1
|
Koike T. Distinctive glial cells in the dorsal root ganglion: their morphology and functions. Anat Sci Int 2025; 100:261-269. [PMID: 39946031 DOI: 10.1007/s12565-025-00825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/28/2025] [Indexed: 05/01/2025]
Abstract
Satellite glial cells in the dorsal root ganglion are integral to the biology of sensory neurons. This review explores their unique fine structures, as well as their roles in pain signaling and neuronal differentiation. Satellite glial cells exhibit remarkable plasticity, including stem cell-like properties and the ability to influence neuronal morphology and function. Less-studied glial types, such as axonic satellite glial cells and newly identified glial populations, also offer insights into glial cell diversity and specialization. By focusing on the cellular and molecular mechanisms underlying satellite glial cell function, this review contributes to enhancing the foundational understanding of sensory system organization and glial biology.
Collapse
Affiliation(s)
- Taro Koike
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shin-Machi 2-5-1, Hirakata City, Osaka, 573-1010, Japan.
| |
Collapse
|
2
|
Zhang R, Zhang N, Chen D, Hu X, Zhang M, Yao M, Zhang Q, Wu S, Zhang X, He Y, Gao F, Xu B, Fang Q. Neurone-satellite glial cell interactions in dorsal root ganglia drive peripheral sensitisation in a mouse burn pain model. Br J Anaesth 2025:S0007-0912(25)00235-1. [PMID: 40404497 DOI: 10.1016/j.bja.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Accumulating evidence suggests that glial mechanisms are pivotal in regulating chronic pain. Our previous findings revealed that the interactions between spinal microglia and astrocytes are crucial for burn-induced pain hypersensitivity. However, the mechanisms underlying burn-induced peripheral sensitisation remain incompletely understood. METHODS Sensory neurone-satellite glial cell (SGC) interactions within peripheral dorsal root ganglia were investigated using in vitro and in vivo experiments. Behavioural tests were conducted to evaluate the therapeutic potential of targeting peripheral sensitisation mechanisms for burn pain management. RESULTS Burn injury upregulated calcitonin gene-related peptide (CGRP) expression in sensory neurones (1.5-fold; P=0.013) through transient receptor potential vanilloid 1 (TRPV1) channels. Pharmacological blockade of the TRPV1/CGRP signalling pathway effectively attenuated burn-induced mechanical allodynia and thermal hyperalgesia. Additionally, neurone-derived CGRP triggered SGC activation (from 6.8% pre-injury to 41.6% at day 5 post-injury), concomitant with enhanced gap junction-mediated SGC coupling (from 16.7% pre-injury to 40.5% at day 5 post-injury). Furthermore, chemokine expression (particularly CXCL1) in SGCs was elevated after burn injury, which potentiated sensory neurone excitability and exacerbated pain hypersensitivity. Blocking SGC coupling exerted potent analgesic effects in this burn pain model. CONCLUSIONS A novel neurone-SGC interaction mechanism drives burn-induced peripheral sensitisation, providing translational implications for burn pain therapeutics.
Collapse
Affiliation(s)
- Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China; Institute of Physiology, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xuanran Hu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Minhua Yao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyuan Wu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yongtao He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Kodirov SA, Plakhova VB, Hamill OP, Krylov BV. Long-term spontaneous membrane currents in DRG neurons. J Recept Signal Transduct Res 2025:1-8. [PMID: 40186880 DOI: 10.1080/10799893.2025.2477925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
We have experimented with freshly isolated single DRG neurons from neonatal (P0-5) rats to study currents mediated by voltage dependent Na+ (Nav) channels. All experiments were performed using the whole-cell mode of patch-clamp electrophysiology and following the standard steps of this technique. However, in a subgroup of neurons, spontaneous events resembling neurotransmitter release were observed under conditions optimized for whole-cell patch-clamp recordings of INa. All events have a fast rise phase (similar to responses of receptor channels), but decay in a heterogeneous manner. The waveform of the event closely matches that of the response of the purinergic receptor P2X type to ATP. This new activity in neurons was observed at -60 mV and was facilitated during relatively strong hyperpolarization. Although spontaneous fluctuations, termed membrane potential instabilities, are described in DRG neurons, the observed inward currents at more hyperpolarized states are distinct and novel. The spontaneous heterogeneous activities could be relevant to the elucidation of pain mechanisms by distinct pharmacological tools.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
- I. P. Pavlov Department of Physiology, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Saint Petersburg, Russia
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Vera B Plakhova
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Owen P Hamill
- Department of Neuroscience and Cell Biology, UTMB, Galveston, TX, USA
| | - Boris V Krylov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
4
|
Birren SJ, Goodrich LV, Segal RA. Satellite Glial Cells: No Longer the Most Overlooked Glia. Cold Spring Harb Perspect Biol 2025; 17:a041367. [PMID: 38768970 PMCID: PMC11694750 DOI: 10.1101/cshperspect.a041367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Many glial biologists consider glia the neglected cells of the nervous system. Among all the glia of the central and peripheral nervous system, satellite glia may be the most often overlooked. Satellite glial cells (SGCs) are located in ganglia of the cranial nerves and the peripheral nervous system. These small cells surround the cell bodies of neurons in the trigeminal ganglia (TG), spiral ganglia, nodose and petrosal ganglia, sympathetic ganglia, and dorsal root ganglia (DRG). Essential SGC features include their intimate connections with the associated neurons, their small size, and their derivation from neural crest cells. Yet SGCs also exhibit tissue-specific properties and can change rapidly, particularly in response to injury. To illustrate the range of SGC functions, we will focus on three types: those of the spiral, sympathetic, and DRG, and consider both their shared features and those that differ based on location.
Collapse
Affiliation(s)
- Susan J Birren
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
5
|
Scheuren PS, Calvo M. Exploring neuroinflammation: A key driver in neuropathic pain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:311-338. [PMID: 39580216 DOI: 10.1016/bs.irn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Inflammation is a fundamental part of the body's natural defense mechanism, involving immune cells and inflammatory mediators to promote healing and protect against harm. In the event of a lesion or disease of the somatosensory nervous system, inflammation, however, triggers a cascade of changes in both the peripheral and central nervous systems, ultimately contributing to chronic neuropathic pain. Substantial evidence links neuroinflammation to various conditions associated with neuropathic pain. This chapter will explore the role of neuroinflammation in the initiation, maintenance, and resolution of peripheral and central neuropathic pain. Additionally, biomarkers of neuroinflammation in humans will be examined, emphasizing their relevance in different neuropathic pain disorders.
Collapse
Affiliation(s)
- Paulina S Scheuren
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Margarita Calvo
- Physiology Department, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
6
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
7
|
Wang H, Chen L, Xing J, Shi X, Xu C. Reduction of TRPV1 expression on neurons due to downregulation of P2X7R in neonatal rat dorsal root ganglion satellite glial cells under co-culture conditions. Biol Cell 2024; 116:e2400021. [PMID: 39159475 DOI: 10.1111/boc.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND INFORMATION The purinergic ligand-gated ion channel 7 receptor (P2X7R) is an ATP-gated ion channel that transmits extracellular signals and induces corresponding biological effects, transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel that maintains normal physiological functions; numerous studies showed that P2X7R and TRPV1 are associated with inflammatory reactions. RESULTS The effect of P2X7R knockdown in satellite glial cells (SGCs) on neuronal TRPV1 expression under high glucose and high free fat (HGHF) environment was investigated. P2X7 short hairpin RNA (shRNA) was utilized to downregulate P2X7R in SGCs, and treated and untreated SGCs were co-cultured with neuronal cell lines. The expression levels of inflammatory factors and signaling pathways in SGCs and neurons were measured using Western blot analysis, RT-qPCR, immunofluorescence, and enzyme-linked immunosorbent assays. Results suggested that P2X7 shRNA reduced the expression levels of P2X7R protein and mRNA in SGCs surrounding DRG neurons and downregulated the release of tumor necrosis factor-alpha and interleukin-1 beta via the Ca2+/p38 MAPK/NF-κB pathway. Additionally, the downregulation of P2X7R might decrease TRPV1 expression in neurons via the Ca2+/PKC-ɛ/p38 MAPK pathway. CONCLUSIONS Reducing P2X7R expression in SCGs in an HGHF environment could decrease neuronal TRPV1 expression via the Ca2+/PKC-ɛ/p38 MAPK pathway.
Collapse
Affiliation(s)
- Hongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
- College of Economics and Management, Shanghai Ocean University, Shanghai, P.R. China
| | - Lisha Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Juping Xing
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Xiangchao Shi
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
- The Clinical Medical School, Jiangxi Medical College, Shangrao, P.R. China
| |
Collapse
|
8
|
LeBlang CJ, Pazyra-Murphy MF, Silagi ES, Dasgupta S, Tsolias M, Miller T, Petrova V, Zhen S, Jovanovic V, Castellano D, Gerrish K, Ormanoglu P, Tristan C, Singeç I, Woolf CJ, Tasdemir-Yilmaz O, Segal RA. Satellite glial contact enhances differentiation and maturation of human iPSC-derived sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604966. [PMID: 39211268 PMCID: PMC11361066 DOI: 10.1101/2024.07.24.604966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation. Co-cultured iSNs develop a pseudounipolar morphology through contact with rSGs. This transition depends on semaphorin-plexin guidance cues and on glial gap junction signaling. In addition to morphological changes, iSNs terminally differentiated in co-culture exhibit enhanced spontaneous action potential firing, more mature gene expression, and increased susceptibility to paclitaxel induced axonal degeneration. Thus, iSNs differentiated in coculture with rSGs provide a better model for investigating human peripheral neuropathies.
Collapse
|
9
|
Qiao LY. Satellite Glial Cells Bridge Sensory Neuron Crosstalk in Visceral Pain and Cross-Organ Sensitization. J Pharmacol Exp Ther 2024; 390:213-221. [PMID: 38777604 PMCID: PMC11264254 DOI: 10.1124/jpet.123.002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.
Collapse
Affiliation(s)
- Liya Y Qiao
- Department of Physiology and Biophysics, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
10
|
Ratan Y, Rajput A, Pareek A, Pareek A, Kaur R, Sonia S, Kumar R, Singh G. Recent Advances in Biomolecular Patho-Mechanistic Pathways behind the Development and Progression of Diabetic Neuropathy. Biomedicines 2024; 12:1390. [PMID: 39061964 PMCID: PMC11273858 DOI: 10.3390/biomedicines12071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic neuropathy (DN) is a neurodegenerative disorder that is primarily characterized by distal sensory loss, reduced mobility, and foot ulcers that may potentially lead to amputation. The multifaceted etiology of DN is linked to a range of inflammatory, vascular, metabolic, and other neurodegenerative factors. Chronic inflammation, endothelial dysfunction, and oxidative stress are the three basic biological changes that contribute to the development of DN. Although our understanding of the intricacies of DN has advanced significantly over the past decade, the distinctive mechanisms underlying the condition are still poorly understood, which may be the reason behind the lack of an effective treatment and cure for DN. The present study delivers a comprehensive understanding and highlights the potential role of the several pathways and molecular mechanisms underlying the etiopathogenesis of DN. Moreover, Schwann cells and satellite glial cells, as integral factors in the pathogenesis of DN, have been enlightened. This work will motivate allied research disciplines to gain a better understanding and analysis of the current state of the biomolecular mechanisms behind the pathogenesis of DN, which will be essential to effectively address every facet of DN, from prevention to treatment.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Rahul Kumar
- Baba Ragav Das Government Medical College, Gorakhpur 273013, Uttar Pradesh, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
11
|
Vitureira N, Rafael A, Abudara V. P2X7 receptors and pannexin1 hemichannels shape presynaptic transmission. Purinergic Signal 2024; 20:223-236. [PMID: 37713157 PMCID: PMC11189373 DOI: 10.1007/s11302-023-09965-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Over the last decades, since the discovery of ATP as a transmitter, accumulating evidence has been reported about the role of this nucleotide and purinergic receptors, in particular P2X7 receptors, in the modulation of synaptic strength and plasticity. Purinergic signaling has emerged as a crucial player in orchestrating the molecular interaction between the components of the tripartite synapse, and much progress has been made in how this neuron-glia interaction impacts neuronal physiology under basal and pathological conditions. On the other hand, pannexin1 hemichannels, which are functionally linked to P2X7 receptors, have appeared more recently as important modulators of excitatory synaptic function and plasticity under diverse contexts. In this review, we will discuss the contribution of ATP, P2X7 receptors, and pannexin hemichannels to the modulation of presynaptic strength and its impact on motor function, sensory processing, synaptic plasticity, and neuroglial communication, with special focus on the P2X7 receptor/pannexin hemichannel interplay. We also address major hypotheses about the role of this interaction in physiological and pathological circumstances.
Collapse
Affiliation(s)
- Nathalia Vitureira
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Alberto Rafael
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
12
|
Tiwari N, Smith C, Sharma D, Shen S, Mehta P, Qiao LY. Plp1-expresssing perineuronal DRG cells facilitate colonic and somatic chronic mechanical pain involving Piezo2 upregulation in DRG neurons. Cell Rep 2024; 43:114230. [PMID: 38743566 PMCID: PMC11234328 DOI: 10.1016/j.celrep.2024.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRGs) are activated in a variety of chronic pain conditions; however, their mediation roles in pain remain elusive. Here, we take advantage of proteolipid protein (PLP)/creERT-driven recombination in the periphery mainly occurring in SGCs of DRGs to assess the role of SGCs in the regulation of chronic mechanical hypersensitivity and pain-like responses in two organs, the distal colon and hindpaw, to test generality. We show that PLP/creERT-driven hM3Dq activation increases, and PLP/creERT-driven TrkB.T1 deletion attenuates, colon and hindpaw chronic mechanical hypersensitivity, positively associating with calcitonin gene-related peptide (CGRP) expression in DRGs and phospho-cAMP response element-binding protein (CREB) expression in the dorsal horn of the spinal cord. Activation of Plp1+ DRG cells also increases the number of small DRG neurons expressing Piezo2 and acquiring mechanosensitivity and leads to peripheral organ neurogenic inflammation. These findings unravel a role and mechanism of Plp1+ cells, mainly SGCs, in the facilitation of chronic mechanical pain and suggest therapeutic targets for pain mitigation.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Cristina Smith
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Parshva Mehta
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Liya Y Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA.
| |
Collapse
|
13
|
Edvinsson JCA, Ran C, Olofsgård FJ, Steinberg A, Edvinsson L, Belin AC. MERTK in the rat trigeminal system: a potential novel target for cluster headache? J Headache Pain 2024; 25:85. [PMID: 38783191 PMCID: PMC11119394 DOI: 10.1186/s10194-024-01791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The trigeminal system is key to the pathophysiology of migraine and cluster headache, two primary headache disorders that share many features. Recently, MER proto-oncogene tyrosine kinase (MERTK), a cell surface receptor, was strongly associated with cluster headache through genetic studies. Further, the MERTK ligand galectin-3 has been found to be elevated in serum of migraine patients. In this study, MERTK and MERTK ligands were investigated in key tissue to better understand their potential implication in the pathophysiology of primary headache disorders. Immunohistochemistry was used to map MERTK and galectin-3 expression in rat trigeminal ganglia. RT-qPCR was used to assess MERTK gene expression in blood, and ELISA immunoassays were used for MERTK ligand quantification in serum from study participants with and without cluster headache. MERTK gene expression was elevated in blood samples from study participants with cluster headache compared to controls. In addition, MERTK ligand galectin-3 was found at increased concentration in the serum of study participants with cluster headache, whereas the levels of MERTK ligands growth arrest specific 6 and protein S unaffected. MERTK and galectin-3 were both expressed in rat trigeminal ganglia. Galectin-3 was primarily localized in smaller neurons and to a lesser extent in C-fibres, while MERTK was found in satellite glia cells and in the outer membrane of Schwann cells. Interestingly, a strong MERTK signal was found specifically in the region proximal to the nodes of Ranvier. The overexpression of MERTK and galectin-3 in tissue from study participants with cluster headache, as well as the presence of MERTK in rat peripheral satellite glia cells and Schwann cells in the trigeminal ganglia, further highlights MERTK signalling as an interesting potential future therapeutic target in primary headache.
Collapse
Affiliation(s)
- Jacob C A Edvinsson
- Department of Internal Medicine, Lund University, Sölvegatan 19, Lund, 22184, Sweden.
| | - Caroline Ran
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | | | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Lars Edvinsson
- Department of Internal Medicine, Lund University, Sölvegatan 19, Lund, 22184, Sweden
| | - Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
14
|
Pandya VA, Patani R. The role of glial cells in amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:381-450. [PMID: 38802179 DOI: 10.1016/bs.irn.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.
Collapse
Affiliation(s)
- Virenkumar A Pandya
- University College London Medical School, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| | - Rickie Patani
- The Francis Crick Institute, London, United Kingdom; Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
15
|
Qiu X, Yang Y, Da X, Wang Y, Chen Z, Xu C. Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms. Neural Regen Res 2024; 19:1056-1063. [PMID: 37862208 PMCID: PMC10749601 DOI: 10.4103/1673-5374.382986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 10/22/2023] Open
Abstract
Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons. An increasing body of evidence suggests that in the presence of inflammation and nerve damage, a significant number of satellite glial cells become activated, thus triggering a series of functional changes. This suggests that satellite glial cells are closely related to the occurrence of chronic pain. In this review, we first summarize the morphological structure, molecular markers, and physiological functions of satellite glial cells. Then, we clarify the multiple key roles of satellite glial cells in chronic pain, including gap junction hemichannel Cx43, membrane channel Pannexin1, K channel subunit 4.1, ATP, purinergic P2 receptors, and a series of additional factors and their receptors, including tumor necrosis factor, glutamate, endothelin, and bradykinin. Finally, we propose that future research should focus on the specific sorting of satellite glial cells, and identify genomic differences between physiological and pathological conditions. This review provides an important perspective for clarifying mechanisms underlying the peripheral regulation of chronic pain and will facilitate the formulation of new treatment plans for chronic pain.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yuanzhi Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaoli Da
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Fu GJ, Wang LD, Chi XS, Liang X, Wei JJ, Huang ZH, Shen W, Zhang YL. Research Progress on the Experimental Model and Underlying Mechanistic Studies of Tension-Type Headaches. Curr Pain Headache Rep 2024; 28:439-451. [PMID: 38502437 PMCID: PMC11126509 DOI: 10.1007/s11916-024-01238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW Tension-type headaches (TTH) significantly diminish patients' quality of life and increase absenteeism, thereby imposing a substantial economic burden. Animal models are essential tools for studying disease mechanisms and drug development. However, until now, little focus has been placed on summarizing the animal models of TTH and associated mechanistic studies. This narrative review discusses the current animal models of TTH and related mechanistic studies to provide insights into the pathophysiological mechanisms of and treatments for TTH. RECENT FINDINGS The primary method for constructing an animal model of TTH involves injecting a solution of pain relievers, such as adenosine triphosphate, nerve growth factor, or a high concentration of salt solution, into the neck to initiate harmful cervical muscle responses. This model enables the examination of the interaction between peripheral muscles and central sensitization, which is crucial for understanding the pathophysiology of TTH. Mechanistic studies based on this model have investigated the effect of the P2X receptor antagonist, P2X7 receptor blockade, the P2Y1 receptor agonist 2-MESADP, P2Y1 receptor antagonist MRS2179, nitric oxide synthase inhibitors, and acetylsalicylic acid. Despite notable advancements, the current model of TTH has limitations, including surgical complexity and the inability to replicate chronic tension-type headache (CTTH). To gain a more comprehensive understanding and develop more effective treatment methods, future studies should focus on simplifying surgical procedures, examining other predisposing factors, and establishing a model for chronic TTH. This will offer a deeper insight into the pathophysiological mechanism of TTH and pave the way for improved treatment approaches.
Collapse
Affiliation(s)
- Guo-Jing Fu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Liu-Ding Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Xian-Su Chi
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Xiao Liang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Jing-Jing Wei
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Zhi-Hong Huang
- Yidu Central Hospital of Weifang, Weifang, 262,550, China
| | - Wei Shen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China.
| | - Yun-Ling Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China.
| |
Collapse
|
17
|
Edwards D, Rasaiah S, Kirkevang LL, Vaeth M, Stone SJ, Obara I, Durham J, Whitworth J. The use of medicaments in the management of symptomatic irreversible pulpitis: A community-based cohort study. Int Endod J 2024; 57:416-430. [PMID: 38214015 DOI: 10.1111/iej.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
AIM To investigate patient outcomes from either pulpotomy or pulpectomy for the management of symptomatic irreversible pulpitis, with and without application of antibiotic/corticosteroid pastes in urgent primary dental care settings in the United Kingdom. METHODOLOGY All patients receiving intervention for symptomatic irreversible pulpitis in three different primary care settings were invited to participate. Pre-operatively, data regarding patients' numerical ratings scale (NRS), pain score (0-10), analgesic use, oral-health impact profile-14 (OHIP-14) and need for time away from work were collected. For 7 days post-operatively, participants recorded their NRS pain score, global rating of change score, medication use and their ability to work. Analysis used a mixed-effects model with post hoc Tukey's multiple comparisons test for continuous data and chi-squared or Fisher's exact test for categorical data. To test the effect of the corticosteroid/antibiotic paste, pulpectomy and pulpotomy groups were combined following Mantel-Haenszel stratified analysis or a weighted average of the difference between pulpotomy and pulpectomy with and without the use of corticosteroid/antibiotic paste. A binary composite score was constructed using pre- and post-operative data, whereby overall treatment success was defined as: (i) patients did not return for treatment due to pain by day seven; (ii) at day three, there was a 33% (or 2-points) reduction in NRS pain score; (iii) there was a change score of +3 in global rating; (iv) the patient was no longer using analgesia and able to return to work. RESULTS Eighty-five participants were recruited, with 83 completing follow up. Overall treatment success was 57%, with 25% of participants returning for more treatment due to inadequate pain relief. Overall treatment success did not differ between the two groups (p = .645), although patients self-reported greater improvement with an antibiotic/corticosteroid dressing for global rating of change (p = .015). CONCLUSIONS This study identified limited evidence of improved outcomes using antibiotic/corticosteroid dressings in the management of symptomatic irreversible pulpitis in the emergency setting. Further clinical research is needed to understand if these medications are beneficial in affording pain relief, above that of simple excision of irreversibly inflamed pulp tissue.
Collapse
Affiliation(s)
- David Edwards
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sabrina Rasaiah
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Michael Vaeth
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Simon J Stone
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ilona Obara
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, UK
| | - Justin Durham
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John Whitworth
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
18
|
Bang S, Jiang C, Xu J, Chandra S, McGinnis A, Luo X, He Q, Li Y, Wang Z, Ao X, Parisien M, Fernandes de Araujo LO, Jahangiri Esfahani S, Zhang Q, Tonello R, Berta T, Diatchenko L, Ji RR. Satellite glial GPR37L1 and its ligand maresin 1 regulate potassium channel signaling and pain homeostasis. J Clin Invest 2024; 134:e173537. [PMID: 38530364 PMCID: PMC11060744 DOI: 10.1172/jci173537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.
Collapse
Affiliation(s)
- Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sharat Chandra
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yize Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiang Ao
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Marc Parisien
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Lorenna Oliveira Fernandes de Araujo
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Sahel Jahangiri Esfahani
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Qin Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurobiology and
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
19
|
Ghaffari Zaki A, Yiğit EN, Aydın MŞ, Vatandaslar E, Öztürk G, Eroglu E. Genetically Encoded Biosensors Unveil Neuronal Injury Dynamics via Multichromatic ATP and Calcium Imaging. ACS Sens 2024; 9:1261-1271. [PMID: 38293866 DOI: 10.1021/acssensors.3c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
When a cell sustains damage, it liberates cytosolic ATP, which can serve as an injury signal, affecting neighboring cells. This study presents a methodological approach that employs in vitro axotomy and in vivo laser ablation to simulate cellular injury. Specially tailored biosensors are employed to monitor ATP dynamics and calcium transients in injured cells and their surroundings. To simultaneously visualize extracellular and cytosolic ATP, we developed bicistronic constructs featuring GRABATP1.0 and MaLionR biosensors alongside the calcium sensor RCaMP, enabling multiparametric imaging. In addition to transducing primary neuron cultures, we developed another method where we cocultured dorsal root ganglion neurons together with specialized "sniffer" cell lines expressing the bicistronic biosensors. Exploiting these approaches, we successfully demonstrated the release of ATP from the injured neurons and its extracellular diffusion in response to cellular injury in vitro and in vivo. Axotomy triggered intracellular calcium mobilization not only in the injured neuron but also in the intact neighboring cells, providing new insights into ATP's role as an injury signal. The tools developed in this study have demonstrated remarkable efficiency in unraveling the intricacies of ATP-mediated injury signaling.
Collapse
Affiliation(s)
- Asal Ghaffari Zaki
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Esra N Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Mehmet Ş Aydın
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Emre Vatandaslar
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
20
|
Estivill-Torrús G, Martínez-Padilla AB, Sánchez-Salido L, Evercooren ABV, García-Díaz B. The dorsal root ganglion as a target for neurorestoration in neuropathic pain. Neural Regen Res 2024; 19:296-301. [PMID: 37488881 PMCID: PMC10503598 DOI: 10.4103/1673-5374.374655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/19/2023] [Indexed: 07/26/2023] Open
Abstract
Neuropathic pain is a severe and chronic condition widely found in the general population. The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients. During the processing of pain, the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation. Furthermore, the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies. Here, we will review the complex interplay between cells (satellite glial cells and inflammatory cells) and factors (cytokines, neurotrophic factors and genetic factors) that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain. More importantly, we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Anne Baron-Van Evercooren
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Beatriz García-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
21
|
Watanuki Y, Yajima S, Sashide Y, Takeda M. Effect of theanine on the hyperexcitability of trigeminal secondary nociceptive neurons following orofacial inflammation in rats. Eur J Oral Sci 2024; 132:e12961. [PMID: 37984410 DOI: 10.1111/eos.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
The present in vivo study investigated whether systemic administration of theanine attenuates the inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis (SpVc) neurons associated with hyperalgesia. Complete Freund's adjuvant (CFA) was injected into the whisker pads of 24 rats to induce inflammation, and then mechanical stimulation was applied to the orofacial area to assess the threshold of escape. The mechanical threshold was statistically significantly lower in CFA-inflamed rats compared to uninjected naïve rats, and this lowered threshold returned to control levels after 2 days of theanine administration. The mean discharge frequency of SpVc wide-dynamic range (WDR) neurons to mechanical stimuli in anesthetized CFA-inflamed rats was statistically significantly lower after two days of theanine administration. In addition, the increased mean spontaneous discharge of SpVc WDR neurons in CFA-inflamed rats statistically significantly decreased after theanine administration. Similarly, theanine restored the expanded mean receptive field size in CFA-inflamed rats to control levels. Taken together, these results suggest that administration of theanine attenuates inflammatory hyperalgesia associated with hyperexcitability of nociceptive SpVc WDR neurons. These findings support the potential of theanine as a therapeutic agent in complementary alternative medicine strategies to prevent inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Yui Watanuki
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Sora Yajima
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yukito Sashide
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
22
|
Jager SE, Goodwin G, Chisholm KI, Denk F. In vivo calcium imaging shows that satellite glial cells have increased activity in painful states. Brain Commun 2024; 6:fcae013. [PMID: 38638153 PMCID: PMC11024818 DOI: 10.1093/braincomms/fcae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 04/20/2024] Open
Abstract
Satellite glial cells are important for proper neuronal function of primary sensory neurons for which they provide homeostatic support. Most research on satellite glial cell function has been performed with in vitro studies, but recent advances in calcium imaging and transgenic mouse models have enabled this first in vivo study of single-cell satellite glial cell function in mouse models of inflammation and neuropathic pain. We found that in naïve conditions, satellite glial cells do not respond in a time-locked fashion to neuronal firing. In painful inflammatory and neuropathic states, we detected time-locked signals in a subset of satellite glial cells, but only with suprathreshold stimulation of the sciatic nerve. Surprisingly, therefore, we conclude that most calcium signals in satellite glial cells seem to develop at arbitrary intervals not directly linked to neuronal activity patterns. More in line with expectations, our experiments also revealed that the number of active satellite glial cells was increased under conditions of inflammation or nerve injury. This could reflect the increased requirement for homeostatic support across dorsal root ganglion neuron populations, which are more active during such painful states.
Collapse
Affiliation(s)
- Sara E Jager
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - George Goodwin
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Kim I Chisholm
- Pain Centre Versus Arthritis, School of Life Sciences, University of Nottingham, Nottingham NG5 1PB, UK
| | - Franziska Denk
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| |
Collapse
|
23
|
Saunders MN, Griffin KV, Kalashnikova I, Kolpek D, Smith DR, Saito E, Cummings BJ, Anderson AJ, Shea LD, Park J. Biodegradable nanoparticles targeting circulating immune cells reduce central and peripheral sensitization to alleviate neuropathic pain following spinal cord injury. Pain 2024; 165:92-101. [PMID: 37463227 PMCID: PMC10787809 DOI: 10.1097/j.pain.0000000000002989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Neuropathic pain is a critical source of comorbidity following spinal cord injury (SCI) that can be exacerbated by immune-mediated pathologies in the central and peripheral nervous systems. In this article, we investigate whether drug-free, biodegradable, poly(lactide- co -glycolide) (PLG) nanoparticle treatment mitigates the development of post-SCI neuropathic pain in female mice. Our results show that acute treatment with PLG nanoparticles following thoracic SCI significantly reduces tactile and cold hypersensitivity scores in a durable fashion. Nanoparticles primarily reduce peripheral immune-mediated mechanisms of neuropathic pain, including neuropathic pain-associated gene transcript frequency, transient receptor potential ankyrin 1 nociceptor expression, and MCP-1 (CCL2) chemokine production in the subacute period after injury. Altered central neuropathic pain mechanisms during this period are limited to reduced innate immune cell cytokine expression. However, in the chronic phase of SCI, nanoparticle treatment induces changes in both central and peripheral neuropathic pain signaling, driving reductions in cytokine production and other immune-relevant markers. This research suggests that drug-free PLG nanoparticles reprogram peripheral proalgesic pathways subacutely after SCI to reduce neuropathic pain outcomes and improve chronic central pain signaling.
Collapse
Affiliation(s)
- Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Kate V Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Irina Kalashnikova
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
| | - Daniel Kolpek
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
| | - Dominique R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, CA USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Jonghyuck Park
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY USA
| |
Collapse
|
24
|
Bang S, Jiang C, Xu J, Chandra S, McGinnis A, Luo X, He Q, Li Y, Wang Z, Ao X, Parisien M, Fernandes de Araujo LO, Esfahan SJ, Zhang Q, Tonello R, Berta T, Diatchenko L, Ji RR. Satellite glial GPR37L1 regulates maresin and potassium channel signaling for pain control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569787. [PMID: 38106084 PMCID: PMC10723316 DOI: 10.1101/2023.12.03.569787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
G protein coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR and its function remains largely unknown. Here we report that GPR37L1 transcript is highly expressed compared to all known GPCRs in mouse and human dorsal root ganglia (DRGs) and selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following diabetes and chemotherapy by streptozotocin and paclitaxel resulted in downregulations of surface GPR37L1 in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptom (mechanical allodynia), whereas overexpression of Gpr37l1 in mouse DRGs can reverse neuropathic pain. Notably, GPR37L1 is co-expressed and coupled with potassium channels in SGCs. We found striking species differences in potassium channel expression in SGCs, with predominant expression of KCNJ10 and KCNJ3 in mouse and human SGCs, respectively. GPR37L1 regulates the surface expression and function of KCNJ10 and KCNJ3. We identified the pro-resolving lipid mediator maresin 1 (MaR1) as a GPR37L1 ligand. MaR1 increases KCNJ10/KCNJ3-mediated potassium influx in SGCs via GPR37L1. MaR1 protected chemotherapy-induced suppression of KCNJ13/KCNJ10 expression and function in SGCs. Finally, genetic analysis revealed that the GPR37L1-E296K variant is associated with increased chronic pain risk by destabilizing the protein. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.
Collapse
|
25
|
Hjukse JB, Puebla MFDL, Vindedal GF, Sprengel R, Jensen V, Nagelhus EA, Tang W. Increased membrane Ca 2+ permeability drives astrocytic Ca 2+ dynamics during neuronal stimulation at excitatory synapses. Glia 2023; 71:2770-2781. [PMID: 37564028 DOI: 10.1002/glia.24450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Astrocytes are intricately involved in the activity of neural circuits; however, their basic physiology of interacting with nearby neurons is not well established. Using two-photon imaging of neurons and astrocytes during higher frequency stimulation of hippocampal CA3-CA1 Schaffer collateral (Scc) excitatory synapses, we could show that increasing levels of released glutamate accelerated local astrocytic Ca2+ elevation. However, blockage of glutamate transporters did not abolish this astrocytic Ca2+ response, suggesting that astrocytic Ca2+ elevation is indirectly associated with an uptake of extracellular glutamate. However, during the astrocytic glutamate uptake, the Na+ /Ca2+ exchanger (NCX) reverse mode was activated, and mediated extracellular Ca2+ entry, thereby triggering the internal release of Ca2+ . In addition, extracellular Ca2+ entry via membrane P2X receptors further facilitated astrocytic Ca2+ elevation via ATP binding. These findings suggest a novel mechanism of activity induced Ca2+ permeability increases of astrocytic membranes, which drives astrocytic responses during neuronal stimulation of CA3-CA1 Scc excitatory synapses.
Collapse
Affiliation(s)
- Jarand B Hjukse
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mario F D L Puebla
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology, Neuroclinic, St. Olavs Hospital, Trondheim, Norway
| | - Gry Fluge Vindedal
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rolf Sprengel
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Vidar Jensen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Erlend A Nagelhus
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Research Group of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Wannan Tang
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology, Neuroclinic, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
26
|
Jurczak A, Sandor K, Bersellini Farinotti A, Krock E, Hunt MA, Agalave NM, Barbier J, Simon N, Wang Z, Rudjito R, Vazquez-Mora JA, Martinez-Martinez A, Raoof R, Eijkelkamp N, Grönwall C, Klareskog L, Jimenéz-Andrade JM, Marchand F, Svensson CI. Insights into FcγR involvement in pain-like behavior induced by an RA-derived anti-modified protein autoantibody. Brain Behav Immun 2023; 113:212-227. [PMID: 37437817 DOI: 10.1016/j.bbi.2023.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint.
Collapse
Affiliation(s)
- Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Emerson Krock
- The Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Nilesh M Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Zhenggang Wang
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Juan Antonio Vazquez-Mora
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Arisai Martinez-Martinez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Juan Miguel Jimenéz-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden.
| |
Collapse
|
27
|
Zhao L, Liu S, Zhang X, Yang J, Mao M, Zhang S, Xu S, Feng S, Wang X. Satellite glial cell-secreted exosomes after in-vitro oxaliplatin treatment presents a pro-nociceptive effect for dorsal root ganglion neurons and induce mechanical hypersensitivity in naïve mice. Mol Cell Neurosci 2023; 126:103881. [PMID: 37467904 DOI: 10.1016/j.mcn.2023.103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The pathophysiological mechanism underlying chemotherapy-induced neuropathic pain (CINP) remains unclear. Sensory neuronal hypersensitivity in the dorsal root ganglion (DRG) is essential for the onset and maintenance of chronic pain. Satellite glial cells (SGCs) in the DRG potentially affect the function of sensory neurons, possibly by mediating extracellular or paracrine signaling. Exosomes play an essential role in cell-cell communication. However, the role of SGC-secreted exosomes in glia-neuron communication and CINP remains unclear. METHODS SGCs and sensory neurons were cultured from the DRG of mice. The SGCs were treated with 4 μM oxaliplatin for 24 h. Glial fibrillary acid protein (GFAP) and connexin-43 (Cx-43) expressions in the SGCs were examined with immunocytochemistry (ICC). Enzyme-linked immunosorbent assay (ELISA) detected cytokine release in the SGCs after oxaliplatin treatment. Subsequently, SGC-secreted exosomes were collected using ultracentrifugation and identified by nanoparticle tracking analysis, transmission electron microscopy, and western blotting. Subsequently, DRG neurons were incubated with SGC-secreted exosomes for 24 h. The percentage of reactive oxygen species (ROS)-positive neurons was detected using flow cytometry, and acid-sensing ion channel 3 (ASIC3) and transient receptor potential vanilloid 1 (TRPV1) expression were examined by western blotting. SGC-secreted exosomes were intrathecally injected into naïve mice. The mechanical withdrawal threshold was assessed 24, 48, and 72 h following the injection. TRPV1 expression in the DRG was examined 72 h after intrathecal injection. Furthermore, differentially expressed (DE) miRNAs within the SGC-secreted exosomes were detected using RNA sequencing and bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses were performed to predict the function of the target genes of DE miRNAs. Finally, the DE miRNAs with pain regulation potential were identified in silico. RESULTS After in-vitro oxaliplatin treatment, ICC showed an increase in the immunoreactivity of GFAP and Cx-43 in the SGCs. ELISA results suggested an increased release of tumor necrosis factor-α and interleukin (IL)-1β, but a decreased release of IL-10. Oxaliplatin treatment increased the secretion of exosomes in the SGCs from 4.34 to 5.99 × 1011 (particles/ml). The exosome-specific markers CD9 and TSG101 were positive, whereas calnexin was negative for the obtained exosomes. Additionally, the SGC-secreted exosomes were endocytosed by DRG neurons after co-incubation. Moreover, after incubation with conditioned SGC-secreted exosomes (after 4 μM oxaliplatin treatment), the percentage of ROS-positive DRG neurons increased and ASIC3 and TRPV1 expressions were upregulated. After the intrathecal injection of the conditioned SGC-secreted exosomes, the mice presented with mechanical hypersensitivity and TRPV1 expression upregulation in the DRG. Notably, 25 and 120 significantly upregulated and downregulated miRNAs, respectively, were identified in the conditioned SGC-secreted exosomes. When predicting the function of target genes of DE miRNAs, certain GO terms, such as synapse organization, neurogenesis regulation, histone modification, and pain-related KEGG or Reactome pathways, including vascular endothelial growth factor A-vascular endothelial growth factor receptor 2, mammalian target of rapamycin, and mitogen-activated protein kinase signaling pathways, related to nervous system function were predicted. Finally, 27 pain regulation-related miRNAs, including miR-324-3p, miR-181a-5p, and miR-122-5p, were identified in silico. CONCLUSION Our study demonstrates that SGC-secreted exosomes after in-vitro oxaliplatin treatment present a pro-nociceptive effect for DRG neurons and induce mechanical hypersensitivity in naïve mice, possibly via the contained miRNA cargo. Identifying the candidate miRNAs and verifying their functions in vivo are required to elucidate the exosomes mediating 'glia-neuron' communication under CINP condition.
Collapse
Affiliation(s)
- Liping Zhao
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Shijiang Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaobao Zhang
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu Province, China
| | - Juan Yang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Mao Mao
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Susu Zhang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Shiqin Xu
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China.
| | - Shanwu Feng
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China.
| | - Xian Wang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China.
| |
Collapse
|
28
|
Brandt JP, Smith CJ. Piezo1-mediated spontaneous calcium transients in satellite glia impact dorsal root ganglia development. PLoS Biol 2023; 21:e3002319. [PMID: 37747915 PMCID: PMC10564127 DOI: 10.1371/journal.pbio.3002319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/10/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
Spontaneous Ca2+ transients of neural cells is a hallmark of the developing nervous system. It is widely accepted that chemical signals, like neurotransmitters, contribute to spontaneous Ca2+ transients in the nervous system. Here, we reveal an additional mechanism of spontaneous Ca2+ transients that is mechanosensitive in the peripheral nervous system (PNS) using intravital imaging of growing dorsal root ganglia (DRG) in zebrafish embryos. GCaMP6s imaging shows that developing DRG satellite glia contain distinct spontaneous Ca2+ transients, classified into simultaneous, isolated, and microdomains. Longitudinal analysis over days in development demonstrates that as DRG satellite glia become more synchronized, isolated Ca2+ transients remain constant. Using a chemical screen, we identify that Ca2+ transients in DRG glia are dependent on mechanical properties, which we confirmed using an experimental application of mechanical force. We find that isolated spontaneous Ca2+ transients of the glia during development is altered by manipulation of mechanosensitive protein Piezo1, which is expressed in the developing ganglia. In contrast, simultaneous Ca2+ transients of DRG satellite glia is not Piezo1-mediated, thus demonstrating that distinct mechanisms mediate subtypes of spontaneous Ca2+ transients. Activating Piezo1 eventually impacts the cell abundance of DRG cells and behaviors that are driven by DRG neurons. Together, our results reveal mechanistically distinct subtypes of Ca2+ transients in satellite glia and introduce mechanobiology as a critical component of spontaneous Ca2+ transients in the developing PNS.
Collapse
Affiliation(s)
- Jacob P. Brandt
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody J. Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
29
|
Clemente-Napimoga JT, Mendes V, Trindade-da-Silva CA, Carvalho GD, Paranhos ACGA, Andrade E Silva F, Buarque E Silva WA, Napimoga MH, Abdalla HB. Experimental traumatic occlusion drives immune changes in trigeminal ganglion. Int Immunopharmacol 2023; 122:110674. [PMID: 37481846 DOI: 10.1016/j.intimp.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
We previously demonstrated that experimental traumatic occlusion (ETO) induces a long-lasting nociceptive response. These findings were associated with altered neuronal patterns and suggestive satellite glial cell activation. This study aimed to elucidate the activation of satellite glial cells following ETO in the trigeminal ganglion. Moreover, we explored the involvement of resident and infiltrating cells in trigeminal ganglion in ETO. Finally, we investigated the overexpression of purinergic signaling and the CX3CL1/CX3CR1 axis. RT-qPCR and electrophoresis showed overexpression of GFAP in the trigeminal ganglion (TG), and immunohistochemistry corroborated these findings, demonstrating SGCs activation. ELISA reveals enhanced levels of TNF-α and IL-1β in TG after 28 d of ETO. In trigeminal ganglia, ETO groups improved the release of CX3CL1, and immunohistochemistry showed higher CX3CR1+ -immunoreactive cells in ETO groups. Immunohistochemistry and electrophoresis of the P2X7 receptor were found in ETO groups. The mRNA levels of IBA1 are upregulated in the 0.7-mm ETO group, while immunohistochemistry showed higher IBA1+ -immunoreactive cells in both ETO groups. The expression of CD68 by electrophoresis and immunohistochemistry was observed in the ETO groups. For last, ELISA revealed increased levels of IL-6, IL-12, and CCL2 in the TG of ETO groups. Furthermore, the mRNA expression revealed augmented transcription factors and cytokines associated with lymphocyte activation, such as RORγt, IL-17, Tbet, IFNγ, FOXP3, and IL-10. The findings of this study suggested that ETO activates SGCs in TG, and purinergic signaling and CX3CL1/CX3CR1 axis were upregulated. We uncovered the involvement of a distinct subtype of macrophages, named sensory neuron-associated macrophage activation (sNMAs), and detected an expanded number of infiltrated macrophages onto TG. These findings indicate that ETO induces chronic/persistent immune response.
Collapse
Affiliation(s)
| | - Vagner Mendes
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| | | | - Gustavo de Carvalho
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| | | | - Frederico Andrade E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Wilkens Aurélio Buarque E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | | | | |
Collapse
|
30
|
Alcayaga J, Vera J, Reyna-Jeldes M, Covarrubias AA, Coddou C, Díaz-Jara E, Del Rio R, Retamal MA. Activation of Intra-nodose Ganglion P2X7 Receptors Elicit Increases in Neuronal Activity. Cell Mol Neurobiol 2023; 43:2801-2813. [PMID: 36680690 PMCID: PMC11410124 DOI: 10.1007/s10571-023-01318-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
Vagus nerve innervates several organs including the heart, stomach, and pancreas among others. Somas of sensory neurons that project through the vagal nerve are located in the nodose ganglion. The presence of purinergic receptors has been reported in neurons and satellite glial cells in several sensory ganglia. In the nodose ganglion, calcium depletion-induced increases in neuron activity can be partly reversed by P2X7 blockers applied directly into the ganglion. The later suggest a possible role of P2X7 receptors in the modulation of neuronal activity within this sensory ganglion. We aimed to characterize the response to P2X7 activation in nodose ganglion neurons under physiological conditions. Using an ex vivo preparation for electrophysiological recordings of the neural discharges of nodose ganglion neurons, we found that treatments with ATP induce transient neuronal activity increases. Also, we found a concentration-dependent increase in neural activity in response to Bz-ATP (ED50 = 0.62 mM, a selective P2X7 receptor agonist), with a clear desensitization pattern when applied every ~ 30 s. Electrophysiological recordings from isolated nodose ganglion neurons reveal no differences in the responses to Bz-ATP and ATP. Finally, we showed that the P2X7 receptor was expressed in the rat nodose ganglion, both in neurons and satellite glial cells. Additionally, a P2X7 receptor negative allosteric modulator decreased the duration of Bz-ATP-induced maximal responses without affecting their amplitude. Our results show the presence of functional P2X7 receptors under physiological conditions within the nodose ganglion of the rat, and suggest that ATP modulation of nodose ganglion activity may be in part mediated by the activation of P2X7 receptors.
Collapse
Affiliation(s)
- Julio Alcayaga
- Laboratorio de Fisiología Celular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile.
| | - Jorge Vera
- Laboratorio de Fisiología Celular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Mauricio Reyna-Jeldes
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Alejandra A Covarrubias
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Claudio Coddou
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Mauricio A Retamal
- Universidad de Desarrollo, Programa de Comunicación Celular en Cáncer. Facultad de Medicina Clínica Alemana., Santiago, Chile.
- Universidad del Desarrollo. , Centro de Fisiología Celular e Integrativa, Clínica Alemana Facultad de Medicina., Santiago, Chile.
| |
Collapse
|
31
|
Cui H, Guo Z, Guo Z, Fan Z, Shen N, Qi X, Ma Y, Zhu Y, Wu X, Chen B, Xiang H. TMEM100 Regulates Neuropathic Pain by Reducing the Expression of Inflammatory Factors. Mediators Inflamm 2023; 2023:9151967. [PMID: 37469758 PMCID: PMC10352538 DOI: 10.1155/2023/9151967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
There is no effective treatment for peripheral nerve injury-induced chronic neuropathic pain (NP), which profoundly impacts the quality of life of those affected. Transmembraneprotein100 (TMEM100) is considered to be a pain regulatory protein and is expressed in the dorsal root ganglion (DRG) of rats. However, the mechanism of pain regulation and the expression of TMEM100 following various peripheral nerve injuries are unclear. In this study, we constructed two pain models of peripheral nerve injury: tibial nerve injury (TNI) and chronic constriction injury (CCI). This study found that the Paw Withdrawal Mechanical Threshold (PWMT) and Paw Withdraw Thermal Latency (PWTL) of the rats in the two pain models decreased significantly, and the expression of TMEM100 in the DRG of two groups also decreased significantly. Furthermore, the decrease in the CCI group was more obvious than in the TNI group. There was no significant statistical significance (P > 0.05). We constructed an adeno-associated virus 6 (AAV6) vector expressing recombinant fluorescent TMEM100 protein and injected it into the sciatic nerve (SN) of two pain models: CCI and TNI. PWMT and PWTL were significantly increased in the two groups, along with the expression of TMEM100 in the spinal cord and DRG. It also significantly inhibited the activation of microglia, astrocytes, and several inflammatory mediators (TNF- α, IL-1 β, and IL-6). In summary, the results of this study suggested that TMEM100 might be a promising molecular strategy for the treatment of NP, and its anti-inflammatory effects might play an important role in pain relief.
Collapse
Affiliation(s)
- Huifei Cui
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhaoyang Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhu Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zuoran Fan
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Nana Shen
- Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoying Qi
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuanye Ma
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Youfu Zhu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bohua Chen
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hongfei Xiang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
32
|
van Weperen VYH, Vaseghi M. Cardiac vagal afferent neurotransmission in health and disease: review and knowledge gaps. Front Neurosci 2023; 17:1192188. [PMID: 37351426 PMCID: PMC10282187 DOI: 10.3389/fnins.2023.1192188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
The meticulous control of cardiac sympathetic and parasympathetic tone regulates all facets of cardiac function. This precise calibration of cardiac efferent innervation is dependent on sensory information that is relayed from the heart to the central nervous system. The vagus nerve, which contains vagal cardiac afferent fibers, carries sensory information to the brainstem. Vagal afferent signaling has been predominantly shown to increase parasympathetic efferent response and vagal tone. However, cardiac vagal afferent signaling appears to change after cardiac injury, though much remains unknown. Even though subsequent cardiac autonomic imbalance is characterized by sympathoexcitation and parasympathetic dysfunction, it remains unclear if, and to what extent, vagal afferent dysfunction is involved in the development of vagal withdrawal. This review aims to summarize the current understanding of cardiac vagal afferent signaling under in health and in the setting of cardiovascular disease, especially after myocardial infarction, and to highlight the knowledge gaps that remain to be addressed.
Collapse
Affiliation(s)
- Valerie Y. H. van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
| | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
33
|
Yang R, Du J, Li L, Xu X, Liang S. Central role of purinergic receptors with inflammation in neuropathic pain-related macrophage-SGC-neuron triad. Neuropharmacology 2023; 228:109445. [PMID: 36740014 DOI: 10.1016/j.neuropharm.2023.109445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Adenosine triphosphate (ATP) acts on P2 purinergic receptors as an extracellular signaling molecule. P2 purinergic receptors include P2X ionotropic receptors and P2Y metabotropic receptors. Satellite glial cells (SGCs) and macrophages express P2X and P2Y receptors. Inflammatory cytokines and pro-nociceptive mediators are released by activated macrophages and SGCs, which can act on neurons to promote excitability and firing. In the primary sensory ganglia, in response to signals of injury, SGCs and macrophages accumulate around primary sensory neurons, forming a macrophage-SGC-neuron triad. In addition to affecting the pathological alterations of inflammation-related neuropathic pain, inflammatory cytokines and pro-nociceptive mediators are released by the action of ATP on P2X and P2Y receptors in macrophages and SGCs. Macrophages and SGCs work together to enhance and prolong neuropathic pain. The macrophage-SGC-neuron triad communicates with each other through ATP and other inflammatory mediators and maintains and promotes the initiation and development of inflammation related-neuropathic pain. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Junpei Du
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
34
|
McGinnis A, Ji RR. The Similar and Distinct Roles of Satellite Glial Cells and Spinal Astrocytes in Neuropathic Pain. Cells 2023; 12:965. [PMID: 36980304 PMCID: PMC10047571 DOI: 10.3390/cells12060965] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Preclinical studies have identified glial cells as pivotal players in the genesis and maintenance of neuropathic pain after nerve injury associated with diabetes, chemotherapy, major surgeries, and virus infections. Satellite glial cells (SGCs) in the dorsal root and trigeminal ganglia of the peripheral nervous system (PNS) and astrocytes in the central nervous system (CNS) express similar molecular markers and are protective under physiological conditions. They also serve similar functions in the genesis and maintenance of neuropathic pain, downregulating some of their homeostatic functions and driving pro-inflammatory neuro-glial interactions in the PNS and CNS, i.e., "gliopathy". However, the role of SGCs in neuropathic pain is not simply as "peripheral astrocytes". We delineate how these peripheral and central glia participate in neuropathic pain by producing different mediators, engaging different parts of neurons, and becoming active at different stages following nerve injury. Finally, we highlight the recent findings that SGCs are enriched with proteins related to fatty acid metabolism and signaling such as Apo-E, FABP7, and LPAR1. Targeting SGCs and astrocytes may lead to novel therapeutics for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
35
|
Zou Y, Yang R, Li L, Xu X, Liang S. Purinergic signaling: a potential therapeutic target for depression and chronic pain. Purinergic Signal 2023; 19:163-172. [PMID: 34338957 PMCID: PMC9984625 DOI: 10.1007/s11302-021-09801-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
The comorbid mechanism of depression and chronic pain has been a research hotspot in recent years. Until now, the role of purinergic signals in the comorbid mechanism of depression and chronic pain has not been fully understood. This review mainly summarizes the research results published in PubMed during the past 5 years and concludes that purinergic signaling is a potential therapeutic target for comorbid depression and chronic pain, and the purinergic receptors A1, A2A, P2X3, P2X4, and P2X7and P2Y6, P2Y1, and P2Y12 may be important factors. The main potential pathways are as follows: A1 receptor-related G protein-dependent activation of introverted K+ channels (GIRKs), A2A receptor-related effects on the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and MAPK/nuclear factor-κB (NF-κB) pathways, P2X3 receptor-related effects on dorsal root ganglia (DRG) excitability, P2X4 receptor-related effects on proinflammatory cytokines and inflammasome activation, P2X7 receptor-related effects on ion channels, the NLRP3 inflammasome and brain-derived neurotrophic factor (BDNF), and P2Y receptor-related effects on the phospholipase C (PLC)/inositol triphosphate (IP3)/Ca2+ signaling pathway. We hope that the conclusions of this review will provide key ideas for future research on the role of purinergic signaling in the comorbid mechanism of depression and chronic pain.
Collapse
Affiliation(s)
- Yuting Zou
- First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China. .,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
36
|
Pakkarato S, Sakagami H, Watanabe M, Kondo H, Hipkaeo W, Chomphoo S. Discrete localization patterns of PIP5Kγ and PLCβ3 working sequentially in phosphoinositide-cycle within mouse sensory neuron somata. Microsc Res Tech 2023; 86:351-358. [PMID: 36579633 DOI: 10.1002/jemt.24276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/11/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022]
Abstract
It is known that phosphatidylinositol phosphate 5 kinase (PIP5K) γ and phospholipase C (PLC) β3, working sequentially in the phosphoinositide cycle, are localized in dorsal root ganglion (DRG) somata and are involved in the regulation of pain and related sensations. However, the sites of their involvement have remained to be clarified. In the present study, immunoreactivity for PLCβ3 was distinct only in the central process of mouse DRG, but not in its peripheral process, in contrast to distinct PIP5Kγ-immunoreactivity in both peripheral and central DRG processes. No nerve terminals showing immunoreactivity for PLCβ3 were detected in any peripheral sensory fields, similar to PIP5Kγ-immunoreactivity. In DRG somata, PIP5Kγ-immunoreactivity was rather confined to the neurolemma in which dots and threads were discerned in 3D bright field light microscopy. This feature well corresponded to its discontinuous localization along the plasma membranes in immuno-electron microscopy. In contrast, PLCβ3-immunoreactivity occurred diffusely throughout the somata, but did not take distinct appearance of immunoreaction on neurolemma or plasma membranes, unlike PIP5Kγ-immunoreactivity. In addition, satellite glial cells were immunonegative for PLCβ3, but immunopositive for PIP5Kγ. The involvement of PLCβ3 in regulation of pain and related sensations is thus suggested to be mainly exerted at levels of the DRG soma and its upstream, but to be less significant in the peripheral sensory fields, similar to PIP5Kγ. The possibility is also suggested that PIP, PIP5Kγ-target, is localized heterogeneously, but PIP2, PLCβ3-target, is localized homogenously over the plane of the neuronal plasma membranes. RESEARCH HIGHLIGHTS: PIP5Kγ, different from PLCβ3, was localized heterogeneously on neuronal membranes, and this difference was demonstrated in 3D-bright field immuno-light and electron microscopy. Either PIP5Kγ or PLCβ3 was not detected in peripheral nerve terminals.
Collapse
Affiliation(s)
- Sawetree Pakkarato
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Sports and Health Sciences, Faculty of Science and Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Hiroyuki Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Masahiko Watanabe
- Department of Anatomy, School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Surang Chomphoo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
37
|
Abstract
Satellite glial cells (SGCs) that surround sensory neurons in the peripheral nervous system ganglia originate from neural crest cells. Although several studies have focused on SGCs, the origin and characteristics of SGCs are unknown, and their lineage remains unidentified. Traditionally, it has been considered that SGCs regulate the environment around neurons under pathological conditions, and perform functions of supporting, nourishing, and protecting neurons. However, recent studies demonstrated that SGCs may have the characteristics of stem cells. After nerve injury, SGCs up-regulate the expression of stem cell markers and can differentiate into functional sensory neurons. Moreover, SGCs express several markers of Schwann cell precursors and Schwann cells, such as CDH19, MPZ, PLP1, SOX10, ERBB3, and FABP7. Schwann cell precursors have also been proposed as a potential source of neurons in the peripheral nervous system. The similarity in function and markers suggests that SGCs may represent a subgroup of Schwann cell precursors. Herein, we discuss the roles and functions of SGCs, and the lineage relationship between SGCs and Schwann cell precursors. We also describe a new perspective on the roles and functions of SGCs. In the DRG located on the posterior root of spinal nerves, satellite glial cells wrap around each sensory neuron to form an anatomically and functionally distinct unit with the sensory neurons. Following nerve injury, satellite glial cells up-regulate the expression of progenitor markers, and can differentiate into neurons.
Collapse
|
38
|
Fang XX, Zhai MN, Zhu M, He C, Wang H, Wang J, Zhang ZJ. Inflammation in pathogenesis of chronic pain: Foe and friend. Mol Pain 2023; 19:17448069231178176. [PMID: 37220667 DOI: 10.1177/17448069231178176] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Chronic pain is a refractory health disease worldwide causing an enormous economic burden on individuals and society. Accumulating evidence suggests that inflammation in the peripheral nervous system (PNS) and central nervous system (CNS) is the major factor in the pathogenesis of chronic pain. The inflammation in the early- and late phase may have distinctive effects on the initiation and resolution of pain, which can be viewed as friend or foe. On the one hand, painful injuries lead to the activation of glial cells and immune cells in the PNS, releasing pro-inflammatory mediators, which contribute to the sensitization of nociceptors, leading to chronic pain; neuroinflammation in the CNS drives central sensitization and promotes the development of chronic pain. On the other hand, macrophages and glial cells of PNS and CNS promote pain resolution via anti-inflammatory mediators and specialized pro-resolving mediators (SPMs). In this review, we provide an overview of the current understanding of inflammation in the deterioration and resolution of pain. Further, we summarize a number of novel strategies that can be used to prevent and treat chronic pain by controlling inflammation. This comprehensive view of the relationship between inflammation and chronic pain and its specific mechanism will provide novel targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meng-Nan Zhai
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Cheng He
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Heng Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Juan Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
39
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
40
|
Klein I, Boenert J, Lange F, Christensen B, Wassermann MK, Wiesen MHJ, Olschewski DN, Rabenstein M, Müller C, Lehmann HC, Fink GR, Schroeter M, Rueger MA, Vay SU. Glia from the central and peripheral nervous system are differentially affected by paclitaxel chemotherapy via modulating their neuroinflammatory and neuroregenerative properties. Front Pharmacol 2022; 13:1038285. [PMID: 36408236 PMCID: PMC9666700 DOI: 10.3389/fphar.2022.1038285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Glia are critical players in defining synaptic contacts and maintaining neuronal homeostasis. Both astrocytes as glia of the central nervous system (CNS), as well as satellite glial cells (SGC) as glia of the peripheral nervous system (PNS), intimately interact with microglia, especially under pathological conditions when glia regulate degenerative as well as regenerative processes. The chemotherapeutic agent paclitaxel evokes peripheral neuropathy and cognitive deficits; however, the mechanisms underlying these diverse clinical side effects are unclear. We aimed to elucidate the direct effects of paclitaxel on the function of astrocytes, microglia, and SGCs, and their glia-glia and neuronal-glia interactions. After intravenous application, paclitaxel was present in the dorsal root ganglia of the PNS and the CNS of rodents. In vitro, SGC enhanced the expression of pro-inflammatory factors and reduced the expression of neurotrophic factor NT-3 upon exposure to paclitaxel, resulting in predominantly neurotoxic effects. Likewise, paclitaxel induced a switch towards a pro-inflammatory phenotype in microglia, exerting neurotoxicity. In contrast, astrocytes expressed neuroprotective markers and increasingly expressed S100A10 after paclitaxel exposure. Astrocytes, and to a lesser extent SGCs, had regulatory effects on microglia independent of paclitaxel exposure. Data suggest that paclitaxel differentially modulates glia cells regarding their (neuro-) inflammatory and (neuro-) regenerative properties and also affects their interaction. By elucidating those processes, our data contribute to the understanding of the mechanistic pathways of paclitaxel-induced side effects in CNS and PNS.
Collapse
Affiliation(s)
- Ines Klein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Janne Boenert
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Felix Lange
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Britt Christensen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Meike K. Wassermann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Martin H. J. Wiesen
- Center of Pharmacology, Therapeutic Drug Monitoring, University Hospital of Cologne, Cologne, Germany
| | - Daniel Navin Olschewski
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Monika Rabenstein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Carsten Müller
- Center of Pharmacology, Therapeutic Drug Monitoring, University Hospital of Cologne, Cologne, Germany
| | - Helmar C. Lehmann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Gereon Rudolf Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Michael Schroeter
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Maria Adele Rueger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Sabine Ulrike Vay
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- *Correspondence: Sabine Ulrike Vay,
| |
Collapse
|
41
|
Andreeva D, Murashova L, Burzak N, Dyachuk V. Satellite Glial Cells: Morphology, functional heterogeneity, and role in pain. Front Cell Neurosci 2022; 16:1019449. [PMID: 36274990 PMCID: PMC9583829 DOI: 10.3389/fncel.2022.1019449] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons in the somatic, sympathetic, and parasympathetic ganglia are surrounded by envelopes consisting of satellite glial cells (SGCs). Recently, it has become clear that SGCs are highly altered after nerve injury, which influences neuronal excitability and, consequently, the development and maintenance of pain in different animal models of chronic pain. However, the exact mechanism underlying chronic pain is not fully understood yet because it is assumed that SGCs in different ganglia share many common peculiarities, making the process complex. Here, we review recent data on morphological and functional heterogeneity and changes in SGCs in various pain conditions and their role in response to injury. More research is required to decipher the role of SGCs in diseases, such as chronic pain, neuropathology, and neurodegenerative diseases.
Collapse
|
42
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Chen Z, Huang Q, Song X, Ford NC, Zhang C, Xu Q, Lay M, He SQ, Dong X, Hanani M, Guan Y. Purinergic signaling between neurons and satellite glial cells of mouse dorsal root ganglia modulates neuronal excitability in vivo. Pain 2022; 163:1636-1647. [PMID: 35027518 PMCID: PMC9771604 DOI: 10.1097/j.pain.0000000000002556] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
ABSTRACT Primary sensory neurons in dorsal root ganglia (DRG) are wrapped by satellite glial cells (SGCs), and neuron-SGC interaction may affect somatosensation, especially nociceptive transmission. P2-purinergic receptors (P2Rs) are key elements in the two-way interactions between DRG neurons and SGCs. However, because the cell types are in such close proximity, conventional approaches such as in vitro culture and electrophysiologic recordings are not adequate to investigate the physiologically relevant responses of these cells at a population level. Here, we performed in vivo calcium imaging to survey the activation of hundreds of DRG neurons in Pirt-GCaMP6s mice and to assess SGC activation in GFAP-GCaMP6s mice in situ. By combining pharmacologic and electrophysiologic techniques, we investigated how ganglionic purinergic signaling initiated by α,β-methyleneadenosine 5'-triphosphate (α,β-MeATP) modulates neuronal activity and excitability at a population level. We found that α,β-MeATP induced robust activation of small neurons-likely nociceptors-through activation of P2X3R. Large neurons, which are likely non-nociceptive, were also activated by α,β-MeATP, but with a delay. Blocking pannexin 1 channels attenuated the late phase response of DRG neurons, indicating that P2R stimulation may subsequently induce paracrine ATP release, which could further activate cells in the ganglion. Moreover, ganglionic α,β-MeATP treatment in vivo sensitized small neurons and enhanced responses of spinal wide-dynamic-range neurons to subsequent C-fiber inputs, suggesting that modulation via ganglionic P2R signaling could significantly affect nociceptive neuron excitability and pain transmission. Therefore, targeting functional P2Rs within ganglia may represent an important new strategy for pain modulation.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Xiaodan Song
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Qian Xu
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Mark Lay
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| |
Collapse
|
44
|
BzATP Activates Satellite Glial Cells and Increases the Excitability of Dorsal Root Ganglia Neurons In Vivo. Cells 2022; 11:cells11152280. [PMID: 35892578 PMCID: PMC9330736 DOI: 10.3390/cells11152280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022] Open
Abstract
The purinergic system plays an important role in pain transmission. Recent studies have suggested that activation of P2-purinergic receptors (P2Rs) may be involved in neuron-satellite glial cell (SGC) interactions in the dorsal root ganglia (DRG), but the details remain unclear. In DRG, P2X7R is selectively expressed in SGCs, which closely surround neurons, and is highly sensitive to 3’-O-(4-Benzoyl) benzoyl-ATP (BzATP). Using calcium imaging in intact mice to survey a large number of DRG neurons and SGCs, we examined how intra-ganglionic purinergic signaling initiated by BzATP affects neuronal activities in vivo. We developed GFAP-GCaMP6s and Pirt-GCaMP6s mice to express the genetically encoded calcium indicator GGCaM6s in SGCs and DRG neurons, respectively. The application of BzATP to the ganglion induced concentration-dependent activation of SGCs in GFAP-GCaMP6s mice. In Pirt-GCaMP6s mice, BzATP initially activated more large-size neurons than small-size ones. Both glial and neuronal responses to BzATP were blocked by A438079, a P2X7R-selective antagonist. Moreover, blockers to pannexin1 channels (probenecid) and P2X3R (A317491) also reduced the actions of BzATP, suggesting that P2X7R stimulation may induce the opening of pannexin1 channels, leading to paracrine ATP release, which could further excite neurons by acting on P2X3Rs. Importantly, BzATP increased the responses of small-size DRG neurons and wide-dynamic range spinal neurons to subsequent peripheral stimuli. Our findings suggest that intra-ganglionic purinergic signaling initiated by P2X7R activation could trigger SGC-neuron interaction in vivo and increase DRG neuron excitability.
Collapse
|
45
|
Abstract
Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.
Collapse
Affiliation(s)
- Carla Taveggia
- Axo-Glial Interaction Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy;
| | - M. Laura Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
46
|
Zheng Q, Dong X, Green DP, Dong X. Peripheral mechanisms of chronic pain. MEDICAL REVIEW 2022; 2:251-270. [PMID: 36067122 PMCID: PMC9381002 DOI: 10.1515/mr-2022-0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Acutely, pain serves to protect us from potentially harmful stimuli, however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain. Although acute pain is fairly well controlled, chronic pain remains difficult to treat. Chronic pain is primarily a neuropathic condition, but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets, immune cells, and the role of the autonomic nervous system in contributing chronic pain conditions. The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
47
|
Jager SE, Pallesen LT, Lin L, Izzi F, Pinheiro AM, Villa-Hernandez S, Cesare P, Vaegter CB, Denk F. Comparative transcriptional analysis of satellite glial cell injury response. Wellcome Open Res 2022; 7:156. [PMID: 35950162 PMCID: PMC9329822 DOI: 10.12688/wellcomeopenres.17885.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Satellite glial cells (SGCs) tightly surround and support primary sensory neurons in the peripheral nervous system and are increasingly recognized for their involvement in the development of neuropathic pain following nerve injury. SGCs are difficult to investigate due to their flattened shape and tight physical connection to neurons in vivo and their rapid changes in phenotype and protein expression when cultured in vitro. Consequently, several aspects of SGC function under normal conditions as well as after a nerve injury remain to be explored. The recent advance in single cell RNA sequencing (scRNAseq) technologies has enabled a new approach to investigate SGCs. Methods: In this study we used scRNAseq to investigate SGCs from mice subjected to sciatic nerve injury. We used a meta-analysis approach to compare the injury response with that found in other published datasets. Furthermore, we also used scRNAseq to investigate how cells from the dorsal root ganglion (DRG) change after 3 days in culture. Results: From our meta-analysis of the injured conditions, we find that SGCs share a common signature of 18 regulated genes following sciatic nerve crush or sciatic nerve ligation, involving transcriptional regulation of cholesterol biosynthesis. We also observed a considerable transcriptional change when culturing SGCs, suggesting that some differentiate into a specialised in vitro state while others start resembling Schwann cell-like precursors. Conclusion: By using integrated analyses of new and previously published scRNAseq datasets, this study provides a consensus view of which genes are most robustly changed in SGCs after injury. Our results are available via the Broad Institute Single Cell Portal, so that readers can explore and search for genes of interest.
Collapse
Affiliation(s)
- Sara Elgaard Jager
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Lone Tjener Pallesen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Denmark & Steno and Diabetes Center, Aarhus, Denmark
| | - Francesca Izzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Alana Miranda Pinheiro
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Sara Villa-Hernandez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Paolo Cesare
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Christian Bjerggaard Vaegter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| |
Collapse
|
48
|
Tang G, Pi L, Guo H, Hu Z, Zhou C, Hu Q, Peng H, Xiao Z, Zhang Z, Wang M, Peng T, Huang J, Liang S, Li G. Naringin Relieves Diabetic Cardiac Autonomic Neuropathy Mediated by P2Y14 Receptor in Superior Cervical Ganglion. Front Pharmacol 2022; 13:873090. [PMID: 35529431 PMCID: PMC9068893 DOI: 10.3389/fphar.2022.873090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM), an emerging chronic epidemic, contributes to mortality and morbidity around the world. Diabetic cardiac autonomic neuropathy (DCAN) is one of the most common complications associated with DM. Previous studies have shown that satellite glial cells (SGCs) in the superior cervical ganglia (SCG) play an indispensable role in DCAN progression. In addition, it has been shown that purinergic neurotransmitters, as well as metabotropic GPCRs, are involved in the pathophysiological process of DCAN. Furthermore, one traditional Chinese medicine, naringin may potently alleviate the effects of DCAN. Ferroptosis may be involved in DCAN progression. However, the role of naringin in DCAN as well as its detailed mechanism requires further investigation. In this research, we attempted to identify the effect and relevant mechanism of naringin in DCAN mitigation. We observed that compared with those of normal subjects, there were significantly elevated expression levels of P2Y14 and IL-1β in diabetic rats, both of which were remarkably diminished by treatment with either P2Y14 shRNA or naringin. In addition, abnormalities in blood pressure (BP), heart rate (HR), heart rate variability (HRV), sympathetic nerve discharge (SND), and cardiac structure in the diabetic model can also be partially returned to normal through the use of those treatments. Furthermore, a reduced expression of NRF2 and GPX4, as well as an elevated level of ROS, were detected in diabetic cases, which can also be improved with those treatments. Our results showed that naringin can effectively relieve DCAN mediated by the P2Y14 receptor of SGCs in the SCG. Moreover, the NRF2/GPX4 pathway involved in ferroptosis may become one of the principal mechanisms participating in DCAN progression, which can be modulated by P2Y14-targeted naringin and thus relieve DCAN. Hopefully, our research can supply one novel therapeutic target and provide a brilliant perspective for the treatment of DCAN.
Collapse
Affiliation(s)
- Gan Tang
- Queen Mary School, Medical School of Nanchang University, Nanchang, China
| | - Lingzhi Pi
- School of Basic Medicine, Medical School of Nanchang University, Nanchang, China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, Nanchang, China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Hao Peng
- School of Basic Medicine, Medical School of Nanchang University, Nanchang, China
| | - Zehao Xiao
- Queen Mary School, Medical School of Nanchang University, Nanchang, China
| | - Zhihua Zhang
- Queen Mary School, Medical School of Nanchang University, Nanchang, China
| | - Miaomiao Wang
- Queen Mary School, Medical School of Nanchang University, Nanchang, China
| | - Taotao Peng
- School of Basic Medicine, Medical School of Nanchang University, Nanchang, China
| | - Jiaqi Huang
- Queen Mary School, Medical School of Nanchang University, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
- *Correspondence: Guilin Li,
| |
Collapse
|
49
|
Satellite Glial Cells and Neurons in Trigeminal Ganglia Are Altered in an Itch Model in Mice. Cells 2022; 11:cells11050886. [PMID: 35269508 PMCID: PMC8909456 DOI: 10.3390/cells11050886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Itch (pruritus) is a common chronic condition with a lifetime prevalence of over 20%. The mechanisms underlying itch are poorly understood, and its therapy is difficult. There is recent evidence that following nerve injury or inflammation, intercellular communications in sensory ganglia are augmented, which may lead to abnormal neuronal activity, and hence to pain, but there is no information whether such changes take place in an itch model. We studied changes in neurons and satellite glial cells (SGCs) in trigeminal ganglia in an itch model in mice using repeated applications of 2,4,6-trinitro-1-chlorobenzene (TNCB) to the external ear over a period of 11 days. Treated mice showed augmented scratching behavior as compared with controls during the application period and for several days afterwards. Immunostaining for the activation marker glial fibrillary acidic protein in SGCs was greater by about 35% after TNCB application, and gap junction-mediated coupling between neurons increased from about 2% to 13%. The injection of gap junction blockers reduced scratching behavior, suggesting that gap junctions contribute to itch. Calcium imaging studies showed increased responses of SGCs to the pain (and presumed itch) mediator ATP. We conclude that changes in both neurons and SGCs in sensory ganglia may play a role in itch.
Collapse
|
50
|
Su J, Krock E, Barde S, Delaney A, Ribeiro J, Kato J, Agalave N, Wigerblad G, Matteo R, Sabbadini R, Josephson A, Chun J, Kultima K, Peyruchaud O, Hökfelt T, Svensson CI. Pain-like behavior in the collagen antibody-induced arthritis model is regulated by lysophosphatidic acid and activation of satellite glia cells. Brain Behav Immun 2022; 101:214-230. [PMID: 35026421 DOI: 10.1016/j.bbi.2022.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022] Open
Abstract
Inflammatory and neuropathic-like components underlie rheumatoid arthritis (RA)-associated pain, and lysophosphatidic acid (LPA) is linked to both joint inflammation in RA patients and to neuropathic pain. Thus, we investigated a role for LPA signalling using the collagen antibody-induced arthritis (CAIA) model. Pain-like behavior during the inflammatory phase and the late, neuropathic-like phase of CAIA was reversed by a neutralizing antibody generated against LPA and by an LPA1/3 receptor inhibitor, but joint inflammation was not affected. Autotaxin, an LPA synthesizing enzyme was upregulated in dorsal root ganglia (DRG) neurons during both CAIA phases, but not in joints or spinal cord. Late-phase pronociceptive neurochemical changes in the DRG were blocked in Lpar1 receptor deficient mice and reversed by LPA neutralization. In vitro and in vivo studies indicated that LPA regulates pain-like behavior via the LPA1 receptor on satellite glia cells (SGCs), which is expressed by both human and mouse SGCs in the DRG. Furthermore, CAIA-induced SGC activity is reversed by phospholipid neutralization and blocked in Lpar1 deficient mice. Our findings suggest that the regulation of CAIA-induced pain-like behavior by LPA signalling is a peripheral event, associated with the DRGs and involving increased pronociceptive activity of SGCs, which in turn act on sensory neurons.
Collapse
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ada Delaney
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Jungo Kato
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nilesh Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Roger Sabbadini
- LPath Inc, San Diego, United States; Department of Biology, San Diego State University, 92182, United States
| | - Anna Josephson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Kim Kultima
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | | | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|