1
|
Morales Castro RA, Kern BC, Díaz-Basabe A, Meinen ER, Zhao D, Zhou Y, Castillo F, Monasterio G, Farcas V, Chávez MN, Fransson J, Villablanca EJ. A zebrafish model of intestinal epithelial damage reveals macrophages and igfbp1a as major modulators of mucosal healing. Mucosal Immunol 2025:S1933-0219(25)00042-X. [PMID: 40252728 DOI: 10.1016/j.mucimm.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Promoting intestinal regeneration and enhancing mucosal healing have emerged as promising therapeutic alternatives for treating intestinal disorders that compromise epithelial barrier integrity and function. However, the cellular and molecular mechanisms underlying these processes remain poorly understood. This knowledge gap is partly due to the lack of reliable and cost-effective in vivo models for studying the mechanisms governing intestinal damage and regeneration. Here, we developed a controlled, inducible, and targeted intestinal epithelial cell (IEC) ablation transgenic zebrafish model that recapitulates features of intestinal damage and regeneration observed in humans. Single-cell RNAseq and live imaging revealed accumulation of macrophages in the recovering intestine, contributing to its regeneration. Furthermore, we observed overexpression of insulin-like growth factor binding protein 1a (igfbp1a) during intestinal damage. Morpholino-mediated knockdown of igfbp1a exacerbated intestinal damage and impaired subsequent regeneration. In summary, we introduced a novel zebrafish model of intestinal damage that enables in vivo high-throughput screening for identifying and validating novel modulators of mucosal healing and intestinal regeneration.
Collapse
Affiliation(s)
- Rodrigo A Morales Castro
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden; Division of Clinical Immunology, Department of Laboratory Medicine (Labmed), Karolinska Institute, SE-141 52 Huddinge, Sweden.
| | - Bianca C Kern
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Angélica Díaz-Basabe
- Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden; Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Eveline R Meinen
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Danxia Zhao
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Yuqing Zhou
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Francisca Castillo
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Gustavo Monasterio
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Vlad Farcas
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Myra N Chávez
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Jennifer Fransson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden.
| |
Collapse
|
2
|
Perez ES, Ribeiro RA, Zanella BT, Almeida FLA, Blasco J, Garcia de la Serrana D, Dal-Pai-Silva M, Duran BO. Proteome of amino acids or IGF1-stimulated pacu muscle cells offers molecular insights and suggests FN1B and EIF3C as candidate markers of fish muscle growth. Biochem Biophys Res Commun 2025; 757:151648. [PMID: 40107112 DOI: 10.1016/j.bbrc.2025.151648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Study of fish skeletal muscle is essential to understand physiological or metabolic processes, and to develop programs searching for increased muscle mass and meat production. Amino acids (AA) and IGF1 stimulate processes that lead to muscle growth, but their signaling pathways and molecular regulation need further clarification in fish. We obtained the proteome of pacu (Piaractus mesopotamicus) cultured muscle cells treated with AA or IGF1, which induced the differential abundance of 67 and 53 proteins, respectively. Enrichment analyses showed that AA modulated histone methylation, cell differentiation, and metabolism, while IGF1 modulated ATP production and protein synthesis. In addition, we identified molecular networks with candidate markers that commonly regulate fish muscle cells: FN1B and EIF3C, respectively up- and down-regulated by both treatments. FN1B was related to cell proliferation, protein synthesis, and muscle repair, while EIF3C connected with negative regulators of muscle growth. Their gene expression was evaluated in pacu and Nile tilapia (Oreochromis niloticus) after nutrient manipulation, with fn1b increased during refeeding and eif3c increased during fasting in both species. Our work helps clarify the molecular regulation by AA or IGF1 and suggests that FN1B and EIF3C could be potential stimulatory and inhibitory biomarkers of fish muscle growth.
Collapse
Affiliation(s)
- Erika S Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafaela A Ribeiro
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Bruna Tt Zanella
- Department of Morphophysiology, Institute of Biosciences, Federal University of Jataí (UFJ), Jataí, Goiás, Brazil
| | - Fernanda LA Almeida
- Department of Morphological Sciences, Center of Biological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruno Os Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Zhou T, Li J, Chen J, Lu W, Zhang L, Cheng J. Coordinated regulation of the hypothalamic-pituitary-somatotropic axis in Chinese sea bass (Lateolabrax maculatus) under temperature and salinity changes. Gen Comp Endocrinol 2025; 366:114717. [PMID: 40139327 DOI: 10.1016/j.ygcen.2025.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Hypothalamic-Pituitary-Somatotropic (HPS) axis contains essential endocrine factors and plays diverse roles in the growth of teleost living in dynamic aquatic environments. In this study, 43 HPS axis genes were characterized in Chinese sea bass (Lateolabrax maculatus), the economically important marine fish highly adaptable to a wide range of temperatures and salinities. The phylogeny, conserved domain, molecular evolution and expression of L. maculatus HPS axis genes revealed their evolutionary conservation, with examples of functional divergence in duplication-originated genes (sst1a/1b, igf1ra/1rb). Weighted gene co-expression network analysis (WGCNA) among L. maculatus tissues revealed strong co-expression of HPS genes (ssts, igf1rs, igfbps) in brains than in livers and muscles, interacting with feeding (cartpt, negr1), metabolism (grik3, drd4), and growth (apba1) functional genes. Under temperature changes, L. maculatus HPS genes were more actively regulated in brains than in livers and muscles, with the hypothalamic and pituitary HPS genes mainly regulated in brains, whereas the peripheral HPS genes were regulated in livers and muscles. WGCNA revealed that HPS axis mainly interacted with stress and feeding activity in brains of L. maculatus under temperature stress, while it interacted with metabolism and growth activity in livers and muscles. Similar co-expression of HPS genes (sstrs, igf1rbs, igfbps) were with feeding (pik3r4), metabolism (mrps, ndufa12) and growth (sulf2, peli3, apod) functions in brains, indicating that HPS axis could regulate growth through coordinated mediation of the food-intake and energy metabolism in L. maculatus under environmental stress. Our results provided comprehensive understanding about the L. maculatus HPS axis responding to environmental stimuli, which are crucial for the growth regulation and will provide important insights into fast-growing L. maculatus cultivation.
Collapse
Affiliation(s)
- Tianyu Zhou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Juyan Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Junyu Chen
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Lingqun Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Jie Cheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
4
|
Choi E, Duan C, Bai XC. Regulation and function of insulin and insulin-like growth factor receptor signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00826-3. [PMID: 39930003 DOI: 10.1038/s41580-025-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/24/2025]
Abstract
Receptors of insulin and insulin-like growth factors (IGFs) are receptor tyrosine kinases whose signalling controls multiple aspects of animal physiology throughout life. In addition to regulating metabolism and growth, insulin-IGF receptor signalling has recently been linked to a variety of new, cell type-specific functions. In the last century, key questions have focused on how structural differences of insulin and IGFs affect receptor activation, and how insulin-IGF receptor signalling translates into pleiotropic biological functions. Technological advances such as cryo-electron microscopy have provided a detailed understanding of how native and engineered ligands activate insulin-IGF receptors. In this Review, we highlight recent structural and functional insights into the activation of insulin-IGF receptors, and summarize new agonists and antagonists developed for intervening in the activation of insulin-IGF receptor signalling. Furthermore, we discuss recently identified regulatory mechanisms beyond ligand-receptor interactions and functions of insulin-IGF receptor signalling in diseases.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Gao X, Ke L, Wang L, Zheng S, Liu X, Hu W, Tong G, Li Z, Hu G. Low-temperature-induced disruption of reproductive axis and sperm vitality via stress axis in Monopterus albus. Gen Comp Endocrinol 2024; 359:114617. [PMID: 39368755 DOI: 10.1016/j.ygcen.2024.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The ricefield eel (Monopterus albus) is inherently timid and highly sensitive to stress. Our previous studies have shown that low-temperature weather could significantly affect the sperm vitality of ricefield eels. This study aims to investigate the regulatory mechanism of low-temperature effects on testicular function and sperm vitality in ricefield eels. The ricefield eels were initially reared at low (10 °C) and normal (25 °C) temperatures for 24 h. Low temperatures were found to induce the expression of pituitary pro-opiomelanocortin (POMC) and testes insulin-like growth factor-binding protein 1 (IGFBP1) mRNA expression, suggesting that the reduction in sperm vitality could be attributed to the activation of the stress axis. Moreover, the results indicated a significant decrease in sperm occupancy and count in the testes, along with a reduced percentage of motile sperm. Subsequent transcriptome analysis showed substantial inhibition of reproductive hormone genes (gnrh1, lh, and fsh) in the brain and pituitary, and downregulation of meiosis-related genes (dmc1, rec8, and sycp3) in the testes. These findings suggest that low temperatures might disrupt testicular development and spermatogenesis by inhibiting the reproductive axis. Metabolomics analysis then demonstrated a significant reduction in the levels of metabolites related to glycolysis, fatty acid metabolism, and the tricarboxylic acid (TCA) cycle in the testes after low-temperature treatment. Interestingly, the expression of zona pellucida sperm-binding proteins 3 and 4 (ZP3 and ZP4), which may affect sperm vitality and spermatogenesis, was significantly induced by low temperatures in the testes. In conclusion, these findings suggested that low temperatures might affect testicular function and sperm vitality by simultaneously activating the stress axis and inhibiting the reproductive axis and energy metabolism in the testes.
Collapse
Affiliation(s)
- Xiaowen Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Ke
- Hubei Provincial Rice Eel Industry Research Institute, Xiantao City 441409, China; Hubei Provincial Rice Eel Industry Group Co., Xiantao City 441409, China
| | - Linlin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Zheng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjiang Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Hu
- Hubei Provincial Rice Eel Industry Group Co., Xiantao City 441409, China
| | - Guobing Tong
- Hong Yuan Ze Aquaculture Specialized Cooperative, China
| | - Zhong Li
- Hubei Provincial Rice Eel Industry Research Institute, Xiantao City 441409, China.
| | - Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Rice Eel Industry Research Institute, Xiantao City 441409, China.
| |
Collapse
|
6
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
7
|
Hsieh MH, Wei Y, Li L, Nguyen LH, Lin YH, Yong JM, Sun X, Wang X, Luo X, Knutson SK, Bracken C, Daley GQ, Powers JT, Zhu H. Liver cancer initiation requires translational activation by an oncofetal regulon involving LIN28 proteins. J Clin Invest 2024; 134:e165734. [PMID: 38875287 PMCID: PMC11290964 DOI: 10.1172/jci165734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
It is unknown which posttranscriptional regulatory mechanisms are required for oncogenic competence. Here, we show that the LIN28 family of RNA-binding proteins (RBPs), which facilitate posttranscriptional RNA metabolism within ribonucleoprotein networks, is essential for the initiation of diverse oncotypes of hepatocellular carcinoma (HCC). In HCC models driven by NRASG12V/Tp53, CTNNB1/YAP/Tp53, or AKT/Tp53, mice without Lin28a and Lin28b were markedly impaired in cancer initiation. We biochemically defined an oncofetal regulon of 15 factors connected to LIN28 through direct mRNA and protein interactions. Interestingly, all were RBPs and only 1 of 15 was a Let-7 target. Polysome profiling and reporter assays showed that LIN28B directly increased the translation of 8 of these 15 RBPs. As expected, overexpression of LIN28B and IGFBP1-3 was able to genetically rescue cancer initiation. Using this platform to probe components downstream of LIN28, we found that 8 target RBPs were able to restore NRASG12V/Tp53 cancer formation in Lin28a/Lin28b-deficient mice. Furthermore, these LIN28B targets promote cancer initiation through an increase in protein synthesis. LIN28B, central to an RNP regulon that increases translation of RBPs, is important for tumor initiation in the liver.
Collapse
Affiliation(s)
- Meng-Hsiung Hsieh
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yonglong Wei
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Lin Li
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liem H. Nguyen
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jung M. Yong
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xuxu Sun
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xun Wang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Luo
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - George Q. Daley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - John T. Powers
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Bogza A, King IL, Maurice CF. Worming into infancy: Exploring helminth-microbiome interactions in early life. Cell Host Microbe 2024; 32:639-650. [PMID: 38723604 DOI: 10.1016/j.chom.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
There is rapidly growing awareness of microbiome assembly and function in early-life gut health. Although many factors, such as antibiotic use and highly processed diets, impinge on this process, most research has focused on people residing in high-income countries. However, much of the world's population lives in low- and middle-income countries (LMICs), where, in addition to erratic antibiotic use and suboptimal diets, these groups experience unique challenges. Indeed, many children in LMICs are infected with intestinal helminths. Although helminth infections are strongly associated with diverse developmental co-morbidities and induce profound microbiome changes, few studies have directly examined whether intersecting pathways between these components of the holobiont shape health outcomes in early life. Here, we summarize microbial colonization within the first years of human life, how helminth-mediated changes to the gut microbiome may affect postnatal growth, and why more research on this relationship may improve health across the lifespan.
Collapse
Affiliation(s)
- Andrei Bogza
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Irah L King
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Corinne F Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada.
| |
Collapse
|
9
|
Ouyang W, Liu Y, Huang H, Tan Y, Huang Z, Jia X, Yu Y, Yao H. Unraveling the unfolded protein response signature: implications for tumor immune microenvironment heterogeneity and clinical prognosis in stomach cancer. Aging (Albany NY) 2024; 16:7818-7844. [PMID: 38700505 PMCID: PMC11132010 DOI: 10.18632/aging.205784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Stomach cancer is a leading cause of cancer-related deaths globally due to its high grade and poor response to treatment. Understanding the molecular network driving the rapid progression of stomach cancer is crucial for improving patient outcomes. METHODS This study aimed to investigate the role of unfolded protein response (UPR) related genes in stomach cancer and their potential as prognostic biomarkers. RNA expression data and clinical follow-up information were obtained from the TCGA and GEO databases. An unsupervised clustering algorithm was used to identify UPR genomic subtypes in stomach cancer. Functional enrichment analysis, immune landscape analysis, and chemotherapy benefit prediction were conducted for each subtype. A prognostic model based on UPR-related genes was developed and validated using LASSO-Cox regression, and a multivariate nomogram was created. Key gene expression analyses in pan-cancer and in vitro experiments were performed to further investigate the role of the identified genes in cancer progression. RESULTS A total of 375 stomach cancer patients were included in this study. Analysis of 113 UPR-related genes revealed their close functional correlation and significant enrichment in protein modification, transport, and RNA degradation pathways. Unsupervised clustering identified two molecular subtypes with significant differences in prognosis and gene expression profiles. Immune landscape analysis showed that UPR may influence the composition of the tumor immune microenvironment. Chemotherapy sensitivity analysis indicated that patients in the C2 molecular subtype were more responsive to chemotherapy compared to those in the C1 molecular subtype. A prognostic signature consisting of seven UPR-related genes was constructed and validated, and an independent prognostic nomogram was developed. The gene IGFBP1, which had the highest weight coefficient in the prognostic signature, was found to promote the malignant phenotype of stomach cancer cells, suggesting its potential as a therapeutic target. CONCLUSIONS The study developed a UPR-related gene classifier and risk signature for predicting survival in stomach cancer, identifying IGFBP1 as a key factor promoting the disease's malignancy and a potential therapeutic target. IGFBP1's role in enhancing cancer cell adaptation to endoplasmic reticulum stress suggests its importance in stomach cancer prognosis and treatment.
Collapse
Affiliation(s)
- Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Yat-Sen Supercomputer Intelligent Medical Joint Research Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Yajing Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Yat-Sen Supercomputer Intelligent Medical Joint Research Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Hong Huang
- School of Medicine, Guilin Medical University, Guilin 541000, Guangxi, China
| | - Yujing Tan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhenjun Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Yat-Sen Supercomputer Intelligent Medical Joint Research Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Xueyuan Jia
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao, P.R. China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Yat-Sen Supercomputer Intelligent Medical Joint Research Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao, P.R. China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Yat-Sen Supercomputer Intelligent Medical Joint Research Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| |
Collapse
|
10
|
Li W, Li H, Hu Q, Wang L, Yin Z, Hu G. IGFBP1a is a nutrient deficient response factor that can inhibit fish reproduction through the hypothalamus-pituitary-ovary axis†. Biol Reprod 2024; 110:761-771. [PMID: 38374691 DOI: 10.1093/biolre/ioae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Reproduction is a high energy consuming process, so long-term malnutrition can significantly inhibit gonadal development. However, little is known about the molecular mechanism by which fasting inhibits reproduction. Our present study found that fasting could dramatically induce insulin-like growth factor binding protein 1 (IGFBP1) expression in the liver, hypothalamus, pituitary and ovaries of grass carp. In addition, IGFBP1a in the hypothalamus-pituitary-gonad axis could inhibit the development of gonads. These results indicated that fasting may participate in the regulation of fish gonadal development through the mediation of IGFBP1a. Further studies found that IGFBP1a could markedly inhibit gonadotropin-releasing hormone 3 expressions in hypothalamus cells. At the pituitary level, IGFBP1a could significantly reduce the gonadotropin hormones (LH and FSH) expression by blocking the action of pituitary insulin-like growth factor 1. Interestingly, IGFBP1a could also directly inhibit the expression of lhr, fshr, and sex steroid hormone synthase genes (cyp11a, cyp17a, and cyp19a1) in the ovary. These results indicated that IGFBP1a should be a nutrient deficient response factor that could inhibit fish reproduction through the hypothalamus-pituitary-ovary axis.
Collapse
Affiliation(s)
- Wei Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hangyu Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qiongyao Hu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Linlin Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guangfu Hu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Raposo de Magalhães C, Sandoval K, Kagan F, McCormack G, Schrama D, Carrilho R, Farinha AP, Cerqueira M, Rodrigues PM. Transcriptomic changes behind Sparus aurata hepatic response to different aquaculture challenges: An RNA-seq study and multiomics integration. PLoS One 2024; 19:e0300472. [PMID: 38517901 PMCID: PMC10959376 DOI: 10.1371/journal.pone.0300472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/13/2024] [Indexed: 03/24/2024] Open
Abstract
Gilthead seabream (Sparus aurata) is an important species in Mediterranean aquaculture. Rapid intensification of its production and sub-optimal husbandry practices can cause stress, impairing overall fish performance and raising issues related to sustainability, animal welfare, and food safety. The advent of next-generation sequencing technologies has greatly revolutionized the study of fish stress biology, allowing a deeper understanding of the molecular stress responses. Here, we characterized for the first time, using RNA-seq, the different hepatic transcriptome responses of gilthead seabream to common aquaculture challenges, namely overcrowding, net handling, and hypoxia, further integrating them with the liver proteome and metabolome responses. After reference-guided transcriptome assembly, annotation, and differential gene expression analysis, 7, 343, and 654 genes were differentially expressed (adjusted p-value < 0.01, log2|fold-change| >1) in the fish from the overcrowding, net handling, and hypoxia challenged groups, respectively. Gene set enrichment analysis (FDR < 0.05) suggested a scenario of challenge-specific responses, that is, net handling induced ribosomal assembly stress, whereas hypoxia induced DNA replication stress in gilthead seabream hepatocytes, consistent with proteomics and metabolomics' results. However, both responses converged upon the downregulation of insulin growth factor signalling and induction of endoplasmic reticulum stress. These results demonstrate the high phenotypic plasticity of this species and its differential responses to distinct challenging environments at the transcriptomic level. Furthermore, it provides significant resources for characterizing and identifying potentially novel genes that are important for gilthead seabream resilience and aquaculture production efficiency with regard to fish welfare.
Collapse
Affiliation(s)
- Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Kenneth Sandoval
- Molecular Evolution and Systematics Laboratory, Zoology, Ryan Institute & School of Natural Sciences, University of Galway, Galway, Ireland
| | | | - Grace McCormack
- Molecular Evolution and Systematics Laboratory, Zoology, Ryan Institute & School of Natural Sciences, University of Galway, Galway, Ireland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Raquel Carrilho
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ana Paula Farinha
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Escola Superior Agrária de Santarém, Santarém, Portugal
| | - Marco Cerqueira
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Pedro M. Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
12
|
Iguchi A, Hayashi M, Yorifuji M, Nishijima M, Gibu K, Kunishima T, Bell T, Suzuki A, Ono T. Whole transcriptome analysis of demersal fish eggs reveals complex responses to ocean deoxygenation and acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:169484. [PMID: 38302347 DOI: 10.1016/j.scitotenv.2023.169484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/20/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
Ocean acidification and deoxygenation co-occur in marine environments, causing deterioration of marine ecosystems. However, effects of compound stresses on marine organisms and their physiological coping mechanisms are largely unknown. Here, we show how high pCO2 and low dissolved oxygen (DO) cause transcriptomic changes in eggs of a demersal fish (Sillago japonica), which are fully exposed to such stresses in natural environment. Overall gene expression was affected more strongly by low DO than by high pCO2. Enrichment analysis detected significant stress responses such as glycolytic processes in response to low DO. Increased expression of a group of glycolytic genes under low DO conditions is presumably because oxygen depletion disables the electron transfer pathway, complementing ATP production in the glycolytic pathway. Contrary to expectations, apparent mitigation of gene expression changes was dominant under combined stress conditions, and may represent an innate fish adaptive trait for severe environments.
Collapse
Affiliation(s)
- Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Research Laboratory on Environmentally-conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan.
| | - Masahiro Hayashi
- Demonstration Laboratory, Marine Ecology Research Institute, 4-7-17 Arahama, Kashiwazaki, Niigata 945-0017, Japan
| | - Makiko Yorifuji
- Demonstration Laboratory, Marine Ecology Research Institute, 4-7-17 Arahama, Kashiwazaki, Niigata 945-0017, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Taiga Kunishima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Laboratory of Marine Biology, Division of Applied Biological Science, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | - Tomoko Bell
- Division of Science and Mathmatics, Newman University, Wichita 67213, KS, USA
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Research Laboratory on Environmentally-conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Tsuneo Ono
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| |
Collapse
|
13
|
Zhang WW, Weng ZY, Wang X, Yang Y, Li D, Wang L, Liu XC, Meng ZN. Genetic mechanism of body size variation in groupers: Insights from phylotranscriptomics. Zool Res 2024; 45:314-328. [PMID: 38485502 PMCID: PMC11017090 DOI: 10.24272/j.issn.2095-8137.2023.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 03/19/2024] Open
Abstract
Animal body size variation is of particular interest in evolutionary biology, but the genetic basis remains largely unknown. Previous studies have shown the presence of two parallel evolutionary genetic clusters within the fish genus Epinephelus with evident divergence in body size, providing an excellent opportunity to investigate the genetic basis of body size variation in vertebrates. Herein, we performed phylotranscriptomic analysis and reconstructed the phylogeny of 13 epinephelids originating from the South China Sea. Two genetic clades with an estimated divergence time of approximately 15.4 million years ago were correlated with large and small body size, respectively. A total of 180 rapidly evolving genes and two positively selected genes were identified between the two groups. Functional enrichment analyses of these candidate genes revealed distinct enrichment categories between the two groups. These pathways and genes may play important roles in body size variation in groupers through complex regulatory networks. Based on our results, we speculate that the ancestors of the two divergent groups of groupers may have adapted to different environments through habitat selection, leading to genetic variations in metabolic patterns, organ development, and lifespan, resulting in body size divergence between the two locally adapted populations. These findings provide important insights into the genetic mechanisms underlying body size variation in groupers and species differentiation.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhuo-Ying Weng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xi Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong SAR 999077, China
| | - Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Duo Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Le Wang
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, Singapore City 117604, Singapore
| | - Xiao-Chun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Southern Laboratory of Ocean Science and Engineering (Zhuhai), Zhuhai, Guangdong 519000, China
| | - Zi-Ning Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Southern Laboratory of Ocean Science and Engineering (Zhuhai), Zhuhai, Guangdong 519000, China. E-mail:
| |
Collapse
|
14
|
Hayasaka O, Shibukawa M, Kamei H. Cellular Energy Sensor Sirt1 Augments Mapk Signaling to Promote Hypoxia/Reoxygenation-Induced Catch-up Growth in Zebrafish Embryo. Zoolog Sci 2024; 41:21-31. [PMID: 38587514 DOI: 10.2108/zs230059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/23/2023] [Indexed: 04/09/2024]
Abstract
Animal growth is blunted in adverse environments where catabolic metabolism dominates; however, when the adversity disappears, stunted animals rapidly catch up to age-equivalent body size. This phenomenon is called catch-up growth, which we observe in various animals. Since growth retardation and catch-up growth are sequential processes, catabolism or stress response molecules may remain active, especially immediately after growth resumes. Sirtuins (Sirt1-7) deacetylate target proteins in a nicotinamide adenine dinucleotide-dependent manner, and these enzymes govern diverse alleys of cellular functions. Here, we investigated the roles of Sirt1 and its close paralog Sirt2 in the hypoxia/reoxygenation-induced catch-up growth model using zebrafish embryos. Temporal blockade of Sirt1/2 significantly reduced the growth rate of the embryos in reoxygenation, but it was not evident in constant normoxia. Subsequent gene knockdown and chemical inhibition experiments demonstrated that Sirt1, but not Sirt2, was required for the catchup growth. Inhibition of Sirt1 significantly reduced the activity of mitogen-activated kinase (Mapk) of embryos in the reoxygenation condition. In addition, co-inhibition of Sirt1- and Igf-signaling did not further reduce the body growth or Mapk activation compared to those of the Igf-signaling-alone-inhibited embryos. Furthermore, in the reoxygenation condition, Sirt1- or Igf-signaling inhibition similarly blunted Mapk activity, especially in anterior tissues and trunk muscle, where the sirt1 expression was evident in the catching-up embryos. These results suggest that the catch-up growth requires Sirt1 action to activate the somatotropic Mapk pathway, likely by modifying the Igf-signaling.
Collapse
Affiliation(s)
- Oki Hayasaka
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mukaze Shibukawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Ikedamohando Co., Ltd., Nakaniikawa-gun, Toyama 930-0365, Japan
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan,
| |
Collapse
|
15
|
Derman RJ, Bellad RB, Bellad MB, Bradford-Rogers J, Georgieff MK, Aghai ZH, Thind S, Auerbach M, Boelig R, Leiby BE, Short V, Yogeshkumar S, Charantimath US, Somannavar MS, Mallapur AA, Pol R, Ramadurg U, Sangavi R, Peerapur BV, Banu N, Patil PS, Patil AP, Roy S, Vastrad P, Wallace D, Shah H, Goudar SS. RAPIDIRON Trial follow-up study - the RAPIDIRON-KIDS Study: protocol of a prospective observational follow-up study. Trials 2023; 24:818. [PMID: 38124098 PMCID: PMC10731903 DOI: 10.1186/s13063-023-07740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/20/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Anemia is a worldwide problem with iron deficiency being the most common cause. When anemia occurs in pregnancy, it increases the risk of adverse maternal, fetal, and postnatal outcomes. It induces preterm births and low birth weight (LBW) deliveries, long-term neurodevelopmental sequelae, and an increased risk of earlier onset of postnatal iron deficiency. Anemia rates are among the highest in South Asia, and India's National Family Health Survey (NFHS-5) for 2019-2021 indicated that over half of pregnant women, and more than 65% of children, in the country are classified as anemic (Sciences IIfP, National Family Health Survey-5, 2019-21, India Fact Sheet). In 2021, the parent RAPIDIRON Trial (Derman et al., Trials 22:649, 2021) was initiated in two states in India, with the goal of assessing whether a dose of intravenous (IV) iron given to anemic women during early pregnancy results in a greater proportion of participants with normal hemoglobin concentrations in the third trimester and a lower proportion of participants with LBW deliveries compared to oral iron. As a follow-up to the RAPIDIRON Trial, the RAPIDIRON-KIDS Study will follow the offspring of previously randomized mothers to assess, neurobehavioral, hematological, and health outcomes. METHODS This prospective observational cohort study will follow a subset of participants previously randomized as part of the RAPIDIRON Trial and their newborns. Study visits occur at birth, 6 weeks, 4 months, 12 months, 24 months, and 36 months and include blood sample collection with both maternal and infant participants and specific neurobehavioral assessments conducted with the infants (depending on the study visit). The primary outcomes of interest are (1) infant iron status as indicated by both hemoglobin and ferritin (a) at birth and (b) at 4 months of age and (2) the developmental quotient (DQ) for the cognitive domain of the Bayley Scales of Infant Development Version IV (BSID-IV) at 24 months of age. DISCUSSION This RAPIDIRON-KIDS Study builds upon its parent RAPIDIRON Trial by following a subset of the previously randomized participants and their offspring through the first 3 years of life to assess neurodevelopmental and neurobehavioral (infants, children), hematological, and health outcomes. TRIAL REGISTRATION ClinicalTrials.gov NCT05504863 , Registered on 17 August 2022. Clinical Trials Registry - India CTRI/2022/05/042933 . Registered on 31 May 2022.
Collapse
Affiliation(s)
| | - Roopa B Bellad
- KLE Academy of Higher Education and Research (KAHER), Jawaharlal Nehru Medical College (JNMC), Belagavi, India
| | - Mrutyunjaya B Bellad
- KLE Academy of Higher Education and Research (KAHER), Jawaharlal Nehru Medical College (JNMC), Belagavi, India
| | | | | | | | - Simal Thind
- Thomas Jefferson University (TJU), Philadelphia, USA
| | | | - Rupsa Boelig
- Thomas Jefferson University (TJU), Philadelphia, USA
| | | | - Vanessa Short
- Thomas Jefferson University (TJU), Philadelphia, USA
| | - S Yogeshkumar
- KLE Academy of Higher Education and Research (KAHER), Jawaharlal Nehru Medical College (JNMC), Belagavi, India
| | - Umesh S Charantimath
- KLE Academy of Higher Education and Research (KAHER), Jawaharlal Nehru Medical College (JNMC), Belagavi, India
| | - Manjunath S Somannavar
- KLE Academy of Higher Education and Research (KAHER), Jawaharlal Nehru Medical College (JNMC), Belagavi, India
| | | | - Ramesh Pol
- S. Nijalingappa Medical College (SNMC), Bagalkot, India
| | | | - Radha Sangavi
- Raichur Institute of Medical Sciences (RIMS), Raichur, India
| | | | - Nasima Banu
- Raichur Institute of Medical Sciences (RIMS), Raichur, India
| | - Praveen S Patil
- Raichur Institute of Medical Sciences (RIMS), Raichur, India
| | - Amaresh P Patil
- KLE Academy of Higher Education and Research (KAHER), Jawaharlal Nehru Medical College (JNMC), Belagavi, India
| | - Subarna Roy
- Model Rural Health Research Unit (MRHRU), Sirwar, India
| | | | | | - Hemang Shah
- The Children's Investment Fund Foundation (CIFF), New Delhi, India
| | - Shivaprasad S Goudar
- KLE Academy of Higher Education and Research (KAHER), Jawaharlal Nehru Medical College (JNMC), Belagavi, India
| |
Collapse
|
16
|
Liu M, Xu X, Sun C, Zheng X, Zhou Q, Song C, Xu P, Gao Q, Liu B. Tea Tree Oil Improves Energy Metabolism, Non-Specific Immunity, and Microbiota Diversity via the Intestine-Hepatopancreas Axis in Macrobrachium rosenbergii under Low Fish Meal Diet Administration. Antioxidants (Basel) 2023; 12:1879. [PMID: 37891958 PMCID: PMC10604904 DOI: 10.3390/antiox12101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Tea tree oil (TTO) is an essential plant oil with diverse antibacterial and antioxidant properties; however, whether the role played by TTO in low fish meal (LF) diets induced the observed effects in the farmed crustaceans remains unclear. Therefore, this study used Macrobrachium rosenbergii as the model crustacean, and an 8-week feeding experiment with NF (normal fish meal), LF (soybean meal replacing 40% fish meal), and LFT (LF with 200 mg/kg TTO) diets was conducted to evaluate the positive effects of TTO under the LF diet. Compared to the NF diet, the LF diet reduced hemolymph antioxidant capacity and non-specific immunity, and induced hepatopancreas apoptosis and damage. However, in comparison with LF, LTF significantly ameliorated morphological impairment in the hepatopancreas, improved hepatopancreas energy metabolism by upregulating the Bcl-2/Bax and Akt/mTOR pathways, and enhanced antioxidant and non-specific immune capacity by activating the NF-κB/NO pathway. In addition, LFT repaired intestinal barrier injury and the imbalance of intestinal microbiota induced by the LF diet. Moreover, the Pearson correlation revealed the variations of the above indicators, which were related to the abundance changes of Klebsiella, Clostridium sensu stricto 12, Thermobifida, Bifidobacterium, and Alistipes, indicating that these microbes might serve as prospective targets for the intestine-hepatopancreas axis to affect hepatopancreas apoptosis, metabolism, and non-specific immunity. In summary, 200 mg/kg TTO supplementation mediated gut microbiota and positively improved energy metabolism and non-specific immunity, thereby alleviating hepatopancreas dysplasia and damage induced by the LF diet in M. rosenbergii.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Xiaodi Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Qiang Gao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| |
Collapse
|
17
|
Holhorea PG, Naya-Català F, Belenguer Á, Calduch-Giner JA, Pérez-Sánchez J. Understanding how high stocking densities and concurrent limited oxygen availability drive social cohesion and adaptive features in regulatory growth, antioxidant defense and lipid metabolism in farmed gilthead sea bream ( Sparus aurata). Front Physiol 2023; 14:1272267. [PMID: 37869714 PMCID: PMC10586056 DOI: 10.3389/fphys.2023.1272267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The study combined the use of biometric, behavioral, physiological and external tissue damage scoring systems to better understand how high stocking densities drive schooling behavior and other adaptive features during the finishing growing phase of farmed gilthead sea bream in the Western Mediterranean. Fish were grown at three different final stocking densities (LD, 8.5 kg/m3; MD, 17 kg/m3; HD, 25 kg/m3). Water oxygen concentration varied between 5 and 6 ppm in LD fish to 3-4 ppm in HD fish with the summer rise of water temperature from 19°C to 26°C (May-July). HD fish showed a reduction of feed intake and growth rates, but they also showed a reinforced social cohesion with a well-defined endogenous swimming activity rhythm with feeding time as a main synchronization factor. The monitored decrease of the breathing/swimming activity ratio by means of the AEFishBIT data-logger also indicated a decreased energy partitioning for growth in the HD environment with a limited oxygen availability. Plasma glucose and cortisol levels increased with the rise of stocking density, and the close association of glycaemia with the expression level of antioxidant enzymes (mn-sod, gpx4, prdx5) in liver and molecular chaperones (grp170, grp75) in skeletal muscle highlighted the involvement of glucose in redox processes via rerouting in the pentose-phosphate-pathway. Other adaptive features included the depletion of oxidative metabolism that favored lipid storage rather than fatty acid oxidation to decrease the oxygen demand as last electron acceptor in the mitochondrial respiratory chain. This was coincident with the metabolic readjustment of the Gh/Igf endocrine-growth cascade that promoted the regulation of muscle growth at the local level rather than a systemic action via the liver Gh/Igf axis. Moreover, correlation analyses within HD fish displayed negative correlations of hepatic transcripts of igf1 and igf2 with the data-logger measurements of activity and respiration, whereas the opposite was found for muscle igf2, ghr1 and ghr2. This was indicative of a growth-regulatory transition that supported a proactive instead of a reactive behavior in HD fish, which was considered adaptive to preserve an active and synchronized feeding behavior with a minimized risk of oxidative stress and epidermal skin damage.
Collapse
Affiliation(s)
| | | | | | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, Spanish National Research Council (CSIC)), Castellón, Spain
| |
Collapse
|
18
|
Zhan Y, Ning B, Sun J, Chang Y. Living in a hypoxic world: A review of the impacts of hypoxia on aquaculture. MARINE POLLUTION BULLETIN 2023; 194:115207. [PMID: 37453286 DOI: 10.1016/j.marpolbul.2023.115207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Hypoxia is a harmful result of anthropogenic climate change. With the expansion of global low-oxygen zones (LOZs), many organisms have faced unprecedented challenges affecting their survival and reproduction. Extensive research has indicated that oxygen limitation has drastic effects on aquatic animals, including on their development, morphology, behavior, reproduction, and physiological metabolism. In this review, the global distribution and formation of LOZs were analyzed, and the impacts of hypoxia on aquatic animals and the molecular responses of aquatic animals to hypoxia were then summarized. The commonalities and specificities of the response to hypoxia in aquatic animals in different LOZs were discussed lastly. In general, this review will deepen the knowledge of the impacts of hypoxia on aquaculture and provide more information and research directions for the development of fishery resource protection strategies.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Bingyu Ning
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China.
| |
Collapse
|
19
|
Stope MB, Mustea A, Sänger N, Einenkel R. Immune Cell Functionality during Decidualization and Potential Clinical Application. Life (Basel) 2023; 13:life13051097. [PMID: 37240742 DOI: 10.3390/life13051097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Due to a vast influx in the secretory phase of the menstrual cycle, leukocytes represent 40-50% of the decidua at the time of implantation. Their importance for the implantation, maintenance of pregnancy, and parturition are known yet not fully understood. Thus, in idiopathic infertility, decidual immune-related factors are speculated to be the cause. In this review, the immune cell functions in the decidua were summarized, and clinical diagnostics, as well as interventions, were discussed. There is a rising number of commercially available diagnostic tools. However, the intervention options are still limited and/or poorly studied. In order for us to make big steps towards the proper use of reproductive immunology findings, we need to understand the mechanisms and especially support translational research.
Collapse
Affiliation(s)
- Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
20
|
Luo XY, Zhang YP, Zheng F, Zhou L. Multiple bioinformatics analysis identifies IGFBP1 as associated with the prognosis of stomach adenocarcinoma. Medicine (Baltimore) 2023; 102:e33346. [PMID: 37000073 PMCID: PMC10063289 DOI: 10.1097/md.0000000000033346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 04/01/2023] Open
Abstract
This study aimed to screen the hub gene for predicting the prognosis of patients with stomach adenocarcinoma (STAD). The RNA-sequencing expression data and clinical data of STAD were collected from the cancer genome atlas. The R package "limma" was performed to ascertain the differentially expressed genes (DEGs) between the relapse group and non-relapse group, and the DEGs between the survival dead status group and survival alive status group were screened. The overlapping genes between 2 DEGs sets were identified by the Venn diagram. Many different bioinformatics analysis methods were performed to analyze the importance of hub genes. One gene signature, IGFBP1, was extracted. The KM plot indicated that STAD patients with low IGFBP1 mRNA expression have a shorter overall survival time. The top 100 co-expression genes of IGFBP1 were mainly enriched in complement and coagulation cascades, epithelial cell signaling in Helicobacter pylori infection, and Wnt signaling pathway. Immune infiltration analysis indicated IGFBP1 may inhibit immune cell infiltration in tumors by infiltration and immune escape, leading to tumor metastasis and progression. The bioinformatics analysis results indicate that IGFBP1 can be used as a tool to evaluate the mortality risk of patients with STAD.
Collapse
Affiliation(s)
- Xiao-Ye Luo
- Surgical Department I, Hangzhou Lin’an TCM Hospital, Hangzhou, Zhejiang, China
| | - Yan-Ping Zhang
- Department of Pathology, Hangzhou Lin’an TCM Hospital, Hangzhou, Zhejiang, China
| | - Feng Zheng
- Surgical Department I, Hangzhou Lin’an TCM Hospital, Hangzhou, Zhejiang, China
| | - Liang Zhou
- Surgical Department II, Hangzhou Lin’an TCM Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Gabain IL, Ramsteijn AS, Webster JP. Parasites and childhood stunting - a mechanistic interplay with nutrition, anaemia, gut health, microbiota, and epigenetics. Trends Parasitol 2023; 39:167-180. [PMID: 36707340 DOI: 10.1016/j.pt.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023]
Abstract
Globally, stunting affects approximately 149.2 million children under 5 years of age. The underlying aetiology and pathophysiological mechanisms leading to stunting remain elusive, and therefore few effective treatment and prevention strategies exist. Crucial evidence directly linking parasites to stunting is often lacking - in part due to the complex nature of stunting, as well as a lack of critical multidisciplinary research amongst key age groups. Here, based on available studies, we present potential mechanistic pathways by which parasitic infection of mother and/or infant may lead to childhood stunting. We highlight the need for future multidisciplinary longitudinal studies and clinical trials aimed at elucidating the most influential factors, and synergies therein, that can lead to stunting, and ultimately towards finding solutions to successfully mitigate against it.
Collapse
Affiliation(s)
- Isobel L Gabain
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Herts, AL9 7TA, UK; London Centre for Neglected Tropical Diseases Research, Imperial College London Faculty of Medicine, St Mary's Hospital Campus, London, W2 1NY, UK.
| | | | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Herts, AL9 7TA, UK; London Centre for Neglected Tropical Diseases Research, Imperial College London Faculty of Medicine, St Mary's Hospital Campus, London, W2 1NY, UK
| |
Collapse
|
22
|
Galli GLJ, Lock MC, Smith KLM, Giussani DA, Crossley DA. Effects of Developmental Hypoxia on the Vertebrate Cardiovascular System. Physiology (Bethesda) 2023; 38:0. [PMID: 36317939 DOI: 10.1152/physiol.00022.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mitchell C Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kerri L M Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
23
|
Xu H, Wang W, Nie Z, Miao X, Li Y. Delayed First Feeding Chronically Impairs Larval Fish Growth Performance, Hepatic Lipid Metabolism, and Visceral Lipid Deposition at the Mouth-Opening Stage. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:140-149. [PMID: 36510098 DOI: 10.1007/s10126-022-10187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
During the mouth-opening stage, fish larvae are susceptible to delayed first feeding (DFF). In this study, we explored the effects of DFF for two days on later growth and energy metabolism in larval fish. Results showed that DFF chronically impaired larval growth performance, thereby reducing the efficiency of feed utilization by larvae. In DFF larvae, the mRNA levels of growth inhibitors (i.e., igfbp1a and igfbp1b) were significantly upregulated and consistently maintained at high expression levels, which may be an important attribution of larval growth retardation. Concomitantly, DFF retarded the growth of adipose tissue and reduced lipid deposition in larval viscera, suggesting lipid metabolism is disordered in DFF larvae and generates inefficient lipid reserves. In the liver, we observed that DFF resulted in a significant accumulation of neutral lipids, and this phenotype did not disappear rapidly after DFF larvae received exogenous nutrition. As to the transcript analyses, we found that the expression of genes related to hepatic lipid synthesis (e.g., srebf1, srebf2, dgat1a, dgat1b, fasn, and scdb) in DFF larvae was consistently upregulated, while the expression of genes involved in lipid transport (e.g., apoa2, apoa4b.1, and apoa4b.3) was downregulated. Therefore, it appears that the inefficient lipid reserves in DFF larvae are associated with their hepatic lipid transport dysfunction. Taken together, our findings contribute to understanding the impairments to fish larvae caused by delayed first feeding during the mouth-opening stage and to aiding larval management in the aquaculture industry.
Collapse
Affiliation(s)
- Hao Xu
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Chongqing, 401329, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Wenbo Wang
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Zhentao Nie
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Xiaomin Miao
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China.
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Chongqing, 401329, China.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
24
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
25
|
Risato G, Celeghin R, Brañas Casas R, Dinarello A, Zuppardo A, Vettori A, Pilichou K, Thiene G, Basso C, Argenton F, Visentin S, Cosmi E, Tiso N, Beffagna G. Hyperactivation of Wnt/β-catenin and Jak/Stat3 pathways in human and zebrafish foetal growth restriction models: Implications for pharmacological rescue. Front Cell Dev Biol 2022; 10:943127. [PMID: 36051436 PMCID: PMC9424487 DOI: 10.3389/fcell.2022.943127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Foetal Growth Restriction (FGR), previously known as Intrauterine Growth Restriction (IUGR), is an obstetrical condition due to placental insufficiency, affecting yearly about 30 million newborns worldwide. In this work, we aimed to identify and pharmacologically target signalling pathways specifically involved in the FGR condition, focusing on FGR-related cardiovascular phenotypes. The transcriptional profile of human umbilical cords from FGR and control cases was compared with the response to hypoxia of zebrafish (Danio rerio) transgenic lines reporting in vivo the activity of twelve signalling pathways involved in embryonic development. Wnt/β-catenin and Jak/Stat3 were found as key pathways significantly dysregulated in both human and zebrafish samples. This information was used in a chemical-genetic analysis to test drugs targeting Wnt/β-catenin and Jak/Stat3 pathways to rescue a set of FGR phenotypes, including growth restriction and cardiovascular modifications. Treatments with the Wnt/β-catenin agonist SB216763 successfully rescued body dimensions, cardiac shape, and vessel organization in zebrafish FGR models. Our data support the Wnt/β-catenin pathway as a key FGR marker and a promising target for pharmacological intervention in the FGR condition.
Collapse
Affiliation(s)
- Giovanni Risato
- Department of Biology, University of Padova, Padova, Italy
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Rudy Celeghin
- Department of Biology, University of Padova, Padova, Italy
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | | | | | - Andrea Vettori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | - Silvia Visentin
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Erich Cosmi
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Giorgia Beffagna
- Department of Biology, University of Padova, Padova, Italy
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
26
|
Sharma V, Varshney R, Sethy NK. Human adaptation to high altitude: a review of convergence between genomic and proteomic signatures. Hum Genomics 2022; 16:21. [PMID: 35841113 PMCID: PMC9287971 DOI: 10.1186/s40246-022-00395-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Both genomics- and proteomics-based investigations have identified several essential genes, proteins, and pathways that may facilitate human adaptive genotype/phenotype in a population-specific manner. This comprehensive review provides an up-to-date list of genes and proteins identified for human adaptive responses to high altitudes. Genomics studies for indigenous high-altitude populations like Tibetans, Andeans, Ethiopians, and Sherpas have identified 169 genes under positive natural selection. Similarly, global proteomics studies have identified 258 proteins (± 1.2-fold or more) for Tibetan, Sherpa, and Ladakhi highlanders. The primary biological processes identified for genetic signatures include hypoxia-inducible factor (HIF)-mediated oxygen sensing, angiogenesis, and erythropoiesis. In contrast, major biological processes identified for proteomics signatures include 14–3-3 mediated sirtuin signaling, integrin-linked kinase (ILK), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and integrin signaling. Comparing genetic and protein signatures, we identified 7 common genes/proteins (HBB/hemoglobin subunit beta, TF/serotransferrin, ANGPTL4/angiopoietin-related protein 4, CDC42/cell division control protein 42 homolog, GC/vitamin D-binding protein, IGFBP1/insulin-like growth factor-binding protein 1, and IGFBP2/insulin-like growth factor-binding protein 2) involved in crucial molecular functions like IGF-1 signaling, LXR/RXR activation, ferroptosis signaling, iron homeostasis signaling and regulation of cell cycle. Our combined multi-omics analysis identifies common molecular targets and pathways for human adaptation to high altitude. These observations further corroborate convergent positive selection of hypoxia-responsive molecular pathways in humans and advocate using multi-omics techniques for deciphering human adaptive responses to high altitude.
Collapse
Affiliation(s)
- Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
27
|
Gárriz A, Williamson SA, Shah AD, Evans RG, Deveson Lucas DS, Powell DR, Walton SL, Marques FZ, Reina RD. Transcriptomic analysis of pre-ovipositional embryonic arrest in a non-squamate reptile (Chelonia mydas). Mol Ecol 2022; 31:4319-4331. [PMID: 35762848 PMCID: PMC9540450 DOI: 10.1111/mec.16583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
After gastrulation, oviductal hypoxia maintains turtle embryos in an arrested state prior to oviposition. Subsequent exposure to atmospheric oxygen upon oviposition initiates recommencement of embryonic development. Arrest can be artificially extended for several days after oviposition by incubation of the egg under hypoxic conditions, with development recommencing in an apparently normal fashion after subsequent exposure to normoxia. To examine the transcriptomic events associated with embryonic arrest in green sea turtles (Chelonia mydas), RNA‐sequencing analysis was performed on embryos from freshly laid eggs and eggs incubated in either normoxia (oxygen tension ~159 mmHg) or hypoxia (<8 mmHg) for 36 h after oviposition (n = 5 per group). The patterns of gene expression differed markedly among the three experimental groups. Normal embryonic development in normoxia was associated with upregulation of genes involved in DNA replication, the cell cycle, and mitosis, but these genes were commonly downregulated after incubation in hypoxia. Many target genes of hypoxia inducible factors, including the gene encoding insulin‐like growth factor binding protein 1 (igfbp1), were downregulated by normoxic incubation but upregulated by incubation in hypoxia. Notably, some of the transcriptomic effects of hypoxia in green turtle embryos resembled those reported to be associated with hypoxia‐induced embryonic arrest in diverse taxa, including the nematode Caenorhabditis elegans and zebrafish (Danio rerio). Hypoxia‐induced preovipositional embryonic arrest appears to be a unique adaptation of turtles. However, our findings accord with the proposition that the mechanisms underlying hypoxia‐induced embryonic arrest per se are highly conserved across diverse taxa.
Collapse
Affiliation(s)
- Angela Gárriz
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Sean A Williamson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Anup D Shah
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Pre-clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Deanna S Deveson Lucas
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah L Walton
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Francine Z Marques
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
28
|
Thirunavukkarasar R, Kumar P, Sardar P, Sahu NP, Harikrishna V, Singha KP, Shamna N, Jacob J, Krishna G. Protein-sparing effect of dietary lipid: Changes in growth, nutrient utilization, digestion and IGF-I and IGFBP-I expression of Genetically Improved Farmed Tilapia (GIFT), reared in Inland Ground Saline Water. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Hou H, Wang X, Yang C, Cai X, Lv W, Tu Y, Bao A, Wu Q, Zhao W, Yao J, Ding W. Comparative Genome and Transcriptome Integration Studies Reveal the Mechanism of Pectoral Muscle Development and Function in Pigeons. Front Genet 2022; 12:735795. [PMID: 34987544 PMCID: PMC8721168 DOI: 10.3389/fgene.2021.735795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pigeon breed resources provide a genetic model for the study of phenomics. The pectoral muscles play a key role for the meat production performance of the meat pigeon and the athletic ability of the High flyers. Euro-pigeons and Silver King pigeons are commercial varieties that exhibit good meat production performance. In contrast to the domestication direction of meat pigeons, the traditional Chinese ornamental pigeon breed, High flyers, has a small and light body. Here, we investigate the molecular mechanism of the pectoral muscle development and function of pigeons using whole-genome and RNA sequencing data. The selective sweep analysis (FST and log2 (θπ ratio)) revealed 293 and 403 positive selection genes in Euro-pigeons and Silver King, respectively, of which 65 genes were shared. With the Silver King and Euro-pigeon as the control group, the High flyers were selected for 427 and 566 genes respectively. There were 673 differentially expressed genes in the breast muscle transcriptome between the commercial meat pigeons and ornamental pigeons. Pigeon genome selection signal combined with the breast muscle transcriptome revealed that six genes (SLC16A10, S100B, SYNE1, HECW2, CASQ2 and LOC110363470) from commercial varieties of pigeons and five genes (INSC, CALCB, ZBTB21, B2M and LOC110356506) from Chinese traditional ornamental pigeons were positively selected which were involved in pathways related to muscle development and function. This study provides new insights into the selection of different directions and the genetic mechanism related to muscle development in pigeons.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Changsuo Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Xia Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Wenwei Lv
- National Poultry Engineer Research Center, Shanghai, China
| | - Yingying Tu
- National Poultry Engineer Research Center, Shanghai, China
| | | | - Quanli Wu
- Shanghai Jinhuang Pigeon Company, Shanghai, China
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon Company, Shanghai, China
| | - Junfeng Yao
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Weixing Ding
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| |
Collapse
|
30
|
van der Weele CM, Jeffery WR. Cavefish cope with environmental hypoxia by developing more erythrocytes and overexpression of hypoxia-inducible genes. eLife 2022; 11:69109. [PMID: 34984980 PMCID: PMC8765751 DOI: 10.7554/elife.69109] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Dark caves lacking primary productivity can expose subterranean animals to hypoxia. We used the surface-dwelling (surface fish) and cave-dwelling (cavefish) morphs of Astyanax mexicanus as a model for understanding the mechanisms of hypoxia tolerance in the cave environment. Primitive hematopoiesis, which is restricted to the posterior lateral mesoderm in other teleosts, also occurs in the anterior lateral mesoderm in Astyanax, potentially pre-adapting surface fish for hypoxic cave colonization. Cavefish have enlarged both hematopoietic domains and develop more erythrocytes than surface fish, which are required for normal development in both morphs. Laboratory-induced hypoxia suppresses growth in surface fish but not in cavefish. Both morphs respond to hypoxia by overexpressing hypoxia-inducible factor 1 (hif1) pathway genes, and some hif1 genes are constitutively upregulated in normoxic cavefish to similar levels as in hypoxic surface fish. We conclude that cavefish cope with hypoxia by increasing erythrocyte development and constitutive hif1 gene overexpression.
Collapse
Affiliation(s)
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, United States
| |
Collapse
|
31
|
Zasu A, Hishima F, Thauvin M, Yoneyama Y, Kitani Y, Hakuno F, Volovitch M, Takahashi SI, Vriz S, Rampon C, Kamei H. NADPH-Oxidase Derived Hydrogen Peroxide and Irs2b Facilitate Re-oxygenation-Induced Catch-Up Growth in Zebrafish Embryo. Front Endocrinol (Lausanne) 2022; 13:929668. [PMID: 35846271 PMCID: PMC9283716 DOI: 10.3389/fendo.2022.929668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Oxygen deprivation induces multiple changes at the cellular and organismal levels, and its re-supply also brings another special physiological status. We have investigated the effects of hypoxia/re-oxygenation on embryonic growth using the zebrafish model: hypoxia slows embryonic growth, but re-oxygenation induces growth spurt or catch-up growth. The mitogen-activated kinase (MAPK)-pathway downstream insulin-like growth factor (IGF/Igf) has been revealed to positively regulate the re-oxygenation-induced catch-up growth, and the role of reactive oxygen species generated by environmental oxygen fluctuation is potentially involved in the phenomenon. Here, we report the role of NADPH-oxidase (Nox)-dependent hydrogen peroxide (H2O2) production in the MAPK-activation and catch-up growth. The inhibition of Nox significantly blunted catch-up growth and MAPK-activity. Amongst two zebrafish insulin receptor substrate 2 genes (irs2a and irs2b), the loss of irs2b, but not its paralog irs2a, resulted in blunted MAPK-activation and catch-up growth. Furthermore, irs2b forcedly expressed in mammalian cells allowed IGF-MAPK augmentation in the presence of H2O2, and the irs2b deficiency completely abolished the somatotropic action of Nox in re-oxygenation condition. These results indicate that redox signaling alters IGF/Igf signaling to facilitate hypoxia/re-oxygenation-induced embryonic growth compensation.
Collapse
Affiliation(s)
- Ayaka Zasu
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
| | - Futa Hishima
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Sorbonne Université, Ecole Doctorale 515-Complexité du Vivant, Paris, France
| | - Yosuke Yoneyama
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoichiro Kitani
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Department of Biology, École Normale Supérieure, Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
- Université Paris-Cité, Faculty of Sciences, Paris, France
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
- Université Paris-Cité, Faculty of Sciences, Paris, France
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
- *Correspondence: Hiroyasu Kamei,
| |
Collapse
|
32
|
Kamei H, Duan C. Alteration of organ size and allometric scaling by organ-specific targeting of IGF signaling. Gen Comp Endocrinol 2021; 314:113922. [PMID: 34606746 DOI: 10.1016/j.ygcen.2021.113922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/21/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
The size of an organ is proportional to the other body parts or the whole body. This relationship is known as allometry. Understanding how allometry is determined is a fundamental question in biology. Here we tested the hypothesis that local insulin-like growth factor (Igf) signaling is critical in regulating organ size and its allometric scaling by organ-specific expression of Igf binding protein (Igfbp). Overexpression of Igfbp2a or 5b in the developing zebrafish eye, heart, and inner ear resulted in a disproportional reduction in their growth relative to the body. Stable transgenic zebrafish with lens-specific Igfbp5b expression selectively reduced adult eye size. The action is Igf-dependent because an Igf-binding deficient Igfbp5b mutant had no effect. Targeted expression of a dominant-negative Igf1 receptor (dnIgf1r) in the lens caused a similar reduction in relative eye growth. Furthermore, co-expression of IGF-1 with an Igfbp restored the eye size. Finally, co-expression of a constitutively active form of Akt with Igfbp or dnIgf1r restored the relative eye growth. These data suggest that local Igf availability and Igf signaling activity are critical determinants of organ size and allometric scaling in zebrafish.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University 11-4-1, Ossaka, Noto, Ishikawa 927-0552, Japan.
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, United States
| |
Collapse
|
33
|
Wang J, Chen Y, Zeng Z, Feng R, Wang Q, Zhang Q, Sun K, Chen AF, Lu Y, Yu Y. HMGA2 contributes to vascular development and sprouting angiogenesis by promoting IGFBP2 production. Exp Cell Res 2021; 408:112831. [PMID: 34547256 DOI: 10.1016/j.yexcr.2021.112831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Angiogenesis is the process by which new blood vessels form from preexisting vessels and regulates the processes of embryonic development, wound healing and tumorigenesis. HMGA2 is involved in the occurrence of several cancers, but its biological role and the exact downstream genes involved in vascular development and sprouting angiogenesis remain largely unknown. Here, we first found that HMGA2 knockdown in zebrafish embryos resulted in defects of central artery formation. RNA sequencing revealed that IGFBP2 was significantly downregulated by interference with HMGA2, and IGFBP2 overexpression reversed the inhibition of brain vascular development caused by HMGA2 deficiency. In vitro, we further found that HMGA2 knockdown blocked the migration, tube formation and branching of HUVECs. Similarly, IGFBP2 protein overexpression attenuated the impairments induced by HMGA2 deficiency. Moreover, the promotion of angiogenesis by HMGA2 overexpression was verified in a Matrigel plug assay. We next found that HMGA2 bound directly to a region in the IGFBP2 promoter and positively regulated IGFBP2 expression. Interestingly, the mRNA expression levels of HMGA2 and IGFBP2 were increased significantly in the peripheral blood of hemangioma patients, indicating that overexpression of HMGA2 and IGFBP2 results in vessel formation, consistent with the results of the in vivo and in vitro experiments. In summary, our findings demonstrate that HMGA2 promotes central artery formation by modulating angiogenesis via IGFBP2 induction.
Collapse
Affiliation(s)
- Jing Wang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Shanghai Children Medicine Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yinghui Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Zhaoxiang Zeng
- Department of Vascular Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Rui Feng
- Department of Vascular Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Qing Wang
- Department of Traditional Chinese Medicine, Xinhua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Qi Zhang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yanan Lu
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
34
|
Transcriptomic profiling of Gh/Igf system reveals a prompted tissue-specific differentiation and novel hypoxia responsive genes in gilthead sea bream. Sci Rep 2021; 11:16466. [PMID: 34385497 PMCID: PMC8360970 DOI: 10.1038/s41598-021-95408-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
A customized PCR-array was used for the simultaneous gene expression of the Gh/Igf system and related markers of muscle growth, and lipid and energy metabolism during early life stages of gilthead sea bream (60–127 days posthatching). Also, transcriptional reprogramming by mild hypoxia was assessed in fingerling fish with different history trajectories on O2 availability during the same time window. In normoxic fish, the expression of almost all the genes in the array varied over time with a prompted liver and muscle tissue-specific differentiation, which also revealed temporal changes in the relative expression of markers of the full gilthead sea bream repertoire of Gh receptors, Igfs and Igf-binding proteins. Results supported a different contribution through development of ghr and igf subtypes on the type of action of GH via systemic or direct effects at the local tissue level. This was extensive to Igfbp1/2/4 and Igfbp3/5/6 clades that clearly evolved through development as hepatic and muscle Igfbp subtypes, respectively. This trade-off is however very plastic to cope changes in the environment, and ghr1 and igfbp1/3/4/5 emerged as hypoxic imprinting genes during critical early developmental windows leading to recognize individuals with different history trajectories of oxygen availability and metabolic capabilities later in life.
Collapse
|
35
|
Cochrane PV, Jonz MG, Wright PA. The development of the O 2-sensing system in an amphibious fish: consequences of variation in environmental O 2 levels. J Comp Physiol B 2021; 191:681-699. [PMID: 34023926 DOI: 10.1007/s00360-021-01379-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
Proper development of the O2-sensing system is essential for survival. Here, we characterized the development of the O2-sensing system in the mangrove rivulus (Kryptolebias marmoratus), an amphibious fish that transitions between hypoxic aquatic environments and O2-rich terrestrial environments. We found that NECs formed in the gills and skin of K. marmoratus during embryonic development and that both NEC populations are retained from the embryonic stage to adulthood. We also found that the hyperventilatory response to acute hypoxia was present in embryonic K. marmoratus, indicating that functional O2-sensing pathways are formed during embryonic development. We then exposed embryos to aquatic normoxia, aquatic hyperoxia, aquatic hypoxia, or terrestrial conditions for the first 30 days of embryonic development and tested the hypothesis that environmental O2 availability during embryonic development modulates the development of the O2-sensing system in amphibious fishes. Surprisingly, we found that O2 availability during embryonic development had little impact on the density and morphology of NECs in the gills and skin of K. marmoratus. Collectively, our results demonstrate that, unlike the only other species of fish in which NEC development has been studied to date (i.e., zebrafish), NEC development in K. marmoratus is largely unaffected by environmental O2 levels during the embryonic stage, indicating that there is interspecies variation in O2-induced plasticity in the O2-sensing system of fishes.
Collapse
Affiliation(s)
- Paige V Cochrane
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
36
|
Lin Y, Miao LH, Liu B, Xi BW, Pan LK, Ge XP. Molecular cloning and functional characterization of the hypoxia-inducible factor-1α in bighead carp (Aristichthys nobilis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:351-364. [PMID: 33474683 DOI: 10.1007/s10695-020-00917-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
HIF-l is the earliest documented and most widely studied hypoxia-inducible factor (HIF) and plays a key role in the cell hypoxia signal transduction pathway. Particularly, the HIF-1α protein is sensitive to oxygen and plays a critical role in hypoxia regulation. This study is the first to report on the molecular cloning and characterization of HIF-1α in bighead carp (Aristichthys nobilis; anHIF-1α). The full-length cDNA of anHIF-1α was 2361 bp, and encodes an estimated 674 amino acids with a predicted molecular mass of 76.10 kDa and a theoretical isoelectric point of 7.72. Moreover, the conserved basic Helix-Loop-Helix domain along with two Per-ARNT-Sim domains (A/B), and C-TAD were identified in this protein. Interestingly, the tertiary structure of the anHIF-1α protein was found to be extremely similar to that of mice. Multiple comparison and phylogenetic tree results demonstrated that anHIF-1α was highly conserved. Under normoxic conditions, anHIF-1α mRNA transcripts could be detected in all tissues examined with the highest expression level in the heart. With gradually decreasing oxygen concentrations, anHIF-1α mRNA level was upregulated significantly in the gill, liver, kidney, spleen, intestine, brain, and muscle tissues (P < 0.05). Similarly, anHIF-1α was expressed in all examined bighead carp tissues, and the results suggested that the upregulation of anHIF-1α at the transcriptional level may be an important stress response adaptation to hypoxia in bighead carp. Finally, based on the tertiary structure comparative analyses between anHIF-1α with mouse HIF-1α, we think the physiological function, and protein structure of HIF-1α could be compared between fish and mammal in the future.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Ling-Hong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Bing-Wen Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Liang-Kun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xian-Ping Ge
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| |
Collapse
|
37
|
Zhao L, He K, Xiao Q, Liu Q, Luo W, Luo J, Fu H, Li J, Wu X, Du J, Gong Q, Wang X, Yang S. Comparative transcriptome profiles of large and small bodied large-scale loaches cultivated in paddy fields. Sci Rep 2021; 11:4936. [PMID: 33654201 PMCID: PMC7925675 DOI: 10.1038/s41598-021-84519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Fish culture in paddy fields is a traditional aquaculture mode, which has a long history in East Asia. Large-scale loach (Paramisgurnus dabryanus) fast growth is suitable for paddy fields aquaculture in China. The objective of this study was to identify differential expression genes (DEGs) in the brain, liver and muscle tissues between large (LG, top 5% of maximum total length) and small (SG, top 5% of minimum total length) groups using RNA-seq. In total, 150 fish were collected each week and 450 fish were collected at twelfth week from three paddy fields for all the experimental. Histological observation found that the muscle fibre diameter of LG loaches was greater than that of SG loaches. Transcriptome results revealed that the high expression genes (HEGs) in LG loaches (fold change ≥ 2, p < 0.05) were mainly concentrated in metabolic pathways, such as "Thyroid hormone signalling pathway", "Citrate cycle (TCA cycle)", "Carbon metabolism", "Fatty acid metabolism", and "Cholesterol metabolism", and the HEGs in SG loaches were enriched in the pathways related to environmental information processing such as "Cell adhesion molecules (CAMs)", "ECM- receptor interaction" and "Rap1 signalling pathway"; cellular processes such as "Tight junction", "Focal adhesion", "Phagosome" and "Adherens junction". Furthermore, IGFs gene family may play an important role in loach growth for their different expression pattern between the two groups. These findings can enhance our understanding about the molecular mechanism of different growth and development levels of loaches in paddy fields.
Collapse
Affiliation(s)
- Liulan Zhao
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Kuo He
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qing Xiao
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiao Liu
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wei Luo
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jie Luo
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hongmei Fu
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jiayao Li
- grid.412514.70000 0000 9833 2433Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 200090 China
| | - Xugan Wu
- grid.412514.70000 0000 9833 2433Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 200090 China
| | - Jun Du
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Science, Chengdu, 611731 China
| | - Quan Gong
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Science, Chengdu, 611731 China
| | - Xun Wang
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Song Yang
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
38
|
Zhang T, Ban B, Zhang M, Ji B, Sun H, Sun B. Association Between Hemoglobin and Growth Hormone Peak in Chinese Children and Adolescents with Short Stature: A Cross-Sectional Study. Int J Gen Med 2021; 14:497-504. [PMID: 33623422 PMCID: PMC7896770 DOI: 10.2147/ijgm.s292920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/25/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This research aimed to investigate the relationship between hemoglobin (Hb) and growth hormone (GH) peak in children and adolescents with short stature. Design This cross-sectional study included a total of 787 children and adolescents with short stature. Anthropometric and biochemical indicators were measured at baseline. All patients underwent GH provocation tests with L-dopa and insulin to assess GH peak levels. Results The univariate analysis results showed that Hb was positively associated with GH peak (β 0.07, P=0.001). Furthermore, a non-linear relationship was detected between Hb and GH peaks through smooth curve fitting, and the inflection point was 123 g/L after multivariate piecewise linear regression analysis. GH peak increased with Hb elevation when the Hb level was greater than 123 g/L (β 0.08, 95% CI 0.01, 0.14; P=0.0207). Conclusion In children and adolescents with short stature, we found GH peak was positively associated with the Hb level when the Hb level reached the inflection point.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People's Republic of China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, Shandong, People's Republic of China
| | - Mei Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People's Republic of China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, Shandong, People's Republic of China
| | - Baolan Ji
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People's Republic of China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, Shandong, People's Republic of China
| | - Hailing Sun
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People's Republic of China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, Shandong, People's Republic of China
| | - Bing Sun
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, People's Republic of China
| |
Collapse
|
39
|
Hasegawa R, Miura T, Kaneko N, Kizaki R, Oishi G, Tanaka H, Sato M, Shimizu M. Production of two recombinant insulin-like growth factor binding protein-1 subtypes specific to salmonids. Gen Comp Endocrinol 2020; 299:113606. [PMID: 32890480 DOI: 10.1016/j.ygcen.2020.113606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
Abstract
Salmonids have four subtypes of insulin-like growth factor binding protein (IGFBP)-1, termed -1a1, -1a2, -1b1 and 1b2, owing to teleost- and a lineage-specific whole-genome duplications. We have previously produced recombinant proteins of masu salmon IGFBP-1a1 and -1b2 and conducted functional analysis. To further characterize salmonid-specific IGFBP-1s, we cloned cDNAs encoding mature proteins of IGFBP-1a2 and -1b1 from the liver of masu salmon (Oncorhynchus masou). IGFBP-1a2 and -1b1 shared a 56% amino acid sequence homology whereas their homologies with their counterparts (i.e. -1a1 and -1b2) were 77% and 82%, respectively. We next expressed recombinant masu salmon (rs) IGFBP-1a2 and -1b1 with fusion partners thioredoxin (Trx) and a His-tag using the pET-32a(+) vector system in Escherichia coli. Trx.His.rsIGFBP-1s were detected in the insoluble faction, solubilized in a buffer containing urea, and isolated by Ni-affinity chromatography. They were refolded by dialysis and cleaved from the fusion partners by enterokinase. rsIGFBP-1a2 and -1b1 were purified by reversed-phase high performance liquid chromatography. Purified rsIGFBP-1a2 and -1b1 had the ability to bind digoxigenin-labeled human IGF-I on ligand blotting. We then examined the effects of rsIGFBP-1a1, -1a2, -1b1 and -1b2 in combination with human IGF-I on growth hormone (GH) release from cultured pituitary cells of masu salmon. IGF-I alone reduced GH release while the addition of rsIGFBP-1a1, -1b1 or -1b2, but not rsIGFBP-1a2, diminished the suppressive effect of IGF-I. Addition of rsIGFBP-1s without IGF-I had no effect on GH release. These results show that rsIGFBP-1b1, along with rsIGFBP-1a1 and -1b2, inhibits IGF-I action on the pituitary in masu salmon. The lack of the effect by rsIGFBP-1a2 suggests that salmon IGFBP-1 subtypes underwent subfunction partitioning and have different degrees of IGF-inhibitory action.
Collapse
Affiliation(s)
- Ryuya Hasegawa
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Takuto Miura
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Nobuto Kaneko
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan
| | - Ryousuke Kizaki
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan
| | - Gakuto Oishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan
| | - Hanae Tanaka
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan
| | - Moe Sato
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Munetaka Shimizu
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan; Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan.
| |
Collapse
|
40
|
Breves JP, Springer-Miller RH, Chenoweth DA, Paskavitz AL, Chang AYH, Regish AM, Einarsdottir IE, Björnsson BT, McCormick SD. Cortisol regulates insulin-like growth-factor binding protein (igfbp) gene expression in Atlantic salmon parr. Mol Cell Endocrinol 2020; 518:110989. [PMID: 32835784 DOI: 10.1016/j.mce.2020.110989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
The growth hormone (Gh)/insulin-like growth-factor (Igf)/Igf binding protein (Igfbp) system regulates growth and osmoregulation in salmonid fishes, but how this system interacts with other endocrine systems is largely unknown. Given the well-documented consequences of mounting a glucocorticoid stress response on growth, we hypothesized that cortisol inhibits anabolic processes by modulating the expression of hepatic igfbp mRNAs. Atlantic salmon (Salmo salar) parr were implanted intraperitoneally with cortisol implants (0, 10, and 40 μg g-1 body weight) and sampled after 3 or 14 days. Cortisol elicited a dose-dependent reduction in specific growth rate (SGR) after 14 days. While plasma Gh and Igf1 levels were unchanged, hepatic igf1 mRNA was diminished and hepatic igfbp1b1 and -1b2 were stimulated by the high cortisol dose. Plasma Igf1 was positively correlated with SGR at 14 days. Hepatic gh receptor (ghr), igfbp1a, -2a, -2b1, and -2b2 levels were not impacted by cortisol. Muscle igf2, but not igf1 or ghr, levels were stimulated at 3 days by the high cortisol dose. As both cortisol and the Gh/Igf axis promote seawater (SW) tolerance, and particular igfbps respond to SW exposure, we also assessed whether cortisol coordinates the expression of branchial igfbps and genes associated with ion transport. Cortisol stimulated branchial igfbp5b2 levels in parallel with Na+/K+-ATPase (NKA) activity and nka-α1b, Na+/K+/2Cl--cotransporter 1 (nkcc1), and cystic fibrosis transmembrane regulator 1 (cftr1) mRNA levels. The collective results indicate that cortisol modulates the growth of juvenile salmon via the regulation of hepatic igfbp1s whereas no clear links between cortisol and branchial igfbps previously shown to be salinity-responsive could be established.
Collapse
Affiliation(s)
- J P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - R H Springer-Miller
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - D A Chenoweth
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A L Paskavitz
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A Y H Chang
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A M Regish
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| | - I E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463 SE, 40530, Göteborg, Sweden
| | - B Th Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463 SE, 40530, Göteborg, Sweden
| | - S D McCormick
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| |
Collapse
|
41
|
Whitehouse LM, Faught E, Vijayan MM, Manzon RG. Hypoxia affects the ontogeny of the hypothalamus-pituitary-interrenal axis functioning in the lake whitefish (Coregonus clupeaformis). Gen Comp Endocrinol 2020; 295:113524. [PMID: 32526331 DOI: 10.1016/j.ygcen.2020.113524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/20/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
Abstract
Early life stages are sensitive to environmental insults and changes during critical developmental periods; this can often result in altered adult behaviour and physiology. Examining the development of the hypothalamus-pituitary-interrenal (HPI) axis and its responsiveness, or lack thereof, during development are important for understanding the short- and long-term impacts of stressors on embryonic and larval fish. We examined the ontogeny of the HPI axis in embryonic (21, 38, 63, 83 and 103 days post-fertilisation (dpf)) and larval (1, 2, 3 and 4 weeks post-hatch (wph)) lake whitefish (Coregonus clupeaformis) by quantifying changes in mRNA levels of several genes associated with HPI axis functioning and whole animal cortisol levels throughout development and in response to a severe or mild hypoxic stress. Cortisol, and crh, crhbp1, pomc and star transcripts were detected from the earliest embryonic age studied. Cortisol levels in control embryos decreased between 21 and 63 dpf, suggesting the utilisation of maternal cortisol deposits. However, by 83 dpf (70% developed) endogenous de novo synthesis had generated a 4.5-fold increase in whole embryo cortisol. Importantly, we provide novel data showing that the HPI axis can be activated even earlier. Whole body cortisol increased in eyed lake whitefish embryos (38 dpf; ~32% developed) in response to hypoxia stress. Coincident with this hypoxia-induced increase in cortisol in 38 dpf embryos were corresponding increases in crh, crhbp1, pomc and star transcript levels. Beyond 38 dpf, the HPI axis in lake whitefish embryos was hyporesponsive to hypoxia stress at all embryonic ages examined (63, 83 and 103 dpf; 54, 72 and 85% developed, respectively). Post-hatch, larvae responded to hypoxia with an increase in cortisol levels and HPI axis genes at 1 wph, but this response was lost and larvae appeared hyporesponsive at subsequent ages (2, 3 and 4 wph). Collectively our work demonstrates that during fish embryogenesis and the larval stage there are windows where the HPI axis is responsive and windows where it is truly hyporesponsive; both could be beneficial in ensuring undisrupted development particularly in the face of increasing environmental changes.
Collapse
Affiliation(s)
- Lindy M Whitehouse
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Erin Faught
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
42
|
Zhao Q, Zhang M, Ji B, Chu Y, Pan H, Yan W, Ban B. Relationship between hemoglobin and insulin-like growth factor-1 in children and adolescents with idiopathic short stature. BMC Endocr Disord 2020; 20:119. [PMID: 32746834 PMCID: PMC7397650 DOI: 10.1186/s12902-020-00600-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis is critical for the regulation of children's growth and development. Serum IGF-1 concentrations are usually low in individuals with idiopathic short stature (ISS) despite normal endogenous GH levels, and the associated underlying factors are unknown. This study aimed to explore the relationship between IGF-1 and hemoglobin (Hb) in children with ISS. METHODS A cross-sectional analysis was performed including 178 children and adolescents with ISS who were enrolled from March 2013 to February 2019. The related clinical and biochemical parameters were evaluated for each patient. Univariate analysis, smooth curve fitting and multivariate piecewise linear regression were performed. RESULT The mean levels of IGF-1 standard deviation scores (SDS) and Hb were - 0.99 (- 1.60 - -0.09) and 131.81 ± 9.36 g/L, respectively. Univariate analysis displayed a significant positive association between Hb and IGF-1 SDS (P < 0.001). After adjusting for potential confounding factors, the positive relationship between Hb and IGF-1 SDS remained (P = 0.001). Furthermore, there was an inflection point for Hb in the curve. In a multivariate piecewise linear regression model, IGF-1 SDS was significantly positively associated with Hb when Hb concentrations were lower than 145 g/L (B 0.05; 95% CI 0.02, 0.07; P < 0.001). However, IGF-1 SDS decreased with increasing Hb levels when Hb concentrations were greater than 145 g/L (B -0.15; 95% CI -0.23, - 0.06; P = 0.001). CONCLUSION This study demonstrated that Hb is associated with IGF-1 in Chinese children and adolescents with ISS. The levels of IGF-1 increased with the elevation of Hb, but when the concentration of Hb exceeded a certain range, with the increase of Hb, IGF-1 decreased instead.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Mei Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Baolan Ji
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Yuntian Chu
- School of Health Management and Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Hui Pan
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P.R. China
| | - Wenhua Yan
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
| |
Collapse
|
43
|
Kamei H. Oxygen and embryonic growth: the role of insulin-like growth factor signaling. Gen Comp Endocrinol 2020; 294:113473. [PMID: 32247621 DOI: 10.1016/j.ygcen.2020.113473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 01/03/2023]
Abstract
Oxygen is indispensable for the efficient release of chemical energy from nutrient molecules in cells. Therefore, the local oxygen tension is one of the most critical factors affecting physiological processes. In most viviparous species, many pathological conditions result in abnormal oxygen tension in the uterus, which modifies the growth and development of the fetus. Insulin-like growth factor (IGF/Igf) is one of the most important hormones for the regulation of somatic growth in animals. Changes in oxygen levels modulate the activity of the IGF/Igf signaling system, which in turn regulates the embryonic growth rate. In general, there are serious difficulties associated with monitoring and studying rodent embryos in utero. The zebrafish is a convenient experimental model to study the relationship between embryonic growth and environmental conditions. Most importantly, the fish model makes it possible to rapidly evaluate embryonic growth and development under entirely controlled environments without interfering with the mother organism. In this review, firstly an overview is given of the fluctuation of environmental oxygen, the IGF-system, and the advantages of the zebrafish model for studying embryonic growth. Then, the relationships of dynamic environmental oxygen and embryonic growth rate are outlined with a specific focus on the changes in the IGF/Igf-system in the zebrafish model. This review will shed light on the fine-tuning mechanisms of the embryonic IGF/Igf-system under different oxygen levels, including constant normoxia, hypoxia, and re-oxygenation.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, 11-4-1, Ossaka, Noto, Ishikawa 927-0552, Japan.
| |
Collapse
|
44
|
Chiu YF, Wu CC, Kuo MH, Miao CC, Zheng MY, Chen PY, Lin SC, Chang JL, Wang YH, Chou YT. Critical role of SOX2-IGF2 signaling in aggressiveness of bladder cancer. Sci Rep 2020; 10:8261. [PMID: 32427884 PMCID: PMC7237425 DOI: 10.1038/s41598-020-65006-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Signaling elicited by the stem cell factors SOX2, OCT4, KLF4, and MYC not only mediates reprogramming of differentiated cells to pluripotency but has also been correlated with tumor malignancy. In this study, we found SOX2 expression signifies poor recurrence-free survival and correlates with advanced pathological grade in bladder cancer. SOX2 silencing attenuated bladder cancer cell growth, while its expression promoted cancer cell survival and proliferation. Under low-serum stress, SOX2 expression promoted AKT phosphorylation and bladder cancer cells' spheroid-forming capability. Furthermore, pharmacological inhibition of AKT phosphorylation, using MK2206, inhibited the SOX2-mediated spheroid formation of bladder cancer cells. Gene expression profiling showed that SOX2 expression, in turn, induced IGF2 expression, while SOX2 silencing inhibited IGF2 expression. Moreover, knocking down IGF2 and IGF1R diminished bladder cancer cell growth. Lastly, pharmacological inhibition of IGF1R, using linsitinib, also inhibited the SOX2-mediated spheroid formation of bladder cancer cells under low-serum stress. Our findings indicate the SOX2-IGF2 signaling affects the aggressiveness of bladder cancer cell growth. This signaling could be a promising biomarker and therapeutic target for bladder cancer intervention.
Collapse
Affiliation(s)
- Yu-Fan Chiu
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Chang Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Ming-Han Kuo
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Cheng Miao
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Yi Zheng
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Yu Chen
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Chieh Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Junn-Liang Chang
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Biomedical Engineering, Ming Chuan University, Taoyuan, Taiwan
| | - Yuan-Hung Wang
- Department of Medical Research, Shuang Ho Hospital, New Taipei City, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Ting Chou
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
45
|
Abstract
The premature infant is to some extent protected from hypoxia, however defense against hyperoxia is poorly developed. The optimal assessment of oxygenation is to measure oxygen delivery and extraction. At the bedside PaO2 and SpO2 are approximations of oxygenation at the tissue level. After birth asphyxia it is crucial to know whether or not to give oxygen supplementation, when, how much, and for how long. Oxygen saturation targets in the delivery room have been studied, but the optimal targets might still be unknown because factors like gender and delayed cord clamping influence saturation levels. However, SpO2 > 80% at 5 min of age is associated with favorable long term outcome in preterm babies. Immature infants most often need oxygen supplementation beyond the delivery room. Predefined saturation levels, and narrow alarm limits together with the total oxygen exposure may impact on development of oxygen related diseases like ROP and BPD. Hyperoxia is a strong trigger for genetic and epigenetic changes, contributing to the development of these conditions and perhaps lifelong changes.
Collapse
Affiliation(s)
| | - Ola Didrik Saugstad
- Department of Pediatric Research, University of Oslo & Ann and Robert H. Lurie Children's Hospital of Chicago Northwestern University Feinberg School of Medicine, Norway.
| |
Collapse
|
46
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Qi X. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135272. [PMID: 31841926 DOI: 10.1016/j.scitotenv.2019.135272] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia generally refers to a dissolved oxygen (DO) level that is less than 2-3 mg/L. With ongoing global warming and environment pollution, environmental or geological studies showed hypoxia frequently occurs in global aquatic systems including ocean, river, estuaries and coasts. A preliminary study was performed to evaluate hypoxia tolerant of rainbow trout (Oncorhynchus mykiss) with parameters of mortality, behavior, endocrine and metabolite, identifying three DO levels including normoxia (Ctrl, 7.0 mg/L), non-lethal hypoxia (NH, 4.5 mg/L) and lethal hypoxia (LH, 3.0 mg/L). Furthermore, trout was treated by Ctrl, NH and LH for six hours to mimic the acute hypoxia in wild and/or farming conditions. A significantly higher mortality was observed in LH group. Trout of NH and LH showed stressful responses with unnormal swimming, increased serum cortisol and up-regulated gill hif1α transcription. Despite trout of NH and LH increased the oxygen delivery abilities by increasing the serum hemoglobin levels, the anerobic metabolism were inevitably observed with increased lactate. This study also showed a prolonged influence of NH and LH on growth after 30-days' recovery. Based on RNA-Seq data, different expression genes (DEGs) associated with stress, apoptosis, antioxidant, chaperone, growth, calcium and vitamin D metabolism were identified. Enrichment analysis showed DEGs were clustered in osteoclast differentiation, apoptosis and intracellular signaling transduction pathways. Results further showed NH and LH significantly decreased bone calcium content and disrupted the growth hormone-insulin-like growth factor (GH-IGF) axis. Our study might contribute to a better understanding of the effects of hypoxia on rainbow trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Feng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| |
Collapse
|
47
|
Small CD, el-Khoury M, Deslongchamps G, Benfey TJ, Crawford BD. Matrix Metalloproteinase 13 Activity is Required for Normal and Hypoxia-Induced Precocious Hatching in Zebrafish Embryos. J Dev Biol 2020; 8:jdb8010003. [PMID: 32023839 PMCID: PMC7151336 DOI: 10.3390/jdb8010003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia induces precocious hatching in zebrafish, but we do not have a clear understanding of the molecular mechanisms regulating the activation of the hatching enzyme or how these mechanisms trigger precocious hatching under unfavorable environmental conditions. Using immunohistochemistry, pharmacological inhibition of matrix metalloproteinase 13 (Mmp13), and in vivo zymography, we show that Mmp13a is present in the hatching gland just as embryos become hatching competent and that Mmp13a activity is required for both normal hatching and hypoxia-induced precocious hatching. We conclude that Mmp13a likely functions in activating the hatching enzyme zymogen and that Mmp13a activity is necessary but not sufficient for hatching in zebrafish. This study highlights the broad nature of MMP function in development and provides a non-mammalian example of extra-embryonic processes mediated by MMP activity.
Collapse
Affiliation(s)
- Christopher D. Small
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
| | - Megan el-Khoury
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
| | | | - Tillmann J. Benfey
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
| | - Bryan D. Crawford
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
- Correspondence:
| |
Collapse
|
48
|
Strobel JS, Hack NL, Label KT, Cordova KL, Bersin TV, Journey ML, Beckman BR, Lema SC. Effects of food deprivation on plasma insulin-like growth factor-1 (Igf1) and Igf binding protein (Igfbp) gene transcription in juvenile cabezon (Scorpaenichthys marmoratus). Gen Comp Endocrinol 2020; 286:113319. [PMID: 31715138 DOI: 10.1016/j.ygcen.2019.113319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain. Here, we tested how complete food deprivation (fasting) affected gene transcription for paralogs of all six types of Igfbps in the liver and fast-twitch skeletal muscle of cabezon (Scorpaenichthys marmoratus), a nearshore marine fish important for recreational fisheries in the eastern North Pacific Ocean. Juvenile cabezon were maintained as either fed (6% mass food⋅g fish wet mass-1⋅d-1) or fasted for 14 d. Fasted fish exhibited a lower body condition (K), a depressed mass-specific growth rate (SGR), and reduced plasma concentrations of Igf1. In the liver, fasting reduced the relative abundance of gene transcripts encoding Igfbps igfbp2a and igfbp2b, while significantly elevating mRNA levels for igfbp1a, igfbp1b, igfbp3b, and igfbp4. Fasting also reduced hepatic mRNA levels of GH receptor-1 (ghr1) - but not GH receptor-2 (ghr2) - supporting the idea that changes in liver sensitivity to GH may underlie the decline in plasma Igf1 during food deprivation. In skeletal muscle, fasting downregulated gene transcripts encoding igf1, igfbp2b, igfbp5b, and igfbp6b, while also upregulating mRNAs for igf2 and ghr2. These data demonstrate isoform-specific regulation of Igfbps in liver and skeletal muscle in cabezon experiencing food deprivation and reinforce the idea that the repertoire of duplicated Igfbp genes that evolved in actinopterygian fishes supports a diverse scope of endocrine and paracrine functions.
Collapse
Affiliation(s)
- Jackson S Strobel
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kevin T Label
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle Washington 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
49
|
Wang YJ, Wong HSC, Wu CC, Chiang YH, Chiu WT, Chen KY, Chang WC. The functional roles of IGF-1 variants in the susceptibility and clinical outcomes of mild traumatic brain injury. J Biomed Sci 2019; 26:94. [PMID: 31787098 PMCID: PMC6886173 DOI: 10.1186/s12929-019-0587-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin-like growth factor 1 (IGF-1) is an important pleiotropic hormone that exerts neuroprotective and neuroreparative effects after a brain injury. However, the roles of IGF-1 variants in mild traumatic brain injury (mTBI) are not yet fully understood. This study attempted to elucidate the effects of IGF-1 variants on the risk and neuropsychiatric outcomes of mTBI. METHODS Based on 176 recruited mTBI patients and 1517 control subjects from the Taiwan Biobank project, we first compared the genotypic distributions of IGF-1 variants between the two groups. Then, we analyzed associations of IGF-1 variants with neuropsychiatric symptoms after mTBI, including anxiety, depression, dizziness, and sleep disturbances. Functional annotation of IGF-1 variants was also performed through bioinformatics databases. RESULTS The minor allele of rs7136446 was over-represented in mTBI patients compared to community-based control subjects. Patients carrying minor alleles of rs7136446 and rs972936 showed more dizziness and multiple neuropsychiatric symptoms after brain injury. CONCLUSIONS IGF-1 variants were associated with the risk and neuropsychiatric symptoms of mTBI. The findings highlight the important role of IGF-1 in the susceptibility and clinical outcomes of mTBI.
Collapse
Affiliation(s)
- Yu-Jia Wang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chung-Che Wu
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wen-Ta Chiu
- Institute of Injury Prevention and Control, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kai-Yun Chen
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Pain Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
50
|
Yang G, Chen B, Sun C, Yuan X, Zhang Y, Qin J, Li W. Molecular identification of grouper Igfbp1 and its mRNA expression in primary hepatocytes under Gh and insulin. Gen Comp Endocrinol 2019; 281:137-144. [PMID: 31176753 DOI: 10.1016/j.ygcen.2019.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factor (IGF) system plays a pivotal role in the regulation of growth, and IGF binding proteins (IGFBPs) are important regulatory factors in the IGF system. Generally, IGFBPs inhibit IGF actions by preventing its binding to receptors. Under some conditions, the IGFBPs can also enhance IGF actions. IGFBP1 is generally inhibitory to IGFI. In this study, the grouper (Epinephelus coioides) igfbp1 (MK621003) gene was cloned from the liver. The sequence of igfbp1 cDNA was 1055 bp and contained a 5'UTR of 127 bp and a 3'UTR of 247 bp, and the ORF of grouper igfbp1 was 741 bp, encoding 246 amino acids. The tissue distribution results showed that igfbp1 has a higher expression in the liver. In the nutritional status experiment, igfbp1 expression was significantly increased in the liver after 7 days of fasting and was markedly decreased after refeeding. In in vitro experiments, igfbp1 expression in grouper primary hepatocytes was significantly inhibited by recombinant grouper Gh (growth hormone) in a dose-dependent manner. Additionally, igfbp1 expression decreased in grouper primary hepatocytes upon incubation with insulin. This is the first report describing grouper igfbp1, and these findings contribute to understanding the roles of IGFBP1 in metabolism and growth in grouper.
Collapse
Affiliation(s)
- Guokun Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Beichen Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yazhou Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingkai Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|