1
|
Putra VDL, Kilian KA, Knothe Tate ML. Stem cell mechanoadaptation. I. Effect of microtubule stabilization and volume changing stresses on cytoskeletal remodeling. APL Bioeng 2025; 9:016102. [PMID: 39801500 PMCID: PMC11719676 DOI: 10.1063/5.0231273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025] Open
Abstract
Here, we report on the first part of a two-part experimental series to elucidate spatiotemporal cytoskeletal remodeling, which underpins the evolution of stem cell shape and fate, and the emergence of tissue structure and function. In Part I of these studies, we first develop protocols to stabilize microtubules exogenously using paclitaxel (PAX) in a standardized model murine embryonic stem cell line (C3H/10T1/2) to maximize comparability with previously published studies. We then probe native and microtubule-stabilized stem cells' capacity to adapt to volume changing stresses effected by seeding at increasing cell densities, which emulates local compression and tissue template formation during development. Within the concentration range of 1-100 nM, microtubule-stabilized stem cells maintain viability and reduce proliferation. PAX stabilization of microtubules is associated with increased cell volume as well as flattening of the cell and nucleus. Compared to control cells, microtubule-stabilized cells exhibit thick, bundled microtubules and highly aligned, thicker and longer F-actin fibers, corresponding to an increase in the Young's modulus of the cell. Both F-actin and microtubule concentration increase with increasing PAX concentration, whereby the increase in F-actin is more prominent in the basal region of the cell. The corresponding increase in microtubule is observed more globally across the apical and basal region of the cell. Seeding at increasing target densities induces local compression on cells. This increase in local compression modulates cell volume and concomitant increases in F-actin and microtubule concentration to a greater degree than microtubule stabilization via PAX. Cells seeded at high density exhibit higher bulk modulus than corresponding cells seeded at low density. These data demonstrate the capacity of stem cells to adapt to an interplay of mechanical and chemical cues, i.e., respective compression and exogenous microtubule stabilization; the resulting cytoskeletal remodeling manifests as evolution of mechanical properties relevant to development of multicellular tissue constructs.
Collapse
Affiliation(s)
- Vina D. L. Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Kristopher A. Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa L. Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi), Blue Mountains, New South Wales, Australia
| |
Collapse
|
2
|
Komar ZM, Verkaik NS, Dahmani A, Montaudon E, Kanaar R, Houtsmuller AB, Jager A, Marangoni E, van Gent DC. Development and validation of a functional ex vivo paclitaxel and eribulin sensitivity assay for breast cancer, the REMIT assay. NPJ Breast Cancer 2025; 11:17. [PMID: 39962055 PMCID: PMC11832732 DOI: 10.1038/s41523-025-00734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Breast cancer is the most common cancer amongst women worldwide, however clinically validated chemotherapy response biomarkers that can accurately predict treatment response in patients are largely lacking. Therefore, in this study, functional paclitaxel and eribulin ex vivo sensitivity assays were developed. Patient derived xenograft (PDX) models were used to compare the ex vivo predicted treatment outcome with the sensitivity of mice in vivo. We validated the previously developed sensitivity assay for paclitaxel, which is based on the ratio between replicating (EdU) and mitotic (phospho-Histone H3; pH3) cells as a proxy for blocked mitosis. The assay showed 90% correlation between the ex vivo and in vivo response to paclitaxel treatment in the PDX models. We propose the term REMIT (REplication MITosis) assay and show that it is also a suitable test to predict eribulin sensitivity. The reproducibility of the REMIT assay for paclitaxel and eribulin was determined to be 80% and 83%, respectively. These results justify further clinical validation of the REMIT assay in breast cancer patients.
Collapse
Affiliation(s)
- Zofia M Komar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Nicole S Verkaik
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Ahmed Dahmani
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Elodie Montaudon
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Center and Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Dik C van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Chatterjee A, Sarkar S, Bhattacharjee S, Bhattacharyya A, Barman S, Pal U, Pandey R, Ethirajan A, Jana B, Das BB, Das A. Microtubule-Targeting NAP Peptide-Ru(II)-polypyridyl Conjugate As a Bimodal Therapeutic Agent for Triple Negative Breast Carcinoma. J Am Chem Soc 2025; 147:532-547. [PMID: 39725612 DOI: 10.1021/jacs.4c11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ (NAP) was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy)32+ (Rubpy) to synthesize an N-stapled short peptide-Rubpy conjugate (Ru-NAP). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT). Ru-NAP formed more elaborate molecular aggregates with fibrillar morphology as compared to NAP. A much higher binding affinity of Ru-NAP over NAP toward β-tubulin (KRu-NAP: (6.8 ± 0.55) × 106 M-1; KNAP: (8.2 ± 1.1) × 104 M-1) was observed due to stronger electrostatic interactions between the MT with an average linear charge density of ∼85 e/nm and the cationic Rubpy part of Ru-NAP. This was also supported by docking, simulation, and appropriate imaging studies. Ru-NAP promoted serum stability, specific binding of NAP to the E-site of the βIII-tubulin followed by the disruption of the MT network, and effective singlet oxygen generation in TNBC cells (MDA-MB-231), causing cell cycle arrest in the G2/M phase and triggering apoptosis. Remarkably, MDA-MB-231 cells were more sensitive to Ru-NAP compared to noncancerous human embryonic kidney (HEK293 cells) when exposed to light (LightIC50Ru-NAP[HEK293]: 17.2 ± 2.5 μM, compared to LightIC50Ru-NAP[MDA-MB-231]: 32.5 ± 7.8 nM, DarkIC50Ru-NAP[HEK293]: > 80 μM, compared to DarkIC50Ru-NAP[MDA-MB-231]: 2.9 ± 0.5 μM). Ru-NAP also effectively inhibited tumor growth in MDA-MB-231 xenograft models in nude mice. Our findings provide strong evidence that Ru-NAP has a potential therapeutic role in TNBC treatment.
Collapse
Affiliation(s)
- Atin Chatterjee
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
- Institute for Materials Research (Imo-imomec), Nanobiophysics and Soft Matter Interfaces (NSI) Group, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Sandip Sarkar
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Arpan Bhattacharyya
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Barman
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Anitha Ethirajan
- Institute for Materials Research (Imo-imomec), Nanobiophysics and Soft Matter Interfaces (NSI) Group, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
- Imec, Imo-imomec, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Batakrishna Jana
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amitava Das
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
4
|
Abbaali I, Truong D, Wetzel DM, Morrissette NS. Toxoplasma replication is inhibited by MMV676477 without development of resistance. Cytoskeleton (Hoboken) 2025; 82:5-11. [PMID: 38757481 PMCID: PMC11568068 DOI: 10.1002/cm.21876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Protozoan parasites cause life-threatening infections in both humans and animals, including agriculturally significant livestock. Available treatments are typically narrow spectrum and are complicated by drug toxicity and the development of resistant parasites. Protozoan tubulin is an attractive target for the development of broad-spectrum antimitotic agents. The Medicines for Malaria Pathogen Box compound MMV676477 was previously shown to inhibit replication of kinetoplastid parasites, such as Leishmania amazonensis and Trypanosoma brucei, and the apicomplexan parasite Plasmodium falciparum by selectively stabilizing protozoan microtubules. In this report, we show that MMV676477 inhibits intracellular growth of the human apicomplexan pathogen Toxoplasma gondii with an EC50 value of ~50 nM. MMV676477 does not stabilize vertebrate microtubules or cause other toxic effects in human fibroblasts. The availability of tools for genetic studies makes Toxoplasma a useful model for studies of the cytoskeleton. We conducted a forward genetics screen for MMV676477 resistance, anticipating that missense mutations would delineate the binding site on protozoan tubulin. Unfortunately, we were unable to use genetics to dissect target interactions because no resistant parasites emerged. This outcome suggests that future drugs based on the MMV676477 scaffold would be less likely to be undermined by the emergence of drug resistance.
Collapse
Affiliation(s)
- Izra Abbaali
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Danny Truong
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Dawn M. Wetzel
- Department of Pediatrics and BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Naomi S. Morrissette
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
5
|
Fried S, Har-Zahav A, Hamudi Y, Mahameed S, Mansur R, Dotan M, Cozacov T, Shamir R, Wells RG, Waisbourd-Zinman O. Biliary atresia: insights into mechanisms using a toxic model of the disease including Wnt and Hippo signaling pathways and microtubules. Pediatr Res 2025; 97:184-194. [PMID: 38914763 PMCID: PMC11798875 DOI: 10.1038/s41390-024-03335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Mechanisms underlying bile duct injury in biliary atresia (BA) remain unclear and mechanisms of bile duct repair are unknown. This study aimed to explore the roles of microtubule instability and Wnt and Hippo signaling pathways in a biliatresone-induced BA model. METHODS Using primary murine neonatal cholangiocytes in both 2D and 3D cultures, and ex-vivo extra hepatic bile ducts (EHBD) which also has peri-cholangiocyte area, we analyzed injury and recovery processes. Injury was induced by the toxin biliatresone and recovery was induced by toxin wash-out. RESULTS Microtubule stabilizer paclitaxel prevented biliatresone-induced injury, both to cholangiocytes as well as reduced periductal αSMA stain, this process is mediated by decreased glutathione levels. RhoU and Wnt11 (Wnt signaling) and Pard6g and Amotl1 (Hippo signaling) are involved in both injury and recovery processes, with the latter acting upstream to Wnt signaling. CONCLUSIONS Early stages of biliatresone-induced EHBD injury in cholangiocytes and periductal structures are reversible. Wnt and Hippo signaling pathways play crucial roles in injury and recovery, providing insights into BA injury mechanisms and potential recovery avenues. IMPACT Microtubule stabilization prevents cholangiocyte injury and lumen obstruction in a toxic model of biliary atresia (biliatresone induced). Early stages of biliatresone-induced injury, affecting both cholangiocytes and periductal structures, are reversible. Both Wnt and Hippo signaling pathways play a crucial role in bile duct injury and recovery, with a noted interplay between the two. Understanding mechanisms of cholangiocyte recovery is imperative to unveil potential therapeutic avenues.
Collapse
Affiliation(s)
- Sophia Fried
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Yara Hamudi
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarah Mahameed
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Rasha Mansur
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Miri Dotan
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Tal Cozacov
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Orith Waisbourd-Zinman
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Song S, Ko P, Keum S, Jeong J, Hwang YE, Lee M, Choi JH, Jung YS, Kim SH, Rhee S. Microtubule acetylation and PERK activation facilitate eribulin-induced mitochondrial calcium accumulation and cell death. Cell Mol Life Sci 2024; 82:32. [PMID: 39741209 DOI: 10.1007/s00018-024-05565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance. Notably, treating non-resistant breast cancer cells with eribulin led to increased microtubule acetylation around the nucleus and cell death. Conversely, eribulin-resistant (EriR) cells did not exhibit a similar increase in acetylation, even at half-maximal inhibitory concentrations. Interestingly, silencing the ATAT1 gene, which encodes the α-tubulin N-acetyltransferase 1 (the enzyme responsible for microtubule acetylation), induces eribulin resistance, mirroring the phenotype of EriR cells. Moreover, eribulin-induced acetylation of microtubules facilitates the transport of Ca2+ from the ER to the mitochondria, releasing cytochrome c and subsequent cell death. Transcriptome analysis of EriR cells revealed a significant downregulation of ER stress-induced apoptotic signals, particularly the activity of protein kinase RNA-like ER kinase (PERK), within the unfolded protein response signaling system. Pharmacological induction of microtubule acetylation through a histone deacetylase 6 inhibitor combined with the activation of PERK signaling using the PERK activator CCT020312 in EriR cells enhanced mitochondrial Ca2+ accumulation and subsequent cell death. These findings reveal a novel mechanism by which eribulin-induced microtubule acetylation and increased PERK activity lead to Ca2+ overload from the ER to the mitochondria, ultimately triggering cell death. This study offers new insights into strategies for overcoming resistance to microtubule-targeting agents.
Collapse
Affiliation(s)
- Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minwoo Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hyun Kim
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Zhong C, Wang S, Xia L, Yang X, Fang L, Zhang X, Wang M, Zhao H, Wang G, Wu J, Guo R, Zhong M, Gohda E. The tubulin polymerization inhibitor gambogenic acid induces myelodysplastic syndrome cell apoptosis through upregulation of Fas expression mediated by the NF-κB signaling pathway. Cancer Biol Ther 2024; 25:2427374. [PMID: 39540618 PMCID: PMC11572293 DOI: 10.1080/15384047.2024.2427374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The development of an effective treatment for myelodysplastic syndrome (MDS) is needed due to the insufficient efficacy of current therapies. Gambogenic acid (GNA) is a xanthone constituent of gamboge, a resin secreted by Garcinia hanburyi Hook. f. GNA exhibits antitumor and apoptosis-inducing activities against some cancer cells, but the mechanism is unknown. This study aimed to validate the anti-proliferative and apoptosis-inducing effects of GNA on MDS cells and to elucidate the mechanisms underlying those activities. Apoptosis, proliferation and cell cycle of MDS-L cells were assessed by the caspase 3/7 assay, cell counting and flow cytometry, respectively. The levels of apoptotic, tubulin, NF-κB pathways, and Fas proteins were determined by Western blotting. CRISPR/Cas9 knockout (KO) plasmids were used to generate KO cells of p65 and Fas. MDS cell growth in a xenograft model was evaluated by the AkaBLI system. GNA induced MDS cell apoptosis, accompanied by a reduction in the anti-apoptotic protein MCL-1 expression, and inhibited their growth in vitro and in vivo. GNA combined with the MCL-1 inhibitor MIK665 potently suppressed the proliferation of MDS cells. GNA interfered with tubulin polymerization, resulting in G2/M arrest. GNA induced NF-κB activation and upregulation of Fas, the latter of which was inhibited by p65 KO. GNA-induced apoptosis was attenuated in either p65 KO or Fas KO cells. These results demonstrate that GNA inhibited tubulin polymerization and induced apoptosis of MDS cells through upregulation of Fas expression mediated by the NF-κB signaling pathway, suggesting a chemotherapeutic strategy for MDS by microtubule dynamics disruption.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Postdoctoral Research Workstation of Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shijun Wang
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Postdoctoral Research Workstation of Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Xia
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoman Yang
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liguang Fang
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianyi Zhang
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyue Wang
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haijun Zhao
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guanghui Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, Jining Medical University, Rizhao, China
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Ruijian Guo
- Department of Pharmaceutics, College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Zhong
- Department of Pharmacology and Toxicology, School of Pharmacy, Jining Medical University, Rizhao, China
| | - Eiichi Gohda
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Ghosh S, Fan F, Powell R, Park YS, Stephan C, Kopetz ES, Ellis LM, Bhattacharya R. Enhancing efficacy of the MEK inhibitor trametinib with paclitaxel in KRAS-mutated colorectal cancer. Ther Adv Med Oncol 2024; 16:17588359241303302. [PMID: 39664300 PMCID: PMC11632859 DOI: 10.1177/17588359241303302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Background KRAS is frequently mutated in the tumors of patients with metastatic colorectal cancer (mCRC) and thus represents a valid target for therapy. However, the strategies of targeting KRAS directly and targeting the downstream effector mitogen-activated protein kinase kinase (MEK) via monotherapies have shown limited efficacy. Thus, there is a strong need for novel, effective combination therapies to improve MEK-inhibitor efficacy in patients with KRAS-mutated mCRC. Objective Our objective was to identify novel drug combinations that enhance MEK-inhibitor efficacy in patients with KRAS-mutated mCRC. Design In this study, we performed unbiased high-throughput screening (HTS) to identify drugs that enhance the efficacy of MEK inhibitors in vitro, and we validated the drugs' efficacy in vivo. Methods HTS was performed using three-dimensional CRC spheroids. Trametinib, the anchor drug, was probed with two "clinically ready" libraries of 252 drugs to identify effective drug combinations. The effects of the drug combinations on CRC cell proliferation and apoptosis were further validated using cell growth assays, flow cytometry, and biochemical assays. Proteomic and immunostaining studies were performed to determine the drugs' effects on molecular signaling and cell division. The effects of the drug combinations were examined in vivo using CRC patient-derived xenografts. Results HTS identified paclitaxel as being synergistic with trametinib. In vitro validation showed that, compared with monotherapies, this drug combination demonstrated strong inhibition of cell growth, reduced colony formation, and enhanced apoptosis in multiple KRAS-mutated CRC cell lines. Mechanistically, combining trametinib with paclitaxel led to alterations in signaling mediators that block cell-cycle progression. Trametinib also enhanced paclitaxel-mediated microtubule stability resulting in significantly higher defects in mitosis. Finally, the combination of trametinib with paclitaxel exhibited significant inhibition of tumor growth in several KRAS-mutant patient-derived xenograft mouse models. Conclusion Our data provide evidence supporting clinical trials of trametinib with paclitaxel as a novel therapeutic option for patients with KRAS-mutated, metastatic CRC.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reid Powell
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Houston, TX, USA
| | - Yong Sung Park
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Houston, TX, USA
| | - Clifford Stephan
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Houston, TX, USA
| | - E. Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lee M. Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
9
|
Zhang B, Zhou S, Lu S, Xiang X, Yao X, Lei W, Pei Q, Xie Z, Chen X. Paclitaxel Prodrug Enables Glutathione Depletion to Boost Cancer Treatment. ACS NANO 2024; 18:26690-26703. [PMID: 39303096 DOI: 10.1021/acsnano.4c06399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Herein, we constructed a paclitaxel (PTX) prodrug (PA) by conjugating PTX with acrylic acid as a cysteine-depleting agent. The as-synthesized PA can assemble with diacylphosphatidylethanolamine-PEG2000 to form stable nanoparticles (PA NPs). After endocytosis into cells, PA NPs can specifically react with cysteine and trigger release of PTX for chemotherapy. On the other hand, the depletion of cysteine can greatly downregulate the intracellular content of glutathione and lead to oxidative stress outburst-provoking ferroptosis. The released PTX can elicit antitumor immune response by inducing immunogenic cell death, thus promoting dendritic cells maturation and cascaded cytotoxic T lymphocytes activation, which not only produces a robust immunotherapy effect but also synergizes the ferroptosis therapy by inhibiting cysteine transport via the release of interferon-γ in the activated immune system. As a result, PA NPs exhibit favorable in vitro and in vivo antitumor performance with reduced systemic toxicity. Our work highlights the potential of simple molecular design of prodrugs for enhancing the therapeutic efficacy toward malignant cancer.
Collapse
Affiliation(s)
- Biyou Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shiyu Zhou
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Shaojin Lu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiujuan Xiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiumin Yao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wentao Lei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qing Pei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhigang Xie
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
10
|
Ghosh S, Fan F, Powell R, Park Y, Stephan C, Kopetz ES, Ellis LM, Bhattacharya R. Enhancing efficacy of the MEK inhibitor trametinib with paclitaxel in KRAS -mutated colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611458. [PMID: 39282351 PMCID: PMC11398522 DOI: 10.1101/2024.09.05.611458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Background KRAS is frequently mutated in the tumors of patients with metastatic colorectal cancer (mCRC) and thus represents a valid target for therapy. However, the strategies of targeting KRAS directly and targeting the downstream effector mitogen-activated protein kinase kinase (MEK) via monotherapies have shown limited efficacy. Thus, there is a strong need for novel, effective combination therapies to improve MEK-inhibitor efficacy in patients with KRAS -mutated mCRC. Objective Our objective was to identify novel drug combinations that enhance MEK-inhibitor efficacy in patients with KRAS -mutated mCRC. Design In this study, we performed unbiased high-throughput screening (HTS) to identify drugs that enhance the efficacy of MEK inhibitors in vitro , and we validated the efficacy of the drugs in vivo . Methods HTS was performed using 3-dimensional CRC spheroids. Trametinib, the anchor drug, was probed with 2 clinically ready libraries of 252 drugs to identify effective drug combinations. The effects of the drug combinations on CRC cell proliferation and apoptosis were further validated using cell growth assays, flow cytometry, and biochemical assays. Proteomic and immunostaining studies were performed to determine the effects of the drugs on molecular signaling and cell division. The effects of the drug combinations were examined in vivo using CRC patient-derived xenografts. Results HTS identified paclitaxel as being synergistic with trametinib. In vitro validation showed that, compared with monotherapies, this drug combination demonstrated strong inhibition of cell growth, reduced colony formation, and enhanced apoptosis in multiple KRAS -mutated CRC cell lines. Mechanistically, combining trametinib with paclitaxel led to alterations in signaling mediators that block cell cycle progression and increases in microtubule stability that resulted in significantly higher defects in the mitosis. Finally, the combination of trametinib with paclitaxel exhibited significant inhibition of tumor growth in several KRAS -mutant patient-derived xenograft mouse models. Conclusion Our data provide evidence supporting clinical trials of trametinib with paclitaxel as a novel therapeutic option for patients with KRAS -mutated, metastatic CRC.
Collapse
|
11
|
Dey S, Kumar N, Balakrishnan S, Koushika SP, Ghosh-Roy A. KLP-7/Kinesin-13 orchestrates axon-dendrite checkpoints for polarized trafficking in neurons. Mol Biol Cell 2024; 35:ar115. [PMID: 38985513 PMCID: PMC7616348 DOI: 10.1091/mbc.e23-08-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
The polarized nature of neurons depends on their microtubule dynamics and orientation determined by both microtubule-stabilizing and destabilizing factors. The role of destabilizing factors in developing and maintaining neuronal polarity is unclear. We investigated the function of KLP-7, a microtubule depolymerizing motor of the Kinesin-13 family, in axon-dendrite compartmentalization using PVD neurons in Caenorhabditis elegans. Loss of KLP-7 caused a mislocalization of axonal proteins, including RAB-3, SAD-1, and their motor UNC-104, to dendrites. This is rescued by cell-autonomous expression of the KLP-7 or colchicine treatment, indicating the involvement of KLP-7-dependent microtubule depolymerization. The high mobility of KLP-7 is correlated to increased microtubule dynamics in the dendrites, which restricts the enrichment of UNC-44, an integral component of Axon Initial Segment (AIS) in these processes. Due to the loss of KLP-7, ectopic enrichment of UNC-44 in the dendrite potentially redirects axonal traffic into dendrites that include plus-end out microtubules, axonal motors, and cargoes. These observations indicate that KLP-7-mediated depolymerization defines the microtubule dynamics conducive to the specific enrichment of AIS components in dendrites. This further compartmentalizes dendritic and axonal microtubules, motors, and cargoes, thereby influencing neuronal polarity.
Collapse
Affiliation(s)
- Swagata Dey
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurugram, Haryana 122052, India
| | - Nitish Kumar
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurugram, Haryana 122052, India
| | - Supraja Balakrishnan
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurugram, Haryana 122052, India
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Anindya Ghosh-Roy
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurugram, Haryana 122052, India
| |
Collapse
|
12
|
van Eyll J, Prior R, Celanire S, Van Den Bosch L, Rombouts F. Therapeutic indications for HDAC6 inhibitors in the peripheral and central nervous disorders. Expert Opin Ther Targets 2024; 28:719-737. [PMID: 39305025 DOI: 10.1080/14728222.2024.2404571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Inhibition of the enzymatic function of HDAC6 is currently being explored in clinical trials ranging from peripheral neuropathies to cancers. Advances in selective HDAC6 inhibitor discovery allowed studying highly efficacious brain penetrant and peripheral restrictive compounds for treating PNS and CNS indications. AREAS COVERED This review explores the multifactorial role of HDAC6 in cells, the common pathological hallmarks of PNS and CNS disorders, and how HDAC6 modulates these mechanisms. Pharmacological inhibition of HDAC6 and genetic knockout/knockdown studies as a therapeutic strategy in PNS and CNS indications were analyzed. Furthermore, we describe the recent developments in HDAC6 PET tracers and their utility in CNS indications. Finally, we explore the advancements and challenges with HDAC6 inhibitor compounds, such as hydroxamic acid, fluoromethyl oxadiazoles, HDAC6 degraders, and thiol-based inhibitors. EXPERT OPINION Based on extensive preclinical evidence, pharmacological inhibition of HDAC6 is a promising approach for treating both PNS and CNS disorders, given its involvement in neurodegeneration and aging-related cellular processes. Despite the progress in the development of selective HDAC6 inhibitors, safety concerns remain regarding their chronic administration in PNS and CNS indications, and the development of novel compound classes and modalities inhibiting HDAC6 function offer a way to mitigate some of these safety concerns.
Collapse
Affiliation(s)
| | | | - Sylvain Celanire
- Augustine Therapeutics, Research and Development, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | | |
Collapse
|
13
|
Gao S, Chen Z, Wu X, Wang L, Bu T, Li L, Li X, Yun D, Sun F, Cheng CY. Perfluorooctane sulfonate-induced Sertoli cell injury through c-Jun N-terminal kinase: a study by RNA-Seq. Am J Physiol Cell Physiol 2024; 327:C291-C309. [PMID: 38826136 DOI: 10.1152/ajpcell.00212.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of "forever chemicals" including perfluorooctane sulfonate (PFOS). These toxic chemicals do not break down in the environment or in our bodies. In the human body, PFOS and perfluoroctanoic acid (PFOA) have a half-life (T1/2) of about 4-5 yr so low daily consumption of these chemicals can accumulate in the human body to a harmful level over a long period. Although the use of PFOS in consumer products was banned in the United States in 2022/2023, this forever chemical remains detectable in our tap water and food products. Every American tested has a high level of PFAS in their blood (https://cleanwater.org/pfas-forever-chemicals). In this report, we used a Sertoli cell blood-testis barrier (BTB) model with primary Sertoli cells cultured in vitro with an established functional tight junction (TJ)-permeability barrier that mimicked the BTB in vivo. Treatment of Sertoli cells with PFOS was found to perturb the TJ-barrier, which was the result of cytoskeletal disruption across the cell cytoplasm, disrupting actin and microtubule polymerization. These changes thus affected the proper localization of BTB-associated proteins at the BTB. Using RNA-Seq transcriptome profiling, bioinformatics analysis, and pertinent biochemical and cell biology techniques, it was discovered that PFOS -induced Sertoli cell toxicity through the c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase, SAPK) and its phosphorylated/active form p-JNK signaling pathway. More importantly, KB-R7943 mesylate (KB), a JNK/p-JNK activator, was capable of blocking PFOS-induced Sertoli cell injury, supporting the notion that PFOS-induced cell injury can possibly be therapeutically managed.NEW & NOTEWORTHY PFOS induces Sertoli cell injury, including disruption of the 1) blood-testis barrier function and 2) cytoskeletal organization, which, in turn, impedes male reproductive function. These changes are mediated by JNK/p-JNK signaling pathway. However, the use of KB-R7943, a JNK/p-JNK activator was capable of blocking PFOS-induced Sertoli cell injury, supporting the possibility of therapeutically managing PFOS-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Xiaolong Wu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - C Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
14
|
Saroha A, Bosco MS, Menon S, Kumari P, Maity T, Rana S, Kotak S, Mondal J, Agasti SS. Regulation of microtubule dynamics and function in living cells via cucurbit[7]uril host-guest assembly. Chem Sci 2024; 15:11981-11994. [PMID: 39092123 PMCID: PMC11290447 DOI: 10.1039/d4sc00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/07/2024] [Indexed: 08/04/2024] Open
Abstract
Living systems utilize sophisticated biochemical regulators and various signal transduction mechanisms to program bio-molecular assemblies and their associated functions. Creating synthetic assemblies that can replicate the functional and signal-responsive properties of these regulators, while also interfacing with biomolecules, holds significant interest within the realms of supramolecular chemistry and chemical biology. This pursuit not only aids in understanding the fundamental design principles of life but also introduces novel capabilities that contribute to the advancements in medical and therapeutic research. In this study, we present a cucurbit[7]uril (CB[7]) host-guest system designed to regulate the dynamics and functions of microtubules (MTs) in living cells. To establish communication between MTs and CB[7] and to reversibly control MT function through host-guest recognition, we synthesized a two-faced docetaxel-p-xylenediamine (Xyl-DTX) derivative. While Xyl-DTX effectively stabilized polymerized MTs, inducing MT bundling and reducing dynamics in GFP-α-tubulin expressing cells, we observed a significant reduction in its MT-targeted activity upon threading with CB[7]. Leveraging the reversible nature of the host-guest complexation, we strategically reactivated the MT stabilizing effect by programming the guest displacement reaction from the CB[7]·Xyl-DTX complex using a suitable chemical signal, namely a high-affinity guest. This host-guest switch was further integrated into various guest activation networks, enabling 'user-defined' regulatory control over MT function. For instance, we demonstrated programmable control over MT function through an optical signal by interfacing it with a photochemical guest activation network. Finally, we showcased the versatility of this supramolecular system in nanotechnology-based therapeutic approaches, where a self-assembled nanoparticle system was employed to trigger the MT-targeted therapeutic effect from the CB[7]·Xyl-DTX complex.
Collapse
Affiliation(s)
- Akshay Saroha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Monica Swetha Bosco
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Sneha Menon
- Tata Institute of Fundamental Research 36/P, Gopanpally Village Hyderabad 500046 India
| | - Pratibha Kumari
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Tanmoy Maity
- Materials Research Centre, Indian Institute of Science C. V. Raman Road Bangalore 560012 India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science C. V. Raman Road Bangalore 560012 India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology, Indian Institute of Science 560012 Bangalore India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research 36/P, Gopanpally Village Hyderabad 500046 India
| | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| |
Collapse
|
15
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
16
|
Su Q, Xu B, Chen X, Rokita SE. Misregulation of bromotyrosine compromises fertility in male Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2322501121. [PMID: 38748578 PMCID: PMC11126969 DOI: 10.1073/pnas.2322501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 05/27/2024] Open
Abstract
Biological regulation often depends on reversible reactions such as phosphorylation, acylation, methylation, and glycosylation, but rarely halogenation. A notable exception is the iodination and deiodination of thyroid hormones. Here, we report detection of bromotyrosine and its subsequent debromination during Drosophila spermatogenesis. Bromotyrosine is not evident when Drosophila express a native flavin-dependent dehalogenase that is homologous to the enzyme responsible for iodide salvage from iodotyrosine in mammals. Deletion or suppression of the dehalogenase-encoding condet (cdt) gene in Drosophila allows bromotyrosine to accumulate with no detectable chloro- or iodotyrosine. The presence of bromotyrosine in the cdt mutant males disrupts sperm individualization and results in decreased fertility. Transgenic expression of the cdt gene in late-staged germ cells rescues this defect and enhances tolerance of male flies to bromotyrosine. These results are consistent with reversible halogenation affecting Drosophila spermatogenesis in a process that had previously eluded metabolomic, proteomic, and genomic analyses.
Collapse
Affiliation(s)
- Qi Su
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| | - Bing Xu
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| | - Xin Chen
- HHMI, The Johns Hopkins University, Baltimore, MD21218
- Department of Biology, The Johns Hopkins University, Baltimore, MD21218
| | - Steven E. Rokita
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
17
|
Abd El-Sadek I, Morishita R, Mori T, Makita S, Mukherjee P, Matsusaka S, Yasuno Y. Label-free visualization and quantification of the drug-type-dependent response of tumor spheroids by dynamic optical coherence tomography. Sci Rep 2024; 14:3366. [PMID: 38336794 PMCID: PMC10858208 DOI: 10.1038/s41598-024-53171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
We demonstrate label-free dynamic optical coherence tomography (D-OCT)-based visualization and quantitative assessment of patterns of tumor spheroid response to three anti-cancer drugs. The study involved treating human breast adenocarcinoma (MCF-7 cell-line) with paclitaxel (PTX), tamoxifen citrate (TAM), and doxorubicin (DOX) at concentrations of 0 (control), 0.1, 1, and 10 µM for 1, 3, and 6 days. In addition, fluorescence microscopy imaging was performed for reference. The D-OCT imaging was performed using a custom-built OCT device. Two algorithms, namely logarithmic intensity variance (LIV) and late OCT correlation decay speed (OCDS[Formula: see text]) were used to visualize the tissue dynamics. The spheroids treated with 0.1 and 1 µM TAM appeared similar to the control spheroid, whereas those treated with 10 µM TAM had significant structural corruption and decreasing LIV and OCDS[Formula: see text] over treatment time. The spheroids treated with PTX had decreasing volumes and decrease of LIV and OCDS[Formula: see text] signals over time at most PTX concentrations. The spheroids treated with DOX had decreasing and increasing volumes over time at DOX concentrations of 1 and 10 µM, respectively. Meanwhile, the LIV and OCDS[Formula: see text] signals decreased over treatment time at all DOX concentrations. The D-OCT, particularly OCDS[Formula: see text], patterns were consistent with the fluorescence microscopic patterns. The diversity in the structural and D-OCT results among the drug types and among the concentrations are explained by the mechanisms of the drugs. The presented results suggest that D-OCT is useful for evaluating the difference in the tumor spheroid response to different drugs and it can be a useful tool for anti-cancer drug testing.
Collapse
Affiliation(s)
- Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City, Damietta, 34517, Egypt
| | - Rion Morishita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
18
|
Abd El-Sadek I, Shen LTW, Mori T, Makita S, Mukherjee P, Lichtenegger A, Matsusaka S, Yasuno Y. Label-free drug response evaluation of human derived tumor spheroids using three-dimensional dynamic optical coherence tomography. Sci Rep 2023; 13:15377. [PMID: 37717067 PMCID: PMC10505213 DOI: 10.1038/s41598-023-41846-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
This study aims at demonstrating label-free drug-response-patterns assessment of different tumor spheroids and drug types by dynamic optical coherence tomography (D-OCT). The study involved human breast cancer (MCF-7) and colon cancer (HT-29) spheroids. The MCF-7 and HT-29 spheroids were treated with paclitaxel (Taxol; PTX) and the active metabolite of irinotecan SN-38, respectively. The drugs were applied with 0 (control), 0.1, 1, and 10 μM concentrations and the treatment durations were 1, 3, and 6 days. A swept-source OCT microscope equipped with a repeated raster scanning protocol was used to scan the spheroids. Logarithmic intensity variance (LIV) and late OCT correlation decay speed (OCDS[Formula: see text]) algorithms were used to visualize the tumor spheroid dynamics. LIV and OCDS[Formula: see text] images visualized different response patterns of the two types of spheroids. In addition, spheroid morphology, LIV, and OCDS[Formula: see text] quantification showed different time-courses among the spheroid and drug types. These results may indicate different action mechanisms of the drugs. The results showed the feasibility of D-OCT for the evaluation of drug response patterns of different cell spheroids and drug types and suggest that D-OCT can perform anti-cancer drug testing.
Collapse
Affiliation(s)
- Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City, Damietta, 34517, Egypt
| | - Larina Tzu-Wei Shen
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 4L, 1090, Vienna, Austria
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
19
|
Daneshpazhouh H, Hayati Roodbari N, Tahamtani Y, Khodabandeh Z, Dianatpour M. Protective Effect of Docetaxel Against Autophagy-Related Genes in Vitrification of Mouse Metaphase II Oocytes. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:501-509. [PMID: 37786462 PMCID: PMC10541544 DOI: 10.30476/ijms.2023.88390.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 10/04/2023]
Abstract
Background Autophagy is a conservative mechanism for cell survival as the main response of cells to stress conditions. The present study aimed to assess the effect of docetaxel on the survival, fertilization, and expression of autophagy-related genes in vitrified oocytes. Methods The study was conducted in 2018 at the Stem Cells Technology Research Center, Shiraz University of Medical Sciences (Shiraz, Iran). Denuded oocytes were randomly selected and assigned to five groups, namely control (n=133), docetaxel (n=136), docetaxel+cryoprotectants (n=146), docetaxel+vitrification (n=138), and vitrification (n=145). The effect of vitrification on the expression of autophagy-related gene 5 (ATG5) and Beclin-1 was determined using a real-time polymerase chain reaction. Data were analyzed using SPSS software (version 26.0) and GraphPad Prism 9. Results Survival and fertilization rates in each experimental group were significantly reduced compared to the control group (P=0.001). After in vitro fertilization of oocytes, the 2-cell formation rate was significantly reduced in the docetaxel+vitrification and vitrification groups compared to the control and docetaxel groups (P=0.001 and P=0.001, respectively). Pre-incubation of oocytes with docetaxel reduced gene expression levels of Beclin-1 and ATG5 in the docetaxel+cryoprotectants and docetaxel+vitrification groups (P=0.001 and P=0.019, respectively). The expression level of these genes was also reduced in the docetaxel group compared to the control group (P=0.001). Conclusion Incubation of mouse metaphase II oocytes with docetaxel prior to vitrification reduced the expression of autophagy-related genes and increased survival and fertilization rates compared to untreated oocytes.
Collapse
Affiliation(s)
- Hamed Daneshpazhouh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Ortmann S, Marx J, Lampe C, Handrick V, Ehnert TM, Zinecker S, Reimers M, Bonas U, Erickson JL. A conserved microtubule-binding region in Xanthomonas XopL is indispensable for induced plant cell death reactions. PLoS Pathog 2023; 19:e1011263. [PMID: 37578981 PMCID: PMC10449215 DOI: 10.1371/journal.ppat.1011263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an 'ancestral' effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.
Collapse
Affiliation(s)
- Simon Ortmann
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Jolina Marx
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Christina Lampe
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Vinzenz Handrick
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Tim-Martin Ehnert
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Sarah Zinecker
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias Reimers
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ulla Bonas
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica Lee Erickson
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| |
Collapse
|
21
|
Theil D, Kuhle J, Brees D, Tritto E, Pognan F, Frieauff W, Penraat K, Meseck E, Valdez R, Hartmann A. Neurofilament Light Chain: A Translational Safety Biomarker for Drug-Induced Peripheral Neurotoxicity. Toxicol Pathol 2023; 51:135-147. [PMID: 37439009 DOI: 10.1177/01926233231180179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Branaplam is a splicing modulator previously under development as a therapeutic agent for Spinal Muscular Atrophy Type 1 and Huntington's disease. Branaplam increased the levels of survival motor neuron protein in preclinical studies and was well tolerated in early clinical studies; however, peripheral neurotoxicity was observed in a preclinical safety study in juvenile dogs. The aim of this study was to determine whether serum neurofilament light chain (NfL) concentrations in dogs could serve as a monitoring biomarker for branaplam-induced peripheral neurotoxicity. A 30-week time-course investigative study in dogs treated with vehicle control (negative control), neurotoxic pyridoxine (positive control), or branaplam was conducted to assess neuropathology, nerve morphometry, electrophysiological measurements, gene expression profiles, and correlation to NfL serum concentrations. In branaplam-treated animals, a mild to moderate nerve fiber degeneration was observed in peripheral nerves correlating with increased serum NfL concentrations, but there were no observed signs or changes in electrophysiological parameters. Dogs with pyridoxine-induced peripheral axonal degeneration displayed clinical signs and electrophysiological changes in addition to elevated serum NfL. This study suggests that NfL may be useful as an exploratory biomarker to assist in detecting and monitoring treatment-related peripheral nerve injury, with or without clinical signs, associated with administration of branaplam and other compounds bearing a neurotoxic risk.
Collapse
Affiliation(s)
- Diethilde Theil
- Novartis Pharma AG, Basel, Switzerland
- F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | | | | | | - Kelley Penraat
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Emily Meseck
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Reginald Valdez
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
- Amgen, Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
22
|
Iwanski MK, Kapitein LC. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Front Cell Dev Biol 2023; 11:1052245. [PMID: 37035244 PMCID: PMC10073685 DOI: 10.3389/fcell.2023.1052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Microtubules, one of the major components of the cytoskeleton, play a crucial role during many aspects of neuronal development and function, such as neuronal polarization and axon outgrowth. Consequently, the microtubule cytoskeleton has been implicated in many neurodevelopmental and neurodegenerative disorders. The polar nature of microtubules is quintessential for their function, allowing them to serve as tracks for long-distance, directed intracellular transport by kinesin and dynein motors. Most of these motors move exclusively towards either the plus- or minus-end of a microtubule and some have been shown to have a preference for either dynamic or stable microtubules, those bearing a particular post-translational modification or those decorated by a specific microtubule-associated protein. Thus, it becomes important to consider the interplay of these features and their combinatorial effects on transport, as well as how different types of microtubules are organized in the cell. Here, we discuss microtubule subsets in terms of tubulin isotypes, tubulin post-translational modifications, microtubule-associated proteins, microtubule stability or dynamicity, and microtubule orientation. We highlight techniques used to study these features of the microtubule cytoskeleton and, using the information from these studies, try to define the composition, role, and organization of some of these subsets in neurons.
Collapse
Affiliation(s)
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
23
|
Yu Z, Tang H, Chen S, Xie Y, Shi L, Xia S, Jiang M, Li J, Chen D. Exosomal LOC85009 inhibits docetaxel resistance in lung adenocarcinoma through regulating ATG5-induced autophagy. Drug Resist Updat 2023; 67:100915. [PMID: 36641841 DOI: 10.1016/j.drup.2022.100915] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
AIMS This study aims at investigating the role of a neighbor long non-coding RNA (lncRNA) of HDAC4 (LOC85009) in docetaxel (DTX) resistance of lung adenocarcinoma (LUAD). METHODS RT-qPCR was used to analyze LOC85009 expression in DTX-resistant LUAD cells. In vitro and in vivo experiments were applied to detect the influence of LOC85009 on LUAD cell growth and xenograft tumor growth. DNA pull down assay, RNA pull down assay, ChIP assay, CoIP assay and RIP assay were performed to identify the direct interactions between factors. RESULTS LOC85009 was lowly-expressed in DTX-resistant LUAD cells. Functionally, LOC85009 overexpression inhibited DTX resistance and cell proliferation but triggered cell apoptosis. Moreover, we identified that LOC85009 was transferred from LUAD cells to DTX-resistant LUAD cells via exosomes. Exosomal LOC85009 inhibited DTX resistance, proliferation and autophagy while induced apoptosis in DTX-resistant cells. Additionally, we found that LOC85009 sequestered ubiquitin-specific proteinase 5 (USP5) to destabilize upstream transcription factor 1 (USF1) protein, thereby inactivating ATG5 transcription. CONCLUSIONS Exosomal LOC85009 inhibits DTX resistance through regulation of ATG5-induced autophagy via USP5/USF1 axis, suggesting that LOC85009 might be a potential target to reverse DTX resistance in the treatment of LUAD.
Collapse
Affiliation(s)
- Zhengyuan Yu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Hailin Tang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510062, Guangdong, China
| | - Shaomu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Yufeng Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Liyan Shi
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Shuhua Xia
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Min Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China.
| | - Jiaoyang Li
- Department of Ultrasound, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 519041, Guangdong, China.
| | - Dongqin Chen
- Department of Medical Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Pudong New District, Shanghai, 200127, China; Department of Oncology, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, No. 666, Shengli Road, Nantong 226000, Jiangsu Province, China.
| |
Collapse
|
24
|
Lopes D, Seabra AL, Orr B, Maiato H. α-Tubulin detyrosination links the suppression of MCAK activity with taxol cytotoxicity. J Cell Biol 2023; 222:213730. [PMID: 36459065 PMCID: PMC9723805 DOI: 10.1083/jcb.202205092] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
α/β-Tubulin posttranslational modifications (PTMs) generate microtubule diversity, but whether they account for cancer cell resistance to microtubule-targeting drugs remains unknown. Here, we performed a pilot dissection of the "cancer tubulin code" using the NCI-60 cancer cell panel. We found that acetylated, detyrosinated, and ∆2-α-tubulin that typically accumulate on stable microtubules were uncoupled in many cancer cells. Acetylated α-tubulin did not affect microtubule dynamics, whereas its levels correlated with, but were not required for, taxol-induced cytotoxicity. In contrast, experimental increase of α-tubulin detyrosination, and/or depletion of the detyrosination-sensitive microtubule-depolymerizing enzyme MCAK, enhanced taxol-induced cytotoxicity by promoting cell death in mitosis and the subsequent interphase, without causing a cumulative effect. Interestingly, only increased detyrosinated α-tubulin aggravated taxol-induced spindle multipolarity. Overall, we identified high α-tubulin acetylation as a potential biomarker for cancer cell response to taxol and uncovered a mechanistic link between α-tubulin detyrosination and the suppression of MCAK activity in taxol-induced cytotoxicity, likely by promoting chromosome missegregation, regardless of spindle defects.
Collapse
Affiliation(s)
- Danilo Lopes
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandre L Seabra
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
26
|
Towards a mechanistic understanding of axon transport and endocytic changes underlying paclitaxel-induced peripheral neuropathy. Exp Neurol 2023; 359:114258. [PMID: 36279934 DOI: 10.1016/j.expneurol.2022.114258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Paclitaxel is a common chemotherapeutic agent widely used to treat solid cancer. However, it frequently causes peripheral sensory neuropathy, resulting in sensory abnormalities and pain in patients receiving treatment for cancer. As one of the most widely used chemotherapeutics, many preclinical studies on paclitaxel-induced peripheral neuropathy (PIPN) have been performed. Yet, there remain no effective options for treatment or prevention. Due to paclitaxel's ability to bind to and stabilize microtubules, a change in microtubule dynamics and subsequent disruptions in axonal transport has been predicted as a major underlying cause of paclitaxel-induced toxicity. However, the systemic understanding of PIPN mechanisms is largely incomplete, and various phenotypes have not been directly attributed to microtubule-related effects. This review aims to provide an overview of the literature involving paclitaxel-induced alteration in microtubule dynamics, axonal transport, and endocytic changes. It also aims to provide insights into how the microtubule-mediated hypothesis may relate to various phenotypes reported in PIPN studies.
Collapse
|
27
|
Długosz-Pokorska A, Perlikowska R, Janecki T, Janecka A. New Uracil Analog with Exocyclic Methylidene Group Can Reverse Resistance to Taxol in MCF-7 Cancer Cells. Biologics 2023; 17:69-83. [PMID: 37213261 PMCID: PMC10198386 DOI: 10.2147/btt.s405080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023]
Abstract
Introduction Taxol (Tx), a microtubule-stabilizing drug, has been widely used as a chemotherapeutic in several types of cancer. However, the development of resistance limited its application. One of the strategies used to prevent the emergence of drug resistance is combination treatment, involving at least two drugs. The aim of the current study was to assess if a new uracil analog, 3-p-bromophenyl-1-ethyl-5-methylidenedihydrouracil (U-359) can prevent the development of Tx resistance in breast cancer cells. Methods The cytotoxicity of the new drug was tested in MCF-7 (hormone receptor (ER, PR) positive cell-line) and MCF-10A cell lines using MTT method. For the detection of apoptosis and necrosis, the Wright and Giemsa staining was used. Gene expression was measured by real-time PCR, and changes in the protein levels were evaluated by ELISA and bioluminescent method. Results We investigated the effect of Tx and U-359 on cancer MCF-7 and normal MCF-10A cells alone and in combination. Tx co-administered with U-359 inhibited proliferation of MCF-7 cells to 7% while the level of ATPase drastically decreased to 14%, compared with effects produced by Tx alone. The apoptosis process was induced through the mitochondrial pathway. These effects were not seen in MCF-10A cells, showing the wide safety margin. The obtained results have shown that U-359 produced a synergistic effect with Tx probably by reducing Tx resistance in MCF-7 cells. To elucidate the possible mechanism of resistance, expression of tubulin III (TUBIII), responsible for microtubule stabilization and tau and Nlp proteins, responsible for microtubule dynamics, was assessed. Conclusion Combination of Tx with U-359 reduced overexpression of TUBIII and Nlp. Thus, U-359 may stand for a potential reversal agent for the treatment of MDR in cancer cells.
Collapse
Affiliation(s)
- Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Correspondence: Angelika Długosz-Pokorska, Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, Lodz, 92-215, Poland, Tel +48 42 2725706, Fax +48 42 678 42 77, Email
| | - Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Tomasz Janecki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
Zhou LX, Zheng H, Tian Y, Luo KF, Ma SJ, Wu ZW, Tang P, Jiang J, Wang MH. SNCA inhibits epithelial-mesenchymal transition and correlates to favorable prognosis of breast cancer. Carcinogenesis 2022; 43:1071-1082. [PMID: 36179220 DOI: 10.1093/carcin/bgac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
Alpha-synuclein (SNCA) is a pathological hallmark of Parkinson's disease, known to be involved in cancer occurrence and development; however, its specific effects in breast cancer remain unknown. Data from 150 patients with breast cancer were retrieved from tissue microarray and analyzed for SNCA protein level using immunohistochemistry. Functional enrichment analysis was performed to investigate the potential role of SNCA in breast cancer. SNCA-mediated inhibition of epithelial-mesenchymal transition (EMT) was confirmed with western blotting. The effects of SNCA on invasion and migration were evaluated using transwell and wound-healing experiments. Furthermore, the potential influence of SNCA expression level on drug sensitivity and tumor infiltration by immune cells was analyzed using the public databases. SNCA is lowly expressed in breast cancer tissues. Besides, in vitro and in vivo experiments, SNCA overexpression blocked EMT and metastasis, and the knockdown of SNCA resulted in the opposite effect. A mouse model of metastasis verified the restriction of metastatic ability in vivo. Further analysis revealed that SNCA enhances sensitivity to commonly used anti-breast tumor drugs and immune cell infiltration. SNCA blocks EMT and metastasis in breast cancer and its expression levels could be useful in predicting the chemosensitivity and evaluating the immune microenvironment in breast cancer.
Collapse
Affiliation(s)
- Lin-Xi Zhou
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan Tian
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
- Department of Emergency Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Ke-Fei Luo
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Shu-Juan Ma
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Zi-Wei Wu
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Peng Tang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ming-Hao Wang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
29
|
Mouron S, Bueno MJ, Lluch A, Manso L, Calvo I, Cortes J, Garcia-Saenz JA, Gil-Gil M, Martinez-Janez N, Apala JV, Caleiras E, Ximénez-Embún P, Muñoz J, Gonzalez-Cortijo L, Murillo R, Sánchez-Bayona R, Cejalvo JM, Gómez-López G, Fustero-Torre C, Sabroso-Lasa S, Malats N, Martinez M, Moreno A, Megias D, Malumbres M, Colomer R, Quintela-Fandino M. Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A. Nat Commun 2022; 13:7529. [PMID: 36477027 PMCID: PMC9729295 DOI: 10.1038/s41467-022-35065-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Precision oncology research is challenging outside the contexts of oncogenic addiction and/or targeted therapies. We previously showed that phosphoproteomics is a powerful approach to reveal patient subsets of interest characterized by the activity of a few kinases where the underlying genomics is complex. Here, we conduct a phosphoproteomic screening of samples from HER2-negative female breast cancer receiving neoadjuvant paclitaxel (N = 130), aiming to find candidate biomarkers of paclitaxel sensitivity. Filtering 11 candidate biomarkers through 2 independent patient sets (N = 218) allowed the identification of a subgroup of patients characterized by high levels of CDK4 and filamin-A who had a 90% chance of achieving a pCR in response to paclitaxel. Mechanistically, CDK4 regulates filamin-A transcription, which in turn forms a complex with tubulin and CLIP-170, which elicits increased binding of paclitaxel to microtubules, microtubule acetylation and stabilization, and mitotic catastrophe. Thus, phosphoproteomics allows the identification of explainable factors for predicting response to paclitaxel.
Collapse
Affiliation(s)
- S Mouron
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M J Bueno
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - A Lluch
- Medical Oncology Department, Hospital Clínico Universitario, Valencia, Spain
| | - L Manso
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - I Calvo
- Medical Oncology Department MD, Anderson Cancer Center Madrid, Madrid, Spain
| | - J Cortes
- International Breast Cancer Center Quiron Group, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Hospital, Barcelona, Spain
| | - J A Garcia-Saenz
- Medical Oncology Department, Hospital Clinico San Carlos, Madrid, Spain
| | - M Gil-Gil
- Medical Oncoogy Department Institut, Catala d'Oncologia-IDIBELL L'Hospitalet de, Llobregat, Spain
| | - N Martinez-Janez
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - J V Apala
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - E Caleiras
- Histopathology Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - J Muñoz
- Proteomics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - L Gonzalez-Cortijo
- Medical Oncology Department, Hospital Universitario Quironsalud, Madrid, Spain
| | - R Murillo
- Pathology Department, Hospital Universitario Quironsalud, Madrid, Spain
| | - R Sánchez-Bayona
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - J M Cejalvo
- Medical Oncology Department, Hospital Clínico Universitario, Valencia, Spain
| | - G Gómez-López
- Bioinformatics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - C Fustero-Torre
- Bioinformatics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - S Sabroso-Lasa
- Genetic & Molecular Epidemiology Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - N Malats
- Genetic & Molecular Epidemiology Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M Martinez
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Moreno
- Pathology Department, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - D Megias
- Confocal Microscopy Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M Malumbres
- Cell Division and Cancer Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - R Colomer
- Medical Oncology Department, Hospital Universitario La Princesa, Madrid, Spain
- Endowed Chair of Personalized Precision Medicine Universidad Autonoma de Madrid (UAM) - Fundacion Instituto Roche, Madrid, Spain
| | - M Quintela-Fandino
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain.
- Endowed Chair of Personalized Precision Medicine Universidad Autonoma de Madrid (UAM) - Fundacion Instituto Roche, Madrid, Spain.
| |
Collapse
|
30
|
Sweet ES, Lange KR, Fenner MR, Tseng CY, Akum BF, Firestein BL. Cypin binds to tubulin heterodimers and microtubule protofilaments and regulates microtubule spacing in developing hippocampal neurons. Mol Cell Neurosci 2022; 123:103783. [PMID: 36208859 PMCID: PMC11835482 DOI: 10.1016/j.mcn.2022.103783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Cytosolic PSD-95 interactor (cypin) is a multifunctional, guanine deaminase that plays a major role in shaping the morphology of the dendritic arbor of hippocampal and cortical neurons. Cypin catalyzes the Zn2+-dependent deamination of guanine to xanthine, which is then metabolized to uric acid by xanthine oxidase. Cypin binds to tubulin heterodimers via its carboxyl terminal region (amino acids (aa) 350-454), which contains a collapsin response mediator protein (CRMP) homology domain (aa 350-403). Moreover, this region alone is not sufficient to facilitate microtubule polymerization; therefore, additional cypin regions must be involved in this process. Here, we asked whether cypin binds to fully formed microtubules and how overexpression of cypin regulates the microtubule cytoskeleton in dendrites of cultured hippocampal neurons. Protein-protein docking strategies confirm that the cypin homodimer binds to tubulin heterodimers via amino acids within aa 350-454. Biochemical pull-down data suggest that aa 1-220 are necessary for cypin binding to soluble tubulin heterodimers and to taxol-stabilized microtubules. Molecular docking of the cypin homodimer to soluble tubulin heterodimers reveals a consistently observed docking pose using aa 47-71, 113-118, 174-178, and 411-418, which is consistent with our biochemical data. Additionally, overexpression of cypin in hippocampal neurons results in decreased spacing between microtubules. Our results suggest that several protein domains facilitate cypin-mediated polymerization of tubulin heterodimers into microtubules, possibly through a mechanism whereby cypin dimers bind to multiple tubulin heterodimers.
Collapse
Affiliation(s)
- Eric S Sweet
- Department of Biology, West Chester University, West Chester, PA, United States of America
| | - Keith R Lange
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America; Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - Madeleine R Fenner
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - Chia-Yi Tseng
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America; Neurosciences Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - Barbara F Akum
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America; Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America.
| |
Collapse
|
31
|
Circular RNA circ_0004488 Increases Cervical Cancer Paclitaxel Resistance via the miR-136/MEX3C Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:5435333. [DOI: 10.1155/2022/5435333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Circular RNAs have been proven to play a pivotal role in cervical cancer development, progression, and treatment resistance. However, it is unclear how these RNAs influence chemoresistance in cervical cancer, particularly cancer stem cell (CSC)-like properties. In this study, we found that circRNA circ_0004488 was highly expressed in CSC-enriched subsets of cervical cancer cell lines. The expression of circ_0004488 was upregulated in cervical cancer cells that were resistant to paclitaxel. When circ_0004488 expression was high, the prognosis was poor. Specifically, we discovered that knocking down circ_0004488 greatly decreased the development of cervical cancer cells in vivo by decreasing cell proliferation, invasion, and sphere formation. By blocking cir_0004488, cervical cancer cells become more sensitive to paclitaxel. In cervical cancer cells, circ_0004488 acted as a microRNA-136 (miR-136) sponge, increasing the expression of MEX3C (a direct target gene of miR-136) using dual-luciferase reporter assays. Moreover, MEX3C downregulation significantly reduced cell proliferation, invasion, sphere formation, and paclitaxel resistance. In conclusion, circ_0004488 was shown to induce CSC-like features and paclitaxel resistance through the miR-136/MEX3C axis. Therefore, circ_0004488 might be a good therapeutic target for treating cervical cancer.
Collapse
|
32
|
Kirchenwitz M, Stahnke S, Grunau K, Melcher L, van Ham M, Rottner K, Steffen A, Stradal TEB. The autophagy inducer SMER28 attenuates microtubule dynamics mediating neuroprotection. Sci Rep 2022; 12:17805. [PMID: 36284196 PMCID: PMC9596692 DOI: 10.1038/s41598-022-20563-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023] Open
Abstract
SMER28 originated from a screen for small molecules that act as modulators of autophagy. SMER28 enhanced the clearance of autophagic substrates such as mutant huntingtin, which was additive to rapamycin-induced autophagy. Thus, SMER28 was established as a positive regulator of autophagy acting independently of the mTOR pathway, increasing autophagosome biosynthesis and attenuating mutant huntingtin-fragment toxicity in cellular- and fruit fly disease models, suggesting therapeutic potential. Despite many previous studies, molecular mechanisms mediating SMER28 activities and its direct targets have remained elusive. Here we analyzed the effects of SMER28 on cells and found that aside from autophagy induction, it significantly stabilizes microtubules and decelerates microtubule dynamics. Moreover, we report that SMER28 displays neurotrophic and neuroprotective effects at the cellular level by inducing neurite outgrowth and protecting from excitotoxin-induced axon degeneration. Finally, we compare the effects of SMER28 with other autophagy-inducing or microtubule-stabilizing drugs: whereas SMER28 and rapamycin both induce autophagy, the latter does not stabilize microtubules, and whereas both SMER28 and epothilone B stabilize microtubules, epothilone B does not stimulate autophagy. Thus, the effect of SMER28 on cells in general and neurons in particular is based on its unique spectrum of bioactivities distinct from other known microtubule-stabilizing or autophagy-inducing drugs.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Stephanie Stahnke
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kyra Grunau
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Lars Melcher
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco van Ham
- grid.7490.a0000 0001 2238 295XCellular Proteome Research, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Anika Steffen
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E. B. Stradal
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
33
|
Lemesle M, Geoffroy M, Alpy F, Tomasetto CL, Kuntz S, Grillier-Vuissoz I. CLDN1 Sensitizes Triple-Negative Breast Cancer Cells to Chemotherapy. Cancers (Basel) 2022; 14:cancers14205026. [PMID: 36291810 PMCID: PMC9599637 DOI: 10.3390/cancers14205026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) treatment represents a major challenge in oncology. TNBC evolves into chemotherapy resistance for 60 to 70% of the patients. About 77% of the TNBC displays a lack of claudin-1 (CLDN1), a major tight junction component. We demonstrated that CLDN1 increased the sensitivity of TNBC cell lines to the main chemotherapeutic agents commonly used for breast cancer treatment. Our data support the idea that CLDN1 may be a good predictive chemotherapy response marker to help therapeutic management of TNBC patients. In longer terms, this study could allow new treatment protocols creation aimed to induce CLDN1 expression in TNBCs to increase their sensitivity to chemotherapy. Abstract Triple-negative breast cancer (TNBC) is an aggressive subtype that constitutes 15–20% of breast cancer cases worldwide. Current therapies often evolve into chemoresistance and lead to treatment failure. About 77% of the TNBC lacks claudin-1 (CLDN1) expression, a major tight junction component, and this absence is correlated with poorer prognostic. Little is known about CLDN1 role on the chemosensitivity of breast cancer. Our clinical data analysis reveals that CLDN1 low expression is correlated to a poor prognostic in TNBC patients. Next, the sensitivity of various TNBC “claudin-1-high” or “claudin-1-low” cells to three compounds belonging to the main class of chemotherapeutic agents commonly used for the treatment of TNBC patients: 5-fluorouracil (5-FU), paclitaxel (PTX) and doxorubicin (DOX). Using RNA interference and stable overexpressing models, we demonstrated that CLDN1 expression increased the sensitivity of TNBC cell lines to these chemotherapeutic agents. Taken together, our data established the important role of CLDN1 in TNBC cells chemosensitivity and supported the hypothesis that CLDN1 could be a chemotherapy response predictive marker for TNBC patients. This study could allow new treatment protocols creation aimed to induce CLDN1 expression in TNBCs to increase their sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Marine Lemesle
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Marine Geoffroy
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Centre National de la Recherche Scientifique (CNRS), UMR7104 and Université de Strasbourg, 67400 Illkirch, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Centre National de la Recherche Scientifique (CNRS), UMR7104 and Université de Strasbourg, 67400 Illkirch, France
| | - Sandra Kuntz
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Isabelle Grillier-Vuissoz
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
- Correspondence: ; Tel.: +33-(0)3-72-74-51-84
| |
Collapse
|
34
|
The Chemotherapeutic Potentials of Compounds Isolated from the Plant, Marine, Fungus, and Microorganism: Their Mechanism of Action and Prospects. J Trop Med 2022; 2022:5919453. [PMID: 36263439 PMCID: PMC9576449 DOI: 10.1155/2022/5919453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/10/2022] [Indexed: 12/02/2022] Open
Abstract
Research on natural products mainly focuses on developing a suitable drug to treat human disease. There has been a sharp increase in the development of drugs from natural products. Most of the drugs that are available are from the terrestrial origin. Marine natural products are less explored. Oceans are considered as a vast ecosystem with a wide variety of living organisms and natural products that are unexplored. Large numbers of antitumor drugs are from natural sources such as plants, marine, and microorganisms. 80% new chemical entities that were launched over the past 60 decades were from a natural source. In this article, the anticancer potential from the natural source such as plants, fungi, microorganisms, marine, and endophytes has been reviewed. Emphasis is given on the compound from the marine, plant, and of bacterial origin. Finally, we consider the future and how we might achieve better sustainability to alleviate human cancer suffering while having fewer side effects, more efficacies, and causing less harm than the present treatments.
Collapse
|
35
|
Erdogan CS, Al Hassadi Y, Aru B, Yilmaz B, Gemici B. Combinatorial effects of melatonin and paclitaxel differ depending on the treatment scheme in colorectal cancer in vitro. Life Sci 2022; 308:120927. [PMID: 36063977 DOI: 10.1016/j.lfs.2022.120927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
AIMS Colorectal carcinoma (CRC) is the third most prevalent cancer with high mortality. Besides regulating the circadian rhythm, melatonin (MTN) exerts anticancer activities. Paclitaxel (PTX) is successful against different malignancies, however, acquired resistance and variability in patient response restrict its use. mTOR and MAPK pathways are often deregulated in human cancers. We aimed to investigate whether MTN enhances or sensitizes the chemotherapeutic activity of PTX and if so, determine the underlying possible mechanisms in CRC in vitro. MAIN METHODS Antiproliferative and cytotoxic activities of PTX and MTN were assessed alone and in combination, as well as with different treatment regimens (renewal or replacement of the treatment after 24 h), up to 48 h. Apoptosis, viability and autophagy were assessed by flow cytometry. mTOR and MAPK pathway activities were investigated by immunoblotting. KEY FINDINGS Both drugs reduced cell viability in a dose-dependent manner at 24 and 48 h. Only the highest dose of MTN (500 μM) potentiated the cytotoxicity of PTX (50 nM). Replacement of PTX after 24 h with MTN was superior in reducing cell viability than vice versa via apoptosis induction. Renewal of MTN treatment every 24 h reduced autophagy compared to the control group, while other treatments did not alter the autophagic activity. A 24 h MTN treatment followed by 24 h PTX treatment increased S6 phosphorylation in a mTOR-independent manner and increased Erk1/2 phosphorylation. SIGNIFICANCE The present study suggests that sequential treatment with MTN and PTX distinctly affect apoptosis and cytotoxicity via regulating mTOR and MAPK pathways differentially in CRC.
Collapse
Affiliation(s)
- Cihan Suleyman Erdogan
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Yasmine Al Hassadi
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Basak Aru
- Yeditepe University, Faculty of Medicine, Department of Immunology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey.
| |
Collapse
|
36
|
Omics Analysis of Chemoresistant Triple Negative Breast Cancer Cells Reveals Novel Metabolic Vulnerabilities. Cells 2022; 11:cells11172719. [PMID: 36078127 PMCID: PMC9454761 DOI: 10.3390/cells11172719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of drug resistance in cancer poses the greatest hurdle for successful therapeutic results and is associated with most cancer deaths. In triple negative breast cancer (TNBC), due to the lack of specific therapeutic targets, systemic chemotherapy is at the forefront of treatments, but it only benefits a fraction of patients because of the development of resistance. Cancer cells may possess an innate resistance to chemotherapeutic agents or develop new mechanisms of acquired resistance after long-term drug exposure. Such mechanisms involve an interplay between genetic, epigenetic and metabolic alterations that enable cancer cells to evade therapy. In this work, we generated and characterized a chemoresistant TNBC cell line to be used for the investigation of mechanisms that drive resistance to paclitaxel. Transcriptomic analysis highlighted the important role of metabolic-associated pathways in the resistant cells, prompting us to employ 1H-NMR to explore the metabolome and lipidome of these cells. We identified and described herein numerous metabolites and lipids that were significantly altered in the resistant cells. Integrated analysis of our omics data revealed MSMO1, an intermediate enzyme of cholesterol biosynthesis, as a novel mediator of chemoresistance in TNBC. Overall, our data provide a critical insight into the metabolic adaptations that accompany acquired resistance in TNBC and pinpoint potential new targets.
Collapse
|
37
|
Jacob J, Siraj MA, Steel A, Tan G, Jarvi S. Evaluation of the mechanism of action of albendazole on adult rat lungworm (Angiostrongyluscantonensis). Exp Parasitol 2022; 242:108355. [PMID: 35988809 DOI: 10.1016/j.exppara.2022.108355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
Albendazole is considered the anthelmintic of choice for the management of rat lungworm disease (neuroangiostrongyliasis), due to its broad spectrum of nematocidal activity and its ability to cross the blood-brain barrier. Albendazole binds to β-tubulin, preventing its polymerization into microtubules, thereby corrupting the cascade of cell division at metaphase, which ultimately leads to the death of individual cells and eventually the death of the parasite. Inhibition of microtubule formation will also hinder the axoplasmic transport system, affecting the neuronal activities of the parasite. While this mechanism has been explicated in other parasitic and non-parasitic nematodes, it has never been evaluated in Angiostrongylus cantonensis. This study evaluates the antimitotic effects of albendazole sulphoxide (active metabolite) on the microtubules of adult A. cantonensis using the tubulin polymerization assay and measures its effects on worm viability using the colorimetric MTT assay. Three different concentrations of albendazole (62.5 μM, 250 μΜ, and 1 mM) were evaluated. We saw a statistically significant dose-dependent reduction in the band intensity of polymerized tubulins (or microtubules) (P = 0.019), suggesting that albendazole imparts its antimitotic effect in a dose-dependent manner. Similarly, our MTT assay showed a dose-dependent decrease in formazan intensity (proportional to cell viability), suggesting that the rate of nematocidal activity of albendazole is also proportional to its concentration. In compiling the results from both these experiments, a correlation between the microtubule assembly and worm viability is evident.
Collapse
Affiliation(s)
- John Jacob
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, HI, 96720, USA
| | - Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, HI, 96720, USA
| | - Argon Steel
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, HI, 96720, USA
| | - Ghee Tan
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, HI, 96720, USA
| | - Susan Jarvi
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, HI, 96720, USA.
| |
Collapse
|
38
|
Castrogiovanni C, Inchingolo AV, Harrison JU, Dudka D, Sen O, Burroughs NJ, McAinsh AD, Meraldi P. Evidence for a HURP/EB free mixed-nucleotide zone in kinetochore-microtubules. Nat Commun 2022; 13:4704. [PMID: 35948594 PMCID: PMC9365851 DOI: 10.1038/s41467-022-32421-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Current models infer that the microtubule-based mitotic spindle is built from GDP-tubulin with small GTP caps at microtubule plus-ends, including those that attach to kinetochores, forming the kinetochore-fibres. Here we reveal that kinetochore-fibres additionally contain a dynamic mixed-nucleotide zone that reaches several microns in length. This zone becomes visible in cells expressing fluorescently labelled end-binding proteins, a known marker for GTP-tubulin, and endogenously-labelled HURP - a protein which we show to preferentially bind the GDP microtubule lattice in vitro and in vivo. We find that in mitotic cells HURP accumulates on the kinetochore-proximal region of depolymerising kinetochore-fibres, whilst avoiding recruitment to nascent polymerising K-fibres, giving rise to a growing "HURP-gap". The absence of end-binding proteins in the HURP-gaps leads us to postulate that they reflect a mixed-nucleotide zone. We generate a minimal quantitative model based on the preferential binding of HURP to GDP-tubulin to show that such a mixed-nucleotide zone is sufficient to recapitulate the observed in vivo dynamics of HURP-gaps.
Collapse
Affiliation(s)
- Cédric Castrogiovanni
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
| | - Alessio V Inchingolo
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jonathan U Harrison
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| | - Damian Dudka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Onur Sen
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Nigel J Burroughs
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland.
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
39
|
Barbosa G, Gelves LGV, Costa CMX, Franco LS, de Lima JAL, Aparecida-Silva C, Teixeira JD, Mermelstein CDS, Barreiro EJ, Lima LM. Discovery of Putative Dual Inhibitor of Tubulin and EGFR by Phenotypic Approach on LASSBio-1586 Homologs. Pharmaceuticals (Basel) 2022; 15:913. [PMID: 35893736 PMCID: PMC9394307 DOI: 10.3390/ph15080913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
Combretastatin A-4 (CA-4, 1) is an antimicrotubule agent used as a prototype for the design of several synthetic analogues with anti-tubulin activity, such as LASSBio-1586 (2). A series of branched and unbranched homologs of the lead-compound 2, and vinyl, ethinyl and benzyl analogues, were designed and synthesized. A comparison between the cytotoxic effect of these homologs and 2 on different human tumor cell lines was performed from a cell viability study using MTT with 48 h and 72 h incubations. In general, the compounds were less potent than CA-4, showing CC50 values ranging from 0.030 μM to 7.53 μM (MTT at 72 h) and 0.096 μM to 8.768 μM (MTT at 48 h). The antimitotic effect of the target compounds was demonstrated by cell cycle analysis through flow cytometry, and the cellular mechanism of cytotoxicity was determined by immunofluorescence. While the benzyl homolog 10 (LASSBio-2070) was shown to be a microtubule stabilizer, the lead-compound 2 (LASSBio-1586) and the methylated homolog 3 (LASSBio-1735) had microtubule destabilizing behavior. Molecular docking studies were performed on tubulin protein to investigate their binding mode on colchicine and taxane domain. Surprisingly, the benzyl homolog 10 was able to modulate EGFR phosphorylate activity in a phenotypic model. These data suggest LASSBio-2070 (10) as a putative dual inhibitor of tubulin and EGFR. Its binding mode with EGFR was determined by molecular docking and may be useful in lead-optimization initiatives.
Collapse
Affiliation(s)
- Gisele Barbosa
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luis Gabriel Valdivieso Gelves
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Caroline Marques Xavier Costa
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - João Alberto Lins de Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Cristiane Aparecida-Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - John Douglas Teixeira
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.D.T.); (C.d.S.M.)
| | - Claudia dos Santos Mermelstein
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.D.T.); (C.d.S.M.)
| | - Eliezer J. Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lidia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
40
|
Identification of Malignant Cell Populations Associated with Poor Prognosis in High-Grade Serous Ovarian Cancer Using Single-Cell RNA Sequencing. Cancers (Basel) 2022; 14:cancers14153580. [PMID: 35892844 PMCID: PMC9331511 DOI: 10.3390/cancers14153580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Ovarian cancer has a high recurrence rate (~75%), and tumor heterogeneity is associated with such tumor recurrence. However, it is still poorly understood in ovarian cancer. To reveal tumor heterogeneity, we performed single-cell RNA sequencing (RNA-seq) of serous ovarian cancer cells from four different patients: two with primary carcinoma, one with recurrent carcinoma, and one with carcinoma treated with interval debulking surgery. As a result, we found two malignant tumor cell subtypes associated with poor prognosis. One malignant population included the earliest cancer cells and cancer stem-like cells. SLC3A1 and PEG10 were identified as the marker genes of cancer-initiating cells. The other malignant population expressing CA125 (MUC16), the most common biomarker for ovarian cancer, is associated with a decrease in the number of tumor-infiltrating cytotoxic T lymphocytes (CTLs). Our findings will offer new markers for diagnosis and choosing treatments targeting the malignant populations in ovarian cancer. Abstract To reveal tumor heterogeneity in ovarian cancer, we performed single-cell RNA sequencing (RNA-seq). We obtained The Cancer Genome Atlas (TCGA) survival data and TCGA gene expression data for a Kaplan–Meier plot showing the association of each tumor population with poor prognosis. As a result, we found two malignant tumor cell subtypes associated with poor prognosis. Next, we performed trajectory analysis using scVelo and Monocle3 and cell–cell interaction analysis using CellphoneDB. We found that one malignant population included the earliest cancer cells and cancer stem-like cells. Furthermore, we identified SLC3A1 and PEG10 as the marker genes of cancer-initiating cells. The other malignant population expressing CA125 (MUC16) is associated with a decrease in the number of tumor-infiltrating cytotoxic T lymphocytes (CTLs). Moreover, cell–cell interaction analysis implied that interactions mediated by LGALS9 and GAS6, expressed by this malignant population, caused the CTL suppression. The results of this study suggest that two tumor cell populations, including a cancer-initiating cell population and a population expressing CA125, survive the initial treatment and suppress antitumor immunity, respectively, and are associated with poor prognosis. Our findings offer a new understanding of ovarian cancer heterogeneity and will aid in the development of diagnostic tools and treatments.
Collapse
|
41
|
Kumari G, Jain R, Kumar Sah R, Kalia I, Vashistha M, Singh P, Prasad Singh A, Samby K, Burrows J, Singh S. Multistage and transmission-blocking tubulin targeting potent antimalarial discovered from the open access MMV pathogen box. Biochem Pharmacol 2022; 203:115154. [PMID: 35798201 DOI: 10.1016/j.bcp.2022.115154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
The development of resistance to current antimalarial therapies remains a significant source of concern. To address this risk,newdrugswithnoveltargetsin distinct developmental stages ofPlasmodiumparasites are required. In the current study,we have targetedP. falciparumTubulin(PfTubulin)proteins which represent some of thepotentialdrug targetsfor malaria chemotherapy. PlasmodialMicrotubules (MTs) play a crucial role during parasite proliferation, growth, and transmission, which render them highlydesirabletargets for the development ofnext-generation chemotherapeutics. Towards this,we have evaluated the antimalarial activity ofTubulintargetingcompounds received from theMedicines for Malaria Venture (MMV)"Pathogen Box"against the human malaria parasite,P. falciparumincluding 3D7 (chloroquine and artemisinin sensitive strain), RKL-9 (chloroquine-resistant strain), and R539T (artemisinin-resistant strain). At nanomolar concentrations, the filtered-out compounds exhibitedpronouncedmultistage antimalarialeffects across the parasite life cycle, including intra-erythrocytic blood stages, liver stage parasites, gametocytes, and ookinetes. Concomitantly, these compoundswere found toimpedemale gamete ex-flagellation, thus showingtheir transmission-blocking potential. Target mining of these potent compounds, by combining in silico, biochemical and biophysical assays,implicatedPfTubulinas their moleculartarget, which may possibly act bydisruptingMT assembly dynamics by binding at the interface of α-βTubulin-dimer.Further, the promising ADME profile of the parent scaffold supported its consideration as a lead compound for further development.Thus, our work highlights the potential of targetingPfTubulin proteins in discovering and developing next-generation, multistage antimalarial agents against Multi-Drug Resistant (MDR) malaria parasites.
Collapse
Affiliation(s)
- Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Manu Vashistha
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pooja Singh
- National Institute of Immunology, New Delhi 110067, India
| | | | | | | | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
42
|
Li M, Li F, Chen J, Su H, Chen G, Cao J, Li J, Dong L, Yu Z, Wang Y, Zhou C, Zhu Y, Wei Q, Li Q, Chai K. Mechanistic insights on cytotoxicity of KOLR, Cinnamomum pauciflorum Nees leaf derived active ingredient, by targeting signaling complexes of phosphodiesterase 3B and rap guanine nucleotide exchange factor 3. Phytother Res 2022; 36:3540-3554. [PMID: 35703011 DOI: 10.1002/ptr.7521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 12/17/2022]
Abstract
Protein signaling complexes play important roles in prevention of several cancer types and can be used for development of targeted therapy. The roles of signaling complexes of phosphodiesterase 3B (PDE3B) and Rap guanine nucleotide exchange factor 3 (RAPGEF3), which are two important enzymes of cyclic adenosine monophosphate (cAMP) metabolism, in cancer have not been fully explored. In the current study, a natural product Kaempferol-3-O-(3'',4''-di-E-p-coumaroyl)-α-L-rhamnopyranoside designated as KOLR was extracted from Cinnamomum pauciflorum Nees leaves. KOLR exhibited higher cytotoxic effects against BxCP-3 pancreatic cancer cell line. In BxPC-3 cells, the KOLR could enhance the formation of RAPGEF 3/ PDE3B protein complex to inhibit the activation of Rap-1 and PI3K-AKT pathway, thereby promoting cell apoptosis and inhibiting cell metastasis. Mutation of RAPGEF3 G557A or low expression of PDE3B inactivated the binding action of KOLR resulting in KOLR resistance. The findings of this study show that PDE3B/RAPGEF3 complex is a potential therapeutic cancer target.
Collapse
Affiliation(s)
- Mingqian Li
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fei Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Jiabin Chen
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - He Su
- The second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guang zhou, Guangdong, China
| | - Guanping Chen
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jili Cao
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiacheng Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Liyao Dong
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Zhihong Yu
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yifan Wang
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chun Zhou
- Nursing Department, People's Liberation Army Joint Logistic Support Force 903th Hospital, Hangzhou, Zhejiang, China
| | - Yongqiang Zhu
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qin Wei
- Key Laboratory of Fermentation Resources and Application in Universities of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Kequn Chai
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Chen Y, Lu R, Wang Y, Gan P. Shaoyao Gancao Decoction Ameliorates Paclitaxel-Induced Peripheral Neuropathy via Suppressing TRPV1 and TLR4 Signaling Expression in Rats. Drug Des Devel Ther 2022; 16:2067-2081. [PMID: 35795847 PMCID: PMC9252300 DOI: 10.2147/dddt.s357638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Paclitaxel-induced peripheral neuropathy (PIPN) is increasingly becoming one of the most widespread adverse effects in the treatment of cancer patients, and further precipitate neuroinflammation in the nervous system. Interestingly, Shaoyao Gancao Decoction (SGD), a traditional Chinese analgesic prescription, has emerged as a primary adjuvant to chemotherapy in relieving side effects, especially in the case of PIPN. However, the underlying mechanism of SGD functioning in PIPN remains elusive. Accordingly, the current study set out to explore the potential axis implicated in the functioning of SGD in PIPN. Methods First, network pharmacology was adopted to predict the role of the transient receptor potential vanilloid type 1 (TRPV1) protein in treating PIPN with SGD. Subsequently, the effects of SGD treatment on mechanical allodynia and thermal hyperalgesia were evaluated in rat PIPN models. Based on the bioinformatics information and current literature, paclitaxel activates toll-like receptor 4 (TLR4) induces the sensitization of TRPV1 mechanistically. Thereafter, TLR4-myeloid-differentiation response gene 88 (MyD88) signaling and TRPV1 expression patterns in dorsal root ganglias (DRGs) were measured by means of Western blotting, qPCR and immunofluorescence. Results Initial bioinformatics reared a total of 105 bioactive compounds and 1075 target genes from SGD. In addition, 40 target genes intersected with PIPN were considered as potential therapeutic genes. Based on the network analysis, SGD was found to exert its analgesic effect by reducing the expression of TRPV1. Further experimentation validated that SGD exerted an analgesic effect on thermal hyperalgesia in PIPN models, such that this protective effect was associated with the suppression of TRPV1 and TLR4-MyD88 Signaling over-expression. Conclusion Collectively, our findings indicated that SGD ameliorates PIPN by inhibiting the over-expression of TLR4-MyD88 Signaling and TRPV1, and further highlights the use of SGD as a potential alternative treatment for PIPN.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ruohuang Lu
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Pingping Gan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Correspondence: Pingping Gan, Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China, Tel +86 13874975101, Email
| |
Collapse
|
44
|
Abstract
Heart disease remains the leading cause of morbidity and mortality worldwide. With the advancement of modern technology, the role(s) of microtubules in the pathogenesis of heart disease has become increasingly apparent, though currently there are limited treatments targeting microtubule-relevant mechanisms. Here, we review the functions of microtubules in the cardiovascular system and their specific adaptive and pathological phenotypes in cardiac disorders. We further explore the use of microtubule-targeting drugs and highlight promising druggable therapeutic targets for the future treatment of heart diseases.
Collapse
Affiliation(s)
- Emily F Warner
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University School of Medicine, People's Republic of China (Y.L.)
| | - Xuan Li
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| |
Collapse
|
45
|
Spindle motility skews division site determination during asymmetric cell division in Physcomitrella. Nat Commun 2022; 13:2488. [PMID: 35513464 PMCID: PMC9072379 DOI: 10.1038/s41467-022-30239-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Asymmetric cell division (ACD) underlies the development of multicellular organisms. In animal ACD, the cell division site is determined by active spindle-positioning mechanisms. In contrast, it is considered that the division site in plants is determined prior to mitosis by the microtubule-actin belt known as the preprophase band (PPB) and that the localization of the mitotic spindle is typically static and does not govern the division plane. However, in some plant species, ACD occurs in the absence of PPB. Here, we isolate a hypomorphic mutant of the conserved microtubule-associated protein TPX2 in the moss Physcomitrium patens (Physcomitrella) and observe spindle motility during PPB-independent cell division. This defect compromises the position of the division site and produces inverted daughter cell sizes in the first ACD of gametophore (leafy shoot) development. The phenotype is rescued by restoring endogenous TPX2 function and, unexpectedly, by depolymerizing actin filaments. Thus, we identify an active spindle-positioning mechanism that, reminiscent of acentrosomal ACD in animals, involves microtubules and actin filaments, and sets the division site in plants.
Collapse
|
46
|
Vicar T, Chmelik J, Navratil J, Kolar R, Chmelikova L, Cmiel V, Jagos J, Provaznik I, Masarik M, Gumulec J. Cancer Cells Viscoelasticity Measurement by Quantitative Phase and Flow Stress Induction. Biophys J 2022; 121:1632-1642. [PMID: 35390297 PMCID: PMC9117928 DOI: 10.1016/j.bpj.2022.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/02/2022] Open
Abstract
Cell viscoelastic properties are affected by the cell cycle, differentiation, pathological processes such as malignant transformation. Therefore, evaluation of the mechanical properties of the cells proved to be an approach to obtaining information on the functional state of the cells. Most of the currently used methods for cell mechanophenotypisation are limited by low robustness or the need for highly expert operation. In this paper, the system and method for viscoelasticity measurement using shear stress induction by fluid flow is described and tested. Quantitative Phase Imaging (QPI) is used for image acquisition because this technique enables to quantify optical path length delays introduced by the sample, thus providing a label-free objective measure of morphology and dynamics. Viscosity and elasticity determination were refined using a new approach based on the linear system model and parametric deconvolution. The proposed method allows high-throughput measurements during live cell experiments and even through a time-lapse, where we demonstrated the possibility of simultaneous extraction of shear modulus, viscosity, cell morphology, and QPI-derived cell parameters like circularity or cell mass. Additionally, the proposed method provides a simple approach to measure cell refractive index with the same setup, which is required for reliable cell height measurement with QPI, an essential parameter for viscoelasticity calculation. Reliability of the proposed viscoelasticity measurement system was tested in several experiments including cell types of different Young/shear modulus and treatment with cytochalasin D or docetaxel, and an agreement with atomic force microscopy was observed. The applicability of the proposed approach was also confirmed by a time-lapse experiment with cytochalasin D washout, where an increase of stiffness corresponded to actin repolymerisation in time.
Collapse
Affiliation(s)
- Tomas Vicar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communications, Brno University of Technology, Brno, Czech Republic; Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | - Jiri Chmelik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communications, Brno University of Technology, Brno, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | - Radim Kolar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communications, Brno University of Technology, Brno, Czech Republic
| | - Larisa Chmelikova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communications, Brno University of Technology, Brno, Czech Republic
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communications, Brno University of Technology, Brno, Czech Republic
| | - Jiri Jagos
- Dept. of Tissue Biomechanics and Numerical Modelling in Medicine, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communications, Brno University of Technology, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
47
|
Huang Yang CP, Horwitz SB, McDaid HM. Utilization of Photoaffinity Labeling to Investigate Binding of Microtubule Stabilizing Agents to P-Glycoprotein and β-Tubulin. JOURNAL OF NATURAL PRODUCTS 2022; 85:720-728. [PMID: 35240035 PMCID: PMC9484556 DOI: 10.1021/acs.jnatprod.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoaffinity labeling approaches have historically been used in pharmacology to identify molecular targets. This methodology has played a pivotal role in identifying drug-binding domains and searching for novel compounds that may interact at these domains. In this review we focus on studies of microtubule stabilizing agents of natural product origin, specifically taxol (paclitaxel). Taxol and other microtubule interacting agents bind to both P-glycoprotein (ABCB1), a drug efflux pump that reduces intracellular drug accumulation, and the tubulin/microtubule system. Both binding relationships modulate drug efficacy and are of immense interest to basic and translational scientists, primarily because of their association with drug resistance for this class of molecules. We present this body of work and acknowledge its value as fundamental to understanding the mechanisms of taxol and elucidation of the taxol pharmacophore. Furthermore, we highlight the ability to multiplex photoaffinity approaches with other technologies to further enhance our understanding of pharmacologic interactions at an atomic level. Thus, photoaffinity approaches offer a relatively inexpensive and robust technique that will continue to play an important role in drug discovery for the foreseeable future.
Collapse
Affiliation(s)
- Chia-Ping Huang Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Obstetrics and Gynecology and Women's Health, Division of Gynecologic Oncology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Susan Band Horwitz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Hayley M McDaid
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
48
|
State of the Art and Future Implications of SH003: Acting as a Therapeutic Anticancer Agent. Cancers (Basel) 2022; 14:cancers14041089. [PMID: 35205836 PMCID: PMC8870567 DOI: 10.3390/cancers14041089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer ranks as the first leading cause of death globally. Despite the various types of cancer treatments, negative aspects of the treatments, such as side effects and drug resistance, have been a continuous dilemma for patients. Thus, natural compounds and herbal medicines have earned profound interest as chemopreventive agents for reducing burden for patients. SH003, a novel herbal medicine containing Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii, showed the potential to act as an anticancer agent in previous research studies. A narrative review was conducted to present the significant highlights of the total 15 SH003 studies from the past nine years. SH003 has shown positive results in both in vivo and vitro studies against various types of cancer cells; furthermore, the first clinical trial was performed to identify the maximum tolerated dose among solid cancer patients. So far, the potential of SH003 as a chemotherapeutic agent has been well-documented in research studies; continuous work on SH003's efficacy and safety is required to facilitate better cancer patient care but is part of the knowledge needed to understand whether SH003 has the potential to become a pharmaceutical.
Collapse
|
49
|
Villalba‐Riquelme E, de la Torre‐Martínez R, Fernández‐Carvajal A, Ferrer‐Montiel A. Paclitaxel in vitro reversibly sensitizes the excitability of IB4(-) and IB4(+) sensory neurons from male and female rats. Br J Pharmacol 2022; 179:3693-3710. [PMID: 35102580 PMCID: PMC9311666 DOI: 10.1111/bph.15809] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 01/23/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Eva Villalba‐Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain
| | | | - Asia Fernández‐Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain
| | - Antonio Ferrer‐Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain
| |
Collapse
|
50
|
Hong S, Song JM. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Acta Biomater 2022; 138:228-239. [PMID: 34718182 DOI: 10.1016/j.actbio.2021.10.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Drug-resistant cancer spheroids were fabricated by three-dimensional (3D) bioprinting for the quantitative evaluation of drug resistance of cancer cells, which is a very important issue in cancer treatment. Cancer spheroids have received great attention as a powerful in vitro model to replace animal experiments because of their ability to mimic the tumor microenvironment. In this work, the extrusion printing of gelatin-alginate hydrogel containing MCF-7 breast cancer stem cells successfully provided 3D growth of many single drug-resistant breast cancer spheroids in a cost-effective 3D-printed mini-well dish. The drug-resistant MCF-7 breast cancer spheroids were able to maintain their drug-resistant phenotype of CD44high/CD24low/ALDH1high in the gelatin-alginate media during 3D culture and exhibited higher expression levels of drug resistance markers, such as GRP78 chaperon and ABCG2 transporter, than bulk MCF-7 breast cancer spheroids. Furthermore, the effective concentration 50 (EC50) values for apoptotic and necrotic spheroid death could be directly determined from the 3D printed-gelatin-alginate gel matrix based on in situ 3D fluorescence imaging of cancer spheroids located out of the focal point and on the focal point. The EC50 values of anti-tumor agents (camptothecin and paclitaxel) for apoptotic and necrotic drug-resistant cancer spheroid death were higher than those for bulk cancer spheroid death, indicating a greater drug resistance. STATEMENT OF SIGNIFICANCE: This study proposed a novel 3D bioprinting-based drug screening model, to quantitatively evaluate the efficacy of anticancer drugs using drug-resistant MCF-7 breast cancer spheroids formed within a 3D-printed hydrogel. Quantitative determination of anticancer drug efficacy using EC50, which is extremely important in drug discovery, was achieved by 3D printing that enables concurrent growth of many single spheroids efficiently. This study verified whether drug-resistant cancer spheroids grown within 3D-printed gelatin-alginate hydrogel could maintain and present drug resistance. Also, the EC50 values of the apoptotic and necrotic cell deaths were directly acquired in 3D-embedded spheroids based on in situ fluorescence imaging. This platform provides a single-step straightforward strategy to cultivate and characterize drug-resistant spheroids to facilitate anticancer drug screening.
Collapse
|