-protein coupled receptors in Arabidopsis, rice and poplar. Background The classic paradigm of heterotrimeric G-protein signaling describes a heptahelical, membrane-spanning G-protein coupled receptor that physically interacts with an intracellular Gα subunit of the G-protein heterotrimer to transduce signals. G-protein coupled receptors comprise the largest protein superfamily in metazoa and are physiologically important as they sense highly diverse stimuli and play key roles in human disease. The heterotrimeric G-protein signaling mechanism is conserved across metazoa, and also readily identifiable in plants, but the low sequence conservation of G-protein coupled receptors hampers the identification of novel ones. Using diverse computational methods, we performed whole-proteome analyses of the three dominant model plant species, the herbaceous dicot Arabidopsis thaliana (mouse-eared cress), the monocot Oryza sativa (rice), and the woody dicot Populus trichocarpa (poplar), to identify plant protein sequences most likely to be GPCRs. Results Our stringent bioinformatic pipeline allowed the high confidence identification of candidate G-protein coupled receptors within the Arabidopsis, Oryza, and Populus proteomes. We extended these computational results through actual wet-bench experiments where we tested over half of our highest ranking Arabidopsis candidate G-protein coupled receptors for the ability to physically couple with GPA1, the sole Gα in Arabidopsis. We found that seven out of eight tested candidate G-protein coupled receptors do in fact interact with GPA1. We show through G-protein coupled receptor classification and molecular evolutionary analyses that both individual G-protein coupled receptor candidates and candidate G-protein coupled receptor families are conserved across plant species and that, in some cases, this conservation extends to metazoans. Conclusion Our computational and wet-bench results provide the first step toward understanding the diversity, conservation, and functional roles of plant candidate G-protein coupled receptors.
Collapse
Affiliation(s)
- Timothy E Gookin
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA.
| | | | | |
Collapse
|
45
|
Endogenous opiates, opioids, and immune function: Evolutionary brokerage of defensive behaviors. Semin Cancer Biol 2008; 18:190-8. [DOI: 10.1016/j.semcancer.2007.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Stefano GB, Kream RM, Mantione KJ, Sheehan M, Cadet P, Zhu W, Bilfinger TV, Esch T. Endogenous morphine/nitric oxide-coupled regulation of cellular physiology and gene expression: implications for cancer biology. Semin Cancer Biol 2008; 18:199-210. [PMID: 18203618 PMCID: PMC2432462 DOI: 10.1016/j.semcancer.2007.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/05/2007] [Indexed: 12/19/2022]
Abstract
Cancer is a simplistic, yet complicated, process that promotes uncontrolled growth. In this regard, this unconstrained proliferation may represent primitive phenomena whereby cellular regulation is suspended or compromised. Given the new empirical evidence for a morphinergic presence and its profound modulatory actions on several cellular processes it is not an overstatement to hypothesize that morphine may represent a key chemical messenger in the process of modulating proliferation of diverse cells. This has been recently demonstrated by the finding of a novel opiate-alkaloid selective receptor subtype in human multilineage progenitor cells (MLPC). Adding to the significance of morphinergic signaling are the findings of its presence in plant, invertebrate and vertebrate cells, which also have been shown to synthesize this messenger as well. Interestingly, we and others have shown that some cancerous tissues contain morphine. Furthermore, in medullary histolytic reticulosis, which is exemplified by cells having hyperactivity, the mu3 (mu3) opiate select receptor was not present. Thus, it would appear that morphinergic signaling has inserted itself in many processes taking a long time to evolve, including those regulating the proliferation of cells across diverse phyla.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York - SUNY College at Old Westbury, P.O. Box 210, Old Westbury, NY 11568, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Muller A, Glattard E, Taleb O, Kemmel V, Laux A, Miehe M, Delalande F, Roussel G, Van Dorsselaer A, Metz-Boutigue MH, Aunis D, Goumon Y. Endogenous morphine in SH-SY5Y cells and the mouse cerebellum. PLoS One 2008; 3:e1641. [PMID: 18327293 PMCID: PMC2265639 DOI: 10.1371/journal.pone.0001641] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/23/2008] [Indexed: 11/18/2022] Open
Abstract
Background Morphine, the principal active agent in opium, is not restricted to plants, but is also present in different animal tissues and cell types, including the mammalian brain. In fact, its biosynthetic pathway has been elucidated in a human neural cell line. These data suggest a role for morphine in brain physiology (e.g., neurotransmission), but this hypothesis remains a matter of debate. Recently, using the adrenal neuroendocrine chromaffin cell model, we have shown the presence of morphine-6-glucuronide (M6G) in secretory granules and their secretion products, leading us to propose that these endogenous alkaloids might represent new neuroendocrine factors. Here, we investigate the potential function of endogenous alkaloids in the central nervous system. Methodology and Principal Findings Microscopy, molecular biology, electrophysiology, and proteomic tools were applied to human neuroblastoma SH-SY5Y cells (i) to characterize morphine and M6G, and (ii) to demonstrate the presence of the UDP-glucuronyltransferase 2B7 enzyme, which is responsible for the formation of M6G from morphine. We show that morphine is secreted in response to nicotine stimulation via a Ca2+-dependent mechanism involving specific storage and release mechanisms. We also show that morphine and M6G at concentrations as low as 10−10 M are able to evoke specific naloxone-reversible membrane currents, indicating possible autocrine/paracrine regulation in SH-SY5Y cells. Microscopy and proteomic approaches were employed to detect and quantify endogenous morphine in the mouse brain. Morphine is present in the hippocampus, cortex, olfactory bulb, and cerebellum at concentration ranging from 1.45 to 7.5 pmol/g. In the cerebellum, morphine immunoreactivity is localized to GABA basket cells and their termini, which form close contacts on Purkinje cell bodies. Conclusions/Significance The presence of morphine in the brain and its localization in particular areas lead us to conclude that it has a specific function in neuromodulation and/or neurotransmission. Furthermore, its presence in cerebellar basket cell termini suggests that morphine has signaling functions in Purkinje cells that remain to be discovered.
Collapse
Affiliation(s)
- Arnaud Muller
- Inserm, U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Elise Glattard
- Inserm, U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Omar Taleb
- Inserm, U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Véronique Kemmel
- Inserm, U575, Physiopathologie du Système Nerveux, Strasbourg, France
- Faculty of Medicine, Institut de Chimie Biologique, Strasbourg, France
| | - Alexis Laux
- Inserm, U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Monique Miehe
- Inserm, U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | | | - Guy Roussel
- Inserm, U575, Physiopathologie du Système Nerveux, Strasbourg, France
- Faculty of Medicine, Institut de Chimie Biologique, Strasbourg, France
| | - Alain Van Dorsselaer
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Spectrométrie de Masse Bio-Organique, The European School of Chemistry, Polymers and Materials (ECPM), Université Louis Pasteur, LC4-UMR7178, Strasbourg, France
| | | | - Dominique Aunis
- Inserm, U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Yannick Goumon
- Inserm, U575, Physiopathologie du Système Nerveux, Strasbourg, France
- *E-mail:
| |
Collapse
|
48
|
Gookin TE, Kim J, Assmann SM. Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling. Genome Biol 2008. [PMID: 18671868 DOI: 10.1186/gb-2008-97-r120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND The classic paradigm of heterotrimeric G-protein signaling describes a heptahelical, membrane-spanning G-protein coupled receptor that physically interacts with an intracellular G alpha subunit of the G-protein heterotrimer to transduce signals. G-protein coupled receptors comprise the largest protein superfamily in metazoa and are physiologically important as they sense highly diverse stimuli and play key roles in human disease. The heterotrimeric G-protein signaling mechanism is conserved across metazoa, and also readily identifiable in plants, but the low sequence conservation of G-protein coupled receptors hampers the identification of novel ones. Using diverse computational methods, we performed whole-proteome analyses of the three dominant model plant species, the herbaceous dicot Arabidopsis thaliana (mouse-eared cress), the monocot Oryza sativa (rice), and the woody dicot Populus trichocarpa (poplar), to identify plant protein sequences most likely to be GPCRs. RESULTS Our stringent bioinformatic pipeline allowed the high confidence identification of candidate G-protein coupled receptors within the Arabidopsis, Oryza, and Populus proteomes. We extended these computational results through actual wet-bench experiments where we tested over half of our highest ranking Arabidopsis candidate G-protein coupled receptors for the ability to physically couple with GPA1, the sole G alpha in Arabidopsis. We found that seven out of eight tested candidate G-protein coupled receptors do in fact interact with GPA1. We show through G-protein coupled receptor classification and molecular evolutionary analyses that both individual G-protein coupled receptor candidates and candidate G-protein coupled receptor families are conserved across plant species and that, in some cases, this conservation extends to metazoans. CONCLUSION Our computational and wet-bench results provide the first step toward understanding the diversity, conservation, and functional roles of plant candidate G-protein coupled receptors.
Collapse
Affiliation(s)
- Timothy E Gookin
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA.
| | | | | |
Collapse
|
49
|
Fischer W, Neubert RHH, Brandsch M. Clonidine accumulation in human neuronal cells. Eur J Pharm Sci 2007; 32:291-5. [PMID: 17869491 DOI: 10.1016/j.ejps.2007.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/06/2007] [Accepted: 08/07/2007] [Indexed: 11/25/2022]
Abstract
After transport across several epithelial barriers including the blood-brain barrier, clonidine interacts with alpha(2)-adrenergic receptors and imidazoline binding sites in the brain. We hypothesized that neuronal cells take up clonidine thereby removing the drug from the extracellular fluid compartment. Uptake of [(3)H]clonidine into SH-SY5Y neuroblastoma cells was linear for up to 1 min, unaffected by inside directed Na(+) or Cl(-) gradients but strongly inhibited by an outside pH of 6.0. The cells accumulated [(3)H]clonidine 50-70-fold uphill against a concentration gradient. Unlabeled clonidine, guanabenz, imipramine, diphenhydramine, maprotiline, quinine and the endogenous monoamine phenylethylamine (2 mM) strongly inhibited the [(3)H]clonidine uptake by 60-95%. Tetraethylammonium, choline and N-methyl-4-phenylpyridinium had no effect. The accumulation at pH 7.5 was saturable with an apparent Michaelis-Menten constant (K(t)) of 0.7 mM. We conclude that SH-SY5Y cells not only bind clonidine to extracellular receptors but also take up the drug rapidly by a specific and concentrative mechanism.
Collapse
Affiliation(s)
- Wiebke Fischer
- Membrane Transport Group, Biozentrum, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle, Germany
| | | | | |
Collapse
|
50
|
Esch T, Stefano GB. A bio-psycho-socio-molecular approach to pain and stress management. Complement Med Res 2007; 14:224-34. [PMID: 17848799 DOI: 10.1159/000105671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stress and trauma are interconnected with the experience of pain. This connection is due to a physiological coupling of underlying molecular autoregulatory mechanisms, as well as phenomenological similarities. Nonpharmaceutical therapeutic approaches such as the relaxation response, a process that supports physiological stress reduction and decreases the negative mental and physical effects of stress, also facilitate pain relief, again demonstrating physiological commonalities. These behavioral approaches have a critical impact on molecular patterns of autoregulation, leading to the assumption of a bio-psycho-socio-molecular model of autoregulation, including stress and pain. Thus, molecules and behavior may be seen as two sides of the same problem in pain and stress relief.
Collapse
Affiliation(s)
- Tobias Esch
- Division of Integrative Health Promotion, Coburg University of Applied Sciences, Hochschule Coburg, Friedrich-Streib-Strasse 2, 96450 Coburg, Germany.
| | | |
Collapse
|