1
|
Sorkin J, Tilton K, Lawlor MA, Sarathy SN, Liang S, Albanese A, Rabbani M, Hammoud SS, Ellison CE, Pratto F, Jain D. Intercellular bridges are essential for transposon repression and meiosis in the male germline. Nat Commun 2025; 16:1488. [PMID: 39929837 PMCID: PMC11811169 DOI: 10.1038/s41467-025-56742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Germ cell connectivity via intercellular bridges is a widely conserved feature across metazoans. However, its functional significance is poorly understood. Intercellular bridges are essential for fertility in male mice as genetic ablation of a critical bridge component, TEX14, causes spermatogenic failure, but the underlying reasons are unknown. Here we utilized a Tex14 hypomorph with reduced intercellular bridges along with Tex14-null mice that completely lack bridges to examine the roles of germ cell connectivity during spermatogenesis. We report that in males deficient for TEX14 and intercellular bridges, germ cells fail to complete meiotic DNA replication, synapsis and meiotic double-strand break repair. They also derepress retrotransposons and accumulate retrotransposon-encoded proteins during meiosis. Single-cell RNA-sequencing confirms sharing of transcripts between wild-type spermatids and demonstrates its partial attenuation in Tex14 hypomorphs, indicating that intercellular bridges enable cytoplasmic exchange between connected germ cells in testes. Our findings suggest that regulation of meiosis is non-cell-intrinsic and inform a model in which intercellular bridges influence critical meiotic events and protect germline genome integrity during spermatogenesis.
Collapse
Affiliation(s)
- Julia Sorkin
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Kevin Tilton
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Matthew A Lawlor
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Shreya N Sarathy
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Shun Liang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Angelina Albanese
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Christopher E Ellison
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | | | - Devanshi Jain
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Wang S, Wu S, Tang J, Chen Y, Zhang Y, Long W, Wu X. The RNA-Binding Protein IGF2BP1 Marks Germ Cells but Is Dispensable for Mouse Fertility. Mol Reprod Dev 2025; 92:e70016. [PMID: 39957073 DOI: 10.1002/mrd.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
Insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is a key reader of N6-methyladenosine modifications that regulate target mRNA stability in eukaryotic cells; however, its role in germ cells has never been explored. Here, we analyzed the spatiotemporal expression of IGF2BP1 and revealed that it was present not only in oocytes of the mouse ovary but also in ZBTB16-positive undifferentiated spermatogonia in the mouse testis. Coimmunoprecipitation and fluorescence staining revealed that IGF2BP1 interacted with TRIM71, a regulator of spermatogonia differentiation, but that its expression was unaffected in the testes of Trim71 knockout mice. We also show that IGF2BP1 colocalized with components of the mRNA processing body (P-body), including DDX6 and EDC4. However, contrary to our expectations, using VASA (DDX4)-Cre-mediated conditional knockout mice, we found that germ cell-specific knockout of Igf2bp1 did not seem to affect the fertility of male or female mice. Further analysis revealed that spermatogenesis and ZBTB16-positive undifferentiated spermatogonia numbers in the testes of mutant mice remained unchanged and that there were no obvious changes in testicular morphology or cell subpopulations. In summary, although IGF2BP1 is preferentially expressed in germ cells, its function in germ cells may be dispensable.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Shan Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jinyan Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuan Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yiyun Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Wenwu Long
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Vasilev F, Mihajlović AI, Rémillard-Labrosse G, FitzHarris G. Long-lived cytokinetic bridges coordinate sister-cell elimination in mouse embryos. Dev Cell 2025:S1534-5807(25)00002-4. [PMID: 39862857 DOI: 10.1016/j.devcel.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Apoptosis is a key feature of preimplantation development, but whether it occurs in a cell-autonomous or coordinated manner was unknown. Here, we report that plasma membrane abscission, the final step of cell division, is profoundly delayed in early mouse embryos such that a cytokinetic bridge is maintained for the vast majority of the following interphase. Early embryos thus consist of many pairs of sister cells connected by stable cytokinetic bridges that allow them to share diffusible molecules. We show that apoptotic regulators are shared through cytokinetic bridges and that these bridges ensure that if one cell enters apoptosis, its sister cell does as well. Long-lived cytokinetic bridges are thus a previously unappreciated form of cell-cell communication within the mouse embryo that coordinate the clearance of pairs of cells with similar developmental histories.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Aleksandar I Mihajlović
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | - Greg FitzHarris
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Obstetrics and Gynaecology, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
4
|
Podgrajsek R, Hodzic A, Maver A, Stimpfel M, Andjelic A, Miljanovic O, Ristanovic M, Novakovic I, Plaseska-Karanfilska D, Noveski P, Ostojic S, Grskovic A, Buretic-Tomljanovic A, Peterlin B. Genetic Testing for Monogenic Forms of Male Infertility Contributes to the Clinical Diagnosis of Men with Severe Idiopathic Male Infertility. World J Mens Health 2025; 43:43.e1. [PMID: 39843174 DOI: 10.5534/wjmh.240149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 01/24/2025] Open
Abstract
PURPOSE In recent years, many genes have been associated with male infertility; however, testing of monogenic forms has not yet been clinically implemented in the diagnosis of severe forms of idiopathic male infertility, as the diagnostic utility has not been established yet. The aim of this study was therefore to answer if the implementation of genetic testing for monogenic forms of male infertility could contribute to the clinical diagnosis of men with severe forms of idiopathic male infertility. MATERIALS AND METHODS Based on the ClinGene curation protocol, we defined a panel of genes with sufficient evidence for the involvement with severe male infertility. We tested the 21-gene panel in a representative multicentric cohort of men with significantly impaired spermatogenesis. We performed whole exome sequencing on 191 infertile men with severe forms of idiopathic male infertility; non-obstructive azoospermia, and severe oligozoospermia (<5 million spermatozoa/mL). The control group consisted of 216 men who fathered a child. DNA was prepared based on the Twist CORE exome protocol and sequenced on the Illumina NovaSeq 6000 platform. Variants were classified using the Association for Clinical Genomic Science (ACGS) Best Practice Guidelines for Variant Classification in Rare Disease 2020. RESULTS We identified potential monogenic disease-causing variants in four infertile men. Pathogenic/likely pathogenic variants in STAG3 (c.2776C>T, p.Arg926*; c.2817delG, p.Leu940fs), MSH4 (c.1392delG, p.Ile465fs; c.2261C>T, p.Ser754Leu), TEX15 (c.6848_6849delGA, p.Arg2283fs; c.6271dupA, p.Arg2091fs), and TEX14 (c.1021C>T, p.Arg341*) genes were found. CONCLUSIONS In the present multicentric cohort study, a monogenic cause in 2.1% of infertile men was identified. These findings confirm the utility of monogenic testing and suggest the clinical use of monogenic testing for men with severe forms of idiopathic male infertility.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Alenka Hodzic
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Novo mesto, Novo mesto, Slovenia
| | - Ales Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleksander Andjelic
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Olivera Miljanovic
- Center of Medical Genetics and Immunology, Clinical Center of Montenegro, Podgorica, Montenegro
| | - Momcilo Ristanovic
- Institute of Human Genetics, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Ivana Novakovic
- Institute of Human Genetics, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov" Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | - Predrag Noveski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov" Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | - Sasa Ostojic
- Centre for Genetic Education, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Antun Grskovic
- Department of Urology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- Department of Urology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alena Buretic-Tomljanovic
- Centre for Genetic Education, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Levy EW, Leite I, Joyce BW, Shvartsman SY, Posfai E. A tug-of-war between germ cell motility and intercellular bridges controls germline cyst formation in mice. Curr Biol 2024; 34:5728-5738.e4. [PMID: 39566500 DOI: 10.1016/j.cub.2024.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
Gametes in many species develop in cysts-clusters of germ cells formed by incomplete cytokinesis-that remain connected through intercellular bridges (ICBs). These connections enable sharing of cytoplasmic components between germ cells and, in the female germ line, enrich select cells in the cyst to become the oocyte(s). In mice, germline cysts of variable sizes are generated during embryonic development, thought to result from cyst fractures. Studies of fixed samples failed to capture fracture events, and thus, the mechanism remained elusive. Here, we use high-resolution live imaging of germ cells within their native tissue environment to visualize germline cyst dynamics. With this novel approach, we reveal a striking motile phenotype of gonad-resident germ cells and show that this randomly oriented cell-autonomous motile behavior during cyst formation underlies fracture events. Conversely, we show that stabilized ICBs help resist excessive fracturing. Additionally, we find that motility and thus fracture rates gradually decrease during development in a sex-dependent manner, completely ceasing by the end of cyst-forming divisions. These results lead to a model where the opposing activities of developmentally regulated cell motility and stable ICBs give rise to cysts of variable sizes. We corroborate these results by developing a model that uses experimentally measured fracture rates to simulate cyst formation and fracture and show that it can reproduce experimentally measured cyst sizes in both male and female. Understanding how variable cysts form will enable further studies of mammalian oocyte selection and establishment of the ovarian reserve.
Collapse
Affiliation(s)
- Ezra W Levy
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Isabella Leite
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA; Quantitative and Computational Biology Program, Lewis-Sigler Institute for Integrative Genomics, Washington Road, Princeton, NJ 08544, USA
| | - Bradley W Joyce
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA; Quantitative and Computational Biology Program, Lewis-Sigler Institute for Integrative Genomics, Washington Road, Princeton, NJ 08544, USA; Developmental Dynamics Group, Center for Computational Biology, Flatiron Institute, 5th Avenue, New York, NY 10010, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
6
|
Bahbahani H, Mohammad Z, Al-Ateeqi A, Almathen F. A comprehensive map of copy number variations in dromedary camels based on whole genome sequence data. Sci Rep 2024; 14:25573. [PMID: 39462079 PMCID: PMC11513024 DOI: 10.1038/s41598-024-77773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024] Open
Abstract
Copy number variants (CNVs) are structural variants within the eukaryotic genome that vary among individuals of a species. These variants have been associated with different phenotypic traits, making them a valuable consideration as markers for designing breeding programmes. In this study, whole genome sequence data of 60 dromedary camel samples originating from the Arabian Peninsula were analyzed to construct a comprehensive dromedary CNV map. Utilizing four CNV callers employing read-depth, split-read and paired-end mapping approaches, a total of 37,519 CNV events (17,847 deletions and 19,672 duplications) were called on the dromedary autosomes. These CNV events were merged into 2,557 regions, categorized as 1,322 losses, 122 gains, and 1,113 "mixed regions" comprising both types. The cumulative size of the CNV regions amounted to 22.5 Mb, covering roughly 1.16% of the dromedary autosomes. Approximately 32% of the defined CNV regions (comprising 60% losses, 18% gains, and 0.27% mixed regions) were found in ≥ 90% of the dromedary samples, classifying them as prevalent regions. Genes with biological functions related to the different adaptive physiologies of dromedary camels, such as fertility, heat stress, musculoskeletal development, and fat metabolism, were overlapping with or in close proximity to ~ 68% of the defined CNV regions, demonstrating their potential role in dromedaries' physiology. This study presents the first comprehensive CNV map of dromedary camels and builds on the present knowledge in understanding the genetic structure of this species.
Collapse
Affiliation(s)
- Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait City, Kuwait.
| | - Zainab Mohammad
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait City, Kuwait
| | - Abdulaziz Al-Ateeqi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, 400, Al-Ahsa, Kingdom of Saudi Arabia
- Camel Research Center, King Faisal University, 400, Al-Ahsa, Saudi Arabia
| |
Collapse
|
7
|
Li Y, Wang Y, Tan YQ, Yue Q, Guo Y, Yan R, Meng L, Zhai H, Tong L, Yuan Z, Li W, Wang C, Han S, Ren S, Yan Y, Wang W, Gao L, Tan C, Hu T, Zhang H, Liu L, Yang P, Jiang W, Ye Y, Tan H, Wang Y, Lu C, Li X, Xie J, Yuan G, Cui Y, Shen B, Wang C, Guan Y, Li W, Shi Q, Lin G, Ni T, Sun Z, Ye L, Vourekas A, Guo X, Lin M, Zheng K. The landscape of RNA binding proteins in mammalian spermatogenesis. Science 2024; 386:eadj8172. [PMID: 39208083 DOI: 10.1126/science.adj8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Despite continuous expansion of the RNA binding protein (RBP) world, there is a lack of systematic understanding of RBPs in the mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-cross-linked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University, Nanjing 210008, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Weixu Wang
- Institute of Computational Biology, Helmholtz Center Munich, Munich 85764, Germany
| | - Lei Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanyin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, Fuzhou 350014, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Mathieu J, Huynh JR. Incomplete divisions between sister germline cells require Usp8 function. C R Biol 2024; 347:109-117. [PMID: 39345214 DOI: 10.5802/crbiol.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
Cytokinetic abscission is the final step of cell division, resulting in two separate daughter cells. While abscission is typically complete across most cell types, germline cells, which produce sexual gametes, do not finish cytokinesis, maintaining connections between sister cells. These connections are essential for sharing cytoplasm as they differentiate into oocyte and sperm. First, we outline the molecular events of cytokinesis during both complete and delayed abscission, highlighting the role of the ESCRT-III proteins. We then focus on recent discoveries that reveal the molecular mechanisms blocking abscission in Drosophila germline cells. The enzyme Usp8 was identified as vital for ensuring incomplete cytokinesis through the regulation of ESCRT-III ubiquitination and localization. Finally, we explore how the processes of incomplete cytokinesis could hold evolutionary importance, suggesting additional studies into choanoflagellates to comprehend the origins of multicellularity.
Collapse
|
9
|
Dinh TH, Phuong Anh N, Thao DH, Duy LD, Bac ND, Quyet PV, Son TT, Lan Anh LT, Canh NX, Hai NV, Duong NT. Single nucleotide polymorphisms of CFAP43 and TEX14 associated with idiopathic male infertility in a Vietnamese population. Medicine (Baltimore) 2024; 103:e39839. [PMID: 39331878 PMCID: PMC11441965 DOI: 10.1097/md.0000000000039839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Male infertility is a multifactorial disease due to spermatogenesis impairment, with etiology remaining unknown for roughly one-third of infertile cases. Several studies have demonstrated that genetic variants are male infertility risk factors. CFAP43 and TEX14 are involved in the spermatogenesis process. The present study aimed to assess the association between single-nucleotide polymorphisms (SNPs) in CFAP43 (rs17116635 and rs10883979) and TEX14 (rs79813370 and rs34818467) and idiopathic male infertility in a Vietnamese population. A cohort of 206 infertile men and 195 controls were recruited for the study. CFAP43 and TEX14 SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Genotypes of randomly selected samples, accounting for 10% of the total, were confirmed using Sanger sequencing. The obtained data were analyzed using statistical methods. The results showed that 4 SNPs (rs17116635, rs10883979, rs79813370, and rs34818467) were in accordance with Hardy-Weinberg Equilibrium (HWE; P > .05). CFAP43 rs10883979 and TEX14 rs79813370 were associated with male infertility. For CFAP43 rs10883979, in the recessive model, the combination AA + AG was associated with male infertility when compared to the GG genotype (OR = 0.26; 95% CI: 0.06-0.85; P = .02). For TEX14 rs79813370, a protective effect against infertility risk was identified in the presence of the T allele of rs79813370 when compared to the G allele (OR = 0.48; 95% CI: 0.32-0.72; P < .001). Our results suggest that CFAP43 rs10883979 and TEX14 rs79813370 are likely associated with male infertility in the Vietnamese population, in which the G allele of rs79813370 may be a risk factor for male infertility.
Collapse
Affiliation(s)
- Tran Huu Dinh
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Phuong Anh
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dinh Huong Thao
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - La Duc Duy
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Duy Bac
- Department of Human Anatomy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Van Quyet
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Military Institute of Clinical Embryology and Histology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Trinh The Son
- Military Institute of Clinical Embryology and Histology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Luong Thi Lan Anh
- Department of Medical Biology and Genetics, Hanoi Medical University, Ministry of Health, Hanoi, Vietnam
| | - Nguyen Xuan Canh
- Department of Microbial Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Nong Van Hai
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thuy Duong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
10
|
Sigurðardóttir H, Ablondi M, Kristjansson T, Lindgren G, Eriksson S. Genetic diversity and signatures of selection in Icelandic horses and Exmoor ponies. BMC Genomics 2024; 25:772. [PMID: 39118059 PMCID: PMC11308356 DOI: 10.1186/s12864-024-10682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The Icelandic horse and Exmoor pony are ancient, native breeds, adapted to harsh environmental conditions and they have both undergone severe historic bottlenecks. However, in modern days, the selection pressures on these breeds differ substantially. The aim of this study was to assess genetic diversity in both breeds through expected (HE) and observed heterozygosity (HO) and effective population size (Ne). Furthermore, we aimed to identify runs of homozygosity (ROH) to estimate and compare genomic inbreeding and signatures of selection in the breeds. RESULTS HO was estimated at 0.34 and 0.33 in the Icelandic horse and Exmoor pony, respectively, aligning closely with HE of 0.34 for both breeds. Based on genomic data, the Ne for the last generation was calculated to be 125 individuals for Icelandic horses and 42 for Exmoor ponies. Genomic inbreeding coefficient (FROH) ranged from 0.08 to 0.20 for the Icelandic horse and 0.12 to 0.27 for the Exmoor pony, with the majority of inbreeding attributed to short ROHs in both breeds. Several ROH islands associated with performance were identified in the Icelandic horse, featuring target genes such as DMRT3, DOCK8, EDNRB, SLAIN1, and NEURL1. Shared ROH islands between both breeds were linked to metabolic processes (FOXO1), body size, and the immune system (CYRIB), while private ROH islands in Exmoor ponies were associated with coat colours (ASIP, TBX3, OCA2), immune system (LYG1, LYG2), and fertility (TEX14, SPO11, ADAM20). CONCLUSIONS Evaluations of genetic diversity and inbreeding reveal insights into the evolutionary trajectories of both breeds, highlighting the consequences of population bottlenecks. While the genetic diversity in the Icelandic horse is acceptable, a critically low genetic diversity was estimated for the Exmoor pony, which requires further validation. Identified signatures of selection highlight the differences in the use of the two breeds as well as their adaptive trait similarities. The results provide insight into genomic regions under selection pressure in a gaited performance horse breed and various adaptive traits in small-sized native horse breeds. This understanding contributes to preserving genetic diversity and population health in these equine populations.
Collapse
Affiliation(s)
- Heiðrún Sigurðardóttir
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, 75007, Sweden.
- Faculty of Agricultural Sciences, Agricultural University of Iceland, Hvanneyri, Borgarbyggð, 311, Iceland.
| | - Michela Ablondi
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | - Thorvaldur Kristjansson
- Faculty of Agricultural Sciences, Agricultural University of Iceland, Hvanneyri, Borgarbyggð, 311, Iceland
| | - Gabriella Lindgren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, 75007, Sweden
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Susanne Eriksson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, 75007, Sweden
| |
Collapse
|
11
|
Wood TW, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon-derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. RESEARCH SQUARE 2024:rs.3.rs-4559920. [PMID: 39041030 PMCID: PMC11261967 DOI: 10.21203/rs.3.rs-4559920/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The human genome contains 24 gag-like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag-like genes PNMA1 and PNMA4 support reproductive capacity during aging. Analysis of donated human ovaries shows that expression of both genes declines normally with age, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
Affiliation(s)
- Thomas W.P. Wood
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William S. Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Harrison B. Cullen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mayra Romero
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Cecilia S. Blengini
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Shreya Sarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Julia Sorkin
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilina Bekele
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Chen Jin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexei Chemiakine
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rishad C. Khondker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - José V.V. Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Stem Cell Initiative, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Devanshi Jain
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Yousin Suh
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| |
Collapse
|
12
|
Mikami N, Nguyen CLK, Osawa Y, Kato K, Ishida M, Tanimoto Y, Morimoto K, Murata K, Kang W, Sugiyama F, Ema M, Takahashi S, Mizuno S. Deletion of Exoc7, but not Exoc3, in male germ cells causes severe spermatogenesis failure with spermatocyte aggregation in mice. Exp Anim 2024; 73:286-292. [PMID: 38325858 PMCID: PMC11254494 DOI: 10.1538/expanim.23-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Vesicular trafficking is essential for the transport of intracellularly produced functional molecules to the plasma membrane and extracellular space. The exocyst complex, composed of eight different proteins, is an important functional machinery for "tethering" in vesicular trafficking. Functional studies have been conducted in laboratory mice to identify the mechanisms by which the deletion of each exocyst factor affect various biological phenomena. Interestingly, each exocyst factor-deficient mutant exhibits a different phenotype. This discrepancy may be due to the function of the exocyst factor beyond its role as a component of the exocyst complex. Male germline-specific conditional knockout (cKO) mice of the Exoc1 gene, which encodes one of the exocyst factors EXOC1 (SEC3), exhibit severe spermatogenesis defects; however, whether this abnormality also occurs in mutants lacking other exocyst factors remains unknown. In this study, we found that exocyst factor EXOC3 (SEC6) was not required for spermatogenesis, but depletion of EXOC7 (EXO70) led to severe spermatogenesis defects. In addition to being a component of the exocyst complex, EXOC1 has other functions. Notably, male germ cell-specific Exoc7 cKO and Exoc1 cKO mice exhibited phenotypic similarities, suggesting the importance of the exocyst complex for spermatogenesis. The results of this study will contribute to further understanding of spermatogenesis from the aspect of vesicular trafficking.
Collapse
Affiliation(s)
- Natsuki Mikami
- Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Chi Lieu Kim Nguyen
- Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki Osawa
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miyuki Ishida
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kento Morimoto
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Woojin Kang
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
13
|
Hosea R, Duan W, Meliala ITS, Li W, Wei M, Hillary S, Zhao H, Miyagishi M, Wu S, Kasim V. YY2/BUB3 Axis promotes SAC Hyperactivation and Inhibits Colorectal Cancer Progression via Regulating Chromosomal Instability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308690. [PMID: 38682484 PMCID: PMC11234461 DOI: 10.1002/advs.202308690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Spindle assembly checkpoint (SAC) is a crucial safeguard mechanism of mitosis fidelity that ensures equal division of duplicated chromosomes to the two progeny cells. Impaired SAC can lead to chromosomal instability (CIN), a well-recognized hallmark of cancer that facilitates tumor progression; paradoxically, high CIN levels are associated with better therapeutic response and prognosis. However, the mechanism by which CIN determines tumor cell survival and therapeutic response remains poorly understood. Here, using a cross-omics approach, YY2 is identified as a mitotic regulator that promotes SAC activity by activating the transcription of budding uninhibited by benzimidazole 3 (BUB3), a component of SAC. While both conditions induce CIN, a defect in YY2/SAC activity enhances mitosis and tumor growth. Meanwhile, hyperactivation of SAC mediated by YY2/BUB3 triggers a delay in mitosis and suppresses growth. Furthermore, it is revealed that YY2/BUB3-mediated excessive CIN causes higher cell death rates and drug sensitivity, whereas residual tumor cells that survived DNA damage-based therapy have moderate CIN and increased drug resistance. These results provide insights into the role of SAC activity and CIN levels in influencing tumor cell survival and drug response, as well as suggest a novel anti-tumor therapeutic strategy that combines SAC activity modulators and DNA-damage agents.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Wei Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Ian Timothy Sembiring Meliala
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Mankun Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Hezhao Zhao
- Department of Gastrointestinal Surgery, Chongqing University Cancer HospitalChongqing UniversityChongqing400030P. R. China
| | - Makoto Miyagishi
- Life Science Innovation, School of Integrative and Global MajorsUniversity of TsukubaTsukubaIbaraki305‐0006Japan
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer HospitalChongqing UniversityChongqing400030P. R. China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer HospitalChongqing UniversityChongqing400030P. R. China
| |
Collapse
|
14
|
Liu X, Wu J, Li M, Zuo F, Zhang G. A Comparative Full-Length Transcriptome Analysis Using Oxford Nanopore Technologies (ONT) in Four Tissues of Bovine Origin. Animals (Basel) 2024; 14:1646. [PMID: 38891695 PMCID: PMC11170998 DOI: 10.3390/ani14111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The transcriptome complexity and splicing patterns in male and female cattle are ambiguous, presenting a substantial obstacle to genomic selection programs that seek to improve productivity, disease resistance, and reproduction in cattle. A comparative transcriptomic analysis using Oxford Nanopore Technologies (ONT) was conducted in bovine testes (TESTs), ovaries (OVAs), muscles (MUSCs), and livers (LIVs). An average of 5,144,769 full-length reads were obtained from each sample. The TESTs were found to have the greatest number of alternative polyadenylation (APA) events involved in processes such as sperm flagellum development and fertilization in male reproduction. In total, 438 differentially expressed transcripts (DETs) were identified in the LIVs in a comparison of females vs. males, and 214 DETs were identified in the MUSCs between females and males. Additionally, 14,735, 36,347, and 33,885 DETs were detected in MUSC vs. LIV, MUSC vs. TEST, and OVA vs. TEST comparisons, respectively, revealing the complexity of the TEST. Gene Set Enrichment Analysis (GSEA) showed that these DETs were mainly involved in the "spermatogenesis", "flagellated sperm motility", "spermatid development", "reproduction", "reproductive process", and "microtubule-based movement" KEGG pathways. Additional studies are necessary to further characterize the transcriptome in different cell types, developmental stages, and physiological conditions in bovines and ascertain the functions of the novel transcripts.
Collapse
Affiliation(s)
- Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
| | - Meichen Li
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| |
Collapse
|
15
|
Wood TWP, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JVV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon - derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.592987. [PMID: 38798495 PMCID: PMC11118267 DOI: 10.1101/2024.05.11.592987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
|
16
|
Laisné M, Rodgers B, Benlamara S, Wicinski J, Nicolas A, Djerroudi L, Gupta N, Ferry L, Kirsh O, Daher D, Philippe C, Okada Y, Charafe-Jauffret E, Cristofari G, Meseure D, Vincent-Salomon A, Ginestier C, Defossez PA. A novel bioinformatic approach reveals cooperation between Cancer/Testis genes in basal-like breast tumors. Oncogene 2024; 43:1369-1385. [PMID: 38467851 PMCID: PMC11065691 DOI: 10.1038/s41388-024-03002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Breast cancer is the most prevalent type of cancer in women worldwide. Within breast tumors, the basal-like subtype has the worst prognosis, prompting the need for new tools to understand, detect, and treat these tumors. Certain germline-restricted genes show aberrant expression in tumors and are known as Cancer/Testis genes; their misexpression has diagnostic and therapeutic applications. Here we designed a new bioinformatic approach to examine Cancer/Testis gene misexpression in breast tumors. We identify several new markers in Luminal and HER-2 positive tumors, some of which predict response to chemotherapy. We then use machine learning to identify the two Cancer/Testis genes most associated with basal-like breast tumors: HORMAD1 and CT83. We show that these genes are expressed by tumor cells and not by the microenvironment, and that they are not expressed by normal breast progenitors; in other words, their activation occurs de novo. We find these genes are epigenetically repressed by DNA methylation, and that their activation upon DNA demethylation is irreversible, providing a memory of past epigenetic disturbances. Simultaneous expression of both genes in breast cells in vitro has a synergistic effect that increases stemness and activates a transcriptional profile also observed in double-positive tumors. Therefore, we reveal a functional cooperation between Cancer/Testis genes in basal breast tumors; these findings have consequences for the understanding, diagnosis, and therapy of the breast tumors with the worst outcomes.
Collapse
Affiliation(s)
- Marthe Laisné
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Brianna Rodgers
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Sarah Benlamara
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Julien Wicinski
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - André Nicolas
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005, Paris, France
| | - Lounes Djerroudi
- Department of Pathology, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Diana Daher
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | | | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | | | - Didier Meseure
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005, Paris, France
| | | | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | | |
Collapse
|
17
|
Pepino MMC, Manalili SE, Sekida S, Mezaki T, Okumura T, Kubota S. Gene expression profiles of Japanese precious coral Corallium japonicum during gametogenesis. PeerJ 2024; 12:e17182. [PMID: 38646482 PMCID: PMC11027906 DOI: 10.7717/peerj.17182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Background Corallium japonicum, a prized resource in Japan, plays a vital role in traditional arts and fishing industries. Because of diminished stock due to overexploitation, ongoing efforts are focused on restoration through transplantation. This study aimed to enhance our understanding of the reproductive biology of these valuable corals and find more efficient methods for sex determination, which may significantly contribute to conservation initiatives. Methods We used 12 three-month aquarium reared C. japonicum colony fragments, conducted histological analysis for maturity and sex verification, and performed transcriptome analysis via de novo assembly and mapping using the C. rubrum transcriptome to explore gene expression differences between female and male C. japonicum. Results Our histological observations enabled sex identification in 33% of incompletely mature samples. However, the sex of the remaining 67% of samples, classified as immature, could not be identified. RNA-seq yielded approximately 21-31 million short reads from 12 samples. De novo assembly yielded 404,439 highly expressed transcripts. Among them, 855 showed significant differential expression, with 786 differentially expressed transcripts between females and males. Heatmap analysis highlighted 283 female-specific and 525 male-specific upregulated transcripts. Transcriptome assembly mapped to C. rubrum yielded 28,092 contigs, leading to the identification of 190 highly differentially expressed genes, with 113 upregulated exclusively in females and 70 upregulated exclusively in males. Blastp analysis provided putative protein annotations for 83 female and 72 male transcripts. Annotation analysis revealed that female biological processes were related to oocyte proliferation and reproduction, whereas those in males were associated with cell adhesion. Discussion Transcriptome analysis revealed sex-specific gene upregulation in incompletely mature C. japonicum and shared transcripts with C. rubrum, providing insight into its gene expression patterns. This study highlights the importance of using both de novo and reference-based assembly methods. Functional enrichment analysis showed that females exhibited enrichment in cell proliferation and reproduction pathways, while males exhibited enrichment in cell adhesion pathways. To the best of our knowledge, this is the first report on the gene expressions of each sex during the spawning season. Our findings offer valuable insights into the physiological ecology of incompletely mature red Japanese precious corals and suggest a method for identifying sex using various genes expressed in female and male individuals. In the future, techniques such as transplantation, artificial fertilization, and larval rearing may involve sex determination methods based on differences in gene expression to help conserve precious coral resources and ecosystems.
Collapse
Affiliation(s)
- Ma. Marivic Capitle Pepino
- Kuroshio Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Kochi, Japan
| | - Sam Edward Manalili
- Kuroshio Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Kochi, Japan
| | - Satoko Sekida
- Kuroshio Science Unit, Multidisciplinary Science Cluster, Kochi University, Nankoku, Kochi, Japan
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, Otsuki, Kochi, Japan
| | - Tomoyo Okumura
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Satoshi Kubota
- Kuroshio Science Unit, Multidisciplinary Science Cluster, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
18
|
Wong HN, Chen T, Wang PJ, Holzman LB. ARF6, a component of intercellular bridges, is essential for spermatogenesis in mice. Dev Biol 2024; 508:46-63. [PMID: 38242343 PMCID: PMC10979378 DOI: 10.1016/j.ydbio.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Male germ cells are connected by intercellular bridges (ICBs) in a syncytium due to incomplete cytokinesis. Syncytium is thought to be important for synchronized germ cell development by interchange of cytoplasmic factors via ICBs. Mammalian ADP-ribosylation factor 6 (ARF6) is a small GTPase that is involved in many cellular mechanisms including but not limited to regulating cellular structure, motility, vesicle trafficking and cytokinesis. ARF6 localizes to ICBs in spermatogonia and spermatocytes in mice. Here we report that mice with global depletion of ARF6 in adulthood using Ubc-CreERT2 display no observable phenotypes but are male sterile. ARF6-deficient males display a progressive loss of germ cells, including LIN28A-expressing spermatogonia, and ultimately develop Sertoli-cell-only syndrome. Specifically, intercellular bridges are lost in ARF6-deficient testis. Furthermore, germ cell-specific inactivation using the Ddx4-CreERT2 results in the same testicular morphological phenotype, showing the germ cell-intrinsic requirement of ARF6. Therefore, ARF6 is essential for spermatogenesis in mice and this function is conserved from Drosophila to mammals.
Collapse
Affiliation(s)
- Hetty N Wong
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tingfang Chen
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Zhang J, Ruiz M, Bergh PO, Henricsson M, Stojanović N, Devkota R, Henn M, Bohlooly-Y M, Hernández-Hernández A, Alsheimer M, Borén J, Pilon M, Shibuya H. Regulation of meiotic telomere dynamics through membrane fluidity promoted by AdipoR2-ELOVL2. Nat Commun 2024; 15:2315. [PMID: 38485951 PMCID: PMC10940294 DOI: 10.1038/s41467-024-46718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Nena Stojanović
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Marius Henn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | | | - Abrahan Hernández-Hernández
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- National Genomics Infrastructure, Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
20
|
Li M, Wang P. Adverse effect of environmental androgenic compounds Galaxolide and Irgacure 369 on the male reproductive system. Reprod Toxicol 2023; 122:108477. [PMID: 37797914 DOI: 10.1016/j.reprotox.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Our recent study has found that two environmental chemicals, Galaxolide (HHCB, a raw material for synthesizing musk) and Irgacure 369 (IC-369, a photoinitiator used in packaging) are agonists for the androgen receptor in vitro and in vivo. This study aims to reveal the subchronic reproductive toxicity of these two compounds in mature male rats. The results showed that compared with the control group, HHCB and IC-369 reduced the sperm concentration and motility, increased the sperm deformity, and caused the atrophy of the seminiferous tubules in the testicles. Exposure to HHCB and IC-369 reduced testosterone level, and induced luteinizing hormone, and follicle-stimulating hormone levels in rat serum. Compared with the control group, the levels of oxidative stress markers in the serum and testicular tissue increased. HHCB and IC-369 also inhibited expression of the genes involved in androgen synthesis in testicle. The above results indicated that HHCB and IC-369 could affect the levels of sex hormones, alter gene expression profiles and induce histological damage in reproductive organs, resulting in decreased sperm quality. Therefore, HHCB and IC-369 have endocrine disruptors with prominent reproductive toxicity in males.
Collapse
Affiliation(s)
- Mingzhao Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
21
|
Jung GI, Londoño-Vásquez D, Park S, Skop AR, Balboula AZ, Schindler K. An oocyte meiotic midbody cap is required for developmental competence in mice. Nat Commun 2023; 14:7419. [PMID: 37973997 PMCID: PMC10654508 DOI: 10.1038/s41467-023-43288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Embryo development depends upon maternally derived materials. Mammalian oocytes undergo extreme asymmetric cytokinesis events, producing one large egg and two small polar bodies. During cytokinesis in somatic cells, the midbody and subsequent assembly of the midbody remnant, a signaling organelle containing RNAs, transcription factors and translation machinery, is thought to influence cellular function or fate. The role of the midbody and midbody remnant in gametes, in particular, oocytes, remains unclear. Here, we examined the formation and function of meiotic midbodies (mMB) and mMB remnants using mouse oocytes and demonstrate that mMBs have a specialized cap structure that is orientated toward polar bodies. We show that that mMBs are translationally active, and that mMB caps are required to retain nascent proteins in eggs. We propose that this specialized mMB cap maintains genetic factors in eggs allowing for full developmental competency.
Collapse
Affiliation(s)
- Gyu Ik Jung
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | | | - Sungjin Park
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ahna R Skop
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ahmed Z Balboula
- Animal Sciences Research Center, University of Missouri, Columbia, MO, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
22
|
Katami H, Suzuki S, Fujii T, Ueno M, Tanaka A, Ohta KI, Miki T, Shimono R. Genetic and histopathological analysis of spermatogenesis after short-term testicular torsion in rats. Pediatr Res 2023; 94:1650-1658. [PMID: 37225778 DOI: 10.1038/s41390-023-02638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Patients with testicular torsion (TT) may exhibit impaired spermatogenesis from reperfusion injury after detorsion surgery. Alteration in the expressions of spermatogenesis-related genes induced by TT have not been fully elucidated. METHODS Eight-week-old Sprague-Dawley rats were grouped as follows: group 1 (sham-operated), group 2 (TT without reperfusion) and group 3 (TT with reperfusion). TT was induced by rotating the left testis 720° for 1 h. Testicular reperfusion proceeded for 24 h. Histopathological examination, oxidative stress biomarker measurements, RNA sequencing and RT-PCR were performed. RESULTS Testicular ischemia/reperfusion injury induced marked histopathological changes. Germ cell apoptosis was significantly increased in group 3 compared with group 1 and 2 (mean apoptotic index: 26.22 vs. 0.64 and 0.56; p = 0.024, and p = 0.024, respectively). Johnsen score in group 3 was smaller than that in group 1 and 2 (mean: 8.81 vs 9.45 and 9.47 points/tubule; p = 0.001, p < 0.001, respectively). Testicular ischemia/reperfusion injury significantly upregulated the expression of genes associated with apoptosis and antioxidant enzymes and significantly downregulated the expression of genes associated with spermatogenesis. CONCLUSION One hour of TT followed by reperfusion injury caused histopathological testicular damage. The relatively high Johnsen score indicated spermatogenesis was maintained. Genes associated with spermatogenesis were downregulated in the TT rat model. IMPACT How ischemia/reperfusion injury in testicular torsion (TT) affects the expressions of genes associated with spermatogenesis has not been fully elucidated. This is the first study to report comprehensive gene expression profiles using next generation sequencing for an animal model of TT. Our results revealed that ischemia/reperfusion injury downregulated the expression of genes associated with spermatogenesis and sperm function in addition to histopathological damage, even though the duration of ischemia was short.
Collapse
Affiliation(s)
- Hiroto Katami
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Takayuki Fujii
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Aya Tanaka
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Ryuichi Shimono
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan.
| |
Collapse
|
23
|
Schindler K, Jung GI, Londoño-Vásquez D, Park S, Skop A, Balboula A. An oocyte meiotic midbody cap is required for developmental competence in mice. RESEARCH SQUARE 2023:rs.3.rs-3399188. [PMID: 37886573 PMCID: PMC10602078 DOI: 10.21203/rs.3.rs-3399188/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Embryo development depends upon maternally derived materials. Mammalian oocytes undergo extreme asymmetric cytokinesis events, producing one large egg and two small polar bodies (PB). During cytokinesis in somatic cells, the midbody (MB) and subsequent assembly of the midbody remnant (MBR), a signaling organelle containing RNAs, transcription factors and translation machinery, is thought to influence cellular function or fate. The role of the MB and MBR in gametes, in particular, oocytes, remains unclear. Here, we examined the formation and function of meiotic MBs (mMB) and mMB remnants (mMBRs) using mouse oocytes and demonstrate that mMBs have a specialized meiotic mMB cap structure that is orientated toward PBs. We show that that mMBs are translationally active, and that mMB caps are required to retain nascent proteins in eggs. We propose that this specialized mMB cap maintains genetic factors in eggs allowing for full developmental competency.
Collapse
|
24
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Bhuta R, Shah R, Gell JJ, Poynter JN, Bagrodia A, Dicken BJ, Pashankar F, Frazier AL, Shaikh F. Children's Oncology Group's 2023 blueprint for research: Germ cell tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30562. [PMID: 37449938 PMCID: PMC10529374 DOI: 10.1002/pbc.30562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Extracranial germ cell tumors (GCT) are a biologically diverse group of tumors occurring in children, adolescents, and young adults. The majority of patients have excellent outcomes, but treatment-related toxicities impact their quality of survivorship. A subset of patients succumbs to the disease. Current unmet needs include clarifying which patients can be safely observed after initial surgical resection, refinement of risk stratification to reduce chemotherapy burden in patients with standard-risk disease, and intensify therapy for patients with poor-risk disease. Furthermore, enhancing strategies for detection of minimal residual disease and early detection of relapse, particularly in serum tumor marker-negative histologies, is critical. Improving the understanding of the developmental and molecular origins of GCTs may facilitate discovery of novel targets. Future efforts should be directed toward assessing novel therapies in a biology-driven, biomarker-defined, histology-specific, risk-stratified patient population. Fragmentation of care between subspecialists restricts the unified study of these rare tumors. It is imperative that trials be conducted in collaboration with national and international cooperative groups, with harmonized data and biospecimen collection. Key priorities for the Children's Oncology Group (COG) GCT Committee include (a) better understanding the biology of GCTs, with a focus on molecular targets and mechanisms of treatment resistance; (b) strategic development of pediatric and young adult clinical trials; (c) understanding late effects of therapy and identifying individuals most at risk; and (d) prioritizing diversity, equity, and inclusion to reduce cancer health disparities and studying the impacts of social determinants of health on outcomes.
Collapse
Affiliation(s)
- Roma Bhuta
- Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Rachana Shah
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joanna J. Gell
- The Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT, USA
- Department of Pediatrics, University of Connecticut Medical School, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jenny N. Poynter
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aditya Bagrodia
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Bryan J. Dicken
- Department of Surgery, University of Alberta, Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Farzana Pashankar
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - A Lindsay Frazier
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Furqan Shaikh
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Wanta A, Noguchi K, Sugawara T, Sonoda K, Duangchit S, Wakayama T. Expression of Protein Markers in Spermatogenic and Supporting Sertoli Cells Affected by High Abdominal Temperature in Cryptorchidism Model Mice. J Histochem Cytochem 2023; 71:387-408. [PMID: 37431084 PMCID: PMC10363907 DOI: 10.1369/00221554231185626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Cryptorchidism is a congenital abnormality resulting in increased rates of infertility and testicular cancer. We used cryptorchidism model mice that presented with the translocation of the left testis from the scrotum to the abdominal cavity. Mice underwent the surgical procedure of the left testis at day 0 and were sacrificed at days 3, 5, 7, 14, 21, and 28 post-operatively. The weight of the left cryptorchid testis decreased significantly at days 21 and 28. The morphological changes were observed after 5 days and showed detached spermatogenic cells and abnormal formation of acrosome at day 5, multinucleated giant cells at day 7, and atrophy of seminiferous tubules at days 21 and 28. The high abdominal temperature disrupted the normal expression of cell adhesion molecule-1, Nectin-2, and Nectin-3 which are essential for spermatogenesis. In addition, the pattern and alignment of acetylated tubulin in cryptorchid testes were also changed at days 5, 7, 14, 21, and 28. Ultrastructure of cryptorchid testes revealed giant cells that had been formed by spermatogonia, spermatocytes, and round and elongating spermatids. The study's findings reveal that cryptorchidism's duration is linked to abnormal changes in the testis, impacting protein marker expression in spermatogenic and Sertoli cells. These changes stem from the induction of high abdominal temperature.
Collapse
Affiliation(s)
- Arunothai Wanta
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Kazuhiro Noguchi
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Suthat Duangchit
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
27
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
28
|
Pan B, Yuan S, Mayernik L, Yap YT, Moin K, Chung CS, Maddipati K, Krawetz SA, Zhang Z, Hess RA, Chen X. Disrupted intercellular bridges and spermatogenesis in fatty acyl-CoA reductase 1 knockout mice: A new model of ether lipid deficiency. FASEB J 2023; 37:e22908. [PMID: 37039784 PMCID: PMC10150578 DOI: 10.1096/fj.202201848r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Peroxisomal fatty acyl-CoA reductase 1 (FAR1) is a rate-limiting enzyme for ether lipid (EL) synthesis. Gene mutations in FAR1 cause a rare human disease. Furthermore, altered EL homeostasis has also been associated with various prevalent human diseases. Despite their importance in human health, the exact cellular functions of FAR1 and EL are not well-understood. Here, we report the generation and initial characterization of the first Far1 knockout (KO) mouse model. Far1 KO mice were subviable and displayed growth retardation. The adult KO male mice had smaller testes and were infertile. H&E and immunofluorescent staining showed fewer germ cells in seminiferous tubules. Round spermatids were present but no elongated spermatids or spermatozoa were observed, suggesting a spermatogenesis arrest at this stage. Large multi-nucleated giant cells (MGC) were found lining the lumen of seminiferous tubules with many of them undergoing apoptosis. The immunofluorescent signal of TEX14, an essential component of intercellular bridges (ICB) between developing germ cells, was greatly reduced and mislocalized in KO testis, suggesting the disrupted ICBs as an underlying cause of MGC formation. Integrative analysis of our total testis RNA-sequencing results and published single-cell RNA-sequencing data unveiled cell type-specific molecular alterations underlying the spermatogenesis arrest. Many genes essential for late germ cell development showed dramatic downregulation, whereas genes essential for extracellular matrix dynamics and cell-cell interactions were among the most upregulated genes. Together, this work identified the cell type-specific requirement of ELs in spermatogenesis and suggested a critical role of Far1/ELs in the formation/maintenance of ICB during meiosis.
Collapse
Affiliation(s)
- Bo Pan
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Shuo Yuan
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Linda Mayernik
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Charles S. Chung
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Krishnarao Maddipati
- Department of Pathology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Stephen A. Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Rex A. Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
29
|
Polyakova N, Kalashnikova M, Belyavsky A. Non-Classical Intercellular Communications: Basic Mechanisms and Roles in Biology and Medicine. Int J Mol Sci 2023; 24:ijms24076455. [PMID: 37047428 PMCID: PMC10095225 DOI: 10.3390/ijms24076455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
In multicellular organisms, interactions between cells and intercellular communications form the very basis of the organism’s survival, the functioning of its systems, the maintenance of homeostasis and adequate response to the environment. The accumulated experimental data point to the particular importance of intercellular communications in determining the fate of cells, as well as their differentiation and plasticity. For a long time, it was believed that the properties and behavior of cells were primarily governed by the interactions of secreted or membrane-bound ligands with corresponding receptors, as well as direct intercellular adhesion contacts. In this review, we describe various types of other, non-classical intercellular interactions and communications that have recently come into the limelight—in particular, the broad repertoire of extracellular vesicles and membrane protrusions. These communications are mediated by large macromolecular structural and functional ensembles, and we explore here the mechanisms underlying their formation and present current data that reveal their roles in multiple biological processes. The effects mediated by these new types of intercellular communications in normal and pathological states, as well as therapeutic applications, are also discussed. The in-depth study of novel intercellular interaction mechanisms is required for the establishment of effective approaches for the control and modification of cell properties both for basic research and the development of radically new therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Polyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Maria Kalashnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
- Correspondence:
| |
Collapse
|
30
|
Chapman KM, Pudasaini A, Vanderbeck MN, Hamra FK. Rattus norvegicus Spermatogenesis Colony-Forming Assays. Methods Mol Biol 2023; 2677:233-257. [PMID: 37464246 DOI: 10.1007/978-1-0716-3259-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Knowledge gaps persist on signaling pathways and metabolic states in germ cells sufficient to support spermatogenesis independent of a somatic environment. Consequently, methods to culture mammalian stem cells through spermatogenesis in defined systems have not been established. Lack of success at culturing mammalian stem cells through spermatogenesis in defined systems reflects an inability to experimentally recapitulate biochemical events that develop in germ cells within the testis-specific seminiferous epithelium. Complex germ and somatic cell associations that develop each seminiferous epithelial cycle support such a hypothesis, conceivably explaining why highly pure mammalian spermatogonia do not effectively develop into and through meiosis without somatic cells. Here, we outline an in vitro spermatogenesis colony-forming assay to study how differentiating spermatogonial syncytia develop from rat spermatogonial stem cell lines. Robust spermatogonial differentiation under defined culture conditions, once established, is anticipated to facilitate molecular biology studies on pre-meiotic steps in gametogenesis by providing soma-free bioassays to systematically identify spermatogenic factors that promote meiotic progression in vitro.
Collapse
Affiliation(s)
- Karen M Chapman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - F Kent Hamra
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
The Male Mouse Meiotic Cilium Emanates from the Mother Centriole at Zygotene Prior to Centrosome Duplication. Cells 2022; 12:cells12010142. [PMID: 36611937 PMCID: PMC9818220 DOI: 10.3390/cells12010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Cilia are hair-like projections of the plasma membrane with an inner microtubule skeleton known as axoneme. Motile cilia and flagella beat to displace extracellular fluids, playing important roles in the airways and reproductive system. On the contrary, primary cilia function as cell-type-dependent sensory organelles, detecting chemical, mechanical, or optical signals from the extracellular environment. Cilia dysfunction is associated with genetic diseases called ciliopathies and with some types of cancer. Cilia have been recently identified in zebrafish gametogenesis as an important regulator of bouquet conformation and recombination. However, there is little information about the structure and functions of cilia in mammalian meiosis. Here we describe the presence of cilia in male mouse meiotic cells. These solitary cilia formed transiently in 20% of zygotene spermatocytes and reached considerable lengths (up to 15-23 µm). CEP164 and CETN3 localization studies indicated that these cilia emanate from the mother centriole prior to centrosome duplication. In addition, the study of telomeric TFR2 suggested that cilia are not directly related to the bouquet conformation during early male mouse meiosis. Instead, based on TEX14 labeling of intercellular bridges in spermatocyte cysts, we suggest that mouse meiotic cilia may have sensory roles affecting cyst function during prophase I.
Collapse
|
32
|
Gerhold AR, Labbé JC, Singh R. Uncoupling cell division and cytokinesis during germline development in metazoans. Front Cell Dev Biol 2022; 10:1001689. [PMID: 36407108 PMCID: PMC9669650 DOI: 10.3389/fcell.2022.1001689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The canonical eukaryotic cell cycle ends with cytokinesis, which physically divides the mother cell in two and allows the cycle to resume in the newly individualized daughter cells. However, during germline development in nearly all metazoans, dividing germ cells undergo incomplete cytokinesis and germ cells stay connected by intercellular bridges which allow the exchange of cytoplasm and organelles between cells. The near ubiquity of incomplete cytokinesis in animal germ lines suggests that this is an ancient feature that is fundamental for the development and function of this tissue. While cytokinesis has been studied for several decades, the mechanisms that enable regulated incomplete cytokinesis in germ cells are only beginning to emerge. Here we review the current knowledge on the regulation of germ cell intercellular bridge formation, focusing on findings made using mouse, Drosophila melanogaster and Caenorhabditis elegans as experimental systems.
Collapse
Affiliation(s)
- Abigail R. Gerhold
- Department of Biology, McGill University, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Succ. Centre-ville, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Ramya Singh
- Department of Biology, McGill University, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
| |
Collapse
|
33
|
Yang Y, Li X, Ye S, Chen X, Wang L, Qian Y, Xin Q, Li L, Gong P. Identification of genes related to sexual differentiation and sterility in embryonic gonads of Mule ducks by transcriptome analysis. Front Genet 2022; 13:1037810. [PMID: 36386800 PMCID: PMC9643717 DOI: 10.3389/fgene.2022.1037810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 12/11/2023] Open
Abstract
The key genes of avian gonadal development are of great significance for sex determination. Transcriptome sequencing analysis of Mule duck gonad as potential sterile model is expected to screen candidate genes related to avian gonad development. In this study, the embryonic gonadal tissues of Mule ducks, Jinding ducks, and Muscovy ducks were collected and identified. Six sample groups including female Mule duck (A), male Mule duck (B), female Jinding duck (C), male Jinding duck (D), female Muscovy duck (E), and male Muscovy duck (F) were subjected to RNA sequencing analysis. A total of 9,471 differential genes (DEGs) and 691 protein-protein interaction pairs were obtained. Totally, 12 genes (Dmrt1, Amh, Sox9, Tex14, Trim71, Slc26a8, Spam1, Tdrp, Tsga10, Boc, Cxcl14, and Hsd17b3) were identified to be specifically related to duck testicular development, and 11 genes (Hsd17b1, Cyp19a1, Cyp17a1, Hhipl2, Tdrp, Uts2r, Cdon, Axin2, Nxph1, Brinp2, and Brinp3) were specifically related to duck ovarian development. Seven genes (Stra8, Dmc1, Terb1, Tex14, Tsga10, Spam1, and Plcd4) were screened to be specifically involved in the female sterility of Mule ducks; eight genes (Gtsf1, Nalcn, Tat, Slc26a8, Kmo, Plcd4, Aldh4a1, and Hgd) were specifically involved in male sterility; and five genes (Terb1, Stra8, Tex14 Tsga10 and Spam1) were involved in both female and male sterility. This study provides an insight into the differential development between male and female gonads of ducks and the sterility mechanism of Mule ducks through function, pathway, and protein interaction analyses. Our findings provide theoretical basis for the further research on sex determination and differentiation of birds and the sterility of Mule ducks.
Collapse
Affiliation(s)
- Yu Yang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shengqiang Ye
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Xing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Lixia Wang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Yunguo Qian
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Qingwu Xin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Li Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ping Gong
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
34
|
Wu Y, Zhang R, Shen C, Xu J, Wu T, Huang X, Liu M, Li H, Xu D, Zheng B. Testis-enriched Asb15 is not required for spermatogenesis and male fertility in mice. Am J Transl Res 2022; 14:6978-6990. [PMID: 36398235 PMCID: PMC9641487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The function of Asb15, which encodes an ASB protein with ankyrin (ANK) repeats and a C-terminal suppressor of cytokine signaling (SOCS) box motif, in male germ cells is poorly understood. Because expression of Asb15 is enriched in mouse testis, it may have a role in spermatogenesis. METHODS AND RESULTS We used a computer-assisted sperm analysis (CASA) system to analyze sperm from Asb15 gene knockout (KO) mice that we generated using the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) technique. Histological staining and immunostaining were used to evaluate spermatogenesis in Asb15-KO mice. Asb15-KO and wild-type mice showed no differences in histology or in semen quality, fertility, or sperm apoptosis. Asb15- and Asb17-double KO (dKO) mice were generated to determine whether Asb17 compensated for the loss of Asb15. However, Asb15/17-dKO mice also showed normal fertility, except for an increase in giant cells in testicular tubules, suggesting a minor functional compensation between the two genes during spermatogenesis. CONCLUSIONS Our study suggests that Asb15 was individually not required for spermatogenesis or for fertility in mice. However, further investigation might be needed to reach a firm conclusion. These findings can prevent redundant research by other scientists and provides new information for further studies on the genetics of fertility in humans.
Collapse
Affiliation(s)
- Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan UniversityWuxi 214122, Jiangsu, China
| | - Ranran Zhang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan UniversityWuxi 214122, Jiangsu, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Jinfu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Dewu Xu
- Teaching Affairs Department, Affiliated Hospital of Jiangnan UniversityWuxi 214122, Jiangsu, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University)Hefei 230032, Anhui, China
| |
Collapse
|
35
|
Dong S, Chen C, Zhang J, Gao Y, Zeng X, Zhang X. Testicular aging, male fertility and beyond. Front Endocrinol (Lausanne) 2022; 13:1012119. [PMID: 36313743 PMCID: PMC9606211 DOI: 10.3389/fendo.2022.1012119] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
Normal spermatogenesis and sperm function are crucial for male fertility. The effects of healthy testicular aging and testicular premature aging on spermatogenesis, sperm function, and the spermatogenesis microenvironment cannot be ignored. Compared with younger men, the testis of older men tends to have disturbed spermatogenic processes, sperm abnormalities, sperm dysfunction, and impaired Sertoli and Leydig cells, which ultimately results in male infertility. Various exogenous and endogenous factors also contribute to pathological testicular premature aging, such as adverse environmental stressors and gene mutations. Mechanistically, Y-chromosomal microdeletions, increase in telomere length and oxidative stress, accumulation of DNA damage with decreased repair ability, alterations in epigenetic modifications, miRNA and lncRNA expression abnormalities, have been associated with impaired male fertility due to aging. In recent years, the key molecules and signaling pathways that regulate testicular aging and premature aging have been identified, thereby providing new strategies for diagnosis and treatment. This review provides a comprehensive overview of the underlying mechanisms of aging on spermatogenesis. Furthermore, potential rescue measures for reproductive aging have been discussed. Finally, the inadequacy of testicular aging research and future directions for research have been envisaged to aid in the diagnosis and treatment of testicular aging and premature aging.
Collapse
Affiliation(s)
- Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jiali Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Yuan Gao
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| |
Collapse
|
36
|
Cao M, Wang X, Guo S, Kang Y, Pei J, Guo X. F1 Male Sterility in Cattle-Yak Examined through Changes in Testis Tissue and Transcriptome Profiles. Animals (Basel) 2022; 12:ani12192711. [PMID: 36230452 PMCID: PMC9559613 DOI: 10.3390/ani12192711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Cattle-yak, a crossbreed of cattle and yak, has evident heterosis but F1 male cattle-yak is unable to generate sperm and is sterile, which limits the fixation of heterosis. This study analyzed the differences in testicular tissue development between four-year-old yak and cattle-yak from the perspective of histomorphological changes and sequenced the testicular tissue of the two using RNA-seq technology, examining the differential gene expression related to spermatogenesis and apoptosis. These findings offer a theoretical explanation for the sterility in F1 male cattle-yak that can help yak hybridization. Abstract Male-derived sterility in cattle-yaks, a hybrid deriving from yak and cattle, is a challenging problem. This study compared and analyzed the histomorphological differences in testis between sexually mature yak and cattle-yak, and examined the transcriptome differences employing RNA-seq. The study found that yak seminiferous tubules contained spermatogenic cells at all levels, while cattle-yak seminiferous tubules had reduced spermatogonia (SPG) and primary spermatocyte (Pri-SPC), fewer secondary spermatocytes (Sec-SPC), an absence of round spermatids (R-ST) and sperms (S), and possessed large vacuoles. All of these conditions could have significantly reduced the volume and weight of cattle-yak testis compared to that of yak. RNA-seq analysis identified 8473 differentially expressed genes (DEGs; 3580 upregulated and 4893 downregulated). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment evaluations for DEGs found their relation mostly to spermatogenesis and apoptosis. Among the DEGs, spermatogonia stem cell (SSCs) marker genes (Gfra1, CD9, SOHLH1, SALL4, ID4, and FOXO1) and genes involved in apoptosis (Fas, caspase3, caspase6, caspase7, caspase8, CTSK, CTSB and CTSC) were significantly upregulated, while differentiation spermatogenic cell marker genes (Ccna1, PIWIL1, TNP1, and TXNDC2) and meiosis-related genes (TEX14, TEX15, MEIOB, STAG3 and M1AP) were significantly downregulated in cattle-yak. Furthermore, the alternative splicing events in cattle-yak were substantially decreased than in yak, suggesting that the lack of protein subtypes could be another reason for spermatogenic arrest in cattle-yak testis.
Collapse
Affiliation(s)
- Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: ; Tel.: +86-18993037854
| |
Collapse
|
37
|
Singh J, Imran Alsous J, Garikipati K, Shvartsman SY. Mechanics of stabilized intercellular bridges. Biophys J 2022; 121:3162-3171. [PMID: 35778841 PMCID: PMC9463629 DOI: 10.1016/j.bpj.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022] Open
Abstract
Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model's equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated-one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.
Collapse
Affiliation(s)
- Jaspreet Singh
- Center for Computational Biology, Flatiron Institute, New York, New York
| | | | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, Michigan.
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
38
|
Niu W, Spradling AC. Mouse oocytes develop in cysts with the help of nurse cells. Cell 2022; 185:2576-2590.e12. [PMID: 35623357 DOI: 10.1016/j.cell.2022.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Mouse germline cysts, on average, develop into six oocytes supported by 24 nurse cells that transfer cytoplasm and organelles to generate a Balbiani body. We showed that between E14.5 and P5, cysts periodically activate some nurse cells to begin cytoplasmic transfer, which causes them to shrink and turnover within 2 days. Nurse cells die by a programmed cell death (PCD) pathway involving acidification, similar to Drosophila nurse cells, and only infrequently by apoptosis. Prior to initiating transfer, nurse cells co-cluster by scRNA-seq with their pro-oocyte sisters, but during their final 2 days, they cluster separately. The genes promoting oocyte development and nurse cell PCD are upregulated, whereas the genes that repress transfer, such as Tex14, and oocyte factors, such as Nobox and Lhx8, are under-expressed. The transferred nurse cell centrosomes build a cytocentrum that establishes a large microtubule aster in the primordial oocyte that organizes the Balbiani body, defining the earliest oocyte polarity.
Collapse
Affiliation(s)
- Wanbao Niu
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|
39
|
de Castro RO, Carbajal A, Previato de Almeida L, Goitea V, Griffin CT, Pezza RJ. Mouse Chd4-NURD is required for neonatal spermatogonia survival and normal gonad development. Epigenetics Chromatin 2022; 15:16. [PMID: 35568926 PMCID: PMC9107693 DOI: 10.1186/s13072-022-00448-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Testis development and sustained germ cell production in adults rely on the establishment and maintenance of spermatogonia stem cells and their proper differentiation into spermatocytes. Chromatin remodeling complexes regulate critical processes during gamete development by restricting or promoting accessibility of DNA repair and gene expression machineries to the chromatin. Here, we investigated the role of Chd4 and Chd3 catalytic subunits of the NURD complex during spermatogenesis. Germ cell-specific deletion of chd4 early in gametogenesis, but not chd3, resulted in arrested early gamete development due to failed cell survival of neonate undifferentiated spermatogonia stem cell population. Candidate assessment revealed that Chd4 controls expression of dmrt1 and its downstream target plzf, both described as prominent regulators of spermatogonia stem cell maintenance. Our results show the requirement of Chd4 in mammalian gametogenesis pointing to functions in gene expression early in the process.
Collapse
Affiliation(s)
- Rodrigo O de Castro
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Suite B305. 825 NE 13th street, Oklahoma City, OK, 73104, USA
| | - Agustin Carbajal
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Suite B305. 825 NE 13th street, Oklahoma City, OK, 73104, USA
| | - Luciana Previato de Almeida
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Suite B305. 825 NE 13th street, Oklahoma City, OK, 73104, USA
| | - Victor Goitea
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Suite B305. 825 NE 13th street, Oklahoma City, OK, 73104, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Roberto J Pezza
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Suite B305. 825 NE 13th street, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
40
|
Deficiency of X-linked TENT5D causes male infertility by disrupting the mRNA stability during spermatogenesis. Cell Discov 2022; 8:23. [PMID: 35256600 PMCID: PMC8901658 DOI: 10.1038/s41421-021-00369-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
|
41
|
Daly CA, Hall ET, Ogden SK. Regulatory mechanisms of cytoneme-based morphogen transport. Cell Mol Life Sci 2022; 79:119. [PMID: 35119540 PMCID: PMC8816744 DOI: 10.1007/s00018-022-04148-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/07/2023]
Abstract
During development and tissue homeostasis, cells must communicate with their neighbors to ensure coordinated responses to instructional cues. Cues such as morphogens and growth factors signal at both short and long ranges in temporal- and tissue-specific manners to guide cell fate determination, provide positional information, and to activate growth and survival responses. The precise mechanisms by which such signals traverse the extracellular environment to ensure reliable delivery to their intended cellular targets are not yet clear. One model for how this occurs suggests that specialized filopodia called cytonemes extend between signal-producing and -receiving cells to function as membrane-bound highways along which information flows. A growing body of evidence supports a crucial role for cytonemes in cell-to-cell communication. Despite this, the molecular mechanisms by which cytonemes are initiated, how they grow, and how they deliver specific signals are only starting to be revealed. Herein, we discuss recent advances toward improved understanding of cytoneme biology. We discuss similarities and differences between cytonemes and other types of cellular extensions, summarize what is known about how they originate, and discuss molecular mechanisms by which their activity may be controlled in development and tissue homeostasis. We conclude by highlighting important open questions regarding cytoneme biology, and comment on how a clear understanding of their function may provide opportunities for treating or preventing disease.
Collapse
Affiliation(s)
- Christina A Daly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, MS 1500, Memphis, TN, 38105, USA
| | - Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA.
| |
Collapse
|
42
|
Li P, Ji Z, Zhi E, Zhang Y, Han S, Zhao L, Tian R, Chen H, Huang Y, Zhang J, Chen H, Zhao F, Zhou Z, Li Z, Yao C. Novel bi-allelic MSH4 variants causes meiotic arrest and non-obstructive azoospermia. Reprod Biol Endocrinol 2022; 20:21. [PMID: 35090489 PMCID: PMC8796546 DOI: 10.1186/s12958-022-00900-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is one of the most severe type in male infertility, and the genetic causes of NOA with meiotic arrest remain elusive. METHODS Four Chinese families with NOA participated in the study. We performed whole-exome sequencing (WES) for the four NOA-affected patients in four pedigrees. The candidate causative gene was further verified by Sanger sequencing. Hematoxylin and eosin staining (H&E) and immunohistochemistry (IHC) were carried out to evaluate the stage of spermatogenesis arrested in the patients with NOA. RESULTS We identified two novel homozygous frameshift mutations of MSH4 and two novel compound heterozygous variants in MSH4 in four pedigrees with NOA. Homozygous loss of function (LoF) variants in MSH4 was identified in the NOA-affected patient (P9359) in a consanguineous Chinese family (NM_002440.4: c.805_812del: p.V269Qfs*15) and one patient with NOA (P21504) in another Chinese family (NM_002440.4: c.2220_2223del:p.K741Rfs*2). Also, compound heterozygous variants in MSH4 were identified in two NOA-affected siblings (P9517 and P9517B) (NM_002440.4: c.G1950A: p.W650X and c.2179delG: p.D727Mfs*11), and the patient with NOA (P9540) (NM_002440.4: c.G244A: p.G82S and c.670delT: p.L224Cfs*3). Histological analysis demonstrated lack of spermatozoa in seminiferous tubules of all patients and IHC showed the spermatogenesis arrested at the meiotic prophase I stage. Consistent with the autosomal recessive mode of inheritance, all of these mutations were inherited from heterozygous parental carriers. CONCLUSIONS We identified that six novel mutations in MSH4 responsible for meiotic arrest and NOA. And these results provide researchers with a new insight to understand the genetic etiology of NOA and to identify new loci for genetic counselling of NOA.
Collapse
Affiliation(s)
- Peng Li
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhiyong Ji
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211116, China
| | - Erlei Zhi
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuxiang Zhang
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Sha Han
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Liangyu Zhao
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ruhui Tian
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Huixing Chen
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuhua Huang
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jing Zhang
- The Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510620, China
| | - Huirong Chen
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fujun Zhao
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhi Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zheng Li
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Chencheng Yao
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
43
|
Campbell KM, Xu Y, Patel C, Rayl JM, Zomer HD, Osuru HP, Pratt M, Pramoonjago P, Timken M, Miller LM, Ralph A, Storey KM, Peng Y, Drnevich J, Lagier-Tourenne C, Wong PC, Qiao H, Reddi PP. Loss of TDP-43 in male germ cells causes meiotic failure and impairs fertility in mice. J Biol Chem 2021; 297:101231. [PMID: 34599968 PMCID: PMC8569592 DOI: 10.1016/j.jbc.2021.101231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Meiotic arrest is a common cause of human male infertility, but the causes of this arrest are poorly understood. Transactive response DNA-binding protein of 43 kDa (TDP-43) is highly expressed in spermatocytes in the preleptotene and pachytene stages of meiosis. TDP-43 is linked to several human neurodegenerative disorders wherein its nuclear clearance accompanied by cytoplasmic aggregates underlies neurodegeneration. Exploring the functional requirement for TDP-43 for spermatogenesis for the first time, we show here that conditional KO (cKO) of the Tardbp gene (encoding TDP-43) in male germ cells of mice leads to reduced testis size, depletion of germ cells, vacuole formation within the seminiferous epithelium, and reduced sperm production. Fertility trials also indicated severe subfertility. Spermatocytes of cKO mice showed failure to complete prophase I of meiosis with arrest at the midpachytene stage. Staining of synaptonemal complex protein 3 and γH2AX, markers of the meiotic synaptonemal complex and DNA damage, respectively, and super illumination microscopy revealed nonhomologous pairing and synapsis defects. Quantitative RT-PCR showed reduction in the expression of genes critical for prophase I of meiosis, including Spo11 (initiator of meiotic double-stranded breaks), Rec8 (meiotic recombination protein), and Rad21L (RAD21-like, cohesin complex component), as well as those involved in the retinoic acid pathway critical for entry into meiosis. RNA-Seq showed 1036 upregulated and 1638 downregulated genes (false discovery rate <0.05) in the Tardbp cKO testis, impacting meiosis pathways. Our work reveals a crucial role for TDP-43 in male meiosis and suggests that some forms of meiotic arrest seen in infertile men may result from the loss of function of TDP-43.
Collapse
Affiliation(s)
- Kaitlyn M Campbell
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yiding Xu
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Chintan Patel
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jeremy M Rayl
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Helena D Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Hari Prasad Osuru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Michael Pratt
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Patcharin Pramoonjago
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Madeline Timken
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Lyndzi M Miller
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Abigail Ralph
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn M Storey
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yiheng Peng
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jenny Drnevich
- High-Performance Biological Computing (HPCBio) Group, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
44
|
Han G, Hong SH, Lee SJ, Hong SP, Cho C. Transcriptome Analysis of Testicular Aging in Mice. Cells 2021; 10:2895. [PMID: 34831115 PMCID: PMC8616291 DOI: 10.3390/cells10112895] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
Male reproductive aging, or andropause, is associated with gradual age-related changes in testicular properties, sperm production, and erectile function. The testis, which is the primary male reproductive organ, produces sperm and androgens. To understand the transcriptional changes underlying male reproductive aging, we performed transcriptome analysis of aging testes in mice. A total of 31,386 mRNAs and 9387 long non-coding RNAs (lncRNAs) were identified in the mouse testes of diverse age groups (3, 6, 12, and 18 months old) by total RNA sequencing. Of them, 1571 mRNAs and 715 lncRNAs exhibited changes in their levels during testicular aging. Most of these aging-related transcripts exhibited slight and continuous expression changes during aging, whereas some (9.6%) showed larger expression changes. The aging-related transcripts could be classified into diverse expression patterns, in which the transcripts changed mainly at 3-6 months or at 12-18 months. Our subsequent in silico analysis provided insight into the potential features of testicular aging-related mRNAs and lncRNAs. We identified testis-specific aging-related transcripts (121 mRNAs and 25 lncRNAs) by comparison with a known testis-specific transcript profile, and then predicted the potential reproduction-related functions of the mRNAs. By selecting transcripts that are altered only between 3 and 18 months, we identified 46 mRNAs and 34 lncRNAs that are stringently related to the terminal stage of male reproductive aging. Some of these mRNAs were related to hormonal regulation. Finally, our in silico analysis of the 34 aging-related lncRNAs revealed that they co-localized with 19 testis-expressed protein-coding genes, 13 of which are considered to show testis-specific or -predominant expression. These nearby genes could be potential targets of cis-regulation by the aging-related lncRNAs. Collectively, our results identify a number of testicular aging-related mRNAs and lncRNAs in mice and provide a basis for the future investigation of these transcripts in the context of aging-associated testicular dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.H.); (S.-H.H.); (S.-J.L.); (S.-P.H.)
| |
Collapse
|
45
|
Lei WL, Li YY, Meng TG, Ning Y, Sun SM, Zhang CH, Gui Y, Wang ZB, Qian WP, Sun QY. Specific deletion of protein phosphatase 6 catalytic subunit in Sertoli cells leads to disruption of spermatogenesis. Cell Death Dis 2021; 12:883. [PMID: 34580275 PMCID: PMC8476514 DOI: 10.1038/s41419-021-04172-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Protein phosphatase 6 (PP6) is a member of the PP2A-like subfamily, which plays significant roles in numerous fundamental biological activities. We found that PPP6C plays important roles in male germ cells recently. Spermatogenesis is supported by the Sertoli cells in the seminiferous epithelium. In this study, we crossed Ppp6cF/F mice with AMH-Cre mice to gain mutant mice with specific depletion of the Ppp6c gene in the Sertoli cells. We discovered that the PPP6C cKO male mice were absolutely infertile and germ cells were largely lost during spermatogenesis. By combing phosphoproteome with bioinformatics analysis, we showed that the phosphorylation status of β-catenin at S552 (a marker of adherens junctions) was significantly upregulated in mutant mice. Abnormal β-catenin accumulation resulted in impaired testicular junction integrity, thus led to abnormal structure and functions of BTB. Taken together, our study reveals a novel function for PPP6C in male germ cell survival and differentiation by regulating the cell-cell communication through dephosphorylating β-catenin at S552.
Collapse
Affiliation(s)
- Wen-Long Lei
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chun-Hui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
46
|
Iwamori T, Iwamori N, Matsumoto M, Imai H, Ono E. Novel localizations and interactions of intercellular bridge proteins revealed by proteomic profiling†. Biol Reprod 2021; 102:1134-1144. [PMID: 31995159 DOI: 10.1093/biolre/ioaa017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/17/2019] [Accepted: 01/28/2020] [Indexed: 11/14/2022] Open
Abstract
Intercellular bridges (ICBs) connecting germ cells are essential for spermatogenesis, and their deletion causes male infertility. However, the functions and component factors of ICBs are still unknown. We previously identified novel ICB-associated proteins by proteomics analysis using ICB enrichment. Here, we performed immunoprecipitation-proteomics analyses using antibodies specific to known ICB proteins MKLP1, RBM44, and ectoplasmic specialization-associated protein KIAA1210 and predicted protein complexes in the ICB cores. KIAA1210, its binding protein topoisomerase2B (TOP2B), and tight junction protein ZO1 were identified as novel ICB proteins. On the other hand, as well as KIAA1210 and TOP2B, MKLP1 and RBM44, but not TEX14, were localized at the XY body of spermatocytes, suggesting that there is a relationship between ICB proteins and meiotic chromosomes. Moreover, small RNAs interacted with an ICB protein complex that included KIAA1210, RBM44, and MKLP1. These results indicate dynamic movements of ICB proteins and suggest that ICB proteins could be involved not only in the communication between germ cells but also in their epigenetic regulation. Our results provide a novel perspective on the function of ICBs and could be helpful in revealing the biological function of the ICB.
Collapse
Affiliation(s)
- Tokuko Iwamori
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Iwamori
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan and
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Imai
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
47
|
Wang S, Qiao H, Wang P, Wang Y, Qin D. ZDHHC19 Is Dispensable for Spermatogenesis, but Is Essential for Sperm Functions in Mice. Int J Mol Sci 2021; 22:8894. [PMID: 34445597 PMCID: PMC8396176 DOI: 10.3390/ijms22168894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
Spermatogenesis is a complicated process involving mitotically proliferating spermatogonial cells, meiotically dividing spermatocytes, and spermatid going through maturation into spermatozoa. The post-translational modifications of proteins play important roles in this biological process. S-palmitoylation is one type of protein modifications catalyzed by zinc finger Asp-His-His-Cys (ZDHHC)-family palmitoyl S-acyltransferases. There are 23 mammalian ZDHHCs that have been identified in mouse. Among them, Zdhhc19 is highly expressed in adult testis. However, the in vivo function of Zdhhc19 in mouse spermatogenesis and fertility remains unknown. In this study, we knocked out the Zdhhc19 gene by generating a 2609 bp deletion from exon 3 to exon 6 in mice. No differences were found in testis morphology and testis/body weight ratios upon Zdhhc19 deletion. Spermatogenesis was not disrupted in Zdhhc19 knockout mice, in which properly developed TRA98+ germ cells, SYCP3+ spermatocytes, and TNP1+ spermatids/spermatozoa were detected in seminiferous tubules. Nevertheless, Zdhhc19 knockout mice were male infertile. Zdhhc19 deficient spermatozoa exhibited multiple defects including abnormal morphology of sperm tails and heads, decreased motility, and disturbed acrosome reaction. All of these led to the inability of Zdhhc19 mutant sperm to fertilize oocytes in IVF assays. Taken together, our results support the fact that Zdhhc19 is a testis enriched gene dispensable for spermatogenesis, but is essential for sperm functions in mice.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China; (S.W.); (H.Q.)
| | - Hongjie Qiao
- Department of Physiology, Shantou University Medical College, Shantou 515041, China; (S.W.); (H.Q.)
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Danian Qin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China; (S.W.); (H.Q.)
| |
Collapse
|
48
|
An M, Liu Y, Zhang M, Hu K, Jin Y, Xu S, Wang H, Lu M. Targeted next-generation sequencing panel screening of 668 Chinese patients with non-obstructive azoospermia. J Assist Reprod Genet 2021; 38:1997-2005. [PMID: 33728612 PMCID: PMC8417191 DOI: 10.1007/s10815-021-02154-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We aimed (1) to determine the molecular diagnosis rate and the recurrent causative genes of patients with non-obstructive azoospermia (NOA) using targeted next-generation sequencing (NGS) panel screening and (2) to discuss whether these genes help in the prognosis for microsurgical testicular sperm extraction (micro-TESE). METHODS We used NGS panels to screen 668 Chinese men with NOA. Micro-TESE outcomes for six patients with pathogenic mutations were followed up. Functional assays were performed for two NR5A1 variants identified: p.I224V and p.R281C. RESULTS Targeted NGS panel sequencing could explain 4/189 (2.1% by panel 1) or 10/479 (2.1% by panel 2) of the patients with NOA after exclusion of karyotype abnormalities and Y chromosome microdeletions. Almost all mutations detected were newly described except for NR5A1 p.R281C and TEX11 p.M156V. Two missense NR5A1 mutations-p.R281C and p.I244V-were proved to be deleterious by in vitro functional assays. Mutations in TEX11, TEX14, and NR5A1 genes are recurrent causes of NOA, but each gene explains only a very small percentage (less than 4/668; 0.6%). Only the patient with NR5A1 mutations produced viable spermatozoa through micro-TESE, but other patients with TEX11 and TEX14 had poor micro-TESE prognoses. CONCLUSIONS A targeted NGS panel is a feasible diagnostic method for patients with NOA. Because each gene implicated explains only a small proportion of such cases, more genes should be included to further increase the diagnostic rate. Considering previous reports, we suggest that only a few genes that are directly linked to meiosis can indicate poor micro-TESE prognosis, such as TEX11, TEX14, and SYCE1.
Collapse
Affiliation(s)
- Miao An
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Yidong Liu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Ming Zhang
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Kai Hu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Yan Jin
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Shiran Xu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Hongxiang Wang
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China.
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China.
| |
Collapse
|
49
|
Shah W, Khan R, Shah B, Dil S, Shi Q. Knockout of the family with sequence similarity 181, member A ( Fam181a) gene does not impair spermatogenesis or male fertility in the mouse. Reprod Fertil Dev 2021; 33:674-681. [PMID: 34253288 DOI: 10.1071/rd21150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
Family with sequence similarity 181 (Fam181 ) is a gene family with two paralogues (Fam181a and Fam181b ) found among vertebrates. Fam181a exhibits dynamic and stage-specific expression during murine embryo development. Furthermore, searching in the National Center for Biotechnology Information database revealed predominant expression of Fam181a in mouse and human testes, implying that it may have essential roles in spermatogenesis. In this study we investigated the invivo function of Fam181a in mouse spermatogenesis and fertility by generating Fam181a -/- mice using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 genome editing technology. The resulting Fam181a -/- mice exhibited normal growth and development. In addition, the mice were completely fertile, with no obvious differences in the testis-to-bodyweight ratio, epididymal sperm count or sperm motility compared with wild-type mice. Further examination of testicular and epididymal histology of Fam181a -/- mice found an intact seminiferous tubule structure and the presence of all types of germ cells, from spermatogonia to mature spermatozoa, similar to wild-type littermates. Similarly, analysis of meiotic prophase I progression revealed normal populations of each substage of prophase I in Fam181a +/+ and Fam181a -/- testes, suggesting that this gene is dispensable for male fertility. These negative findings will help avoid research overlap, save time and resources and allow researchers to concentrate on genes that are critical for male fertility and spermatogenesis.
Collapse
Affiliation(s)
- Wasim Shah
- The First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ranjha Khan
- The First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; and Corresponding authors
| | - Basit Shah
- The First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Sobia Dil
- The First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- The First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; and Corresponding authors
| |
Collapse
|
50
|
Ikami K, Nuzhat N, Abbott H, Pandoy R, Haky L, Spradling AC, Tanner H, Lei L. Altered germline cyst formation and oogenesis in Tex14 mutant mice. Biol Open 2021; 10:269245. [PMID: 34156079 PMCID: PMC8249907 DOI: 10.1242/bio.058807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022] Open
Abstract
During oocyte differentiation in mouse fetal ovaries, sister germ cells are connected by intercellular bridges, forming germline cysts. Within the cyst, primary oocytes form via gaining cytoplasm and organelles from sister germ cells through germ cell connectivity. To uncover the role of intercellular bridges in oocyte differentiation, we analyzed mutant female mice lacking testis-expressed 14 (TEX14), a protein involved in intercellular bridge formation and stabilization. In Tex14 homozygous mutant fetal ovaries, germ cells divide to form a reduced number of cysts in which germ cells remained connected via syncytia or fragmented cell membranes, rather than normal intercellular bridges. Compared with wild-type cysts, homozygous mutant cysts fragmented at a higher frequency and produced a greatly reduced number of primary oocytes with precocious cytoplasmic enrichment and enlarged volume. By contrast, Tex14 heterozygous mutant germline cysts were less fragmented and generate primary oocytes at a reduced size. Moreover, enlarged primary oocytes in homozygous mutants were used more efficiently to sustain folliculogenesis than undersized heterozygous mutant primary oocytes. Our observations directly link the nature of fetal germline cysts to oocyte differentiation and development. Summary: Altered germline cyst formation and fragmentation due to defective germ cell connectivity leads to changes in oocyte differentiation and development in Tex14 mutant mice.
Collapse
Affiliation(s)
- Kanako Ikami
- Buck Institute for Research on Aging, 94949, Novato, CA, USA
| | - Nafisa Nuzhat
- Department of Cell and Developmental Biology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA
| | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA
| | - Ronald Pandoy
- Buck Institute for Research on Aging, 94949, Novato, CA, USA
| | - Lauren Haky
- Buck Institute for Research on Aging, 94949, Novato, CA, USA
| | - Allan C Spradling
- Department of Embryology, Carnegie Institution for Science, 21218, Baltimore, MD, USA
| | - Heather Tanner
- Buck Institute for Research on Aging, 94949, Novato, CA, USA
| | - Lei Lei
- Buck Institute for Research on Aging, 94949, Novato, CA, USA
| |
Collapse
|