1
|
Qiu L, Wang H, Li W, Yang T, Bai H, Chang G. Analysis of the Transcriptional Control of Bcl11b in Chicken: IRF1 and GATA1 as Negative Regulators. Animals (Basel) 2025; 15:665. [PMID: 40075948 PMCID: PMC11898421 DOI: 10.3390/ani15050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
B-cell lymphoma/leukemia 11B (Bcl11b) plays roles in cell proliferation and apoptosis and holds a pivotal position within the immune system. Our previous studies have demonstrated that Bcl11b can promote cell apoptosis to curb ALV-J infection. To gain insights into the molecular mechanisms underlying Bcl11b expression regulation in chickens, we constructed various truncated dual luciferase reporter vectors and analyzed the promoter region of Bcl11b. We employed promoter-binding TF profiling assay and the dual luciferase assay of site-directed mutagenesis and the expression level of interfering or overexpressing transcription factors were used to study their transcriptional regulation mechanism of chicken Bcl11b and functions in ALV-J infection. Our findings revealed core regulatory regions of the chicken Bcl11b promoter. By examining the -606~-363 bp region, we identified several transcription factors and their binding sites. Mutational and functional analysis further revealed interferon regulatory factor-1 (IRF1) and GATA-binding protein 1 (GATA1) as critical factors for the repression of chicken Bcl11b, thereby affecting cell apoptosis and ALV-J replication. Furthermore, DNA methylation analysis indicated that methylation may also contribute to changes in Bcl11b promoter activity. These findings offer valuable insights into the regulatory mechanisms of chicken Bcl11b and provide promising targets for molecular breeding and genetic improvement of disease resistance in chickens.
Collapse
Affiliation(s)
- Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Q.); (H.W.); (W.L.); (T.Y.)
| | - Haojie Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Q.); (H.W.); (W.L.); (T.Y.)
| | - Wenhao Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Q.); (H.W.); (W.L.); (T.Y.)
| | - Ting Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Q.); (H.W.); (W.L.); (T.Y.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Q.); (H.W.); (W.L.); (T.Y.)
| |
Collapse
|
2
|
Li FL, Gu LH, Tong YL, Chen RQ, Chen SY, Yu XL, Liu N, Lu JL, Si Y, Sun JH, Chen J, Long YR, Gong LK. INHBA promotes tumor growth and induces resistance to PD-L1 blockade by suppressing IFN-γ signaling. Acta Pharmacol Sin 2025; 46:448-461. [PMID: 39223366 PMCID: PMC11747416 DOI: 10.1038/s41401-024-01381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Inhibin beta A (INHBA) and its homodimer activin A have pleiotropic effects on modulation of immune responses and tumor progression, but it remains uncertain whether tumors may release activin A to regulate anti-tumor immunity. In this study we investigated the effects and mechanisms of tumor intrinsic INHBA on carcinogenesis, tumor immunity and PD-L1 blockade. Bioinformatic analysis on the TCGA database revealed that INHBA expression levels were elevated in 33 cancer types, including breast cancer (BRCA) and colon adenocarcinoma (COAD). In addition, survival analysis also corroborated that INHBA expression was negatively correlated with the prognosis of many types of cancer patients. We demonstrated that gain or loss function of Inhba did not alter in vitro growth of colorectal cancer CT26 cells, but had striking impact on mouse tumor models including CT26, MC38, B16 and 4T1 models. By using the TIMER 2.0 tool, we figured out that in most cancer types, Inhba expression in tumors was inversely associated with the infiltration of CD4+ T and CD8+ T cells. In CT26 tumor-bearing mice, overexpression of tumor INHBA eliminated the anti-tumor effect of the PD-L1 antibody atezolizumab, whereas INHBA deficiency enhanced the efficacy of atezolizumab. We revealed that tumor INHBA significantly downregulated the interferon-γ (IFN-γ) signaling pathway. Tumor INHBA overexpression led to lower expression of PD-L1 induced by IFN-γ, resulting in poor responsiveness to anti-PD-L1 treatment. On the other hand, decreased secretion of IFN-γ-stimulated chemokines, including C-X-C motif chemokine 9 (CXCL9) and 10 (CXCL10), impaired the infiltration of effector T cells into the tumor microenvironment (TME). Furthermore, the activin A-specific antibody garetosmab improved anti-tumor immunity and its combination with the anti-PD-L1 antibody atezolizumab showed a superior therapeutic effect to monotherapy with garetosmab or atezolizumab. We demonstrate that INHBA and activin A are involved in anti-tumor immunity by inhibiting the IFN-γ signaling pathway, which can be considered as potential targets to improve the responsive rate of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Fang-Lin Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long-Hua Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Liang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run-Qiu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shi-Yi Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Lu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Ling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Si
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li-Kun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
3
|
Li W, Feng Y, Teng Y, Montero AF, Zhou Y, Zhang X, Ao J, Chen X. P300/RNA polymerase II mediates induction of the teleost viral RNA sensor MDA5 through the interferon regulatory factor IRF11. J Biol Chem 2025; 301:108193. [PMID: 39826689 PMCID: PMC11849104 DOI: 10.1016/j.jbc.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Melanoma differentiation-associated gene 5 (MDA5) initiates type I interferon (IFN) production by detecting cytosolic viral RNA. Mammalian MDA5 is an IFN-inducible gene and controlled by IFN regulatory factor 1 (IRF1). Teleost MDA5 also induces type I IFN production in response to viruses, yet its regulation remains largely unexplored. This study used the large yellow croaker Larimichthys crocea (Lc) as a model organism and revealed that a type I IFN (LcIFNi) triggers the expression of LcMDA5 through the JAK-STAT signaling pathway, which involves phosphorylation of LcIRF11. LcMDA5 was transcriptionally regulated by LcIRF11. Mechanistically, LcIRF11 interacts with the IFN-stimulated response element within the LcMDA5 promoter, via α3 helix and loop1, and loop2 and loop3 in its DNA binding domain. Overexpression of LcIRF11 recruits p300 and RNA polymerase II (Pol II) to the LcMDA5 promoter region. Pull-down analysis further confirmed the interaction of LcIRF11 with these two proteins. This recruitment was accompanied by increased levels of histone H3K27 acetylation (H3K27ac) and histone H3K4 trimethylation (H3K4me3), both of which are strongly associated with active transcription. Conversely, silencing LcIRF11 reduced p300 and Pol II recruitments and hindered the enrichment of H3K27ac/H3K4me3 modifications at the LcMDA5 promoter. Thus, here we present the first report of IRF11 orchestrating the activation of MDA5 transcription by binding to the IFN-stimulated response element of MDA5 promoter and forming a transcriptional complex with p300 and Pol II. Our results revealed an ancient regulatory mechanism of MDA5 in lower vertebrates, providing insights into its function and evolution.
Collapse
Affiliation(s)
- Wenxing Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Feng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Teng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Alvaro Fernandez Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuanyuan Zhou
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangyang Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingqun Ao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
4
|
Babadei O, Strobl B, Müller M, Decker T. Transcriptional control of interferon-stimulated genes. J Biol Chem 2024; 300:107771. [PMID: 39276937 PMCID: PMC11489399 DOI: 10.1016/j.jbc.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Interferon-induced genes are among the best-studied groups of coregulated genes. Nevertheless, intense research into their regulation, supported by new technologies, is continuing to provide insights into their many layers of transcriptional regulation and to reveal how cellular transcriptomes change with pathogen-induced innate and adaptive immunity. This article gives an overview of recent findings on interferon-induced gene regulation, paying attention to contributions beyond the canonical JAK-STAT pathways.
Collapse
Affiliation(s)
- Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria.
| |
Collapse
|
5
|
Omodaka S, Kato Y, Sato Y, Falcone-Juengert J, Zhang H, Kanoke A, Eckalbar WL, Endo H, Hsieh CL, Aran D, Liu J. Defective interferon signaling in the circulating monocytes of type 2 diabetic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597050. [PMID: 38895236 PMCID: PMC11185546 DOI: 10.1101/2024.06.03.597050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with poor outcome after stroke. Peripheral monocytes play a critical role in the secondary injury and recovery of damaged brain tissue after stroke, but the underlying mechanisms are largely unclear. To investigate transcriptome changes and molecular networks across monocyte subsets in response to T2DM and stroke, we performed single-cell RNA-sequencing (scRNAseq) from peripheral blood mononuclear cells and bulk RNA-sequencing from blood monocytes from four groups of adult mice, consisting of T2DM model db/db and normoglycemic control db/+ mice with or without ischemic stroke. Via scRNAseq we found that T2DM expands the monocyte population at the expense of lymphocytes, which was validated by flow cytometry. Among the monocytes, T2DM also disproportionally increased the inflammatory subsets with Ly6C+ and negative MHC class II expression (MO.6C+II-). Conversely, monocytes from control mice without stroke are enriched with steady-state classical monocyte subset of MO.6C+II+ but with the least percentage of MO.6C+II- subtype. Apart from enhancing inflammation and coagulation, enrichment analysis from both scRNAseq and bulk RNAseq revealed that T2DM specifically suppressed type-1 and type-2 interferon signaling pathways crucial for antigen presentation and the induction of ischemia tolerance. Preconditioning by lipopolysaccharide conferred neuroprotection against ischemic brain injury in db/+ but not in db/db mice and coincided with a lesser induction of brain Interferon-regulatory-factor-3 in the brains of the latter mice. Our results suggest that the increased diversity and altered transcriptome in the monocytes of T2DM mice underlie the worse stroke outcome by exacerbating secondary injury and potentiating stroke-induced immunosuppression. Significance Statement The mechanisms involved in the detrimental diabetic effect on stroke are largely unclear. We show here, for the first time, that peripheral monocytes have disproportionally altered the subsets and changed transcriptome under diabetes and/or stroke conditions. Moreover, genes in the IFN-related signaling pathways are suppressed in the diabetic monocytes, which underscores the immunosuppression and impaired ischemic tolerance under the T2DM condition. Our data raise a possibility that malfunctioned monocytes may systemically and focally affect the host, leading to the poor outcome of diabetes in the setting of stroke. The results yield important clues to molecular mechanisms involved in the detrimental diabetic effect on stroke outcome.
Collapse
|
6
|
Ravi Sundar Jose Geetha A, Fischer K, Babadei O, Smesnik G, Vogt A, Platanitis E, Müller M, Farlik M, Decker T. Dynamic control of gene expression by ISGF3 and IRF1 during IFNβ and IFNγ signaling. EMBO J 2024; 43:2233-2263. [PMID: 38658796 PMCID: PMC11148166 DOI: 10.1038/s44318-024-00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Type I interferons (IFN-I, including IFNβ) and IFNγ produce overlapping, yet clearly distinct immunological activities. Recent data show that the distinctness of global transcriptional responses to the two IFN types is not apparent when comparing their immediate effects. By analyzing nascent transcripts induced by IFN-I or IFNγ over a period of 48 h, we now show that the distinctiveness of the transcriptomes emerges over time and is based on differential employment of the ISGF3 complex as well as of the second-tier transcription factor IRF1. The distinct transcriptional properties of ISGF3 and IRF1 correspond with a largely diverse nuclear protein interactome. Mechanistically, we describe the specific input of ISGF3 and IRF1 into enhancer activation and the regulation of chromatin accessibility at interferon-stimulated genes (ISG). We further report differences between the IFN types in altering RNA polymerase II pausing at ISG 5' ends. Our data provide insight how transcriptional regulators create immunological identities of IFN-I and IFNγ.
Collapse
Affiliation(s)
- Aarathy Ravi Sundar Jose Geetha
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Katrin Fischer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Georg Smesnik
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | | | - Ekaterini Platanitis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria.
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria.
| |
Collapse
|
7
|
Xu X, Qiao D, Brasier AR. Cooperative interaction of interferon regulatory factor -1 and bromodomain-containing protein 4 on RNA polymerase activation for intrinsic innate immunity. Front Immunol 2024; 15:1366235. [PMID: 38601157 PMCID: PMC11004252 DOI: 10.3389/fimmu.2024.1366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The human orthopneumovirus, Respiratory Syncytial Virus (RSV), is the causative agent of severe lower respiratory tract infections (LRTI) and exacerbations of chronic lung diseases. In immune competent hosts, RSV productively infects highly differentiated epithelial cells, where it elicits robust anti-viral, cytokine and remodeling programs. By contrast, basal cells are relatively resistant to RSV infection, in part, because of constitutive expression of an intrinsic innate immune response (IIR) consisting of a subgroup of interferon (IFN) responsive genes. The mechanisms controlling the intrinsic IIR are not known. Methods Here, we use human small airway epithelial cell hSAECs as a multipotent airway stem cell model to examine regulatory control of an intrinsic IIR pathway. Results We find hSAECs express patterns of intrinsic IIRs, highly conserved with pluri- and multi-potent stem cells. We demonstrate a core intrinsic IIR network consisting of Bone Marrow Stromal Cell Antigen 2 (Bst2), Interferon Induced Transmembrane Protein 1 (IFITM1) and Toll-like receptor (TLR3) expression are directly under IRF1 control. Moreover, expression of this intrinsic core is rate-limited by ambient IRF1• phospho-Ser 2 CTD RNA Polymerase II (pSer2 Pol II) complexes binding to their proximal promoters. In response to RSV infection, the abundance of IRF1 and pSer2 Pol II binding is dramatically increased, with IRF1 complexing to the BRD4 chromatin remodeling complex (CRC). Using chromatin immunoprecipitation in IRF1 KD cells, we find that the binding of BRD4 is IRF1 independent. Using a small molecule inhibitor of the BRD4 acetyl lysine binding bromodomain (BRD4i), we further find that BRD4 bromodomain interactions are required for stable BRD4 promoter binding to the intrinsic IIR core promoters, as well as for RSV-inducible pSer2 Pol II recruitment. Surprisingly, BRD4i does not disrupt IRF1-BRD4 interactions, but disrupts both RSV-induced BRD4 and IRF1 interactions with pSer2 Pol II. Conclusions We conclude that the IRF1 functions in two modes- in absence of infection, ambient IRF1 mediates constitutive expression of the intrinsic IIR, whereas in response to RSV infection, the BRD4 CRC independently activates pSer2 Pol II to mediates robust expression of the intrinsic IIR. These data provide insight into molecular control of anti-viral defenses of airway basal cells.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Naigles B, Narla AV, Soroczynski J, Tsimring LS, Hao N. Quantifying dynamic pro-inflammatory gene expression and heterogeneity in single macrophage cells. J Biol Chem 2023; 299:105230. [PMID: 37689116 PMCID: PMC10579967 DOI: 10.1016/j.jbc.2023.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023] Open
Abstract
Macrophages must respond appropriately to pathogens and other pro-inflammatory stimuli in order to perform their roles in fighting infection. One way in which inflammatory stimuli can vary is in their dynamics-that is, the amplitude and duration of stimulus experienced by the cell. In this study, we performed long-term live cell imaging in a microfluidic device to investigate how the pro-inflammatory genes IRF1, CXCL10, and CXCL9 respond to dynamic interferon-gamma (IFNγ) stimulation. We found that IRF1 responds to low concentration or short duration IFNγ stimulation, whereas CXCL10 and CXCL9 require longer or higherconcentration stimulation to be expressed. We also investigated the heterogeneity in the expression of each gene and found that CXCL10 and CXCL9 have substantial cell-to-cell variability. In particular, the expression of CXCL10 appears to be largely stochastic with a subpopulation of nonresponding cells across all the stimulation conditions tested. We developed both deterministic and stochastic models for the expression of each gene. Our modeling analysis revealed that the heterogeneity in CXCL10 can be attributed to a slow chromatin-opening step that is on a similar timescale to that of adaptation of the upstream signal. In this way, CXCL10 expression in individual cells can remain stochastic in response to each pulse of repeated stimulation, which we also validated by experiments. Together, we conclude that pro-inflammatory genes in the same signaling pathway can respond to dynamic IFNγ stimulus with very different response features and that upstream signal adaptation can contribute to shaping heterogeneous gene expression.
Collapse
Affiliation(s)
- Beverly Naigles
- Department of Molecular Biology, University of California San Diego, La Jolla, California, USA
| | - Avaneesh V Narla
- Department of Physics, University of California San Diego, La Jolla, California, USA
| | - Jan Soroczynski
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, New York, USA
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California San Diego, La Jolla, California, USA
| | - Nan Hao
- Department of Molecular Biology, University of California San Diego, La Jolla, California, USA; Synthetic Biology Institute, University of California San Diego, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
9
|
Schwartz I, Vunjak M, Budroni V, Cantoran García A, Mastrovito M, Soderholm A, Hinterndorfer M, de Almeida M, Hacker K, Wang J, Froussios K, Jude J, Decker T, Zuber J, Versteeg GA. SPOP targets the immune transcription factor IRF1 for proteasomal degradation. eLife 2023; 12:e89951. [PMID: 37622993 PMCID: PMC10491434 DOI: 10.7554/elife.89951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Adaptation of the functional proteome is essential to counter pathogens during infection, yet precisely timed degradation of these response proteins after pathogen clearance is likewise key to preventing autoimmunity. Interferon regulatory factor 1 (IRF1) plays an essential role as a transcription factor in driving the expression of immune response genes during infection. The striking difference in functional output with other IRFs is that IRF1 also drives the expression of various cell cycle inhibiting factors, making it an important tumor suppressor. Thus, it is critical to regulate the abundance of IRF1 to achieve a 'Goldilocks' zone in which there is sufficient IRF1 to prevent tumorigenesis, yet not too much which could drive excessive immune activation. Using genetic screening, we identified the E3 ligase receptor speckle type BTB/POZ protein (SPOP) to mediate IRF1 proteasomal turnover in human and mouse cells. We identified S/T-rich degrons in IRF1 required for its SPOP MATH domain-dependent turnover. In the absence of SPOP, elevated IRF1 protein levels functionally increased IRF1-dependent cellular responses, underpinning the biological significance of SPOP in curtailing IRF1 protein abundance.
Collapse
Affiliation(s)
- Irene Schwartz
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
| | - Milica Vunjak
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
| | - Valentina Budroni
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
| | - Adriana Cantoran García
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| | - Marialaura Mastrovito
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| | - Adrian Soderholm
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
| | - Matthias Hinterndorfer
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
| | - Melanie de Almeida
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
| | - Kathrin Hacker
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| | - Jingkui Wang
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
| | - Kimon Froussios
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
| | - Julian Jude
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
| | - Thomas Decker
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
- Medical University of Vienna, Vienna BioCenterViennaAustria
| | - Gijs A Versteeg
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| |
Collapse
|
10
|
Sekrecka A, Kluzek K, Sekrecki M, Boroujeni ME, Hassani S, Yamauchi S, Sada K, Wesoly J, Bluyssen HAR. Time-dependent recruitment of GAF, ISGF3 and IRF1 complexes shapes IFNα and IFNγ-activated transcriptional responses and explains mechanistic and functional overlap. Cell Mol Life Sci 2023; 80:187. [PMID: 37347298 DOI: 10.1007/s00018-023-04830-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
To understand in detail the transcriptional and functional overlap of IFN-I- and IFN-II-activated responses, we used an integrative RNAseq-ChIPseq approach in Huh7.5 cells and characterized the genome-wide role of pSTAT1, pSTAT2, IRF9 and IRF1 in time-dependent ISG expression. For the first time, our results provide detailed insight in the timely steps of IFNα- and IFNγ-induced transcription, in which pSTAT1- and pSTAT2-containing ISGF3 and GAF-like complexes and IRF1 are recruited to individual or combined ISRE and GAS composite sites in a phosphorylation- and time-dependent manner. Interestingly, composite genes displayed a more heterogeneous expression pattern, as compared to GAS (early) and ISRE genes (late), with the time- and phosphorylation-dependent recruitment of GAF, ISGF3 and IRF1 after IFNα stimulation and GAF and IRF1 after IFNγ. Moreover, functional composite genes shared features of GAS and ISRE genes through transcription factor co-binding to closely located sites, and were able to sustain IFN responsiveness in STAT1-, STAT2-, IRF9-, IRF1- and IRF9/IRF1-mutant Huh7.5 cells compared to Wt cells. Thus, the ISRE + GAS composite site acted as a molecular switch, depending on the timely available components and transcription factor complexes. Consequently, STAT1, STAT2 and IRF9 were identified as functional composite genes that are part of a positive feedback loop controlling long-term IFNα and IFNγ responses. More important, in the absence of any one of the components, the positive feedback regulation of the ISGF3 and GAF components appeared to be preserved. Together, these findings provide further insight in the existence of a novel ISRE + GAS composite-dependent intracellular amplifier circuit prolonging ISG expression and controlling cellular responsiveness to different types of IFNs and subsequent antiviral activity. It also offers an explanation for the existing molecular and functional overlap between IFN-I- and IFN-II-activated ISG expression.
Collapse
Affiliation(s)
- Agata Sekrecka
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Kluzek
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Michal Sekrecki
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mahdi Eskandarian Boroujeni
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Sanaz Hassani
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Shota Yamauchi
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Joanna Wesoly
- High Throughput Technologies Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A R Bluyssen
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
11
|
Ma H, Hu T, Tao W, Tong J, Han Z, Herndler-Brandstetter D, Wei Z, Liu R, Zhou T, Liu Q, Xu X, Zhang K, Zhou R, Cho JH, Li HB, Huang H, Flavell RA, Zhu S. A lncRNA from an inflammatory bowel disease risk locus maintains intestinal host-commensal homeostasis. Cell Res 2023; 33:372-388. [PMID: 37055591 PMCID: PMC10156687 DOI: 10.1038/s41422-023-00790-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/10/2023] [Indexed: 04/15/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are known to have complex, genetically influenced etiologies, involving dysfunctional interactions between the intestinal immune system and the microbiome. Here, we characterized how the RNA transcript from an IBD-associated long non-coding RNA locus ("CARINH-Colitis Associated IRF1 antisense Regulator of Intestinal Homeostasis") protects against IBD. We show that CARINH and its neighboring gene coding for the transcription factor IRF1 together form a feedforward loop in host myeloid cells. The loop activation is sustained by microbial factors, and functions to maintain the intestinal host-commensal homeostasis via the induction of the anti-inflammatory factor IL-18BP and anti-microbial factors called guanylate-binding proteins (GBPs). Extending these mechanistic insights back to humans, we demonstrate that the function of the CARINH/IRF1 loop is conserved between mice and humans. Genetically, the T allele of rs2188962, the most probable causal variant of IBD within the CARINH locus from the human genetics study, impairs the inducible expression of the CARINH/IRF1 loop and thus increases genetic predisposition to IBD. Our study thus illustrates how an IBD-associated lncRNA maintains intestinal homeostasis and protects the host against colitis.
Collapse
Affiliation(s)
- Hongdi Ma
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Taidou Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanyin Tao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiyu Tong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zili Han
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tingyue Zhou
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiuyuan Liu
- The Key Laboratory of Digestive Diseases of Anhui Province, Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuemei Xu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongbin Zhou
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Judy H Cho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- School of Data Science, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
| |
Collapse
|
12
|
Subramani A, Hite MEL, Garcia S, Maxwell J, Kondee H, Millican GE, McClelland EE, Seipelt-Thiemann RL, Nelson DE. Regulation of macrophage IFNγ-stimulated gene expression by the transcriptional coregulator CITED1. J Cell Sci 2023; 136:jcs260529. [PMID: 36594555 PMCID: PMC10112972 DOI: 10.1242/jcs.260529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023] Open
Abstract
Macrophages serve as a first line of defense against microbial pathogens. Exposure to interferon-γ (IFNγ) increases interferon-stimulated gene (ISG) expression in these cells, resulting in enhanced antimicrobial and proinflammatory activity. Although this response must be sufficiently vigorous to ensure the successful clearance of pathogens, it must also be carefully regulated to prevent tissue damage. This is controlled in part by CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2), a transcriptional coregulator that limits ISG expression by inhibiting STAT1 and IRF1. Here, we show that the closely related Cited1 is an ISG, which is expressed in a STAT1-dependent manner, and that IFNγ stimulates the nuclear accumulation of CITED1 protein. In contrast to CITED2, ectopic CITED1 enhanced the expression of a subset of ISGs, including Ccl2, Ifit3b, Isg15 and Oas2. This effect was reversed in a Cited1-null cell line produced by CRISPR-based genomic editing. Collectively, these data show that CITED1 maintains proinflammatory gene expression during periods of prolonged IFNγ exposure and suggest that there is an antagonistic relationship between CITED proteins in the regulation of macrophage inflammatory function. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aarthi Subramani
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Maria E. L. Hite
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Sarah Garcia
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Jack Maxwell
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Hursha Kondee
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Grace E. Millican
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Erin E. McClelland
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
| | | | - David E. Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| |
Collapse
|
13
|
Aparici-Herraiz I, Sánchez-Sánchez G, Batlle C, Rehues P, López-Serrat M, Valverde-Estrella L, Lloberas J, Celada A. IRF1 Is Required for MDA5 (IFIH1) Induction by IFN-α, LPS, and poly(I:C) in Murine Macrophages. J Innate Immun 2022; 15:297-316. [PMID: 36380629 PMCID: PMC10643899 DOI: 10.1159/000527008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2023] Open
Abstract
Melanoma differentiation-associated protein 5 (MDA5) induces type I interferons (IFNs) after the recognition of viral RNA. In addition, gain-of-function mutations in the interferon induced with helicase C domain 1 (IFIH1) gene, which encodes MDA5, lead to type I interferonopathies. Here, we show that Mda5 is highly expressed in murine macrophages and is regulated by pro-inflammatory stimuli such as the cytokines IFN-α and IFN-γ, the TLR ligand LPS, and a mimic of dsRNA, poly(I:C). Mda5 induction is mediated through the production of reactive oxygen species. The induction by IFN-α or LPS occurs at the transcriptional level since the Mda5 mRNA half-life before and after induction is very stable. Interestingly, STAT1 is required for Mda5 induction by IFN-α, LPS, or poly(I:C). The time course of induction of at least 3 h and the need for protein synthesis indicate that Mda5 requires an intermediate protein for transcription. In transient transfection experiments, we found that a 105-bp fragment of this gene, between -1153 and -1258 bp relative to the transcription start site, is required for transcription. In this specific region, we observed a sequence containing an IRF-binding motif, which, when mutated, abolishes the induction of Mda5. This sequence is strongly conserved in the IFIH1 promoters of eutherian mammals and in other distant species. Kinetic experiments, chromatin immunoprecipitation assays, and gene-silencing experiments revealed that IRF1 is required for induction of Mda5 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jorge Lloberas
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Celada
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Varzari A, Deyneko IV, Bruun GH, Dembic M, Hofmann W, Cebotari VM, Ginda SS, Andresen BS, Illig T. Candidate genes and sequence variants for susceptibility to mycobacterial infection identified by whole-exome sequencing. Front Genet 2022; 13:969895. [PMID: 36338958 PMCID: PMC9632272 DOI: 10.3389/fgene.2022.969895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Inborn errors of immunity are known to influence susceptibility to mycobacterial infections. The aim of this study was to characterize the genetic profile of nine patients with mycobacterial infections (eight with BCGitis and one with disseminated tuberculosis) from the Republic of Moldova using whole-exome sequencing. In total, 12 variants in eight genes known to be associated with Mendelian Susceptibility to Mycobacterial Disease (MSMD) were detected in six out of nine patients examined. In particular, a novel splice site mutation c.373–2A>C in STAT1 gene was found and functionally confirmed in a patient with disseminated tuberculosis. Trio analysis was possible for seven out of nine patients, and resulted in 23 candidate variants in 15 novel genes. Four of these genes - GBP2, HEATR3, PPP1R9B and KDM6A were further prioritized, considering their elevated expression in immune-related tissues. Compound heterozygosity was found in GBP2 in a single patient, comprising a maternally inherited missense variant c.412G>A/p.(Ala138Thr) predicted to be deleterious and a paternally inherited intronic mutation c.1149+14T>C. Functional studies demonstrated that the intronic mutation affects splicing and the level of transcript. Finally, we analyzed pathogenicity of variant combinations in gene pairs and identified five patients with putative oligogenic inheritance. In summary, our study expands the spectrum of genetic variation contributing to susceptibility to mycobacterial infections in children and provides insight into the complex/oligogenic disease-causing mode.
Collapse
Affiliation(s)
- Alexander Varzari
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Moldova
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- *Correspondence: Alexander Varzari,
| | - Igor V. Deyneko
- Laboratory of Functional Genomics, Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Victor M. Cebotari
- Municipal Hospital of Phthisiopneumology, Department of Pediatrics, Kishinev, Moldova
| | - Sergei S. Ginda
- Laboratory of Immunology and Allergology, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Moldova
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Schwarzfischer M, Niechcial A, Handler K, Morsy Y, Wawrzyniak M, Laimbacher AS, Atrott K, Manzini R, Baebler K, Hering L, Katkeviciutė E, Häfliger J, Lang S, Keller ME, Woodtli J, Eisenbeiss L, Kraemer T, Schraner EM, Wiesendanger M, Zeissig S, Rogler G, Moor AE, Scharl M, Spalinger MR. TiO 2 nanoparticles abrogate the protective effect of the Crohn's disease-associated variation within the PTPN22 gene locus. Gut 2022; 72:1101-1114. [PMID: 36191962 DOI: 10.1136/gutjnl-2021-325911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/04/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) is a multifactorial condition driven by genetic and environmental risk factors. A genetic variation in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene has been associated with autoimmune disorders while protecting from the IBD subtype Crohn's disease. Mice expressing the murine orthologous PTPN22-R619W variant are protected from intestinal inflammation in the model of acute dextran sodium sulfate (DSS)-induced colitis. We previously identified food-grade titanium dioxide (TiO2, E171) as a neglected IBD risk factor. Here, we investigate the interplay of the PTPN22 variant and TiO2-mediated effects during IBD pathogenesis. DESIGN Acute DSS colitis was induced in wild-type and PTPN22 variant mice (PTPN22-R619W) and animals were treated with TiO2 nanoparticles during colitis induction. Disease-triggering mechanisms were investigated using bulk and single-cell RNA sequencing. RESULTS In mice, administration of TiO2 nanoparticles abrogated the protective effect of the variant, rendering PTPN22-R619W mice susceptible to DSS colitis. In early disease, cytotoxic CD8+ T-cells were found to be reduced in the lamina propria of PTPN22-R619W mice, an effect reversed by TiO2 administration. Normalisation of T-cell populations correlated with increased Ifng expression and, at a later stage of disease, the promoted prevalence of proinflammatory macrophages that triggered severe intestinal inflammation. CONCLUSION Our findings indicate that the consumption of TiO2 nanoparticles might have adverse effects on the gastrointestinal health of individuals carrying the PTPN22 variant. This demonstrates that environmental factors interact with genetic risk variants and can reverse a protective mechanism into a disease-promoting effect.
Collapse
Affiliation(s)
- Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea S Laimbacher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roberto Manzini
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Egle Katkeviciutė
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Janine Häfliger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maja E Keller
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Jérôme Woodtli
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Lisa Eisenbeiss
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Elisabeth M Schraner
- Institutes of Veterinary Anatomy and Virology, University of Zurich, Zurich, Switzerland
| | - Mahesa Wiesendanger
- Institutes of Veterinary Anatomy and Virology, University of Zurich, Zurich, Switzerland
| | - Sebastian Zeissig
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, and Department of Medicine I, University Medical Center Dresden, Dresden, Germany
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Zhang Y, Liao Y, Hang Q, Sun D, Liu Y. GBP2 acts as a member of the interferon signalling pathway in lupus nephritis. BMC Immunol 2022; 23:44. [PMID: 36115937 PMCID: PMC9482746 DOI: 10.1186/s12865-022-00520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Lupus nephritis (LN) is a common and serious clinical manifestation of systemic lupus erythematosus. However, the pathogenesis of LN is not fully understood. The currently available treatments do not cure the disease and appear to have a variety of side effects in the long term. The purpose of this study was to search for key molecules involved in the LN immune response through bioinformatics techniques to provide a reference for LN-specific targeted therapy. The GSE112943 dataset was downloaded from the Gene Expression Omnibus database, and 20 of the samples were selected for analysis. In total, 2330 differentially expressed genes were screened. These genes were intersected with a list of immune genes obtained from the IMMPORT immune database to obtain 128 differentially expressed immune-related genes. Enrichment analysis showed that most of these genes were enriched in the interferon signalling pathway. Gene set enrichment analysis revealed that the sample was significantly enriched for expression of the interferon signalling pathway. Further analysis of the core gene cluster showed that nine genes, GBP2, VCAM1, ADAR, IFITM1, BST2, MX2, IRF5, OAS1 and TRIM22, were involved in the interferon signalling pathway. According to our analysis, the guanylate binding protein 2 (GBP2), interferon regulatory factor 5 and 2′-5′-oligoadenylate synthetase 1 (OAS1) genes are involved in three interferon signalling pathways. At present, we do not know whether GBP2 is associated with LN. Therefore, this study focused on the relationship between GBP2 and LN pathogenesis. We speculate that GBP2 may play a role in the pathogenesis of LN as a member of the interferon signalling pathway. Further immunohistochemical results showed that the expression of GBP2 was increased in the renal tissues of LN patients compared with the control group, confirming this conjecture. In conclusion, GBP2 is a member of the interferon signalling pathway that may have implications for the pathogenesis of LN and serves as a potential biomarker for LN.
Collapse
|
17
|
Romeike M, Spach S, Huber M, Feng S, Vainorius G, Elling U, Versteeg GA, Buecker C. Transient upregulation of IRF1 during exit from naive pluripotency confers viral protection. EMBO Rep 2022; 23:e55375. [PMID: 35852463 PMCID: PMC9442322 DOI: 10.15252/embr.202255375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Stem cells intrinsically express a subset of genes which are normally associated with interferon stimulation and the innate immune response. However, the expression of these interferon-stimulated genes (ISG) in stem cells is independent from external stimuli such as viral infection. Here, we show that the interferon regulatory factor 1, Irf1, is directly controlled by the murine formative pluripotency gene regulatory network and transiently upregulated during the transition from naive to formative pluripotency. IRF1 binds to regulatory regions of a conserved set of ISGs and is required for their faithful expression upon exit from naive pluripotency. We show that in the absence of IRF1, cells exiting the naive pluripotent stem cell state are more susceptible to viral infection. Irf1 therefore acts as a link between the formative pluripotency network, regulation of innate immunity genes, and defense against viral infections during formative pluripotency.
Collapse
Affiliation(s)
- Merrit Romeike
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Stephanie Spach
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Marie Huber
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Songjie Feng
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Gintautas Vainorius
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Gjis A Versteeg
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Christa Buecker
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| |
Collapse
|
18
|
Brar HK, Roy G, Kanojia A, Madan E, Madhubala R, Muthuswami R. Chromatin-Remodeling Factor BRG1 Is a Negative Modulator of L. donovani in IFNγ Stimulated and Infected THP-1 Cells. Front Cell Infect Microbiol 2022; 12:860058. [PMID: 35433496 PMCID: PMC9011159 DOI: 10.3389/fcimb.2022.860058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Intracellular pathogens manipulate the host cell for their own survival by contributing to modifications of host epigenome, and thus, altering expression of genes involved in the pathogenesis. Both ATP-dependent chromatin remodeling complex and histone modifications has been shown to be involved in the activation of IFNγ responsive genes. Leishmania donovani is an intracellular pathogen that causes visceral leishmaniasis. The strategies employed by Leishmania donovani to modulate the host epigenome in order to overcome the host defense for their persistence has been worked out in this study. We show that L. donovani negatively affects BRG1, a catalytic subunit of mammalian SWI/SNF chromatin remodeling complex, to alter IFNγ induced host responses. We observed that L. donovani infection downregulates BRG1 expression both at transcript and protein levels in cells stimulated with IFNγ. We also observed a significant decrease in IFNγ responsive gene, Class II transactivator (CIITA), as well as its downstream genes, MHC-II (HLA-DR and HLA-DM). Also, the occupancy of BRG1 at CIITA promoters I and IV was disrupted. A reversal in CIITA expression and decreased parasite load was observed with BRG1 overexpression, thus, suggesting BRG1 is a potential negative regulator for the survival of intracellular parasites in an early phase of infection. We also observed a decrease in H3 acetylation at the promoters of CIITA, post parasite infection. Silencing of HDAC1, resulted in increased CIITA expression, and further decreased parasite load. Taken together, we suggest that intracellular parasites in an early phase of infection negatively regulates BRG1 by using host HDAC1 for its survival inside the host.
Collapse
Affiliation(s)
- Harsimran Kaur Brar
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gargi Roy
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Akanksha Kanojia
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Evanka Madan
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rentala Madhubala
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Rentala Madhubala, ; Rohini Muthuswami,
| | - Rohini Muthuswami
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Rentala Madhubala, ; Rohini Muthuswami,
| |
Collapse
|
19
|
Platanitis E, Gruener S, Ravi Sundar Jose Geetha A, Boccuni L, Vogt A, Novatchkova M, Sommer A, Barozzi I, Müller M, Decker T. Interferons reshape the 3D conformation and accessibility of macrophage chromatin. iScience 2022; 25:103840. [PMID: 35243225 PMCID: PMC8857492 DOI: 10.1016/j.isci.2022.103840] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 01/25/2022] [Indexed: 11/30/2022] Open
Abstract
Engagement of macrophages in innate immune responses is directed by type I and type II interferons (IFN-I and IFN-γ, respectively). IFN triggers drastic changes in cellular transcriptomes, executed by JAK-STAT signal transduction and the transcriptional control of interferon-stimulated genes (ISG) by STAT transcription factors. Here, we study the immediate-early nuclear response to IFN-I and IFN-γ in murine macrophages. We show that the mechanism of gene control by both cytokines includes a rapid increase of DNA accessibility and rearrangement of the 3D chromatin contacts particularly between open chromatin of ISG loci. IFN-stimulated gene factor 3 (ISGF3), the major transcriptional regulator of ISG, controlled homeostatic and, most notably, induced-state DNA accessibility at a subset of ISG. Increases in DNA accessibility correlated with the appearance of activating histone marks at surrounding nucleosomes. Collectively our data emphasize changes in the three-dimensional nuclear space and epigenome as an important facet of transcriptional control by the IFN-induced JAK-STAT pathway.
Collapse
Affiliation(s)
| | - Stephan Gruener
- Max Perutz Labs, University of Vienna, Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Laura Boccuni
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Alexander Vogt
- Vienna Biocenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Andreas Sommer
- Vienna Biocenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Iros Barozzi
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Seese SE, Deml B, Muheisen S, Sorokina E, Semina EV. Genetic disruption of zebrafish mab21l1 reveals a conserved role in eye development and affected pathways. Dev Dyn 2021; 250:1056-1073. [PMID: 33570754 PMCID: PMC8349561 DOI: 10.1002/dvdy.312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The male-abnormal 21 like (MAB21L) genes are important in human ocular development. Homozygous loss of MAB21L1 leads to corneal dystrophy in all affected individuals along with cataracts and buphthalmos in some. The molecular function and downstream pathways of MAB21L factors are largely undefined. RESULTS We generated the first mab21l1 zebrafish mutant carrying a putative loss-of-function allele, c.107delA p.(Lys36Argfs*7). At the final stages of embryonic development, homozygous mab21l1c.107delA fish displayed enlarged anterior chambers and corneal thinning which progressed with age. Additional studies revealed increased cell death in the mutant corneas, transformation of the cornea into a skin-like epithelium, and progressive lens degeneration with development of fibrous masses in the anterior chamber. RNA-seq of wild-type and mutant ocular transcriptomes revealed significant changes in expression of several genes, including irf1a and b, stat1, elf3, krt17, tlr9, and loxa associated with immunity and/or corneal function. Abnormal expression of lysyl oxidases have been previously linked with corneal thinning, fibrosis, and lens defects in mammals, suggesting a role for loxa misexpression in the progressive mab21l1c.107delA eye phenotype. CONCLUSIONS Zebrafish mab21l1 is essential for normal corneal development, similar to human MAB21L1. The identified molecular changes in mab21l1c.107delA mutants provide the first clues about possible affected pathways.
Collapse
Affiliation(s)
- Sarah E. Seese
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, Wisconsin
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brett Deml
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, Wisconsin
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin
- PreventionGenetics, Marshfield, Wisconsin
| | - Sanaa Muheisen
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena Sorokina
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena V. Semina
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, Wisconsin
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Children's of Wisconsin, Milwaukee, Wisconsin
- Children's Research Institute, Medical College of Wisconsin, Children's of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
21
|
Xu X, Wu Y, Yi K, Hu Y, Ding W, Xing C. IRF1 regulates the progression of colorectal cancer via interferon‑induced proteins. Int J Mol Med 2021; 47:104. [PMID: 33907823 PMCID: PMC8054637 DOI: 10.3892/ijmm.2021.4937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Radiation is one of the main methods for the treatment of colorectal cancer (CRC) before or after surgery. However, radiotherapy tolerance of patients with CRC is often a major concern. Interferon regulatory factor 1 (IRF1) is a member of the IRF family and is involved in the development of multiple diseases, including tumors. The present study investigated the role of IRF1 in the development and radiation sensitivity of CRC. Immunohistochemistry was performed to examine the expression levels of IRF1 in tissue samples from patients with CRC, as well as in nude mice. MTT, 5‑ethynyl‑20‑deoxyuridine, colony formation, cell cycle alteration and apoptosis assays were performed in CRC cell lines. Western blotting and immunofluorescence were used to detect the expression levels of a series of proteins. RNA sequencing was applied to identify genes whose expression was upregulated by IRF1 overexpression. Xenograft nude mouse models and hematoxylin and eosin staining were used to validate the present findings in vivo. It was revealed that the expression levels of IRF1 were significantly lower in CRC tissues than in adjacent tissues. IRF1 upregulation inhibited cell proliferation and colony formation, caused G1 cell arrest, promoted cell apoptosis, and enhanced the sensitivity of CRC cells to X‑ray irradiation. The role of IRF1 in promoting the radiosensitivity of CRC was further demonstrated in nude mice with CRC xenografts. In addition, RNA sequencing revealed that overexpression of IRF1 in CRC cells significantly increased the expression levels of interferon‑induced protein family members interferon α inducible protein 6, interferon induced transmembrane protein 1 and interferon induced protein 35 (fold change >2.0). In summary, the present study demonstrated that the upregulation of IRF1 inhibited the progression and promoted the radiosensitivity of CRC, likely by regulating interferon‑induced proteins.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Yong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ke Yi
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Yan Hu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Weiqun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
22
|
Kishimoto K, Wilder CL, Buchanan J, Nguyen M, Okeke C, Hoffmann A, Cheng QJ. High Dose IFN- β Activates GAF to Enhance Expression of ISGF3 Target Genes in MLE12 Epithelial Cells. Front Immunol 2021; 12:651254. [PMID: 33897699 PMCID: PMC8062733 DOI: 10.3389/fimmu.2021.651254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon β (IFN-β) signaling activates the transcription factor complex ISGF3 to induce gene expression programs critical for antiviral defense and host immune responses. It has also been observed that IFN-β activates a second transcription factor complex, γ-activated factor (GAF), but the significance of this coordinated activation is unclear. We report that in murine lung epithelial cells (MLE12) high doses of IFN-β indeed activate both ISGF3 and GAF, which bind to distinct genomic locations defined by their respective DNA sequence motifs. In contrast, low doses of IFN-β preferentially activate ISGF3 but not GAF. Surprisingly, in MLE12 cells GAF binding does not induce nearby gene expression even when strongly bound to the promoter. Yet expression of interferon stimulated genes is enhanced when GAF and ISGF3 are both active compared to ISGF3 alone. We propose that GAF may function as a dose-sensitive amplifier of ISG expression to enhance antiviral immunity and establish pro-inflammatory states.
Collapse
Affiliation(s)
- Kensei Kishimoto
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, United States
| | - Catera L Wilder
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Justin Buchanan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Minh Nguyen
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Chidera Okeke
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Quen J Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States.,Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
23
|
A data-driven computational model enables integrative and mechanistic characterization of dynamic macrophage polarization. iScience 2021; 24:102112. [PMID: 33659877 PMCID: PMC7895754 DOI: 10.1016/j.isci.2021.102112] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
Macrophages are highly plastic immune cells that dynamically integrate microenvironmental signals to shape their own functional phenotypes, a process known as polarization. Here we develop a large-scale mechanistic computational model that for the first time enables a systems-level characterization, from quantitative, temporal, dose-dependent, and single-cell perspectives, of macrophage polarization driven by a complex multi-pathway signaling network. The model was extensively calibrated and validated against literature and focused on in-house experimental data. Using the model, we generated dynamic phenotype maps in response to numerous combinations of polarizing signals; we also probed into an in silico population of model-based macrophages to examine the impact of polarization continuum at the single-cell level. Additionally, we analyzed the model under an in vitro condition of peripheral arterial disease to evaluate strategies that can potentially induce therapeutic macrophage repolarization. Our model is a key step toward the future development of a network-centric, comprehensive "virtual macrophage" simulation platform.
Collapse
|
24
|
Liu Y, Huang Z, Wei Y, Zhang M, Li X, Yang S, Wang H. Identification of STXBP6-IRF1 positive feedback loop in regulation of PD-L1 in cancer. Cancer Immunol Immunother 2021; 70:275-287. [PMID: 32700091 PMCID: PMC10992488 DOI: 10.1007/s00262-020-02678-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
The clinical success of immune checkpoint blockade against diverse human cancers highlights the critical importance of insightful understanding into mechanisms underlying PD-L1 regulation. IFN-γ released by intratumoral lymphocytes regulates PD-L1 expression in tumor cells through JAK-STAT-IRF1 pathway, while the molecular events prime IRF1 to translocate into nucleus are still obscure. Here we identified STXBP6, previously recognized involving in SNARE complex assembly, negatively regulates PD-L1 transcription via retention of IRF1 in cytoplasm. IFN-γ exposure stimulates accumulation of cytosolic IRF1, which eventually saturates STXBP6 and triggers nuclear translocation of IRF1. Nuclear IRF1 in turn inhibits STXBP6 expression and thereby liberates more IRF1 to migrate to nucleus. Therefore, we identified a novel positive feedback loop between STXBP6 and IRF1 in regulation of PD-L1 expression in cancer. Furthermore, we demonstrate STXBP6 overexpression significantly inhibits T cell activation both in vitro and in vivo. These findings offer new insight into the complexity of PD-L1 expression in cancer and suggest a valuable measure to predict the response to PD-1/PD-L1-based immunotherapy.
Collapse
Affiliation(s)
- Yanbin Liu
- Centre for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China.
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, China.
| | - Zhicong Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Yanli Wei
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Mingming Zhang
- Centre for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Xingzhi Li
- Longgang District People's Hospital of Shenzhen, Shenzhen, 5181722, China
| | - Shulan Yang
- Centre for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
25
|
Engin AB, Engin A. Indoleamine 2,3-Dioxygenase Activity-Induced Acceleration of Tumor Growth, and Protein Kinases-Related Novel Therapeutics Regimens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:339-356. [PMID: 33539022 DOI: 10.1007/978-3-030-49844-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is overexpressed in response to interferon-gamma (IFN-γ). IDO-mediated degradation of tryptophan (Trp) along the kynurenine (Kyn) pathway by immune cells is associated with the anti-microbial, and anti-tumor defense mechanisms. In contrast, IDO is constitutively expressed by various tumors and creates an immunosuppressive microenvironment around the tumor tissue both by depletion of the essential amino acid Trp and by formation of Kyn, which is immunosuppressive metabolite of Trp. IDO may activate its own expression in human cancer cells via an autocrine aryl hydrocarbon receptor (AhR)- interleukin 6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) signaling loop. Although IDO is not a unique marker, in many clinical trials serum IDO activity is suggested to be an important parameter in the pathogenesis of cancer development and growth. Measuring IDO activity in serum seems to be an indicator of cancer growth rate, however, it is controversial whether this approach can be used as a reliable guide in cancer patients treated with IDO inhibitors. Thus, IDO immunostaining is strongly recommended for the identification of higher IDO producing tumors, and IDO inhibitors should be included in post-operative complementary therapy in IDO positive cancer cases only. Novel therapies that target the IDO pathway cover checkpoint protein kinases related combination regimens. Currently, multi-modal therapies combining IDO inhibitors and checkpoint kinase blockers in addition to T regulatory (Treg) cell-modifying treatments seem promising.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
26
|
Yang X, Liu H, Ye T, Duan C, Lv P, Wu X, Liu J, Jiang K, Lu H, Yang H, Xia D, Peng E, Chen Z, Tang K, Ye Z. AhR activation attenuates calcium oxalate nephrocalcinosis by diminishing M1 macrophage polarization and promoting M2 macrophage polarization. Am J Cancer Res 2020; 10:12011-12025. [PMID: 33204326 PMCID: PMC7667681 DOI: 10.7150/thno.51144] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Calcium oxalate (CaOx) crystal can trigger kidney injury, which contributes to the pathogenesis of nephrocalcinosis. The phenotypes of infiltrating macrophage may impact CaOx-mediated kidney inflammatory injury as well as crystal deposition. How aryl hydrocarbon receptor (AhR) regulates inflammation and macrophage polarization is well understood; however, how it modulates CaOx nephrocalcinosis remains unclear. Methods: Mice were intraperitoneally injected with glyoxylate to establish CaOx nephrocalcinosis model with or without the treatment of AhR activator 6-formylindolo(3,2-b)carbazole (FICZ). Positron emission tomography computed tomography (PET-CT) imaging, Periodic acid-Schiff (PAS) staining, and polarized light optical microscopy were used to evaluate kidney injury and crystal deposition in mice kidney. Western blotting, immunofluorescence, chromatin immunoprecipitation, microRNA-fluorescence in situ hybridization, and luciferase reporter assays were applied to analyze polarization state and regulation mechanism of macrophage. Results: AhR expression was significantly upregulated and negatively correlated with interferon-regulatory factor 1 (IRF1) and hypoxia inducible factor 1-alpha (HIF-1α) levels in a murine CaOx nephrocalcinosis model following administration of FICZ. Moreover, AhR activation suppressed IRF1 and HIF-1α levels and decreased M1 macrophage polarization in vitro. In terms of the mechanism, bioinformatics analysis and chromatin immunoprecipitation assay confirmed that AhR could bind to miR-142a promoter to transcriptionally activate miR-142a. In addition, luciferase reporter assays validated that miR-142a inhibited IRF1 and HIF-1α expression by directly targeting their 3'-untranslated regions. Conclusions: Our results indicated that AhR activation could diminish M1 macrophage polarization and promote M2 macrophage polarization to suppress CaOx nephrocalcinosis via the AhR-miR-142a-IRF1/HIF-1α pathway.
Collapse
|
27
|
Liu H, Yang X, Tang K, Ye T, Duan C, Lv P, Yan L, Wu X, Chen Z, Liu J, Deng Y, Zeng G, Xing J, Ye Z, Xu H. Sulforaphane elicts dual therapeutic effects on Renal Inflammatory Injury and crystal deposition in Calcium Oxalate Nephrocalcinosis. Am J Cancer Res 2020; 10:7319-7334. [PMID: 32641994 PMCID: PMC7330860 DOI: 10.7150/thno.44054] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Intrarenal calcium oxalate (CaOx) crystals induce renal tubular epithelial cells (TECs) injury and inflammation, which involve Toll-like receptor 4 (TLR4)/interferon regulatory factor 1 (IRF1) signaling. Additionally, infiltrating macrophages (Mϕs) might influence intrarenal CaOx crystals and CaOx-induced renal injury. Although the roles of nuclear factor erythroid 2-related factor 2 (Nrf2) in regulating inflammation and macrophage polarization are well characterized, its potential mechanisms in regulating CaOx nephrocalcinosis remain undefined. Methods: We used a Gene Expression Omnibus dataset to analyze gene-expression profiles. Luciferase reporter, western blot, quantitative polymerase chain reaction, immunofluorescence staining, fluorescence in situ hybridization, positron emission tomography computed tomography imaging, flow cytometry, and chromatin immunoprecipitation assays were employed to study the mechanism of miR-93-TLR4/IRF1 regulation by Nrf2. Anti-inflammatory activity and regulation of macrophage polarization by Nrf2 were investigated in vitro and in vivo. Results: We found that stone-mediated kidney inflammation significantly affected stone growth, and that sulforaphane attenuated CaOx nephrocalcinosis-induced kidney injury and renal CaOx crystals deposition. Additionally, Nrf2 levels significantly increased and negatively correlated with TLR4 and IRF1 levels in a mouse model of CaOx nephrocalcinosis following sulforaphane treatment. Moreover, Nrf2 suppressed TLR4 and IRF1 levels and decreased M1-macrophage polarization which induced by supernatants from COM-stimulated TECs in vitro. In terms of mechanism, transcription factor analyses, microRNA microarray, and chromatin immunoprecipitation assays showed that Nrf2 exhibited positive transcriptional activation of miR-93-5p. In addition, Luciferase reporter, qRT-PCR, and western blot validated that miR-93-5p targets TLR4 and IRF1 mRNA. Furthermore, suppressed miR-93-5p expression partially reversed Nrf2-dependent TLR4/IRF1 downregulation. Conclusions: The results suggested that sulforaphane might promote M2Mϕ polarization and inhibit CaOx nephrocalcinosis-induced inflammatory injury to renal tubular epithelial cells via the Nrf2-miR-93-TLR4/IRF1 pathway in vitro and in vivo.
Collapse
|
28
|
PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun 2020; 11:2135. [PMID: 32358509 PMCID: PMC7195420 DOI: 10.1038/s41467-020-15959-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
Abstract
A non-immunogenic tumor microenvironment (TME) is a significant barrier to immune checkpoint blockade (ICB) response. The impact of Polybromo-1 (PBRM1) on TME and response to ICB in renal cell carcinoma (RCC) remains to be resolved. Here we show that PBRM1/Pbrm1 deficiency reduces the binding of brahma-related gene 1 (BRG1) to the IFNγ receptor 2 (Ifngr2) promoter, decreasing STAT1 phosphorylation and the subsequent expression of IFNγ target genes. An analysis of 3 independent patient cohorts and of murine pre-clinical models reveals that PBRM1 loss is associated with a less immunogenic TME and upregulated angiogenesis. Pbrm1 deficient Renca subcutaneous tumors in mice are more resistance to ICB, and a retrospective analysis of the IMmotion150 RCC study also suggests that PBRM1 mutation reduces benefit from ICB. Our study sheds light on the influence of PBRM1 mutations on IFNγ-STAT1 signaling and TME, and can inform additional preclinical and clinical studies in RCC.
Collapse
|
29
|
Karki R, Lee E, Sharma BR, Banoth B, Kanneganti TD. IRF8 Regulates Gram-Negative Bacteria-Mediated NLRP3 Inflammasome Activation and Cell Death. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2514-2522. [PMID: 32205422 PMCID: PMC7291389 DOI: 10.4049/jimmunol.1901508] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
Abstract
Inflammasomes are intracellular signaling complexes that are assembled in response to a variety of pathogenic or physiologic stimuli to initiate inflammatory responses. Ubiquitously present LPS in Gram-negative bacteria induces NLRP3 inflammasome activation that requires caspase-11. We have recently demonstrated that IFN regulatory factor (IRF) 8 was dispensable for caspase-11-mediated NLRP3 inflammasome activation during LPS transfection; however, its role in Gram-negative bacteria-mediated NLRP3 inflammasome activation remains unknown. In this study, we found that IRF8 promotes NLRP3 inflammasome activation in murine bone marrow-derived macrophages (BMDMs) infected with Gram-negative bacteria such as Citrobacter rodentium, Escherichia coli, or Pseudomonas aeruginosa mutant strain ΔpopB Moreover, BMDMs deficient in IRF8 showed substantially reduced caspase-11 activation and gasdermin D cleavage, which are required for NLRP3 inflammasome activation. Mechanistically, IRF8-mediated phosphorylation of IRF3 was required for Ifnb transcription, which in turn triggered the caspase-11-dependent NLRP3 inflammasome activation in the infected BMDMs. Overall, our findings suggest that IRF8 promotes NLRP3 inflammasome activation during infection with Gram-negative bacteria.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Ein Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Bhesh R Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Balaji Banoth
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | | |
Collapse
|
30
|
Zhao C, Mirando AC, Sové RJ, Medeiros TX, Annex BH, Popel AS. A mechanistic integrative computational model of macrophage polarization: Implications in human pathophysiology. PLoS Comput Biol 2019; 15:e1007468. [PMID: 31738746 PMCID: PMC6860420 DOI: 10.1371/journal.pcbi.1007468] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Macrophages respond to signals in the microenvironment by changing their functional phenotypes, a process known as polarization. Depending on the context, they acquire different patterns of transcriptional activation, cytokine expression and cellular metabolism which collectively constitute a continuous spectrum of phenotypes, of which the two extremes are denoted as classical (M1) and alternative (M2) activation. To quantitatively decode the underlying principles governing macrophage phenotypic polarization and thereby harness its therapeutic potential in human diseases, a systems-level approach is needed given the multitude of signaling pathways and intracellular regulation involved. Here we develop the first mechanism-based, multi-pathway computational model that describes the integrated signal transduction and macrophage programming under M1 (IFN-γ), M2 (IL-4) and cell stress (hypoxia) stimulation. Our model was calibrated extensively against experimental data, and we mechanistically elucidated several signature feedbacks behind the M1-M2 antagonism and investigated the dynamical shaping of macrophage phenotypes within the M1-M2 spectrum. Model sensitivity analysis also revealed key molecular nodes and interactions as targets with potential therapeutic values for the pathophysiology of peripheral arterial disease and cancer. Through simulations that dynamically capture the signal integration and phenotypic marker expression in the differential macrophage polarization responses, our model provides an important computational basis toward a more quantitative and network-centric understanding of the complex physiology and versatile functions of macrophages in human diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Adam C. Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard J. Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Thalyta X. Medeiros
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
- Divison of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Brian H. Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
- Divison of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Ingram JP, Thapa RJ, Fisher A, Tummers B, Zhang T, Yin C, Rodriguez DA, Guo H, Lane R, Williams R, Slifker MJ, Basagoudanavar SH, Rall GF, Dillon CP, Green DR, Kaiser WJ, Balachandran S. ZBP1/DAI Drives RIPK3-Mediated Cell Death Induced by IFNs in the Absence of RIPK1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1348-1355. [PMID: 31358656 PMCID: PMC6702065 DOI: 10.4049/jimmunol.1900216] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/27/2019] [Indexed: 01/14/2023]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) regulates cell fate and proinflammatory signaling downstream of multiple innate immune pathways, including those initiated by TNF-α, TLR ligands, and IFNs. Genetic ablation of Ripk1 results in perinatal lethality arising from both RIPK3-mediated necroptosis and FADD/caspase-8-driven apoptosis. IFNs are thought to contribute to the lethality of Ripk1-deficient mice by activating inopportune cell death during parturition, but how IFNs activate cell death in the absence of RIPK1 is not understood. In this study, we show that Z-form nucleic acid binding protein 1 (ZBP1; also known as DAI) drives IFN-stimulated cell death in settings of RIPK1 deficiency. IFN-activated Jak/STAT signaling induces robust expression of ZBP1, which complexes with RIPK3 in the absence of RIPK1 to trigger RIPK3-driven pathways of caspase-8-mediated apoptosis and MLKL-driven necroptosis. In vivo, deletion of either Zbp1 or core IFN signaling components prolong viability of Ripk1-/- mice for up to 3 mo beyond parturition. Together, these studies implicate ZBP1 as the dominant activator of IFN-driven RIPK3 activation and perinatal lethality in the absence of RIPK1.
Collapse
Affiliation(s)
- Justin P Ingram
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Roshan J Thapa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Amanda Fisher
- Department of Microbiology, Immunology & Molecular Genetics, UT Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Chaoran Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Hongyan Guo
- Department of Microbiology, Immunology & Molecular Genetics, UT Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Rebecca Lane
- Department of Microbiology, Immunology & Molecular Genetics, UT Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Riley Williams
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Michael J Slifker
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Suresh H Basagoudanavar
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Glenn F Rall
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - William J Kaiser
- Department of Microbiology, Immunology & Molecular Genetics, UT Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111;
| |
Collapse
|
32
|
Dehler CE, Lester K, Della Pelle G, Jouneau L, Houel A, Collins C, Dovgan T, Machat R, Zou J, Boudinot P, Martin SAM, Collet B. Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:465-475. [PMID: 31142600 PMCID: PMC6612602 DOI: 10.4049/jimmunol.1801376] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/30/2019] [Indexed: 01/17/2023]
Abstract
IFN belong to a group of cytokines specialized in the immunity to viruses. Upon viral infection, type I IFN is produced and alters the transcriptome of responding cells through induction of a set of IFN stimulated genes (ISGs) with regulatory or antiviral function, resulting in a cellular antiviral state. Fish genomes have both type I IFN and type II IFN (IFN-γ), but no type III (λ) IFN has been identified. Their receptors are not simple counterparts of the mammalian type I/II IFN receptors, because alternative chains are used in type I IFN receptors. The mechanisms of the downstream signaling remain partly undefined. In mammals, members of the signal transducer and activator of family of transcription factors are responsible for the transmission of the signal from cytokine receptors, and STAT2 is required for type I but not type II IFN signaling. In fish, its role in IFN signaling in fish remains unclear. We isolated a Chinook salmon (Oncorhynchus tshawytscha) cell line, GS2, with a stat2 gene knocked out by CRISPR/Cas9 genome editing. In this cell line, the induction of ISGs by stimulation with a recombinant type I IFN is completely obliterated as evidenced by comparative RNA-seq analysis of the transcriptome of GS2 and its parental counterpart, EC. Despite a complete absence of ISGs induction, the GS2 cell line has a remarkable ability to resist to viral infections. Therefore, other STAT2-independent pathways may be induced by the viral infection, illustrating the robustness and redundancy of the innate antiviral defenses in fish.
Collapse
Affiliation(s)
| | - Katherine Lester
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
| | - Giulia Della Pelle
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Armel Houel
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Catherine Collins
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
| | - Tatiana Dovgan
- University of Aberdeen, AB24 2TZ Aberdeen, United Kingdom
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
| | - Radek Machat
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Jun Zou
- University of Aberdeen, AB24 2TZ Aberdeen, United Kingdom
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | | | - Bertrand Collet
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
33
|
Piaszyk-Borychowska A, Széles L, Csermely A, Chiang HC, Wesoły J, Lee CK, Nagy L, Bluyssen HAR. Signal Integration of IFN-I and IFN-II With TLR4 Involves Sequential Recruitment of STAT1-Complexes and NFκB to Enhance Pro-inflammatory Transcription. Front Immunol 2019; 10:1253. [PMID: 31231385 PMCID: PMC6558219 DOI: 10.3389/fimmu.2019.01253] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the blood vessels, characterized by atherosclerotic lesion formation. Vascular Smooth Muscle Cells (VSMC), macrophages (MΦ), and dendritic cells (DC) play a crucial role in vascular inflammation and atherosclerosis. Interferon (IFN)α, IFNγ, and Toll-like receptor (TLR)4 activate pro-inflammatory gene expression and are pro-atherogenic. Gene expression regulation of many pro-inflammatory genes has shown to rely on Signal Integration (SI) between IFNs and TLR4 through combinatorial actions of the Signal Transducer and Activator of Transcription (STAT)1 complexes ISGF3 and γ-activated factor (GAF), and Nuclear Factor-κB (NFκB). Thus, IFN pre-treatment (“priming”) followed by LPS stimulation leads to enhanced transcriptional responses as compared to the individual stimuli. To characterize the mechanism of priming-induced IFNα + LPS- and IFNγ + LPS-dependent SI in vascular cells as compared to immune cells, we performed a comprehensive genome-wide analysis of mouse VSMC, MΦ, and DC in response to IFNα, IFNγ, and/or LPS. Thus, we identified IFNα + LPS or IFNγ + LPS induced genes commonly expressed in these cell types that bound STAT1 and p65 at comparable γ-activated sequence (GAS), Interferon-stimulated response element (ISRE), or NFκB sites in promoter proximal and distal regions. Comparison of the relatively high number of overlapping ISRE sites in these genes unraveled a novel role of ISGF3 and possibly STAT1/IRF9 in IFNγ responses. In addition, similar STAT1-p65 co-binding modes were detected for IFNα + LPS and IFNγ + LPS up-regulated genes, which involved recruitment of STAT1 complexes preceding p65 to closely located GAS/NFκB or ISRE/NFκB composite sites already upon IFNα or IFNγ treatment. This STAT1-p65 co-binding significantly increased after subsequent LPS exposure and correlated with histone acetylation, PolII recruitment, and amplified target gene transcription in a STAT1-p65 co-bound dependent manner. Thus, co-binding of STAT1-containing transcription factor complexes and NFκB, activated by IFN-I or IFN-II together with LPS, provides a platform for robust transcriptional activation of pro-inflammatory genes. Moreover, our data offer an explanation for the comparable effects of IFNα or IFNγ priming on TLR4-induced activation in vascular and immune cells, with important implications in atherosclerosis.
Collapse
Affiliation(s)
| | - Lajos Széles
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Attila Csermely
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Hsin-Chien Chiang
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Joanna Wesoły
- Laboratory of High Throughput Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,Departments of Medicine and Biological Chemistry, Johns Hopkins All Children's Hospital, Johns Hopkins University School of Medicine, St. Petersburg, FL, United States
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
34
|
Antonczyk A, Krist B, Sajek M, Michalska A, Piaszyk-Borychowska A, Plens-Galaska M, Wesoly J, Bluyssen HAR. Direct Inhibition of IRF-Dependent Transcriptional Regulatory Mechanisms Associated With Disease. Front Immunol 2019; 10:1176. [PMID: 31178872 PMCID: PMC6543449 DOI: 10.3389/fimmu.2019.01176] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a family of homologous proteins that regulate the transcription of interferons (IFNs) and IFN-induced gene expression. As such they are important modulating proteins in the Toll-like receptor (TLR) and IFN signaling pathways, which are vital elements of the innate immune system. IRFs have a multi-domain structure, with the N-terminal part acting as a DNA binding domain (DBD) that recognizes a DNA-binding motif similar to the IFN-stimulated response element (ISRE). The C-terminal part contains the IRF-association domain (IAD), with which they can self-associate, bind to IRF family members or interact with other transcription factors. This complex formation is crucial for DNA binding and the commencing of target-gene expression. IRFs bind DNA and exert their activating potential as homo or heterodimers with other IRFs. Moreover, they can form complexes (e.g., with Signal transducers and activators of transcription, STATs) and collaborate with other co-acting transcription factors such as Nuclear factor-κB (NF-κB) and PU.1. In time, more of these IRF co-activating mechanisms have been discovered, which may play a key role in the pathogenesis of many diseases, such as acute and chronic inflammation, autoimmune diseases, and cancer. Detailed knowledge of IRFs structure and activating mechanisms predisposes IRFs as potential targets for inhibition in therapeutic strategies connected to numerous immune system-originated diseases. Until now only indirect IRF modulation has been studied in terms of antiviral response regulation and cancer treatment, using mainly antisense oligonucleotides and siRNA knockdown strategies. However, none of these approaches so far entered clinical trials. Moreover, no direct IRF-inhibitory strategies have been reported. In this review, we summarize current knowledge of the different IRF-mediated transcriptional regulatory mechanisms and how they reflect the diverse functions of IRFs in homeostasis and in TLR and IFN signaling. Moreover, we present IRFs as promising inhibitory targets and propose a novel direct IRF-modulating strategy employing a pipeline approach that combines comparative in silico docking to the IRF-DBD with in vitro validation of IRF inhibition. We hypothesize that our methodology will enable the efficient identification of IRF-specific and pan-IRF inhibitors that can be used for the treatment of IRF-dependent disorders and malignancies.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bart Krist
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Sajek
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Agata Michalska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Martyna Plens-Galaska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
35
|
Parrini M, Meissl K, Ola MJ, Lederer T, Puga A, Wienerroither S, Kovarik P, Decker T, Müller M, Strobl B. The C-Terminal Transactivation Domain of STAT1 Has a Gene-Specific Role in Transactivation and Cofactor Recruitment. Front Immunol 2018; 9:2879. [PMID: 30574148 PMCID: PMC6291510 DOI: 10.3389/fimmu.2018.02879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/23/2018] [Indexed: 01/12/2023] Open
Abstract
STAT1 has a key role in the regulation of innate and adaptive immunity by inducing transcriptional changes in response to cytokines, such as all types of interferons (IFN). STAT1 exist as two splice isoforms, which differ in regard to the C-terminal transactivation domain (TAD). STAT1β lacks the C-terminal TAD and has been previously reported to be a weaker transcriptional activator than STAT1α, although this was strongly dependent on the target gene. The mechanism of this context-dependent effects remained unclear. By using macrophages from mice that only express STAT1β, we investigated the role of the C-terminal TAD during the distinct steps of transcriptional activation of selected target genes in response to IFNγ. We show that the STAT1 C-terminal TAD is absolutely required for the recruitment of RNA polymerase II (Pol II) and for the establishment of active histone marks at the class II major histocompatibility complex transactivator (CIIta) promoter IV, whereas it is dispensable for histone acetylation at the guanylate binding protein 2 (Gbp2) promoter but required for an efficient recruitment of Pol II, which correlated with a strongly reduced, but not absent, transcriptional activity. IFNγ-induced expression of Irf7, which is mediated by STAT1 in complex with STAT2 and IRF9, did not rely on the presence of the C-terminal TAD of STAT1. Moreover, we show for the first time that the STAT1 C-terminal TAD is required for an efficient recruitment of components of the core Mediator complex to the IFN regulatory factor (Irf) 1 and Irf8 promoters, which both harbor an open chromatin state under basal conditions. Our study identified novel functions of the STAT1 C-terminal TAD in transcriptional activation and provides mechanistic explanations for the gene-specific transcriptional activity of STAT1β.
Collapse
Affiliation(s)
- Matthias Parrini
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katrin Meissl
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mojoyinola Joanna Ola
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Therese Lederer
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ana Puga
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.,University Center Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
36
|
Platanitis E, Decker T. Regulatory Networks Involving STATs, IRFs, and NFκB in Inflammation. Front Immunol 2018; 9:2542. [PMID: 30483250 PMCID: PMC6242948 DOI: 10.3389/fimmu.2018.02542] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 01/10/2023] Open
Abstract
Cells engaging in inflammation undergo drastic changes of their transcriptomes. In order to tailor these alterations in gene expression to the requirements of the inflammatory process, tight and coordinate regulation of gene expression by environmental cues, microbial or danger-associated molecules or cytokines, are mandatory. The transcriptional response is set off by signal-regulated transcription factors (SRTFs) at the receiving end of pathways originating at pattern recognition- and cytokine receptors. These interact with a genome that has been set for an appropriate response by prior activity of pioneer or lineage determining transcription factors (LDTFs). The same types of transcription factors are also critical determinants of the changes in chromatin landscapes and transcriptomes that specify potential consequences of inflammation: tissue repair, training, and tolerance. Here we focus on the role of three families of SRTFs in inflammation and its sequels: signal transducers and activators of transcription (STATs), interferon regulatory factors (IRFs), and nuclear factor κB (NFκB). We describe recent findings about their interactions and about their networking with LDTFs. Our aim is to provide a snapshot of a highly dynamic research area.
Collapse
Affiliation(s)
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Nast R, Staab J, Meyer T, Lüder CGK. Toxoplasma gondii stabilises tetrameric complexes of tyrosine-phosphorylated signal transducer and activator of transcription-1 and leads to its sustained and promiscuous DNA binding. Cell Microbiol 2018; 20:e12887. [PMID: 29968354 DOI: 10.1111/cmi.12887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that infects up to 30% of humans worldwide. It can lead to severe diseases particularly in individuals with immature or defective immune responses. Control of T. gondii relies on the IFN-γ-induced signal transducer and activator of transcription-1 (STAT1) pathway. T. gondii, however, largely inactivates STAT1-mediated gene transcription by T. gondii inhibitor of STAT1-dependent transcription (TgIST), a parasite effector protein binding to STAT1. Here, we have analysed requirements of STAT1 to bind TgIST and characterised downstream effects on STAT1 signalling. TgIST bound to STAT1 dimers but more efficiently assembled with STAT1 tetramers, which are essential for effective IFN-γ responsiveness. Such binding was abrogated in N-terminal, but not C-terminal deletion mutants of STAT1. Furthermore, TgIST did not bind to the STAT1F77A substitution mutant that cannot form STAT1 tetramers, resulting in a complete unresponsiveness of parasite-infected STAT1F77A -expressing cells to IFN-γ. Remarkably, binding of TgIST considerably increased the affinity of the aberrant STAT1 tetramers for DNA consensus sequence binding motifs and even enabled binding to nonconsensus sequences. Consistent with the increased DNA binding, STAT1 from parasite-infected cells remained phosphorylated at Tyr701 and Ser727 and was retained within the nucleus in a DNA-bound state. The sustained and promiscuous binding activity particularly of STAT1 tetramers to unspecific DNA sites lacking a consensus STAT1-binding motif is an as yet unrecognised mechanism contributing to the defective IFN-γ-mediated signalling in T. gondii-infected cells.
Collapse
Affiliation(s)
- Roswitha Nast
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August University, Göttingen, Germany
| | - Julia Staab
- Psychosomatic Medicine and Psychotherapy, University Medical Center Goettingen, Georg-August University, Göttingen, Germany
| | - Thomas Meyer
- Psychosomatic Medicine and Psychotherapy, University Medical Center Goettingen, Georg-August University, Göttingen, Germany
| | - Carsten G K Lüder
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
38
|
Michalska A, Blaszczyk K, Wesoly J, Bluyssen HAR. A Positive Feedback Amplifier Circuit That Regulates Interferon (IFN)-Stimulated Gene Expression and Controls Type I and Type II IFN Responses. Front Immunol 2018; 9:1135. [PMID: 29892288 PMCID: PMC5985295 DOI: 10.3389/fimmu.2018.01135] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Interferon (IFN)-I and IFN-II both induce IFN-stimulated gene (ISG) expression through Janus kinase (JAK)-dependent phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT2. STAT1 homodimers, known as γ-activated factor (GAF), activate transcription in response to all types of IFNs by direct binding to IFN-II activation site (γ-activated sequence)-containing genes. Association of interferon regulatory factor (IRF) 9 with STAT1–STAT2 heterodimers [known as interferon-stimulated gene factor 3 (ISGF3)] or with STAT2 homodimers (STAT2/IRF9) in response to IFN-I, redirects these complexes to a distinct group of target genes harboring the interferon-stimulated response element (ISRE). Similarly, IRF1 regulates expression of ISGs in response to IFN-I and IFN-II by directly binding the ISRE or IRF-responsive element. In addition, evidence is accumulating for an IFN-independent and -dependent role of unphosphorylated STAT1 and STAT2, with or without IRF9, and IRF1 in basal as well as long-term ISG expression. This review provides insight into the existence of an intracellular amplifier circuit regulating ISG expression and controlling long-term cellular responsiveness to IFN-I and IFN-II. The exact timely steps that take place during IFN-activated feedback regulation and the control of ISG transcription and long-term cellular responsiveness to IFN-I and IFN-II is currently not clear. Based on existing literature and our novel data, we predict the existence of a multifaceted intracellular amplifier circuit that depends on unphosphorylated and phosphorylated ISGF3 and GAF complexes and IRF1. In a combinatorial and timely fashion, these complexes mediate prolonged ISG expression and control cellular responsiveness to IFN-I and IFN-II. This proposed intracellular amplifier circuit also provides a molecular explanation for the existing overlap between IFN-I and IFN-II activated ISG expression.
Collapse
Affiliation(s)
- Agata Michalska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Blaszczyk
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
39
|
Abou El Hassan M, Huang K, Xu Z, Yu T, Bremner R. Frequent interferon regulatory factor 1 (IRF1) binding at remote elements without histone modification. J Biol Chem 2018; 293:10353-10362. [PMID: 29748386 DOI: 10.1074/jbc.ra118.002889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
Transcriptional activators bind DNA and recruit cofactors to modify chromatin. The extent to which these two events are separable is unclear. Here, using a custom ChIP tiling array to map chromatin modifications, we show that interferon-γ-induced DNA binding of signal transducer and activator of transcription 1 (STAT1), typically associated with the transcription factor interferon regulatory factor 1 (IRF1), causes histone acetylation (H3ac, H4ac). In contrast, among IRF1 sites lacking concomitant STAT1 recruitment, only 25% underwent inducible histone acetylation, 31% exhibited constitutive histone acetylation, and 44% had no histone acetylation. These latter "orphan sites" also lacked other activating modifications (e.g. H3K4me1, H3K4me2) and were typically remote from transcription start sites. In these cases the closest gene was typically an IFNγ-inducible locus that did not respond to IFNγ in this setting. Orphan sites were detected in different cell types, suggesting broad relevance. Despite an atypical downstream response (i.e. no histone modifications), IRF1 binding depended on SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4 (SMARCA4 or BRG1), as is typical of active IRF1 enhancers. Although SMARCA4 permitted IRF1 access to the orphan sites, there was no corecruitment of the histone acetyltransferases CREB-binding protein (CBP) and p300. Orphan sites were constitutively unacetylated, and several were marked with repressive chromatin modifications (e.g. H3K27me3). In conclusion, although IRF1 can trigger enhanceosome formation independently of STAT1, its ability to do so depends on local chromatin cues.
Collapse
Affiliation(s)
- Mohamed Abou El Hassan
- From the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada.,the Clinical Chemistry Division, Provincial Laboratory Services, Queen Elizabeth Hospital, Charlottetown, Prince Edward Island C1A 8T5, Canada.,the Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada, and
| | - Katherine Huang
- From the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Zhaodong Xu
- From the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Tao Yu
- From the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Rod Bremner
- From the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada, .,the Departments of Lab Medicine and Pathobiology and.,Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
40
|
Song X, Zhang Y, Zhang L, Song W, Shi L. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget 2018; 9:11572-11580. [PMID: 29545920 PMCID: PMC5837754 DOI: 10.18632/oncotarget.24098] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
Hypoxia-associated metabolic reprogramming modulates the biological functions of many immune and non-immune cells, and affects immune response types and intensities. Adenosine and indoleamine 2,3-dioxygenase (IDO) are known immunosuppressors, and adenosine is a hypoxia-associated product. We investigated the impact of hypoxia on IDO production in dendritic cells (DCs). We found that hypoxia (1% O2) enhances IDO production in DCs, and this increase was dependent on the adenosine A3 receptor (A3R), but not A2aR or A2bR. A3R blockade during hypoxia inhibited IDO production in DCs, while A2bR blockade further enhanced IDO production. Activating A2aR had no effect on IDO production. Hypoxia (1% O2) upregulated CD86, CD274, HLA-DR, and CD54, and downregulated CD40 and CD83 in DCs as compared to normoxia (21% O2). IDO inhibition in hypoxia-conditioned DCs reversed MHC-II, CD86, CD54, and CD274 upregulation, but further downregulated CD40 and CD83. Our findings offer guidance for pharmacological administration of adenosine receptor agonists or antagonists with the goal of achieving immune tolerance or controlling insulin resistance and other metabolic disorders via IDO modulation.
Collapse
Affiliation(s)
- Xiang Song
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yan Zhang
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Li Zhang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Wengang Song
- Institute of Immunology, Taishan Medical University, Tai'an 271000, China
| | - Lixin Shi
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
41
|
Quintero M, Adamoski D, Reis LMD, Ascenção CFR, Oliveira KRSD, Gonçalves KDA, Dias MM, Carazzolle MF, Dias SMG. Guanylate-binding protein-1 is a potential new therapeutic target for triple-negative breast cancer. BMC Cancer 2017; 17:727. [PMID: 29115931 PMCID: PMC5688804 DOI: 10.1186/s12885-017-3726-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen and progesterone receptor expression (ESR and PGR, respectively) and an absence of human epithelial growth factor receptor (ERBB2) amplification. Approximately 15–20% of breast malignancies are TNBC. Patients with TNBC often have an unfavorable prognosis. In addition, TNBC represents an important clinical challenge since it does not respond to hormone therapy. Methods In this work, we integrated high-throughput mRNA sequencing (RNA-Seq) data from normal and tumor tissues (obtained from The Cancer Genome Atlas, TCGA) and cell lines obtained through in-house sequencing or available from the Gene Expression Omnibus (GEO) to generate a unified list of differentially expressed (DE) genes. Methylome and proteomic data were integrated to our analysis to give further support to our findings. Genes that were overexpressed in TNBC were then curated to retain new potentially druggable targets based on in silico analysis. Knocking-down was used to assess gene importance for TNBC cell proliferation. Results Our pipeline analysis generated a list of 243 potential new targets for treating TNBC. We finally demonstrated that knock-down of Guanylate-Binding Protein 1 (GBP1 ), one of the candidate genes, selectively affected the growth of TNBC cell lines. Moreover, we showed that GBP1 expression was controlled by epidermal growth factor receptor (EGFR) in breast cancer cell lines. Conclusions We propose that GBP1 is a new potential druggable therapeutic target for treating TNBC with enhanced EGFR expression. Electronic supplementary material The online version of this article (10.1186/s12885-017-3726-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melissa Quintero
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Menezes Dos Reis
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolline Fernanda Rodrigues Ascenção
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Krishina Ratna Sousa de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Kaliandra de Almeida Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Marília Meira Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Marcelo Falsarella Carazzolle
- Genomic and Expression Laboratory (LGE), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
| |
Collapse
|
42
|
Kolosenko I, Yu Y, Busker S, Dyczynski M, Liu J, Haraldsson M, Palm Apergi C, Helleday T, Tamm KP, Page BDG, Grander D. Identification of novel small molecules that inhibit STAT3-dependent transcription and function. PLoS One 2017. [PMID: 28636670 PMCID: PMC5479526 DOI: 10.1371/journal.pone.0178844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activation of Signal Transducer and Activator of Transcription 3 (STAT3) has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z’ = 0,8). This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set). Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (IK); (DG)
| | - Yasmin Yu
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sander Busker
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jianping Liu
- Karolinska High-Throughput Center, Department of Medical Biochemistry and Biophysics, Division of Functional Genomics, Karolinska Institutet Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Palm Apergi
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Katja Pokrovskaja Tamm
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Brent D. G. Page
- Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Dan Grander
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (IK); (DG)
| |
Collapse
|
43
|
Abou El Hassan M, Huang K, Eswara MBK, Xu Z, Yu T, Aubry A, Ni Z, Livne-Bar I, Sangwan M, Ahmad M, Bremner R. Properties of STAT1 and IRF1 enhancers and the influence of SNPs. BMC Mol Biol 2017; 18:6. [PMID: 28274199 PMCID: PMC5343312 DOI: 10.1186/s12867-017-0084-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND STAT1 and IRF1 collaborate to induce interferon-γ (IFNγ) stimulated genes (ISGs), but the extent to which they act alone or together is unclear. The effect of single nucleotide polymorphisms (SNPs) on in vivo binding is also largely unknown. RESULTS We show that IRF1 binds at proximal or distant ISG sites twice as often as STAT1, increasing to sixfold at the MHC class I locus. STAT1 almost always bound with IRF1, while most IRF1 binding events were isolated. Dual binding sites at remote or proximal enhancers distinguished ISGs that were responsive to IFNγ versus cell-specific resistant ISGs, which showed fewer and mainly single binding events. Surprisingly, inducibility in one cell type predicted ISG-responsiveness in other cells. Several dbSNPs overlapped with STAT1 and IRF1 binding motifs, and we developed methodology to rapidly assess their effects. We show that in silico prediction of SNP effects accurately reflects altered binding both in vitro and in vivo. CONCLUSIONS These data reveal broad cooperation between STAT1 and IRF1, explain cell type specific differences in ISG-responsiveness, and identify genetic variants that may participate in the pathogenesis of immune disorders.
Collapse
Affiliation(s)
- Mohamed Abou El Hassan
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada.,Clinical Chemistry Division, Provincial Laboratory Services, Queen Elizabeth Hospital, Charlottetown, PE, Canada.,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Manoja B K Eswara
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Zhaodong Xu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Zuyao Ni
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Izzy Livne-Bar
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Monika Sangwan
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Mohamad Ahmad
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada. .,Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M, Decker T. Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses. Front Immunol 2017; 8:29. [PMID: 28184222 PMCID: PMC5266721 DOI: 10.3389/fimmu.2017.00029] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 01/07/2023] Open
Abstract
Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK-STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1.
Collapse
Affiliation(s)
- Andrea Majoros
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ekaterini Platanitis
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Elisabeth Kernbauer-Hölzl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Felix Rosebrock
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Howard LM, Hoek KL, Goll JB, Samir P, Galassie A, Allos TM, Niu X, Gordy LE, Creech CB, Prasad N, Jensen TL, Hill H, Levy SE, Joyce S, Link AJ, Edwards KM. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial. PLoS One 2017; 12:e0167488. [PMID: 28099485 PMCID: PMC5242433 DOI: 10.1371/journal.pone.0167488] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
Background Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. Objective and Methods We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18–49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Results Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Conclusions Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. Trial Registration ClinicalTrials.gov NCT01573312
Collapse
Affiliation(s)
- Leigh M. Howard
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Kristen L. Hoek
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | | | - Parimal Samir
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Allison Galassie
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Tara M. Allos
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Laura E. Gordy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - C. Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology; Huntsville, AL, United States of America
| | | | - Heather Hill
- The Emmes Corporation, Rockville, MD, United States of America
| | - Shawn E. Levy
- HudsonAlpha Institute for Biotechnology; Huntsville, AL, United States of America
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, United States of America
| | - Andrew J. Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- * E-mail: (KME); (AJL)
| | - Kathryn M. Edwards
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- * E-mail: (KME); (AJL)
| |
Collapse
|
46
|
Yang Z, Hou Y, Hao T, Rho HS, Wan J, Luan Y, Gao X, Yao J, Pan A, Xie Z, Qian J, Liao W, Zhu H, Zhou X. A Human Proteome Array Approach to Identifying Key Host Proteins Targeted by Toxoplasma Kinase ROP18. Mol Cell Proteomics 2017; 16:469-484. [PMID: 28087594 DOI: 10.1074/mcp.m116.063602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface.
Collapse
Affiliation(s)
- Zhaoshou Yang
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongheng Hou
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Taofang Hao
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hee-Sool Rho
- the §Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jun Wan
- the ¶Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Yizhao Luan
- the ‖State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China.,the **School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Gao
- ‡‡The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; and
| | - Jianping Yao
- §§The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Aihua Pan
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhi Xie
- the ‖State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jiang Qian
- the ¶Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Wanqin Liao
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Heng Zhu
- the §Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Xingwang Zhou
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| |
Collapse
|
47
|
Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R, Adamson B, Norman TM, Lander ES, Weissman JS, Friedman N, Regev A. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell 2016; 167:1853-1866.e17. [PMID: 27984732 PMCID: PMC5181115 DOI: 10.1016/j.cell.2016.11.038] [Citation(s) in RCA: 1050] [Impact Index Per Article: 116.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/14/2016] [Accepted: 11/19/2016] [Indexed: 01/12/2023]
Abstract
Genetic screens help infer gene function in mammalian cells, but it has remained difficult to assay complex phenotypes-such as transcriptional profiles-at scale. Here, we develop Perturb-seq, combining single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbations to perform many such assays in a pool. We demonstrate Perturb-seq by analyzing 200,000 cells in immune cells and cell lines, focusing on transcription factors regulating the response of dendritic cells to lipopolysaccharide (LPS). Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states affected by individual perturbations and their genetic interactions. We posit new functions for regulators of differentiation, the anti-viral response, and mitochondrial function during immune activation. By decomposing many high content measurements into the effects of perturbations, their interactions, and diverse cell metadata, Perturb-seq dramatically increases the scope of pooled genomic assays.
Collapse
Affiliation(s)
- Atray Dixit
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Oren Parnas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Biyu Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jenny Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nemanja D Marjanovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Danielle Dionne
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tyler Burks
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Britt Adamson
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas M Norman
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Nir Friedman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; School of Engineering and Computer Science and Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
48
|
Wang X, Wang SS, Zhou L, Yu L, Zhang LM. A network-pathway based module identification for predicting the prognosis of ovarian cancer patients. J Ovarian Res 2016; 9:73. [PMID: 27806724 PMCID: PMC5093979 DOI: 10.1186/s13048-016-0285-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022] Open
Abstract
Background This study aimed to screen multiple genes biomarkers based on gene expression data for predicting the survival of ovarian cancer patients. Methods Two microarray data of ovarian cancer samples were collected from The Cancer Genome Atlas (TCGA) database. The data in the training set were used to construct Reactome functional interactions network, which then underwent Markov clustering, supervised principal components, Cox proportional hazard model to screen significantly prognosis related modules. The distinguishing ability of each module for survival was further evaluated by the testing set. Gene Ontology (GO) functional and pathway annotations were performed to identify the roles of genes in each module for ovarian cancer. Results The network based approach identified two 7-gene functional interaction modules (31: DCLRE1A, EXO1, KIAA0101, KIN, PCNA, POLD3, POLD2; 35: DKK3, FABP3, IRF1, AIM2, GBP1, GBP2, IRF2) that are associated with prognosis of ovarian cancer patients. These network modules are related to DNA repair, replication, immune and cytokine mediated signaling pathways. Conclusions The two 7-gene expression signatures may be accurate predictors of clinical outcome in patients with ovarian cancer and has the potential to develop new therapeutic strategies for ovarian cancer patients.
Collapse
Affiliation(s)
- Xin Wang
- Department of Gynaecology and Obstetrics, The 306 Hospital of PLA, Beijing, 100037, China
| | - Shan-Shan Wang
- Outpatient Pharmacy, Outpatient Department, NO.16 Chengzhuang Fengtai Distinct, Beijing, 100071, China
| | - Lin Zhou
- Department of Gynaecology and Obstetrics, The 306 Hospital of PLA, Beijing, 100037, China
| | - Li Yu
- Department of Gynaecology and Obstetrics, The 306 Hospital of PLA, Beijing, 100037, China
| | - Lan-Mei Zhang
- Department of Gynaecology and Obstetrics, The 306 Hospital of PLA, Beijing, 100037, China.
| |
Collapse
|
49
|
Walker EC, Johnson RW, Hu Y, Brennan HJ, Poulton IJ, Zhang JG, Jenkins BJ, Smyth GK, Nicola NA, Sims NA. Murine Oncostatin M Acts via Leukemia Inhibitory Factor Receptor to Phosphorylate Signal Transducer and Activator of Transcription 3 (STAT3) but Not STAT1, an Effect That Protects Bone Mass. J Biol Chem 2016; 291:21703-21716. [PMID: 27539849 DOI: 10.1074/jbc.m116.748483] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/15/2016] [Indexed: 12/31/2022] Open
Abstract
Oncostatin M (OSM) and leukemia inhibitory factor (LIF) are IL-6 family members with a wide range of biological functions. Human OSM (hOSM) and murine LIF (mLIF) act in mouse cells via a LIF receptor (LIFR)-glycoprotein 130 (gp130) heterodimer. In contrast, murine OSM (mOSM) signals mainly via an OSM receptor (OSMR)-gp130 heterodimer and binds with only very low affinity to mLIFR. hOSM and mLIF stimulate bone remodeling by both reducing osteocytic sclerostin and up-regulating the pro-osteoclastic factor receptor activator of NF-κB ligand (RANKL) in osteoblasts. In the absence of OSMR, mOSM still strongly suppressed sclerostin and stimulated bone formation but did not induce RANKL, suggesting that intracellular signaling activated by the low affinity interaction of mOSM with mLIFR is different from the downstream effects when mLIF or hOSM interacts with the same receptor. Both STAT1 and STAT3 were activated by mOSM in wild type cells or by mLIF/hOSM in wild type and Osmr-/- cells. In contrast, in Osmr-/- primary osteocyte-like cells stimulated with mOSM (therefore acting through mLIFR), microarray expression profiling and Western blotting analysis identified preferential phosphorylation of STAT3 and induction of its target genes but not of STAT1 and its target genes; this correlated with reduced phosphorylation of both gp130 and LIFR. In a mouse model of spontaneous osteopenia caused by hyperactivation of STAT1/3 signaling downstream of gp130 (gp130Y757F/Y757F), STAT1 deletion rescued the osteopenic phenotype, indicating a beneficial effect of promoting STAT3 signaling over STAT1 downstream of gp130 in this low bone mass condition, and this may have therapeutic value.
Collapse
Affiliation(s)
- Emma C Walker
- From the St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Rachelle W Johnson
- From the St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Holly J Brennan
- From the St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Ingrid J Poulton
- From the St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Medical Biology, and
| | - Brendan J Jenkins
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3168, Victoria, Australia, and
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Departments of Mathematics and Statistics
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Medical Biology, and
| | - Natalie A Sims
- From the St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia, .,Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
50
|
Ren Y, Zhao P, Liu J, Yuan Y, Cheng Q, Zuo Y, Qian L, Liu C, Guo T, Zhang L, Wang X, Qian G, Li L, Ge J, Dai J, Xiong S, Zheng H. Deubiquitinase USP2a Sustains Interferons Antiviral Activity by Restricting Ubiquitination of Activated STAT1 in the Nucleus. PLoS Pathog 2016; 12:e1005764. [PMID: 27434509 PMCID: PMC4951015 DOI: 10.1371/journal.ppat.1005764] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/22/2016] [Indexed: 11/29/2022] Open
Abstract
STAT1 is a critical transcription factor for regulating host antiviral defenses. STAT1 activation is largely dependent on phosphorylation at tyrosine 701 site of STAT1 (pY701-STAT1). Understanding how pY701-STAT1 is regulated by intracellular signaling remains a major challenge. Here we find that pY701-STAT1 is the major form of ubiquitinated-STAT1 induced by interferons (IFNs). While total STAT1 remains relatively stable during the early stages of IFNs signaling, pY701-STAT1 can be rapidly downregulated by the ubiquitin-proteasome system. Moreover, ubiquitinated pY701-STAT1 is located predominantly in the nucleus, and inhibiting nuclear import of pY701-STAT1 significantly blocks ubiquitination and downregulation of pY701-STAT1. Furthermore, we reveal that the deubiquitinase USP2a translocates into the nucleus and binds to pY701-STAT1, and inhibits K48-linked ubiquitination and degradation of pY701-STAT1. Importantly, USP2a sustains IFNs-induced pY701-STAT1 levels, and enhances all three classes of IFNs- mediated signaling and antiviral activity. To our knowledge, this is the first identified deubiquitinase that targets activated pY701-STAT1. These findings uncover a positive mechanism by which IFNs execute efficient antiviral signaling and function, and may provide potential targets for improving IFNs-based antiviral therapy. Phosphorylated STAT1 at tyrosine 701 site (pY701-STAT1) is critical for regulating many cellular functions including antiviral immunity. Maintaining sufficient pY701-STAT1 levels in the nucleus is essential to sustain efficient interferons (IFNs) signaling and antiviral functions. Therefore, it is important to clarify how pY701-STAT1 levels are positively regulated in the nucleus. Here, we demonstrated for the first time that IFNs-induced pY701-STAT1 largely raised STAT1 ubiquitination, and ubiquitinated-pY701-STAT1 is located predominantly in the nucleus and regulated by proteasome-dependent degradation. In IFNs signaling, the deubiquitinase USP2a translocates into the nucleus and binds to pY701-STAT1. USP2a positively regulates pY701-STAT1 levels through inhibiting its K48-linked ubiquitination and degradation. Importantly, USP2a sustains all three classes of IFNs-mediated signaling and antiviral function. Our studies uncover an important positive mechanism in the nucleus by which IFNs can execute efficient antiviral signaling and functions.
Collapse
Affiliation(s)
- Ying Ren
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Peng Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Qiao Cheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yibo Zuo
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Liping Qian
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chang Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Tingting Guo
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Liting Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaofang Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Guanghui Qian
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lemin Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jun Ge
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Jiangsu, China
- * E-mail: (SX); (HZ)
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Jiangsu, China
- * E-mail: (SX); (HZ)
| |
Collapse
|