1
|
Selten M, Bernard C, Mukherjee D, Hamid F, Hanusz-Godoy A, Oozeer F, Zimmer C, Marín O. Regulation of PV interneuron plasticity by neuropeptide-encoding genes. Nature 2025:10.1038/s41586-025-08933-z. [PMID: 40307547 DOI: 10.1038/s41586-025-08933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Neuronal activity must be regulated in a narrow permissive band for the proper operation of neural networks. Changes in synaptic connectivity and network activity-for example, during learning-might disturb this balance, eliciting compensatory mechanisms to maintain network function1-3. In the neocortex, excitatory pyramidal cells and inhibitory interneurons exhibit robust forms of stabilizing plasticity. However, although neuronal plasticity has been thoroughly studied in pyramidal cells4-8, little is known about how interneurons adapt to persistent changes in their activity. Here we describe a critical cellular process through which cortical parvalbumin-expressing (PV+) interneurons adapt to changes in their activity levels. We found that changes in the activity of individual PV+ interneurons drive bidirectional compensatory adjustments of the number and strength of inhibitory synapses received by these cells, specifically from other PV+ interneurons. High-throughput profiling of ribosome-associated mRNA revealed that increasing the activity of a PV+ interneuron leads to upregulation of two genes encoding multiple secreted neuropeptides: Vgf and Scg2. Functional experiments demonstrated that VGF is critically required for the activity-dependent scaling of inhibitory PV+ synapses onto PV+ interneurons. Our findings reveal an instructive role for neuropeptide-encoding genes in regulating synaptic connections among PV+ interneurons in the adult mouse neocortex.
Collapse
Affiliation(s)
- Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Clémence Bernard
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Diptendu Mukherjee
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Alicia Hanusz-Godoy
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Christoph Zimmer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
2
|
Moon SA, Kim JM, Lee YS, Cho HJ, Choi YJ, Yoon JH, Kim D, Che X, Jin X, Baek IJ, Lee SH, Choi JY, Koh JM. VGF and the VGF-derived peptide AQEE30 stimulate osteoblastic bone formation through the C3a receptor. Exp Mol Med 2025; 57:637-651. [PMID: 40082672 PMCID: PMC11958639 DOI: 10.1038/s12276-025-01419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 03/16/2025] Open
Abstract
New therapeutic targets, especially those that stimulate bone formation in cortical bone, are needed to overcome the limitations of current antiosteoporotic drugs. We previously demonstrated that factors secreted from megakaryocytes (MKs) promote bone formation. Here we conducted a proteomic analysis to identify a novel bone-forming factor from MK secretions. We revealed that Vgf, a nerve growth factor-responsive gene, and its derived active peptide AQEE30 in MK-conditioned medium play important roles in osteoblast proliferation and in vitro bone formation. In both Vgf-deficient male and female mice, the cortical bone mass was significantly decreased due to reductions in osteoblast number and bone formation activity. AQEE30 stimulated intracellular cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) activity in osteoblasts, whereas an adenylyl cyclase inhibitor blocked AQEE30-stimulated osteoblast proliferation and in vitro bone formation. Complement C3a receptor-1 (C3AR1) was expressed and interacted with AQEE30 in osteoblasts, and C3AR1 inhibition blocked all AQEE30-induced changes, including stimulated proliferation, bone formation and cAMP production, in osteoblasts. Injecting mini-PEGylated AQEE30 into calvaria increased the number of osteocalcin-positive cells and new bone formation. In conclusion, this study reveals a novel role of VGF in bone formation, particularly in cortical bone, and shows that AQEE30, a VGF-derived peptide, mediates this role by activating cAMP-PKA signaling via the C3AR1 receptor in osteoblasts.
Collapse
Affiliation(s)
- Sung-Ah Moon
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Man Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young Jin Choi
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jong Hyuk Yoon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dayea Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jeoung Baek
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Je-Young Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Ouyang S, Shi S, Ding W, Ge Y, Su Y, Mo J, Peng K, Zhang Q, Liu G, Xiao W, Yue P, Lu J, Wang Y, Xiong X, Zhang X. Neuropeptide Precursor VGF Promotes Liver Metastatic Colonization of Gαq Mutant Uveal Melanoma by Facilitating Tumor Microenvironment via Paracrine Loops. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407967. [PMID: 39422674 PMCID: PMC11633529 DOI: 10.1002/advs.202407967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Uveal melanoma (UM), the predominant primary ocular malignancy, often progresses to liver metastasis with limited therapeutic options. The interplay of the tumor microenvironment, encompassing secreted soluble factors, plays a crucial role in facilitating liver metastasis. In this study, the role is elucidated of the neural growth factor-inducible gene (VGF), a secreted neuropeptide precursor, in Gαq mutant UM. Employing a multiomics approach, encompassing transcriptomic and secretomic analyses, the intricate involvement of VGF in UM progression is unveiled. VGF is upregulated in Gαq mutant UM cells and associated with poor prognosis of UM patients. Targeting VGF significantly suppressed the growth of UM in vitro and in vivo. Further evidence shows that VGF is regulated by Gαq through MAPK/CREB pathway. Mechanistically, CREB modulates VGF expression by directly binding to consensus DNA response elements in the promoters of the VGF gene. Combined inhibition of Gαq and MEK remarkably reduces tumor burden in the UM xenograft model. Notably, VGF triggers liver metastatic colonization of UM and activates the fibrosis of hepatic stellate cells (HSCs), creating a favorable microenvironment, through an autocrine and paracrine loop. Furthermore, VGF directly binds to TGFBR2 and regulates TGF-β-SMAD signaling pathway, thereby regulating genes associated with endothelial-mesenchymal transition (EMT) to promote metastasis. Taken together, these findings identify VGF as a pivotal driver in the progression and metastasis of Gαq mutant UM and confers a promising therapeutic target and strategy for UM patients.
Collapse
Affiliation(s)
- Shumin Ouyang
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Shuo Shi
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Wen Ding
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yang Ge
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yingxue Su
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Jianshan Mo
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Keren Peng
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Qiyi Zhang
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Guopin Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Wei Xiao
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Peibin Yue
- Department of MedicineDivision of Hematology‐Oncologyand Samuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao999078China
| | - Yandong Wang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Xiaofeng Xiong
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Xiaolei Zhang
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|
4
|
Chou CH, Yen CH, Liu CJ, Tu HF, Lin SC, Chang KW. The upregulation of VGF enhances the progression of oral squamous carcinoma. Cancer Cell Int 2024; 24:115. [PMID: 38528565 DOI: 10.1186/s12935-024-03301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a prevalent neoplasm worldwide, necessitating a deeper understanding of its pathogenesis. VGF nerve growth factor inducible (VGF), a neuropeptide, plays critical roles in nerve and endocrine cell regulation. METHODS In this study, the TCGA datasets were initially screened, identifying the upregulation of VGF in various malignancies. We focused on OSCC cell lines, identifying the suppressor mRNA miR-432-5p as a negative regulator of VGF. Additionally, we examined the prognostic value of VGF expression in OSCC tumors and its impact on cellular functions. RESULTS VGF expression was found to be an independent prognostic predictor in OSCC tumors. Cells expressing VGF exhibited increased oncogenicity, influencing the proliferation and migration of oral mucosal fibroblast. Transcriptome analysis revealed associations between VGF and various pathological processes, including malignancies, exosome release, fibrosis, cell cycle disruption, and tumor immune suppression. Moreover, IL23R expression, a favorable OSCC prognostic factor, was inversely correlated with VGF expression. Exogenous IL23R expression was found to suppress VGF-associated mobility phenotypes. CONCLUSIONS This study highlights the multifaceted role of VGF in OSCC pathogenesis and introduces the miR-432-5p-VGF-IL23R regulatory axis as a critical mediator. The combined expression of VGF and IL23R emerges as a potent predictor of survival in oral carcinoma cases, suggesting potential implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Han Yen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsi-Feng Tu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Gabanella F, Maftei D, Colizza A, Rullo E, Riminucci M, Pasqualucci E, Di Certo MG, Lattanzi R, Possenti R, Corsi A, Greco A, De Vincentiis M, Severini C, Ralli M. Reduced expression of secretogranin VGF in laryngeal squamous cell carcinoma. Oncol Lett 2024; 27:37. [PMID: 38108073 PMCID: PMC10722547 DOI: 10.3892/ol.2023.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Laryngeal cancer accounts for one-third of all head and neck tumors, with squamous cell carcinoma (SCC) being the most predominant type, followed by neuroendocrine tumors. Chromogranins, are commonly used as biomarkers for neuroendocrine tumors, including laryngeal cancer. It has been reported that secretogranin VGF, a member of the chromogranin family, can be also used as a significant biomarker for neuroendocrine tumors. However, the expression and role of VGF in laryngeal carcinomas have not been previously investigated. Therefore, the present study aimed to determine the expression levels of VGF in laryngeal SCC (LSCC). The present study collected tumor tissues, as well as serum samples, from a cohort of 15 patients with LSCC. The results of reverse transcription-quantitative PCR, western blot analysis and immunofluorescence assays showed that the selective VGF precursor was downregulated in patients with LSCC. Notably, in tumor tissue, the immunoreactivity for VGF was found in vimentin-positive cells, probably corresponding to T lymphocytes. The current preliminary study suggested that the reduced expression levels of VGF observed in tumor tissue and at the systemic level could sustain LSCC phenotype. Overall, VGF could be a potential biomarker for detecting neoplastic lesions with a higher risk of tumor invasiveness, even in non-neuroendocrine tumors.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, I-00161 Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, I-00185 Rome, Italy
| | - Andrea Colizza
- Department of Sense Organs, Sapienza University of Rome, I-00161 Rome, Italy
| | - Emma Rullo
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Elena Pasqualucci
- Department of Sense Organs, Sapienza University of Rome, I-00161 Rome, Italy
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, I-00161 Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, I-00185 Rome, Italy
| | - Roberta Possenti
- Department of Systems Medicine, University of Rome Tor Vergata, I-00173 Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, I-00161 Rome, Italy
| | - Marco De Vincentiis
- Department of Sense Organs, Sapienza University of Rome, I-00161 Rome, Italy
| | - Cinzia Severini
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, I-00161 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
6
|
Sahu BS, Razzoli M, McGonigle S, Pallais JP, Nguyen ME, Sadahiro M, Jiang C, Lin WJ, Kelley KA, Rodriguez P, Mansk R, Cero C, Caviola G, Palanza P, Rao L, Beetch M, Alejandro E, Sham YY, Frontini A, Salton SR, Bartolomucci A. Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis. Mol Metab 2023; 76:101781. [PMID: 37482186 PMCID: PMC10400922 DOI: 10.1016/j.molmet.2023.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVE Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. METHODS We developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R21→A). RESULTS We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by an environmental temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue. CONCLUSIONS The ΔTLQP-21 mouse line can be a valuable resource to conduct mechanistic studies on the necessary role of TLQP-21 in physiology and disease, while also serving as a platform to test the specificity of novel antibodies or immunoassays directed at TLQP-21. Our approach also has far-reaching implications by informing the development of knowledge-based genetic engineering approaches to generate selective loss of function of other peptides encoded by pro-hormones genes, leaving all other peptides within the pro-protein precursor intact and unmodified.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Masato Sadahiro
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cheng Jiang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei-Jye Lin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevin A Kelley
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel Mansk
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Giada Caviola
- Department of Medicine and Surgery, University of Parma, 43120, Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43120, Parma, Italy
| | - Loredana Rao
- Department of Life and Environmental Sciences, Universita' Politecnica delle Marche, Ancona, 60131, Italy
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emilyn Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Universita' Politecnica delle Marche, Ancona, 60131, Italy
| | - Stephen R Salton
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Sahu BS, Razzoli M, McGonigle S, Pallais JP, Nguyen ME, Sadahiro M, Jiang C, Lin WJ, Kelley KA, Rodriguez P, Mansk R, Cero C, Caviola G, Palanza P, Rao L, Beetch M, Alejandro E, Sham YY, Frontini A, Salton SR, Bartolomucci A. Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.532619. [PMID: 36993202 PMCID: PMC10055429 DOI: 10.1101/2023.03.23.532619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. Here, we developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R 21 →A). We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by a temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue.
Collapse
|
8
|
Wang Y, Qin X, Han Y, Li B. VGF: A prospective biomarker and therapeutic target for neuroendocrine and nervous system disorders. Biomed Pharmacother 2022; 151:113099. [PMID: 35594706 DOI: 10.1016/j.biopha.2022.113099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Neuroendocrine regulatory polypeptide VGF (nerve growth factor inducible) was firstly found in the rapid induction of nerve growth factor on PC12 cells. It was selectively distributed in neurons and many neuroendocrine tissues. This paper reviewed the latest literatures on the gene structure, transcriptional regulation, protein processing, distribution and potential receptors of VGF. The neuroendocrine roles of VGF and its derived polypeptides in regulating energy, water electrolyte balance, circadian rhythm and reproductive activities were also summarized. Furthermore, based on the experimental evidence in vivo and in vitro, dysregulation of VGF in different neuroendocrine diseases and the possible mechanism mediated by VGF polypeptides were discussed. We next discussed the potential as the clinical diagnosis and therapy for VGF related diseases in the future.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoxue Qin
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
9
|
Thalamocortical axons regulate neurogenesis and laminar fates in the early sensory cortex. Proc Natl Acad Sci U S A 2022; 119:e2201355119. [PMID: 35613048 PMCID: PMC9295754 DOI: 10.1073/pnas.2201355119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This study addresses how the cerebral cortex is partitioned into specialized areas during development. Although both early embryonic patterning and postnatal synaptic input from sensory thalamic nuclei are known to be critical, early roles of thalamic axons in area-specific regulation of cortical neurogenesis are poorly understood. We examined this by developing a genetic mouse model in which thalamocortical projections fail to properly form during embryogenesis, and found these axons are required not only for an enhanced production of superficial layer neurons but also for promoting the layer 4 cell fate, a hallmark of the primary sensory cortex. These findings provide a mechanism by which thalamocortical axons complement the intrinsic programs of neurogenesis and early fate specification. Area-specific axonal projections from the mammalian thalamus shape unique cellular organization in target areas in the adult neocortex. How these axons control neurogenesis and early neuronal fate specification is poorly understood. By using mutant mice lacking the majority of thalamocortical axons, we show that these axons are required for the production and specification of the proper number of layer 4 neurons in primary sensory areas by the neonatal stage. Part of these area-specific roles is played by the thalamus-derived molecule, VGF. Our work reveals that extrinsic cues from sensory thalamic projections have an early role in the formation of cortical cytoarchitecture by enhancing the production and specification of layer 4 neurons.
Collapse
|
10
|
Alqarni S, Alsebai M. Could VGF and/or its derived peptide act as biomarkers for the diagnosis of neurodegenerative diseases: A systematic review. Front Endocrinol (Lausanne) 2022; 13:1032192. [PMID: 36619561 PMCID: PMC9817138 DOI: 10.3389/fendo.2022.1032192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The increasing ageing population has led to an increase in the prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). However, as yet, there are no simple biomarkers to predict the onset of such diseases. Recently, VGF and its peptides have been highlighted in neurodegenerative diseases. VGF (non-acronymic) is a polypeptide induced in PC12 cells by neurotrophic factors. OBJECTIVE This systematic review aimed to determine whether VGF and/or its derived peptides can be used as biomarkers for the diagnosis of ALS, PD, and AD with specific attention to (1) the levels of VGF and/or its derived peptides, (2) amyloid-beta, (3) dopamine, and (4) cognitive score. METHODOLOGY A search was undertaken in the Ovid EMBASE, Cochrane Library, PubMed, Scopus, and Web of Science for observational studies. Publications that assessed the level of VGF and/or its derived peptides among people with neurodegenerative diseases and compared them with healthy people were included. The quality of the included studies was assessed using the National Heart, Lung, and Blood Institute Quality Assessment Tool. RESULT A search of the databases yielded 834 studies, of which, eight observational studies met the inclusion criteria with a total of 673 participants (51.7% males) aged >18 years. Seven studies showed significant decreases in VGF and its derived peptides in adults with AD, PD, and ALS compared to healthy controls (p<0.05). However, one study showed that there was no significant difference in VGF in AD compared to healthy control(p>0.05). Furthermore, only one study reported that VGF levels were positively correlated with those of tissue dopamine but not with Aβ1-42, and low levels of VGF were associated to cognitive deficits. CONCLUSION The use of VGF and its derivatives for the diagnosis of PD, ALS, AD remains unclear, so further investigation of the role of VGF in neurodegenerative diseases and pathophysiology is needed to provide new insights.
Collapse
|
11
|
Sahu BS, Nguyen ME, Rodriguez P, Pallais JP, Ghosh V, Razzoli M, Sham YY, Salton SR, Bartolomucci A. The molecular identity of the TLQP-21 peptide receptor. Cell Mol Life Sci 2021; 78:7133-7144. [PMID: 34626205 PMCID: PMC8629782 DOI: 10.1007/s00018-021-03944-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
The TLQP-21 neuropeptide has been implicated in functions as diverse as lipolysis, neurodegeneration and metabolism, thus suggesting an important role in several human diseases. Three binding targets have been proposed for TLQP-21: C3aR1, gC1qR and HSPA8. The aim of this review is to critically evaluate the molecular identity of the TLQP-21 receptor and the proposed multi-receptor mechanism of action. Several studies confirm a critical role for C3aR1 in TLQP-21 biological activity and a largely conserved mode of binding, receptor activation and signaling with C3a, its first-identified endogenous ligand. Conversely, data supporting a role of gC1qR and HSPA8 in TLQP-21 activity remain limited, with no signal transduction pathways being described. Overall, C3aR1 is the only receptor for which a necessary and sufficient role in TLQP-21 activity has been confirmed thus far. This conclusion calls into question the validity of a multi-receptor mechanism of action for TLQP-21 and should inform future studies.
Collapse
Affiliation(s)
- Bhavani S Sahu
- National Brain Research Centre, NH-8, Manesar, Gurugram, Haryana, 122052, India
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Vinayak Ghosh
- National Brain Research Centre, NH-8, Manesar, Gurugram, Haryana, 122052, India
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, USA
| | - Stephen R Salton
- Departments of Neuroscience and Geriatrics and Palliative Medicine, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Quinn JP, Kandigian SE, Trombetta BA, Arnold SE, Carlyle BC. VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases. Brain Commun 2021; 3:fcab261. [PMID: 34778762 PMCID: PMC8578498 DOI: 10.1093/braincomms/fcab261] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Neurosecretory protein VGF (non-acronymic) belongs to the granin family of neuropeptides. VGF and VGF-derived peptides have been repeatedly identified in well-powered and well-designed multi-omic studies as dysregulated in neurodegenerative and psychiatric diseases. New therapeutics is urgently needed for these devastating and costly diseases, as are new biomarkers to improve disease diagnosis and mechanistic understanding. From a list of 537 genes involved in Alzheimer's disease pathogenesis, VGF was highlighted by the Accelerating Medicines Partnership in Alzheimer's disease as the potential therapeutic target of greatest interest. VGF levels are consistently decreased in brain tissue and CSF samples from patients with Alzheimer's disease compared to controls, and its levels correlate with disease severity and Alzheimer's disease pathology. In the brain, VGF exists as multiple functional VGF-derived peptides. Full-length human VGF1-615 undergoes proteolytic processing by prohormone convertases and other proteases in the regulated secretory pathway to produce at least 12 active VGF-derived peptides. In cell and animal models, these VGF-derived peptides have been linked to energy balance regulation, neurogenesis, synaptogenesis, learning and memory, and depression-related behaviours throughout development and adulthood. The C-terminal VGF-derived peptides, TLQP-62 (VGF554-615) and TLQP-21 (VGF554-574) have differential effects on Alzheimer's disease pathogenesis, neuronal and microglial activity, and learning and memory. TLQP-62 activates neuronal cell-surface receptors and regulates long-term hippocampal memory formation. TLQP-62 also prevents immune-mediated memory impairment, depression-like and anxiety-like behaviours in mice. TLQP-21 binds to microglial cell-surface receptors, triggering microglial chemotaxis and phagocytosis. These actions were reported to reduce amyloid-β plaques and decrease neuritic dystrophy in a transgenic mouse model of familial Alzheimer's disease. Expression differences of VGF-derived peptides have also been associated with frontotemporal lobar dementias, amyotrophic lateral sclerosis, Lewy body diseases, Huntington's disease, pain, schizophrenia, bipolar disorder, depression and antidepressant response. This review summarizes current knowledge and highlights questions for future investigation regarding the roles of VGF and its dysregulation in neurodegenerative and psychiatric disease. Finally, the potential of VGF and VGF-derived peptides as biomarkers and novel therapeutic targets for neurodegenerative and psychiatric diseases is highlighted.
Collapse
Affiliation(s)
- James P Quinn
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Savannah E Kandigian
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Bianca A Trombetta
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven E Arnold
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Benchoula K, Parhar IS, Hwa WE. The molecular mechanism of vgf in appetite, lipids, and insulin regulation. Pharmacol Res 2021; 172:105855. [PMID: 34461221 DOI: 10.1016/j.phrs.2021.105855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Obesity is an indication of an imbalance between energy expenditure and food intake. It is a complicated disease of epidemic proportions as it involves many factors and organs. Sedentary lifestyles and overeating have caused a substantial rise in people with obesity and type 2 diabetes. Thus, the discovery of successful and sustainable therapies for these chronic illnesses is critical. However, the mechanisms of obesity and diabetes and the crosstalk between these diseases are still ambiguous. Numerous studies are being done to study these mechanisms, with updates made frequently. VGF peptide and its derivatives are anticipated to have a role in the development of obesity and diabetes. However, contradictory studies have produced conflicting findings on the function of VGF. Therefore, in this review, we attempt to clarify and explain the role of VGF peptides in the brain, pancreas, and adipose tissue in the development of obesity.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia), BRIMS, Jeffrey Cheah School of Medicine & Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
14
|
Dalbøge LS, Jacobsen JM, Mehrotra S, Mercer AJ, Cox N, Liu F, Bennett CM, Said M, Tang-Christensen M, Raun K, Hansen JL, Grove KL, Baquero AF. Evaluation of VGF peptides as potential anti-obesity candidates in pre-clinical animal models. Peptides 2021; 136:170444. [PMID: 33245952 DOI: 10.1016/j.peptides.2020.170444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
VGF is a peptide precursor expressed in neuroendocrine cells that is suggested to play a role in the regulation of energy homeostasis. VGF is proteolytically cleaved to yield multiple bioactive peptides. However, the specific actions of VGF-derived peptides on energy homeostasis remain unclear. The aim of the present work was to investigate the role of VGF-derived peptides in energy homeostasis and explore the pharmacological actions of VGF-derived peptides on body weight in preclinical animal models. VGF-derived peptides (NERP-1, NERP-2, PGH-NH2, PGH-OH, NERP-4, TLQP-21, TLQP-30, TLQP-62, HHPD-41, AQEE-30, and LQEQ-19) were synthesized and screened for their ability to affect neuronal activity in vitro on hypothalamic brain slices and modulate food intake and energy expenditure after acute central administration in vivo. In addition, the effects of NERP-1, NERP-2, PGH-NH2, TLQP-21, TLQP-62, and HHPD-41 on energy homeostasis were studied after chronic central infusion. NERP-1, PGH-NH2, HHPD-41, and TLQP-62 increased the functional activity of hypothalamic neuronal networks. However, none of the peptides altered energy homeostasis after either acute or chronic ICV administration. The present data do not support the potential use of the tested VGF-derived peptides as novel anti-obesity drug candidates.
Collapse
Affiliation(s)
- Louise S Dalbøge
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Julie M Jacobsen
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Suneet Mehrotra
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Aaron J Mercer
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Nick Cox
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Fa Liu
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Camdin M Bennett
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Meerit Said
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | | | - Kirsten Raun
- Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Jakob L Hansen
- Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Kevin L Grove
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Arian F Baquero
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
15
|
Corda G, Noli B, Manconi B, Brancia C, Pellegrini M, Naro F, Olianas A, Ferri GL, Cocco C. TLQP-21 changes in response to a glucose load. Tissue Cell 2020; 68:101471. [PMID: 33348234 DOI: 10.1016/j.tice.2020.101471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The TLQP-21 peptide potentiates glucose-stimulated insulin secretion, hence we investigated its endogenous response to glucose. METHODS Fasted mice received intraperitoneal glucose (3 g/kg), or saline (controls), and were sacrificed 30 and 120 min later (4 groups, n = 6/group). We investigated TLQP-21 in pancreas and plasma using immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and high performance liquid chromatography (HPLC), as well as TLQP-21 receptors (gC1q-R and C3a-R1) expression in pancreas by immunohistochemistry. RESULTS In pancreas, TLQP-immunoreactivity (TLQP-ir.) was shown in insulin-, glucagon- and somatostatin-containing cells. Upon glucose, TLQP-ir. decreased at 30 min (∼40 % vs. controls), while returning to basal values at 120 min. In all groups, C3a-R1 was localized in ∼50 % of TLQP labelled islet cells (mostly central), while gC1q-R was detected in ∼25 % of TLQP cells (mainly peripheral). HPLC fractions of control pancreas extracts, assessed by ELISA, confirmed the presence of a TLQP-21 compatible-form (∼2.5 kDa MW). In plasma, TLQP-ir. increased at 30 min (∼30 %), with highest concentrations at 120 min (both: p<0.05 vs. controls), while HPLC fractions showed an increase in the TLQP-21 compatible form. CONCLUSIONS Upon hyperglycaemia, TLQP-21 would be released from islets, to enhance insulin secretion but we cannot exclude an autocrine activity which may regulate insulin storage/secretion.
Collapse
Affiliation(s)
- Giulia Corda
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy.
| | - Barbara Noli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Barbara Manconi
- Department of Life and Enviromental Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Carla Brancia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Manuela Pellegrini
- Department of Anatomical, Istological and Legal Medicine Sciences of the locomotor apparatus, University of "La Sapienza", Roma, Italy
| | - Fabio Naro
- Department of Anatomical, Istological and Legal Medicine Sciences of the locomotor apparatus, University of "La Sapienza", Roma, Italy
| | - Alessandra Olianas
- Department of Life and Enviromental Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Gian-Luca Ferri
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Cristina Cocco
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy
| |
Collapse
|
16
|
Koc G, Soyocak A, Alis H, Kankaya B, Kanigur G. Changes in VGF and C3aR1 gene expression in human adipose tissue in obesity. Mol Biol Rep 2020; 48:251-257. [PMID: 33306149 DOI: 10.1007/s11033-020-06043-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/28/2020] [Indexed: 01/03/2023]
Abstract
The VGF gene, which has been shown to be metabolically associated with energy balance, glucose homeostasis, insulin secretion process, and biological processes related to overeating, is prominent in relation to obesity. TLQP-21 neuropeptide, derived from the VGF, is considered to promote lipolysis by the beta-adrenergic pathway through targeting the C3aR1 receptor located in the adipocyte membrane. In this study, we aimed to measure the expression levels of the VGF and C3aR1 genes in the adipose tissue of obese subjects and individuals with normal weight determined based on body mass index (BMI), and to reveal the correlation of these levels with obesity. VGF and C3aR1 gene expression levels were measured using Real Time Polymerase Chain Reaction (RT PCR) in the visceral adipose tissue (VAT) samples of 52 obese patients (BMI ≥ 35 kg/m2) and 21 non-obese controls (BMI = 18.5-24.9 kg/m2). The results were statistically analyzed. The VGF expression was lower and the C3aR1 gene expression was higher in obese patients compared to the non-obese control group (p < 0.05). In obese patients, there was a statistically significant positive correlation of 85.6% between VGF and C3aR1, in which when one level increased, the other also increased (p < 0.05, r = 0.856). The findings show that the VGF may be significantly associated with obesity and is very important since it is the first to measure the level of VGF gene expression in human adipose tissue. This research provides new evidence of a link between obesity and VGF/C3aR1 and in the future may help design strategies to combat obesity.
Collapse
Affiliation(s)
- G Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| | - A Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - H Alis
- Department of General Surgery, Faculty of Medicine, Istanbul Aydin University VM Medical Park Florya Hospital, Istanbul, Turkey
| | - B Kankaya
- Department of General Surgery, Faculty of Medicine, Istanbul Aydin University VM Medical Park Florya Hospital, Istanbul, Turkey
| | - G Kanigur
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
17
|
Park O, Bang JK, Ryu K, Hwang E, Hong KS, Byun Y, Cheong C, Jeon YH. Structure of neuroendocrine regulatory peptide‐2 in membrane‐mimicking environments. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- One‐Sung Park
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Jeong Kyu Bang
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Kyoung‐Seok Ryu
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Eunha Hwang
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Kwan Soo Hong
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Youngjoo Byun
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
| | - Chaejoon Cheong
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Young Ho Jeon
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
| |
Collapse
|
18
|
Noli B, Brancia C, Corda G, Ferri GL, Cocco C. Dynamic of TLQP-peptides upon fasting. Tissue Cell 2020; 65:101368. [PMID: 32746995 DOI: 10.1016/j.tice.2020.101368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The VGF-derived TLQP peptides (TLQPp), a new potential drug target for obesity, are expressed in stomach, pancreas, adrenal gland as well as in adipose tissues, and, when exogenously injected, regulate energy expenditure and food intake. However, it is not clear if these peptides physiologically change in these organs in response to fasting. METHODS Rats were subdivided into four groups: (A) fed ad libitum, (B) fed with restrictions (once a day) (C) fast for 48 h and (D) fast for 48 h and then fed 1 h before sacrifice. Immunosorbent assay was used to possibly reveal TLQPp changes upon fasting in plasma as well as in pancreas, adrenal gland, stomach and adipose tissues. In the latter organs, we also measured the levels of the VGF precursor protein while immunohistochemistry was used to investigate the presence of the TLQP-21 receptors. RESULTS During fasting, TLQPp were down-regulated in the stomach (45 %), pancreas (47 %), adrenal gland (51 %) and WAT (45.2 %) in parallel with a significant increase in the blood (36.6 %), all versus ad libitum group. In the same organs where the TLQPp were decreased upon fasting, the VGF precursor levels were not changed. In ad libitum rats, TLQP-21 receptors were well represented within the same cells that expressed TLQPp, suggesting an autocrine activity to be better investigated. CONCLUSIONS During fasting, TLQPp are probably produced and immediately secreted into the blood circulation, until the hypoglycaemia is counteracted.
Collapse
Affiliation(s)
- Barbara Noli
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Carla Brancia
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Giulia Corda
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Gian-Luca Ferri
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Cristina Cocco
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy.
| |
Collapse
|
19
|
Human VGF-Derived Antidepressant Neuropeptide TLQP62 Promotes SH-SY5Y Neurite Outgrowth. J Mol Neurosci 2020; 70:1293-1302. [PMID: 32458204 DOI: 10.1007/s12031-020-01541-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/13/2020] [Indexed: 01/01/2023]
Abstract
TLQP62 is a neuropeptide derived from the neurotrophin-inducible VGF (non-acronymic) protein with antidepressant-like properties capable of inducing increased memory on the mouse hippocampus by promoting neurogenesis and synaptic plasticity through brain-derived neurotropic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB). Human SH-SY5Y neuroblastoma-derived cell line is widely used in neuroscience research and is known to undergo neurodifferentiation in the presence of all-trans retinoic acid by upregulating the expression of TrkB, making cells responsive to BDNF. As TLQP62 promotes BDNF expression, which in turn activates a BDNF/TrkB/CREB (cAMP response element-binding protein) pathway that upregulates VGF expression, there is a VGF-BDNF regulatory loop that seems to regulate neurogenesis. Therefore, here, we evaluate by morphological observation the ability of human TLQP62 to induce neuritogenesis of human SH-SY5Y neuroblastoma-derived cell line in a retinoic acid and BDFN-like way, making this cell line a suitable cell model for further studies concerning TLQP62 molecular mechanisms and signalling pathways. SIGNIFICANCE STATEMENT: VGF has been widely explored for its role in emotional behaviour and neuropsychiatric illness (Bartolomucci et al. 2011). Although VGF levels were found reduced in leukocytes of depressed patients, after antidepressant treatment or voluntary exercise, those levels were found to be restored in the hippocampus (Hunsberger et al. 2007; Thakker-Varia et al. 2007). Administration to hippocampal cells of TLQP62 produced an increase in synaptic charge that could explain this antidepressants effects (Alder et al. 2003). This interesting role of TLQP62 in the brain, especially in the hippocampus, makes this neuropeptide an attractive target for further investigation of its role in neurogenesis, learning, memory, and neurological disorders, and possible treatment development. Thus, the identification of a receptor(s) for this peptide and associated signalling pathway(s) is of high importance, as well as a proper cell model to perform those studies.
Collapse
|
20
|
Cho K, Jang YJ, Lee SJ, Jeon YN, Shim YL, Lee JY, Lim DS, Kim DH, Yoon SY. TLQP-21 mediated activation of microglial BV2 cells promotes clearance of extracellular fibril amyloid-β. Biochem Biophys Res Commun 2020; 524:764-771. [DOI: 10.1016/j.bbrc.2020.01.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
|
21
|
Zambelli V, Rizzi L, Delvecchio P, Bresciani E, Molteni L, Meanti R, Pascal V, Fehrentz JA, Omeljaniuk RJ, Bellani G, Torsello A. JMV5656, a short synthetic derivative of TLQP-21, alleviates acid-induced lung injury and fibrosis in mice. Pulm Pharmacol Ther 2020; 62:101916. [PMID: 32205280 DOI: 10.1016/j.pupt.2020.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
TLQP-21, a peptide encoded by the prohormone VGF, is expressed in neuroendocrine cells and can modulate inflammatory processes. Since TLQP-21 can bind the complement 3a receptor 1 on macrophages, interest has risen in this peptide as a potential drug for the treatment of Acute Respiratory Distress Syndrome (ARDS), whose hospital mortality can reach 35-46%. Since no effective pharmacologic therapies are available, our aim was to exploit the potential of a short analog of TLQP-21(JMV5656) in order to modulate the inflammatory process in ARDS and the progression to pulmonary fibrosis in an experimental model of unilateral acid aspiration in mice. Mice were divided in 2 treatment groups. In the acute protocol, mice received intra-peritoneal injection of either vehicle or 0.6 mg/kg JMV5656 on experimental days 1 and 2, and ARDS was induced on day 3 under deep anesthesia by instillation of HCl (1.5 ml/kg of 0.1 M HCl in 0.9% NaCl) into the right lung; all measurements were performed 24 h later. In the subacute protocol, mice were treated as previously, but treatment with vehicle or JMV5656 was repeated also on day 4 and measurements were made 2 weeks later. Twenty-four hours after acid instillation, the total number of immune cell in the BAL rose sharply due primarily to an increase in the PMN population which increased from 1% up to 58% of total cell numbers. JMV5656 significantly reduced PMN recruitment into the alveolar space, but had no effects on cytokine levels in BAL. Two weeks after acid injury, static compliance of the right lung was significantly higher in the JMV5656-treated group compared to vehicle-treated group. Treatment with JMV5656 also blunted the acid-induced collagen deposition in the right lung. These results suggest that JMV5656 can ameliorate mechanical compliance, and reduce collagen deposition in acid-injured lungs in mice. This effect was likely due to the ability of JMV5656 to inhibit PMN recruitment in the injured lung.
Collapse
Affiliation(s)
- Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Paolo Delvecchio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Verdiè Pascal
- Max Mousseron Institute of Biomolecules UMR5247, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Max Mousseron Institute of Biomolecules UMR5247, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | | | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
22
|
The VGF-derived Peptide TLQP21 Impairs Purinergic Control of Chemotaxis and Phagocytosis in Mouse Microglia. J Neurosci 2020; 40:3320-3331. [PMID: 32060170 DOI: 10.1523/jneurosci.1458-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/20/2019] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
Microglial cells are considered as sensors of brain pathology by detecting any sign of brain lesions, infections, or dysfunction and can influence the onset and progression of neurological diseases. They are capable of sensing their neuronal environment via many different signaling molecules, such as neurotransmitters, neurohormones and neuropeptides. The neuropeptide VGF has been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide and has been shown to signal via C3aR1 and C1qBP receptors. The effect of TLQP21 on microglial functions in health or disease is not known. Studying microglial cells in acute brain slices, we found that TLQP21 impaired metabotropic purinergic signaling. Specifically, it attenuated the ATP-induced activation of a K+ conductance, the UDP-stimulated phagocytic activity, and the ATP-dependent laser lesion-induced process outgrowth. These impairments were reversed by blocking C1qBP, but not C3aR1 receptors. While microglia in brain slices from male mice lack C3aR1 receptors, both receptors are expressed in primary cultured microglia. In addition to the negative impact on purinergic signaling, we found stimulating effects of TLQP21 in cultured microglia, which were mediated by C3aR1 receptors: it directly evoked membrane currents, stimulated basal phagocytic activity, evoked intracellular Ca2+ transient elevations, and served as a chemotactic signal. We conclude that TLQP21 has differential effects on microglia depending on C3aR1 activation or C1qBP-dependent attenuation of purinergic signaling. Thus, TLQP21 can modulate the functional phenotype of microglia, which may have an impact on their function in health and disease.SIGNIFICANCE STATEMENT The neuropeptide VGF and its peptides have been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide that activates C1qBP receptors, which are expressed by microglia. We show here, for the first time, that TLQP21 impairs P2Y-mediated purinergic signaling and related functions. These include modulation of phagocytic activity and responses to injury. As purinergic signaling is central for microglial actions in the brain, this TLQP21-mediated mechanism might regulate microglial activity in health and disease. We furthermore show that, in addition to C1qBP, functional C3aR1 responses contribute to TLQP21 action on microglia. However, C3aR1 responses were only present in primary cultures but not in situ, suggesting that the expression of these receptors might vary between different microglial activation states.
Collapse
|
23
|
Lyons C, Razzoli M, Larson E, Svedberg D, Frontini A, Cinti S, Vulchanova L, Sanders M, Thomas M, Bartolomucci A. Optogenetic-induced sympathetic neuromodulation of brown adipose tissue thermogenesis. FASEB J 2020; 34:2765-2773. [PMID: 31908033 PMCID: PMC7306786 DOI: 10.1096/fj.201901361rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 11/11/2022]
Abstract
The brown adipose tissue (BAT) is a thermogenic organ that plays a major role in energy balance, obesity, and diabetes due to the potent glucose and lipid clearance that fuels its thermogenesis, which is largely mediated via sympathetic nervous system activation. However, thus far there has been little experimental validation of the hypothesis that selective neuromodulation of the sympathetic nerves innervating the BAT is sufficient to elicit thermogenesis in mice. We generated mice expressing blue light-activated channelrhodopsin-2 (ChR2) in the sympathetic nerves innervating the BAT using two different strategies: injecting the BAT of C57Bl/6J mice with AAV6-hSyn-ChR2 (H134R)-EYFP; crossbreeding tyrosine hydroxylase-Cre mice with floxed-stop ChR2-EYFP mice. The nerves in the BAT expressing ChR2 were selectively stimulated with a blue LED light positioned underneath the fat pad of anesthetized mice, while the BAT and core temperatures were simultaneously recorded. Using immunohistochemistry we confirmed the selective expression of EYFP in TH positive nerves fibers. In addition, local optogenetic stimulation of the sympathetic nerves induced significant increase in the BAT temperature followed by an increase in core temperature in mice expressing ChR2, but not in the respective controls. The BAT activation was also paralleled by increased levels of pre-UCP1 transcript. Our results demonstrate that local optogenetic stimulation of the sympathetic nerves is sufficient to elicit BAT and core thermogenesis, thus suggesting that peripheral neuromodulation has the potential to be exploited as an alternative to pharmacotherapies to elicit organ activation and thus ameliorate type 2 diabetes and/or obesity.
Collapse
Affiliation(s)
- Carey Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455
| | - Erin Larson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455
| | - Daniel Svedberg
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455
| | - Andrea Frontini
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100, Pavia, Italy
| | - Saverio Cinti
- Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455
| | - Mark Sanders
- University Imaging Center, University of Minnesota, Minneapolis, MN, 55455
| | - Mark Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
24
|
El Gaamouch F, Audrain M, Lin WJ, Beckmann N, Jiang C, Hariharan S, Heeger PS, Schadt EE, Gandy S, Ehrlich ME, Salton SR. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener 2020; 15:4. [PMID: 31924226 PMCID: PMC6954537 DOI: 10.1186/s13024-020-0357-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiomic studies by several groups in the NIH Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) identified VGF as a major driver of Alzheimer's disease (AD), also finding that reduced VGF levels correlate with mean amyloid plaque density, Clinical Dementia Rating (CDR) and Braak scores. VGF-derived peptide TLQP-21 activates the complement C3a receptor-1 (C3aR1), predominantly expressed in the brain on microglia. However, it is unclear how mouse or human TLQP-21, which are not identical, modulate microglial function and/or AD progression. METHODS We performed phagocytic/migration assays and RNA sequencing on BV2 microglial cells and primary microglia isolated from wild-type or C3aR1-null mice following treatment with TLQP-21 or C3a super agonist (C3aSA). Effects of intracerebroventricular TLQP-21 delivery were evaluated in 5xFAD mice, a mouse amyloidosis model of AD. Finally, the human HMC3 microglial cell line was treated with human TLQP-21 to determine whether specific peptide functions are conserved from mouse to human. RESULTS We demonstrate that TLQP-21 increases motility and phagocytic capacity in murine BV2 microglial cells, and in primary wild-type but not in C3aR1-null murine microglia, which under basal conditions have impaired phagocytic function compared to wild-type. RNA sequencing of primary microglia revealed overlapping transcriptomic changes induced by treatment with TLQP-21 or C3a super agonist (C3aSA). There were no transcriptomic changes in C3aR1-null or wild-type microglia exposed to the mutant peptide TLQP-R21A, which does not activate C3aR1. Most of the C3aSA- and TLQP-21-induced differentially expressed genes were linked to cell migration and proliferation. Intracerebroventricular TLQP-21 administration for 28 days via implanted osmotic pump resulted in a reduction of amyloid plaques and associated dystrophic neurites and restored expression of subsets of Alzheimer-associated microglial genes. Finally, we found that human TLQP-21 activates human microglia in a fashion similar to activation of murine microglia by mouse TLQP-21. CONCLUSIONS These data provide molecular and functional evidence suggesting that mouse and human TLQP-21 modulate microglial function, with potential implications for the progression of AD-related neuropathology.
Collapse
Affiliation(s)
- Farida El Gaamouch
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
- Medical Research Center of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Noam Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Cheng Jiang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Siddharth Hariharan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter S. Heeger
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Sema4, Stamford, CT 06902 USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
25
|
Bresciani E, Possenti R, Coco S, Rizzi L, Meanti R, Molteni L, Locatelli V, Torsello A. TLQP-21, A VGF-Derived Peptide Endowed of Endocrine and Extraendocrine Properties: Focus on In Vitro Calcium Signaling. Int J Mol Sci 2019; 21:ijms21010130. [PMID: 31878142 PMCID: PMC6982260 DOI: 10.3390/ijms21010130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
VGF gene encodes for a neuropeptide precursor of 68 kDa composed by 615 (human) and 617 (rat, mice) residues, expressed prevalently in the central nervous system (CNS), but also in the peripheral nervous system (PNS) and in various endocrine cells. This precursor undergoes proteolytic cleavage, generating a family of peptides different in length and biological activity. Among them, TLQP-21, a peptide of 21 amino acids, has been widely investigated for its relevant endocrine and extraendocrine activities. The complement complement C3a receptor-1 (C3aR1) has been suggested as the TLQP-21 receptor and, in different cell lines, its activation by TLQP-21 induces an increase of intracellular Ca2+. This effect relies both on Ca2+ release from the endoplasmic reticulum (ER) and extracellular Ca2+ entry. The latter depends on stromal interaction molecules (STIM)-Orai1 interaction or transient receptor potential channel (TRPC) involvement. After Ca2+ entry, the activation of outward K+-Ca2+-dependent currents, mainly the KCa3.1 currents, provides a membrane polarizing influence which offset the depolarizing action of Ca2+ elevation and indirectly maintains the driving force for optimal Ca2+ increase in the cytosol. In this review, we address the main endocrine and extraendocrine actions displayed by TLQP-21, highlighting recent findings on its mechanism of action and its potential in different pathological conditions.
Collapse
Affiliation(s)
- Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
- Correspondence:
| | - Roberta Possenti
- Department of Systems Medicine, University of Roma Tor Vergata, 00133 Roma, Italy;
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| |
Collapse
|
26
|
Sahu BS, Rodriguez P, Nguyen ME, Han R, Cero C, Razzoli M, Piaggi P, Laskowski LJ, Pavlicev M, Muglia L, Mahata SK, O'Grady S, McCorvy JD, Baier LJ, Sham YY, Bartolomucci A. Peptide/Receptor Co-evolution Explains the Lipolytic Function of the Neuropeptide TLQP-21. Cell Rep 2019; 28:2567-2580.e6. [PMID: 31484069 PMCID: PMC6753381 DOI: 10.1016/j.celrep.2019.07.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/11/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Structural and functional diversity of peptides and GPCR result from long evolutionary processes. Even small changes in sequence can alter receptor activation, affecting therapeutic efficacy. We conducted a structure-function relationship study on the neuropeptide TLQP-21, a promising target for obesity, and its complement 3a receptor (C3aR1). After having characterized the TLQP-21/C3aR1 lipolytic mechanism, a homology modeling and molecular dynamics simulation identified the TLQP-21 binding motif and C3aR1 binding site for the human (h) and mouse (m) molecules. mTLQP-21 showed enhanced binding affinity and potency for hC3aR1 compared with hTLQP-21. Consistently, mTLQP-21, but not hTLQP-21, potentiates lipolysis in human adipocytes. These findings led us to uncover five mutations in the C3aR1 binding pocket of the rodent Murinae subfamily that are causal for enhanced calculated affinity and measured potency of TLQP-21. Identifying functionally relevant peptide/receptor co-evolution mechanisms can facilitate the development of innovative pharmacotherapies for obesity and other diseases implicating GPCRs.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Ruijun Han
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Phoenix, AZ, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mihaela Pavlicev
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Louis Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Scott O'Grady
- Department of Animal Science, University of Minnesota, 480 Haecker Hall, 1364 Eckles Avenue, St. Paul, MN, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Phoenix, AZ, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA.
| |
Collapse
|
27
|
Photoperiodic changes in adiposity increase sensitivity of female Siberian hamsters to systemic VGF derived peptide TLQP-21. PLoS One 2019; 14:e0221517. [PMID: 31465472 PMCID: PMC6715173 DOI: 10.1371/journal.pone.0221517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023] Open
Abstract
TLQP-21, a peptide encoded by the highly conserved vgf gene, is expressed in neuroendocrine cells and has been the most prominent VGF-derived peptide studied in relation to control of energy balance. The recent discovery that TLQP-21 is the natural agonist for the complement 3a receptor 1 (C3aR1) has revived interest in this peptide as a potential drug target for obesity. We have investigated its function in Siberian hamsters (Phodopus sungorus), a rodent that displays natural seasonal changes in body weight and adiposity as an adaptation to survive winter. We have previously shown that intracerebroventricular administration of TLQP-21 reduced food intake and body weight in hamsters in their long-day fat state. The aim of our current study was to determine the systemic actions of TLQP-21 on food intake, energy expenditure and body weight, and to establish whether adiposity affected these responses. Peripheral infusion of TLQP-21 (1mg/kg/day for 7 days) in lean hamsters exposed to short photoperiods (SP) reduced cumulative food intake in the home cage (p<0.05), and intake when measured in metabolic cages (P<0.01). Energy expenditure was significantly increased (p<0.001) by TLQP-21 infusion, this was associated with a significant increase in uncoupling protein 1 mRNA in brown adipose tissue (BAT) (p<0.05), and body weight was significantly reduced (p<0.05). These effects of systemic TLQP-21 treatment were not observed in hamsters exposed to long photoperiod (LP) with a fat phenotype. C3aR1 mRNA and protein were abundantly expressed in the hypothalamus, brown and white adipose tissue in hamsters, but changes in expression cannot explain the differential response to TLQP-21 in lean and fat hamsters.
Collapse
|
28
|
Striberny A, Jørgensen EH, Klopp C, Magnanou E. Arctic charr brain transcriptome strongly affected by summer seasonal growth but only subtly by feed deprivation. BMC Genomics 2019; 20:529. [PMID: 31248377 PMCID: PMC6598377 DOI: 10.1186/s12864-019-5874-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
Background The Arctic charr (Salvelinus alpinus) has a highly seasonal feeding cycle that comprises long periods of voluntary fasting and a short but intense feeding period during summer. Therefore, the charr represents an interesting species for studying appetite-regulating mechanisms in fish. Results In this study, we compared the brain transcriptomes of fed and feed deprived charr over a 4 weeks trial during their summer feeding season. Despite prominent differences in body condition between fed and feed deprived charr at the end of the trial, feed deprivation affected the brain transcriptome only slightly. In contrast, the transcriptome differed markedly over time in both fed and feed deprived charr, indicating strong shifts in basic cell metabolic processes possibly due to season, growth, temperature, or combinations thereof. The GO enrichment analysis revealed that many biological processes appeared to change in the same direction in both fed and feed deprived fish. In the feed deprived charr processes linked to oxygen transport and apoptosis were down- and up-regulated, respectively. Known genes encoding for appetite regulators did not respond to feed deprivation. Gene expression of Deiodinase 2 (DIO2), an enzyme implicated in the regulation of seasonal processes in mammals, was lower in response to season and feed deprivation. We further found a higher expression of VGF (non-acronymic) in the feed deprived than in the fed fish. This gene encodes for a neuropeptide associated with the control of energy metabolism in mammals, and has not been studied in relation to regulation of appetite and energy homeostasis in fish. Conclusions In the Arctic charr, external and endogenous seasonal factors for example the increase in temperature and their circannual growth cycle, respectively, evoke much stronger responses in the brain than 4 weeks feed deprivation. The absence of a central hunger response in feed deprived charr give support for a strong resilience to the lack of food in this high Arctic species. DIO2 and VGF may play a role in the regulation of energy homeostasis and need to be further studied in seasonal fish. Electronic supplementary material The online version of this article (10.1186/s12864-019-5874-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anja Striberny
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Christophe Klopp
- Plateforme Bioinformatique Toulouse, Midi-Pyrénées UBIA, INRA, Auzeville Castanet-Tolosan, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
29
|
Concha F, Prado G, Quezada J, Ramirez A, Bravo N, Flores C, Herrera JJ, Lopez N, Uribe D, Duarte-Silva L, Lopez-Legarrea P, Garcia-Diaz DF. Nutritional and non-nutritional agents that stimulate white adipose tissue browning. Rev Endocr Metab Disord 2019; 20:161-171. [PMID: 31020455 DOI: 10.1007/s11154-019-09495-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity is a public health problem present in both developed and developing countries. The white adipose tissue (WAT) is the main deposit of lipids when there is an excess of energy. Its pathological growth is directly linked to the development of obesity and to a wide number of comorbidities, such as insulin-resistance, cardiovascular disease, among others. In this scenario, it becomes imperative to develop new approaches to the treatment and prevention of obesity and its comorbidities. It has been documented that the browning of WAT could be a suitable strategy to tackle the obesity epidemic that is developing worldwide. Currently there is an intense search for bioactive compounds with anti-obesity properties, which present the particular ability to generate thermogenesis in the brown adipose tissue (BAT) or beige. The present study provide recent information of the bioactive nutritional compounds capable of inducing thermogenesis and therefore capable of generate positive effects on health.
Collapse
Affiliation(s)
- F Concha
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - G Prado
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - J Quezada
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - A Ramirez
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - N Bravo
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Flores
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - J J Herrera
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - N Lopez
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - D Uribe
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - L Duarte-Silva
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - P Lopez-Legarrea
- Centro de Investigacion Biomedica, Universidad Autonoma de Chile, Santiago, Chile
| | - Diego F Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Wu Y, Han M, Wang Y, Gao Y, Cui X, Xu P, Ji C, Zhong T, You L, Zeng Y. A Comparative Peptidomic Characterization of Cultured Skeletal Muscle Tissues Derived From db/db Mice. Front Endocrinol (Lausanne) 2019; 10:741. [PMID: 31736878 PMCID: PMC6828820 DOI: 10.3389/fendo.2019.00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
As an important secretory organ, skeletal muscle has drawn attention as a potential target tissue for type 2 diabetic mellitus (T2DM). Recent peptidomics approaches have been applied to identify secreted peptides with potential bioactive. However, comprehensive analysis of the secreted peptides from skeletal muscle tissues of db/db mice and elucidation of their possible roles in insulin resistance remains poorly characterized. Here, we adopted a label-free discovery using liquid chromatography tandem mass spectrometry (LC-MS/MS) technology and identified 63 peptides (42 up-regulated peptides and 21 down-regulated peptides) differentially secreted from cultured skeletal muscle tissues of db/db mice. Analysis of relative molecular mass (Mr), isoelectric point (pI) and distribution of Mr vs pI of differentially secreted peptides presented the general feature. Furthermore, Gene ontology (GO) and pathway analyses for the parent proteins made a comprehensive functional assessment of these differential peptides, indicating the enrichment in glycolysis/gluconeogenesis and striated muscle contraction processes. Intercellular location analysis pointed out most precursor proteins of peptides were cytoplasmic or cytoskeletal. Additionally, cleavage site analysis revealed that Lysine (N-terminal)-Alanine (C-terminal) and Lysine (N-terminal)-Leucine (C-terminal) represents the preferred cleavage sites for identified peptides and proceeding peptides respectively. Mapped to the precursors' sequences, most identified peptides were observed cleaved from creatine kinase m-type (KCRM) and fructose-bisphosphate aldolase A (Aldo A). Based on UniProt and Pfam database for specific domain structure or motif, 44 peptides out of total were positioned in the functional motif or domain from their parent proteins. Using C2C12 myotubes as cell model in vitro, we found several candidate peptides displayed promotive or inhibitory effects on insulin and mitochondrial-related pathways by an autocrine manner. Taken together, this study will encourage us to investigate the biologic functions and the potential regulatory mechanism of these secreted peptides from skeletal muscle tissues, thus representing a promising strategy to treat insulin resistance as well as the associated metabolic disorders.
Collapse
Affiliation(s)
- Yanting Wu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Affiliated Maternity and Child Health Care Hospital of Nantong University, NanTong, China
| | - Mei Han
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Tianying Zhong
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- *Correspondence: Lianghui You
| | - Yu Zeng
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Yu Zeng
| |
Collapse
|
31
|
Molteni L, Rizzi L, Bresciani E, Meanti R, Fehrentz JA, Verdié P, Omeljaniuk RJ, Biagini G, Locatelli V, Torsello A. STIM Proteins and Orai Ca 2+ Channels Are Involved in the Intracellular Pathways Activated by TLQP-21 in RAW264.7 Macrophages. Front Pharmacol 2018; 9:1386. [PMID: 30542288 PMCID: PMC6277904 DOI: 10.3389/fphar.2018.01386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
TLQP-21 is a neuropeptide which has been implicated in regulation of nociception and other relevant physiologic functions. Although recent studies identified C3a and gC1q receptors as targets for TLQP-21, its intracellular molecular mechanisms of action remain largely unidentified. Our aim was (i) to explore the intracellular signaling pathway(s) activated by JMV5656, a novel derivative of TLQP-21, in RAW264.7 macrophages, and (ii) to assess linkages of these pathways with its purported receptors. JMV5656 stimulated, in a dose-dependent fashion, a rapid and transient increase in intracellular Ca2+ concentrations in RAW264.7 cells; repeated exposure to the peptide resulted in a lower response, suggesting a possible desensitization mechanism of the receptor. In particular, JMV5656 increased cytoplasmic Ca2+ levels by a PLC-dependent release of Ca2+ from the endoplasmic reticulum. STIM proteins and Orai Ca2+ channels were activated and played a crucial role. In fact, treatment of the cells with U73122 and thapsigargin modulated the increase of intracellular Ca2+ levels stimulated by JMV5656. Moreover, in RAW264.7 cells intracellular Ca2+ increases did not occur through the binding of JMV5656 to the C3a receptor, since the increase of intracellular Ca2+ levels induced by JMV5656 was not affected by specific siRNA against C3aR. In summary, our study provides new indications for the downstream effects of JMV5656 in macrophages, suggesting that it could activate receptors different from the C3aR.
Collapse
Affiliation(s)
- Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jean-Alain Fehrentz
- CNRS, Max Mousseron Institute of Biomolecules UMR5247, ENSCM, University of Montpellier, Montpellier, France
| | - Pascal Verdié
- CNRS, Max Mousseron Institute of Biomolecules UMR5247, ENSCM, University of Montpellier, Montpellier, France
| | | | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Experimental Epileptology, University of Modena and Reggio Emilia, Modena, Italy
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
32
|
Mizoguchi T, Shimazawa M, Ohuchi K, Kuse Y, Nakamura S, Hara H. Impaired Cerebellar Development in Mice Overexpressing VGF. Neurochem Res 2018; 44:374-387. [PMID: 30460640 DOI: 10.1007/s11064-018-2684-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
VGF nerve growth factor inducible (VGF) is a neuropeptide precursor induced by brain-derived neurotrophic factor and nerve growth factor. VGF is increased in the prefrontal cortex and cerebrospinal fluid in schizophrenia patients. In our previous study, VGF-overexpressing mice exhibited schizophrenia-like behaviors and smaller brain weights. Brain developmental abnormality is one cause of mental illness. Research on brain development is important for discovery of pathogenesis of mental disorders. In the present study, we investigated the role of VGF on cerebellar development. We performed a histological analysis with cerebellar sections of adult and postnatal day 3 mice by Nissl staining. To investigate cerebellar development, we performed immunostaining with antibodies of immature and mature granule cell markers. To understand the mechanism underlying these histological changes, we examined MAPK, Wnt, and sonic hedgehog signaling by Western blot. Finally, we performed rotarod and footprint tests using adult mice to investigate motor function. VGF-overexpressing adult mice exhibited smaller cerebellar sagittal section area. In postnatal day 3 mice, a cerebellar sagittal section area reduction of the whole cerebellum and external granule layer and a decrease in the number of mature granule cells were found in VGF-overexpressing mice. Additionally, the number of proliferative granule cell precursors was lower in VGF-overexpressing mice. Phosphorylation of Trk and Erk1 were increased in the cerebellum of postnatal day 3 VGF-overexpressing mice. Adult VGF-overexpressing mice exhibited motor disability. All together, these findings implicate VGF in the development of cerebellar granule cells via promoting MAPK signaling and motor function in the adult stage.
Collapse
Affiliation(s)
- Takahiro Mizoguchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Yoshiki Kuse
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
33
|
Turolla EA, Valtorta S, Bresciani E, Fehrentz JA, Giuliano L, Stucchi S, Belloli S, Rainone P, Sudati F, Rizzi L, Molteni L, Verdiè P, Martinez J, Torsello A, Moresco RM, Todde S. Study of the Tissue Distribution of TLQP-21 in Mice Using [ 18F]JMV5763, a Radiolabeled Analog Prepared via [ 18F]Aluminum Fluoride Chelation Chemistry. Front Pharmacol 2018; 9:1274. [PMID: 30542281 PMCID: PMC6277862 DOI: 10.3389/fphar.2018.01274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/18/2018] [Indexed: 02/05/2023] Open
Abstract
TLQP-21 is a neuropeptide that is involved in the control of several physiological functions, including energy homeostasis. Since TLQP-21 could oppose the early phase of diet-induced obesity, it has raised a huge interest, but very little is known about its mechanisms of action on peripheral tissues. Our aim was to investigate TLQP-21 distribution in brain and peripheral tissues after systemic administration using positron emission tomography. We report here the radiolabeling of NODA-methyl phenylacetic acid (MPAA) functionalized JMV5763, a short analog of TLQP-21, with [18F]aluminum fluoride. Labeling of JMV5763 was initially performed manually, on a small scale, and then optimized and implemented on a fully automated radiosynthesis system. In the first experiment, mice were injected in the tail vein with [18F]JMV5763, and central and peripheral tissues were collected 13, 30, and 60 min after injection. Significant uptake of [18F]JMV5763 was found in stomach, intestine, kidney, liver, and adrenal gland. In the CNS, very low uptake values were measured in all tested areas, suggesting that the tracer does not efficiently cross the blood–brain barrier. Pretreatment with non-radioactive JMV5763 caused a significant reduction of tracer uptake only in stomach and intestine. In the second experiment, PET analysis was performed in vivo 10–120 min after i.v. [18F]JMV5763 administration. Results were consistent with those of the ex vivo determinations. PET images showed a progressive increase of [18F]JMV5763 uptake in intestine and stomach reaching a peak at 30 min, and decreasing at 120 min. Our results demonstrate that 18F-labeling of TLQP-21 analogs is a suitable method to study its distribution in the body.
Collapse
Affiliation(s)
- Elia A Turolla
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
| | - Silvia Valtorta
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,National Research Council, Institute of Molecular Bioimaging and Physiology, Milan, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Jean-Alain Fehrentz
- Institute of Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, School of Pharmacy, Montpellier, France
| | - Liliana Giuliano
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
| | - Stefano Stucchi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
| | - Sara Belloli
- National Research Council, Institute of Molecular Bioimaging and Physiology, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rainone
- Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy.,Doctorate School of Molecular and Translational Medicine, University of Milan, Milan, Italy
| | - Francesco Sudati
- Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Pascal Verdiè
- Institute of Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, School of Pharmacy, Montpellier, France
| | - Jean Martinez
- Institute of Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, School of Pharmacy, Montpellier, France
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,National Research Council, Institute of Molecular Bioimaging and Physiology, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy
| | - Sergio Todde
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
34
|
Takeuchi H, Inagaki S, Morozumi W, Nakano Y, Inoue Y, Kuse Y, Mizoguchi T, Nakamura S, Funato M, Kaneko H, Hara H, Shimazawa M. VGF nerve growth factor inducible is involved in retinal ganglion cells death induced by optic nerve crush. Sci Rep 2018; 8:16443. [PMID: 30401804 PMCID: PMC6219571 DOI: 10.1038/s41598-018-34585-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
VGF nerve growth factor inducible (VGF) is a polypeptide that is induced by neurotrophic factors and is involved in neurite growth and neuroprotection. The mRNA of the Vgf gene has been detected in the adult rat retina, however the roles played by VGF in the retina are still undetermined. Thus, the purpose of this study was to determine the effects of VGF on the retinal ganglion cells (RGCs) of mice in the optic nerve crush (ONC) model, rat-derived primary cultured RGCs and human induced pluripotent stem cells (iPSCs)-derived RGCs. The mRNA and protein of Vgf were upregulated after the ONC. Immunostaining showed that the VGF was located in glial cells including Müller glia and astrocytes but not in the retinal neurons and their axons. AQEE-30, a VGF peptide, suppressed the loss of RGCs induced by the ONC, and it increased survival rat-derived RGCs and promoted the outgrowth of neurites of rat and human iPSCs derived RGCs in vitro. These findings indicate that VGF plays important roles in neuronal degeneration and has protective effects against the ONC on RGCs. Thus, VGF should be considered as a treatment of RGCs degeneration.
Collapse
Affiliation(s)
- Hiroto Takeuchi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Inagaki
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Wataru Morozumi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yukimichi Nakano
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Inoue
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshiki Kuse
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Takahiro Mizoguchi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Michinori Funato
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Hideo Kaneko
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
35
|
Guo Z, Sahu BS, He R, Finan B, Cero C, Verardi R, Razzoli M, Veglia G, Di Marchi RD, Miles JM, Bartolomucci A. Clearance kinetics of the VGF-derived neuropeptide TLQP-21. Neuropeptides 2018; 71:97-103. [PMID: 29958697 PMCID: PMC6166661 DOI: 10.1016/j.npep.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
UNLABELLED TLQP-21 is a multifunctional neuropeptide and a promising new medicinal target for cardiometabolic and neurological diseases. However, to date its clearance kinetics and plasma stability have not been studied. The presence of four arginine residues led us to hypothesize that its half-life is relatively short. Conversely, its biological activities led us to hypothesize that the peptide is still taken up by adipose tissues effectively. [125I]TLQP-21 was i.v. administered in rats followed by chasing the plasma radioactivity and assessing tissue uptake. Plasma stability was measured using LC-MS. In vivo lipolysis was assessed by the palmitate rate of appearance. RESULTS A small single i.v. dose of [125I]TLQP-21 had a terminal half-life of 110 min with a terminal clearance rate constant, kt, of 0.0063/min, and an initial half-life of 0.97 min with an initial clearance rate constant, ki, of 0.71/min. The total net uptake by adipose tissue accounts for 4.4% of the entire dose equivalent while the liver, pancreas and adrenal gland showed higher uptake. Uptake by the brain was negligible, suggesting that i.v.-injected peptide does not cross the blood-brain-barrier. TLQP-21 sustained isoproterenol-stimulated lipolysis in vivo. Finally, TLQP-21 was rapidly degraded producing several N-terminal and central sequence fragments after 10 and 60 min in plasma in vitro. This study investigated the clearance and stability of TLQP-21 peptide for the first time. While its pro-lipolytic effect supports and extends previous findings, its short half-life and sequential cleavage in the plasma suggest strategies for chemical modifications in order to enhance its stability and therapeutic efficacy.
Collapse
Affiliation(s)
- ZengKui Guo
- Mayo Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Bhavani S Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rongjun He
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Raffaello Verardi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - John M Miles
- Mayo Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
36
|
Ukena K. Avian and murine neurosecretory protein GL participates in the regulation of feeding and energy metabolism. Gen Comp Endocrinol 2018; 260:164-170. [PMID: 28951261 DOI: 10.1016/j.ygcen.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023]
Abstract
Probing previously unknown neuropeptides and/or peptide hormones is essential for our understanding of the regulation of energy homeostasis in the brain. We recently performed a cDNA subtractive screening of the chicken hypothalamus, which contained one of the feeding and energy metabolic centers. We found a gene encoding a novel protein of 182 amino acid residues, including one putative small secretory protein of 80 amino acid residues. The C-terminal amino acids of the small protein were Gly-Leu-NH2, and as a result, the small protein was termed neurosecretory protein GL (NPGL). Subcutaneous and intracerebroventricular infusions of NPGL increased body mass gain in chicks, suggesting a central role for this protein in regulating growth and energy homeostasis. A database search revealed that the Npgl gene is conserved in vertebrates, including mice and rats. This review summarizes the advances in the characterization, localization, and biological action of NPGL, in birds and rodents.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| |
Collapse
|
37
|
Brancia C, Noli B, Boido M, Pilleri R, Boi A, Puddu R, Marrosu F, Vercelli A, Bongioanni P, Ferri GL, Cocco C. TLQP Peptides in Amyotrophic Lateral Sclerosis: Possible Blood Biomarkers with a Neuroprotective Role. Neuroscience 2018; 380:152-163. [PMID: 29588252 DOI: 10.1016/j.neuroscience.2018.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022]
Abstract
While the VGF-derived TLQP peptides have been shown to prevent neuronal apoptosis, and to act on synaptic strengthening, their involvement in Amyotrophic Lateral Sclerosis (ALS) remains unclarified. We studied human ALS patients' plasma (taken at early to late disease stages) and primary fibroblast cultures (patients vs controls), in parallel with SOD1-G93A transgenic mice (taken at pre-, early- and late symptomatic stages) and the mouse motor neuron cell line (NSC-34) treated with Sodium Arsenite (SA) to induce oxidative stress. TLQP peptides were measured by enzyme-linked immunosorbent assay, in parallel with gel chromatography characterization, while their localization was studied by immunohistochemistry. In controls, TLQP peptides, including forms compatible with TLQP-21 and 62, were revealed in plasma and spinal cord motor neurons, as well as in fibroblasts and NSC-34 cells. TLQP peptides were reduced in ALS patients' plasma starting in the early disease stage (14% of controls) and remaining so at the late stage (16% of controls). In mice, a comparable pattern of reduction was shown (vs wild type), in both plasma and spinal cord already in the pre-symptomatic phase (about 26% and 70%, respectively). Similarly, the levels of TLQP peptides were reduced in ALS fibroblasts (31% of controls) and in the NSC-34 treated with Sodium Arsenite (53% of decrease), however, the exogeneous TLQP-21 improved cell viability (SA-treated cells with TLQP-21, vs SA-treated cells only: about 83% vs. 75%). Hence, TLQP peptides, reduced upon oxidative stress, are suggested as blood biomarkers, while TLQP-21 exerts a neuroprotective activity.
Collapse
Affiliation(s)
- Carla Brancia
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy.
| | - Barbara Noli
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Dept. Neuroscience, University of Turin, Turin, Italy
| | - Roberta Pilleri
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Andrea Boi
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Roberta Puddu
- Dept. Neurology, Azienda Universitario Ospedaliera di Cagliari & University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Dept. Neurology, Azienda Universitario Ospedaliera di Cagliari & University of Cagliari, Cagliari, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Dept. Neuroscience, University of Turin, Turin, Italy
| | - Paolo Bongioanni
- Neurorehabilitation Unit, Dept. Neuroscience, University of Pisa, Pisa, Italy
| | - Gian-Luca Ferri
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Cristina Cocco
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
38
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
39
|
Li W, Webster KA, LeBlanc ME, Tian H. Secretogranin III: a diabetic retinopathy-selective angiogenic factor. Cell Mol Life Sci 2018; 75:635-647. [PMID: 28856381 PMCID: PMC5771826 DOI: 10.1007/s00018-017-2635-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
Abstract
Secretogranin III (Scg3) is a member of the granin protein family that regulates the biogenesis of secretory granules. Scg3 was recently discovered as an angiogenic factor, expanding its functional role to extrinsic regulation. Unlike many other known angiogenic factors, the pro-angiogenic actions of Scg3 are restricted to pathological conditions. Among thousands of quantified endothelial ligands, Scg3 has the highest binding activity ratio to diabetic vs. healthy mouse retinas and lowest background binding to normal vessels. In contrast, vascular endothelial growth factor binds to and stimulates angiogenesis of both diabetic and control vasculature. Consistent with its role in pathological angiogenesis, Scg3-neutralizing antibodies alleviate retinal vascular leakage in mouse models of diabetic retinopathy and retinal neovascularization in oxygen-induced retinopathy mice. This review summarizes our current knowledge of Scg3 as a regulatory protein of secretory granules, highlights its new role as a highly disease-selective angiogenic factor, and envisions Scg3 inhibitors as "selective angiogenesis blockers" for targeted therapy.
Collapse
Affiliation(s)
- Wei Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, 33136, USA.
- Vascular Biology Institute, University of Miami School of Medicine, Miami, FL, 33136, USA.
| | - Keith A Webster
- Vascular Biology Institute, University of Miami School of Medicine, Miami, FL, 33136, USA
- Department Pharmacology, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Michelle E LeBlanc
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Hong Tian
- Everglades Biopharma, Miami, FL, 33156, USA
| |
Collapse
|
40
|
Akhter S, Chakraborty S, Moutinho D, Álvarez-Coiradas E, Rosa I, Viñuela J, Domínguez E, García A, Requena JR. The human VGF-derived bioactive peptide TLQP-21 binds heat shock 71 kDa protein 8 (HSPA8)on the surface of SH-SY5Y cells. PLoS One 2017; 12:e0185176. [PMID: 28934328 PMCID: PMC5608341 DOI: 10.1371/journal.pone.0185176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/07/2017] [Indexed: 01/16/2023] Open
Abstract
VGF (non-acronymic)is a secreted chromogranin/secretogranin that gives rise to a number of bioactive peptides by a complex proteolysis mechanism. VGF-derived peptides exert an extensive array of biological effects in energy metabolism, mood regulation, pain, gastric secretion function, reproduction and, perhaps, cancer. It is therefore surprising that very little is known about receptors and binding partners of VGF-derived peptides and their downstream molecular mechanisms of action. Here, using affinity chromatography and mass spectrometry-based protein identification, we have identified the heat shock cognate 71 kDa protein A8 (HSPA8)as a binding partner of human TLQP-21 on the surface of human neuroblastomaSH-SY5Y cells. Binding of TLQP-21 to membrane associated HSPA8 in live SH-SY5Y cells was further supported by cross-linking to live cells. Interaction between HSPA8 and TLQP-21 was confirmed in vitro by label-free Dynamic Mass Redistribution (DMR) studies. Furthermore, molecular modeling studies show that TLQP-21 can be docked into the HSPA8 peptide binding pocket. Identification of HSPA8 as a cell surface binding partner of TLQP-21 opens new avenues to explore the molecular mechanisms of its physiological actions, and of pharmacological modulation thereof.
Collapse
Affiliation(s)
- Shamim Akhter
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | | | - Daniela Moutinho
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Elia Álvarez-Coiradas
- BioFarma Research Group, CIMUS, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Isaac Rosa
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Juan Viñuela
- Immunology Laboratory, Santiago University Hospital, Santiago de Compostela, Spain
| | - Eduardo Domínguez
- BioFarma Research Group, CIMUS, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Angel García
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| |
Collapse
|
41
|
Doolen S, Cook J, Riedl M, Kitto K, Kohsaka S, Honda CN, Fairbanks CA, Taylor BK, Vulchanova L. Complement 3a receptor in dorsal horn microglia mediates pronociceptive neuropeptide signaling. Glia 2017; 65:1976-1989. [PMID: 28850719 DOI: 10.1002/glia.23208] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/03/2023]
Abstract
The complement 3a receptor (C3aR1) participates in microglial signaling under pathological conditions and was recently shown to be activated by the neuropeptide TLQP-21. We previously demonstrated that TLQP-21 elicits hyperalgesia and contributes to nerve injury-induced hypersensitivity through an unknown mechanism in the spinal cord. Here we determined that this mechanism requires C3aR1 and that microglia are the cellular target for TLQP-21. We propose a novel neuroimmune signaling pathway involving TLQP-21-induced activation of microglial C3aR1 that then contributes to spinal neuroplasticity and neuropathic pain. This unique dual-ligand activation of C3aR1 by a neuropeptide (TLQP-21) and an immune mediator (C3a) represents a potential broad-spectrum mechanism throughout the CNS for integration of neuroimmune crosstalk at the molecular level.
Collapse
Affiliation(s)
- Suzanne Doolen
- Department of Physiology, University of Kentucky, 800 Rose Street, Lexington, Kentucky, 40536-0298
| | - Jennifer Cook
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Maureen Riedl
- Departments of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Kelley Kitto
- Departments of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
| | | | - Christopher N Honda
- Departments of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455.,Departments of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, 55455.,Departments of Pharmacology, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky, 800 Rose Street, Lexington, Kentucky, 40536-0298
| | - Lucy Vulchanova
- Departments of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
| |
Collapse
|
42
|
Iwakoshi-Ukena E, Shikano K, Kondo K, Taniuchi S, Furumitsu M, Ochi Y, Sasaki T, Okamoto S, Bentley GE, Kriegsfeld LJ, Minokoshi Y, Ukena K. Neurosecretory protein GL stimulates food intake, de novo lipogenesis, and onset of obesity. eLife 2017; 6. [PMID: 28799896 PMCID: PMC5553934 DOI: 10.7554/elife.28527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Mechanisms underlying the central regulation of food intake and fat accumulation are not fully understood. We found that neurosecretory protein GL (NPGL), a newly-identified neuropeptide, increased food intake and white adipose tissue (WAT) in rats. NPGL-precursor gene overexpression in the hypothalamus caused increases in food intake, WAT, body mass, and circulating insulin when fed a high calorie diet. Intracerebroventricular administration of NPGL induced de novo lipogenesis in WAT, increased insulin, and it selectively induced carbohydrate intake. Neutralizing antibody administration decreased the size of lipid droplets in WAT. Npgl mRNA expression was upregulated by fasting and low insulin levels. Additionally, NPGL-producing cells were responsive to insulin. These results point to NPGL as a novel neuronal regulator that drives food intake and fat deposition through de novo lipogenesis and acts to maintain steady-state fat level in concert with insulin. Dysregulation of NPGL may be a root cause of obesity. DOI:http://dx.doi.org/10.7554/eLife.28527.001 Throughout history, our ancestors needed to accumulate fat to survive during times when food sources were scarce. However, for most people in the modern age, food is abundant and eating too much is a major cause of weight gain, obesity and diseases affecting the metabolism. Obesity in particular, can lead to diseases such as diabetes and heart disease. Hunger and appetite are regulated by proteins and other chemicals that act as messengers, for example insulin, and a region of the brain called the hypothalamus. However, the full mechanisms that regulate these sensations remain unclear. Only recently, a protein called NPGL was discovered in a part of the hypothalamus of birds and mammals. However, it was not known if NPGL plays a role in regulating eating habits and weight gain. Iwakoshi-Ukena et al. have now discovered that NPGL is found in the hypothalamus of rats and is regulated by diet and insulin. When the gene for NPGL was manipulated to produce too much of the protein, rats fed a high calorie diet started to eat more, and gained more weight and body fat. Adding additional NPGL to their brains had the same effect. When the animals were fed a normal diet, NPGL only moderately affected how much they ate, but it substantially increased how much fat they produced. Iwakoshi-Ukena et al. also observed that when animals were starved and insulin levels were low, the rats started to produce more NPGL. These results suggest that NPGL plays a role in fat storage when energy sources are limited, and can contribute to obesity when too much NPGL is produced in animals on a high calorie diet. These findings indicate that NPGL could be an additional brain chemical that regulates hunger and fat storage in mammals. A next step will be to reveal the specific mechanisms by which NPGL regulates overeating and fat accumulation. These findings will further advance the study and treatment of obesity and obesity-related diseases. DOI:http://dx.doi.org/10.7554/eLife.28527.002
Collapse
Affiliation(s)
- Eiko Iwakoshi-Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Integrative Biology and The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, United States
| | - Kenshiro Shikano
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kunihiro Kondo
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shusuke Taniuchi
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Megumi Furumitsu
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuta Ochi
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tsutomu Sasaki
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Shiki Okamoto
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Sokendai (The Graduate University for Advanced Studies), Hayama, Japan.,Second Department of Internal Medicine (Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology), Graduate School of Medicine, University of the Ryukyus, Nakagami-gun, Japan
| | - George E Bentley
- Department of Integrative Biology and The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, United States
| | - Lance J Kriegsfeld
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, United States
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Sokendai (The Graduate University for Advanced Studies), Hayama, Japan
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Psychology and The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, United States
| |
Collapse
|
43
|
Jiang C, Lin WJ, Sadahiro M, Shin AC, Buettner C, Salton SR. Embryonic ablation of neuronal VGF increases energy expenditure and reduces body weight. Neuropeptides 2017; 64:75-83. [PMID: 28024880 PMCID: PMC5478485 DOI: 10.1016/j.npep.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
Germline ablation of VGF, a secreted neuronal, neuroendocrine, and endocrine peptide precursor, results in lean, hypermetabolic, and infertile adult mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes (Hahm et al., 1999, 2002). To assess whether this phenotype is predominantly driven by reduced VGF expression in developing and/or adult neurons, or in peripheral endocrine and neuroendocrine tissues, we generated and analyzed conditional VGF knockout mice, obtained by mating loxP-flanked (floxed) Vgf mice with either pan-neuronal Synapsin-Cre- or forebrain alpha-CaMKII-Cre-recombinase-expressing transgenic mice. Adult male and female mice, with conditional ablation of the Vgf gene in embryonic neurons had significantly reduced body weight, increased energy expenditure, and were resistant to diet-induced obesity. Conditional forebrain postnatal ablation of VGF in male mice, primarily in adult excitatory neurons, had no measurable effect on body weight nor on energy expenditure, but led to a modest increase in adiposity, partially overlapping the effect of AAV-Cre-mediated targeted ablation of VGF in the adult ventromedial hypothalamus and arcuate nucleus of floxed Vgf mice (Foglesong et al., 2016), and also consistent with results of icv delivery of the VGF-derived peptide TLQP-21 to adult mice, which resulted in increased energy expenditure and reduced adiposity (Bartolomucci et al., 2006). Because the lean, hypermetabolic phenotype of germline VGF knockout mice is to a great extent recapitulated in Syn-Cre+/-,Vgfflpflox/flpflox mice, we conclude that the metabolic profile of germline VGF knockout mice is largely the result of VGF ablation in embryonic CNS neurons, rather than peripheral endocrine and/or neuroendocrine cells, and that in forebrain structures such as hypothalamus, VGF and/or VGF-derived peptides play uniquely different roles in the developing and adult nervous system.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Wei-Jye Lin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Masato Sadahiro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Andrew C Shin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Christoph Buettner
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Stephen R Salton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| |
Collapse
|
44
|
Mizoguchi T, Minakuchi H, Ishisaka M, Tsuruma K, Shimazawa M, Hara H. Behavioral abnormalities with disruption of brain structure in mice overexpressing VGF. Sci Rep 2017; 7:4691. [PMID: 28680036 PMCID: PMC5498671 DOI: 10.1038/s41598-017-04132-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
Abstract
VGF nerve growth factor inducible (VGF) is a neuropeptide induced by nerve growth factor and brain-derived neurotrophic factor. This peptide is involved in synaptic plasticity, neurogenesis, and neurite growth in the brain. Patients with depression and bipolar disorder have lower-than-normal levels of VGF, whereas patients with schizophrenia and other cohorts of patients with depression have higher-than-normal levels. VGF knockout mice display behavioral abnormalities such as higher depressive behavior and memory dysfunction. However, it is unclear whether upregulation of VGF affects brain function. In the present study, we generated mice that overexpress VGF and investigated several behavioral phenotypes and the brain structure. These adult VGF-overexpressing mice showed (a) hyperactivity, working memory impairment, a higher depressive state, and lower sociality compared with wild-type mice; (b) lower brain weight without a change in body weight; (c) increased lateral ventricle volume compared with wild-type mice; and (d) striatal morphological defects. These results suggest that VGF may modulate a variety of behaviors and brain development. This transgenic mouse line may provide a useful model for research on mental illnesses.
Collapse
Affiliation(s)
- Takahiro Mizoguchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroko Minakuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Mitsue Ishisaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
45
|
Noli B, Sanna F, Brancia C, D'Amato F, Manconi B, Vincenzoni F, Messana I, Melis MR, Argiolas A, Ferri GL, Cocco C. Profiles of VGF Peptides in the Rat Brain and Their Modulations after Phencyclidine Treatment. Front Cell Neurosci 2017. [PMID: 28626390 PMCID: PMC5454051 DOI: 10.3389/fncel.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
From the VGF precursor protein originate several low molecular weight peptides, whose distribution in the brain and blood circulation is not entirely known. Among the VGF peptides, those containing the N-terminus portion were altered in the cerebro-spinal fluid (CSF) and hypothalamus of schizophrenia patients. "Hence, we aimed to better investigate the involvement of the VGF peptides in schizophrenia by studying their localization in the brain regions relevant for the disease, and revealing their possible modulations in response to certain neuronal alterations occurring in schizophrenia". We produced antibodies against different VGF peptides encompassing the N-terminus, but also C-terminus-, TLQP-, GGGE- peptide sequences, and the so named NERP-3 and -4. These antibodies were used to carry out specific ELISA and immunolocalization studies while mass spectrometry (MS) analysis was also performed to recognize the intact brain VGF fragments. We used a schizophrenia rat model, in which alterations in the prepulse inhibition (PPI) of the acoustic startle response occurred after PCP treatment. In normal rats, all the VGF peptides studied were distributed in the brain areas examined including hypothalamus, prefrontal cortex, hippocampus, accumbens and amygdaloid nuclei and also in the plasma. By liquid chromatography-high resolution mass, we identified different intact VGF peptide fragments, including those encompassing the N-terminus and the NERPs. PCP treatment caused behavioral changes that closely mimic schizophrenia, estimated by us as a disruption of PPI of the acoustic startle response. The PCP treatment also induced selective changes in the VGF peptide levels within certain brain areas. Indeed, an increase in VGF C-terminus and TLQP peptides was revealed in the prefrontal cortex (p < 0.01) where they were localized within parvoalbumin and tyrosine hydroxylase (TH) containing neurons, respectively. Conversely, in the nucleus accumbens, PCP treatment produced a down-regulation in the levels of VGF C-terminus-, N-terminus- and GGGE- peptides (p < 0.01), expressed in GABAergic- (C-terminus/GGGE) and somatostatin- (N-terminus) neurons. These results confirm that VGF peptides are widely distributed in the brain and modulated in specific areas involved in schizophrenia.
Collapse
Affiliation(s)
- Barbara Noli
- Neuro-Endocrine-Fluorecence (NEF) Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Fabrizio Sanna
- Neuropsychobiology Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Carla Brancia
- Neuro-Endocrine-Fluorecence (NEF) Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Filomena D'Amato
- Neuro-Endocrine-Fluorecence (NEF) Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of CagliariMonserrato, Italy
| | - Federica Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry, Catholic UniversityRome, Italy
| | - Irene Messana
- Institute of Chemistry of the Molecular Recognition, National Research Council (CNR)Rome, Italy
| | - Maria R Melis
- Neuropsychobiology Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Antonio Argiolas
- Neuropsychobiology Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Gian-Luca Ferri
- Neuro-Endocrine-Fluorecence (NEF) Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Cristina Cocco
- Neuro-Endocrine-Fluorecence (NEF) Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| |
Collapse
|
46
|
Montanari T, Pošćić N, Colitti M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obes Rev 2017; 18:495-513. [PMID: 28187240 DOI: 10.1111/obr.12520] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/21/2022]
Abstract
Obesity is the result of energy intake chronically exceeding energy expenditure. Classical treatments against obesity do not provide a satisfactory long-term outcome for the majority of patients. After the demonstration of functional brown adipose tissue in human adults, great effort is being devoted to develop therapies based on the adipose tissue itself, through the conversion of fat-accumulating white adipose tissue into energy-dissipating brown adipose tissue. Anti-obesity treatments that exploit endogenous, pharmacological and nutritional factors to drive such conversion are especially in demand. In the present review, we summarize the current knowledge about the various molecules that can be applied in promoting white-to-brown adipose tissue conversion and energy expenditure and the cellular mechanisms involved.
Collapse
Affiliation(s)
- T Montanari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - N Pošćić
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - M Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
47
|
Hwang W, Chiu YF, Kuo MH, Lee KL, Lee AC, Yu CC, Chang JL, Huang WC, Hsiao SH, Lin SE, Chou YT. Expression of Neuroendocrine Factor VGF in Lung Cancer Cells Confers Resistance to EGFR Kinase Inhibitors and Triggers Epithelial-to-Mesenchymal Transition. Cancer Res 2017; 77:3013-3026. [PMID: 28381546 DOI: 10.1158/0008-5472.can-16-3168] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/04/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022]
Abstract
Mutations in EGFR drive tumor growth but render tumor cells sensitive to treatment with EGFR tyrosine kinase inhibitors (TKI). Phenotypic alteration in epithelial-to-mesenchymal transition (EMT) has been linked to the TKI resistance in lung adenocarcinoma. However, the mechanism underlying this resistance remains unclear. Here we report that high expression of a neuroendocrine factor termed VGF induces the transcription factor TWIST1 to facilitate TKI resistance, EMT, and cancer dissemination in a subset of lung adenocarcinoma cells. VGF silencing resensitized EGFR-mutated lung adenocarcinoma cells to TKI. Conversely, overexpression of VGF in sensitive cells conferred resistance to TKIs and induced EMT, increasing migratory and invasive behaviors. Correlation analysis revealed a significant association of VGF expression with advanced tumor grade and poor survival in patients with lung adenocarcinoma. In a mouse xenograft model of lung adenocarcinoma, suppressing VGF expression was sufficient to attenuate tumor growth. Overall, our findings show how VGF can confer TKI resistance and trigger EMT, suggesting its potential utility as a biomarker and therapeutic target in lung adenocarcinoma. Cancer Res; 77(11); 3013-26. ©2017 AACR.
Collapse
Affiliation(s)
- Wen Hwang
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Fan Chiu
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Han Kuo
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuan-Lin Lee
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - An-Chun Lee
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Cherng Yu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Junn-Liang Chang
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan.,Department of Biomedical Engineering, Ming Chuan University, Taoyuan, Taiwan
| | - Wen-Chien Huang
- Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shih-Hsin Hsiao
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Sey-En Lin
- Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pathology, Taipei Municipal Wan Fang Hospital, Taipei, Taiwan
| | - Yu-Ting Chou
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
48
|
Molteni L, Rizzi L, Bresciani E, Possenti R, Petrocchi Passeri P, Ghè C, Muccioli G, Fehrentz JA, Verdié P, Martinez J, Omeljaniuk RJ, Biagini G, Binda A, Rivolta I, Locatelli V, Torsello A. Pharmacological and Biochemical Characterization of TLQP-21 Activation of a Binding Site on CHO Cells. Front Pharmacol 2017; 8:167. [PMID: 28424618 PMCID: PMC5371653 DOI: 10.3389/fphar.2017.00167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/14/2017] [Indexed: 11/16/2022] Open
Abstract
VGF is a propeptide of 617 amino acids expressed throughout the central and the peripheral nervous system. VGF and peptides derived from its processing have been found in dense core vesicles and are released from neuronal and neuroendocrine cells via the regulated secretory pathway. Among VGF-derived neuropeptides, TLQP-21 (VGF556-576) has raised a huge interest and is one of most studied. TLQP-21 is a multifunctional neuropeptide involved in the control of several physiological functions, potentially including energy homeostasis, pain modulation, stress responsiveness and reproduction. Although little information is available about its receptor and the intracellular mechanisms mediating its biological effects, recent reports suggest that TLQP-21 may bind to the complement receptors C3aR1 and/or gC1qR. The first aim of this study was to ascertain the existence and nature of TLQP-21 binding sites in CHO cells. Secondly, we endeavored to characterize the ligand binding to these sites by using a small panel of VGF-derived peptides. And finally, we investigated the influence of TLQP-21 on selected intracellular signaling pathways. We report that CHO cells express a single class of saturable and specific binding sites for TLQP-21 with an affinity and capacity of Kd = 0.55 ± 0.05 × 10-9 M and Bmax = 81.7 ± 3.9 fmol/mg protein, respectively. Among the many bioactive products derived from the C-terminal region of VGF that we tested, TLQP-21 was the most potent in stimulating intracellular calcium mobilization in CHO cells; this effect is primarily due to its C-terminal fragment (HFHH-10). TLQP-21 induced rapid and transient dephosphorylation of phospholipase Cγ1 and phospholipase A2. Generation of IP3 and diacylglycerol was crucial for TLQP-21 bioactivity. In conclusion, our results suggest that the receptor stimulated by TLQP-21 belongs to the family of the Gq-coupled receptors, and its activation first increases membrane-lipid derived second messengers which thereby induce the mobilization of Ca2+ from the endoplasmic reticulum followed by a slower store-operated Ca2+ entry from outside the cell.
Collapse
Affiliation(s)
- Laura Molteni
- Department of Medicine and Surgery, University of Milano-BicoccaMonza, Italy.,PhD Program in Neuroscience, Department of Medicine and Surgery, University of Milano-BicoccaMonza, Italy
| | - Laura Rizzi
- Department of Medicine and Surgery, University of Milano-BicoccaMonza, Italy
| | - Elena Bresciani
- Department of Medicine and Surgery, University of Milano-BicoccaMonza, Italy
| | - Roberta Possenti
- Department of Medicine of Systems, University of Rome "Tor Vergata"Rome, Italy
| | | | - Corrado Ghè
- Department of Drug Science and Technology, University of TurinTurin, Italy
| | - Giampiero Muccioli
- Department of Drug Science and Technology, University of TurinTurin, Italy
| | - Jean-Alain Fehrentz
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules UMR5247, University of Montpellier, École Nationale Supérieure de Chimie de MontpellierMontpellier, France
| | - Pascal Verdié
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules UMR5247, University of Montpellier, École Nationale Supérieure de Chimie de MontpellierMontpellier, France
| | - Jean Martinez
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules UMR5247, University of Montpellier, École Nationale Supérieure de Chimie de MontpellierMontpellier, France
| | | | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Anna Binda
- Department of Medicine and Surgery, University of Milano-BicoccaMonza, Italy
| | - Ilaria Rivolta
- Department of Medicine and Surgery, University of Milano-BicoccaMonza, Italy
| | - Vittorio Locatelli
- Department of Medicine and Surgery, University of Milano-BicoccaMonza, Italy
| | - Antonio Torsello
- Department of Medicine and Surgery, University of Milano-BicoccaMonza, Italy
| |
Collapse
|
49
|
Neuropeptide VGF Promotes Maturation of Hippocampal Dendrites That Is Reduced by Single Nucleotide Polymorphisms. Int J Mol Sci 2017; 18:ijms18030612. [PMID: 28287464 PMCID: PMC5372628 DOI: 10.3390/ijms18030612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide VGF (non-acronymic) is induced by brain-derived neurotrophic factor and promotes hippocampal neurogenesis, as well as synaptic activity. However, morphological changes induced by VGF have not been elucidated. Developing hippocampal neurons were exposed to VGF through bath application or virus-mediated expression in vitro. VGF-derived peptide, TLQP-62, enhanced dendritic branching, and outgrowth. Furthermore, VGF increased dendritic spine density and the proportion of immature spines. Spine formation was associated with increased synaptic protein expression and co-localization of pre- and postsynaptic markers. Three non-synonymous single nucleotide polymorphisms (SNPs) were selected in human VGF gene. Transfection of N2a cells with plasmids containing these SNPs revealed no relative change in protein expression levels and normal protein size, except for a truncated protein from the premature stop codon, E525X. All three SNPs resulted in a lower proportion of N2a cells bearing neurites relative to wild-type VGF. Furthermore, all three mutations reduced the total length of dendrites in developing hippocampal neurons. Taken together, our results suggest VGF enhances dendritic maturation and that these effects can be altered by common mutations in the VGF gene. The findings may have implications for people suffering from psychiatric disease or other conditions who may have altered VGF levels.
Collapse
|
50
|
Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain. PLoS One 2017; 12:e0172724. [PMID: 28235047 PMCID: PMC5325529 DOI: 10.1371/journal.pone.0172724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/08/2017] [Indexed: 12/16/2022] Open
Abstract
VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-thioglucose obese mice. However, this anabolic role for VGF has not been supported by a number of subsequent studies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice and protected against diet-induced obesity. Similarly, ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this was due to a decrease in food intake, with no effect on energy expenditure. Subsequently NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vector to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental effects or associated functional compensation. Initially, hypothalamic over-expression of VGF in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks post-infusion hamsters had increased oxygen consumption and a tendency to increased carbon dioxide production; this attenuated body weight gain, reduced interscapular white adipose tissue and resulted in a compensatory increase in food intake. These observed changes in energy expenditure and food intake were associated with an increase in the hypothalamic contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides during development, as well as in the adult.
Collapse
|