1
|
Wang G, Zhang Z, Li J, Han J, Lu C. The PTB and PRR domains of numb regulate neurite outgrowth by influencing voltage-gated calcium channel expression and kinetics. Brain Res Bull 2024; 207:110876. [PMID: 38215950 DOI: 10.1016/j.brainresbull.2024.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Numb is an evolutionarily conserved protein that regulates the differentiation of neuronal progenitor cells through unknown mechanisms. Numb has four alternative splice variants with different lengths of phosphotyrosine-binding (PTB) and proline-rich regions (PRR) domains. In this study, we demonstrated that Numb expression was increased in the primary cultures of rat cortical and hippocampal neurons over time in vitro, and Numb antisense inhibited neurite outgrowth. We verified that cells overexpressing short PTB (SPTB) or long PTB (LPTB) domains exhibited differentiation or proliferation, respectively. SPTB-mediated differentiation was related to the PRR domains, as cells expressing SPTB/LPRR had longer dendrites and more branched dendrites than cells expressing SPTB/SPRR. The differentiation of both cell types was completely blocked by the Ca2+ chelator. Western blot analysis revealed the increased total protein expression of voltage-gated calcium channel (VGCC) subunit α1C and α1D in cells expressing SPTB and LPTB Numb. The increased expression of the VGCC β3 subunit was only observed in cells expressing SPTB Numb. Immunocytochemistry further showed that SPTB-mediated cell differentiation was associated with increased membrane expression of VGCC subunits α1C, α1D and β3, which corresponded to the higher Ca2+ current (ICa) densities. Furthermore, we found that VGCC of cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms exhibit steady-state inactivation (SSI) in both differentiated and undifferentiated phenotypes. A similar SSI of VGCC was observed in the differentiated cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms, whereas a left shift SSI of VGCC in cells expressing SPTB/LPRR was detected in the undifferentiated cells. Collectively, these data indicate that SPTB domain is essential for neurite outgrowth involving in membrane expression of VGCC subunits, and LPRR plays a role in neuronal branching and the regulation of VGCC inactivation kinetics.
Collapse
Affiliation(s)
- Guodong Wang
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China; School of Nursing, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhengyan Zhang
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Junmei Li
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinhong Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Chengbiao Lu
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
2
|
Moore SJ, Cazares VA, Temme SJ, Murphy GG. Age-related deficits in neuronal physiology and cognitive function are recapitulated in young mice overexpressing the L-type calcium channel, Ca V 1.3. Aging Cell 2023; 22:e13781. [PMID: 36703244 PMCID: PMC10014069 DOI: 10.1111/acel.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
The calcium dysregulation hypothesis of brain aging posits that an age-related increase in neuronal calcium concentration is responsible for alterations in a variety of cellular processes that ultimately result in learning and memory deficits in aged individuals. We previously generated a novel transgenic mouse line, in which expression of the L-type voltage-gated calcium, CaV 1.3, is increased by ~50% over wild-type littermates. Here, we show that, in young mice, this increase is sufficient to drive changes in neuronal physiology and cognitive function similar to those observed in aged animals. Specifically, there is an increase in the magnitude of the postburst afterhyperpolarization, a deficit in spatial learning and memory (assessed by the Morris water maze), a deficit in recognition memory (assessed in novel object recognition), and an overgeneralization of fear to novel contexts (assessed by contextual fear conditioning). While overexpression of CaV 1.3 recapitulated these key aspects of brain aging, it did not produce alterations in action potential firing rates, basal synaptic communication, or spine number/density. Taken together, these results suggest that increased expression of CaV 1.3 in the aged brain is a crucial factor that acts in concert with age-related changes in other processes to produce the full complement of structural, functional, and behavioral outcomes that are characteristic of aged animals.
Collapse
Affiliation(s)
- Shannon J. Moore
- Michigan Neuroscience InstituteAnn ArborMichiganUSA
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Victor A. Cazares
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of PsychologyWilliams CollegeWilliamstownMassachusettsUSA
| | | | - Geoffrey G. Murphy
- Michigan Neuroscience InstituteAnn ArborMichiganUSA
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
3
|
Hopp SC. Targeting microglia L-type voltage-dependent calcium channels for the treatment of central nervous system disorders. J Neurosci Res 2021; 99:141-162. [PMID: 31997405 PMCID: PMC9394523 DOI: 10.1002/jnr.24585] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) is a ubiquitous mediator of a multitude of cellular functions in the central nervous system (CNS). Intracellular Ca2+ is tightly regulated by cells, including entry via plasma membrane Ca2+ permeable channels. Of specific interest for this review are L-type voltage-dependent Ca2+ channels (L-VDCCs), due to their pleiotropic role in several CNS disorders. Currently, there are numerous approved drugs that target L-VDCCs, including dihydropyridines. These drugs are safe and effective for the treatment of humans with cardiovascular disease and may also confer neuroprotection. Here, we review the potential of L-VDCCs as a target for the treatment of CNS disorders with a focus on microglia L-VDCCs. Microglia, the resident immune cells of the brain, have attracted recent attention for their emerging inflammatory role in several CNS diseases. Intracellular Ca2+ regulates microglia transition from a resting quiescent state to an "activated" immune-effector state and is thus a valuable target for manipulation of microglia phenotype. We will review the literature on L-VDCC expression and function in the CNS and on microglia in vitro and in vivo and explore the therapeutic landscape of L-VDCC-targeting agents at present and future challenges in the context of Alzheimer's disease, Parkinson's disease, Huntington's disease, neuropsychiatric diseases, and other CNS disorders.
Collapse
Affiliation(s)
- Sarah C. Hopp
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Moore SJ, Murphy GG. The role of L-type calcium channels in neuronal excitability and aging. Neurobiol Learn Mem 2020; 173:107230. [PMID: 32407963 DOI: 10.1016/j.nlm.2020.107230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/09/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022]
Abstract
Over the last two decades there has been significant progress towards understanding the neural substrates that underlie age-related cognitive decline. Although many of the exact molecular and cellular mechanisms have yet to be fully understood, there is consensus that alterations in neuronal calcium homeostasis contribute to age-related deficits in learning and memory. Furthermore, it is thought that the age-related changes in calcium homeostasis are driven, at least in part, by changes in calcium channel expression. In this review, we focus on the role of a specific class of calcium channels: L-type voltage-gated calcium channels (LVGCCs). We provide the reader with a general introduction to voltage-gated calcium channels, followed by a more detailed description of LVGCCs and how they serve to regulate neuronal excitability via the post burst afterhyperpolarization (AHP). We conclude by reviewing studies that link the slow component of the AHP to learning and memory, and discuss how age-related increases in LVGCC expression may underlie cognitive decline by mediating a decrease in neuronal excitability.
Collapse
Affiliation(s)
- Shannon J Moore
- Michigan Neuroscience Institute, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, United States
| | - Geoffrey G Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, United States.
| |
Collapse
|
5
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Kumar A, Foster TC. Alteration in NMDA Receptor Mediated Glutamatergic Neurotransmission in the Hippocampus During Senescence. Neurochem Res 2018; 44:38-48. [PMID: 30209673 DOI: 10.1007/s11064-018-2634-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in neurons and glia. N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors are major ionotropic glutamate receptors. Glutamatergic neurotransmission is strongly linked with Ca2+ homeostasis. Research has provided ample evidence that brain aging is associated with altered glutamatergic neurotransmission and Ca2+ dysregulation. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review examines Ca2+ regulation with a focus on the NMDA receptors in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in Ca2+ homeostasis and NMDA receptor-mediated glutamatergic neurotransmission will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
- Genetics and Genomics Program, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
7
|
Krueger JN, Moore SJ, Parent R, McKinney BC, Lee A, Murphy GG. A novel mouse model of the aged brain: Over-expression of the L-type voltage-gated calcium channel Ca V1.3. Behav Brain Res 2016; 322:241-249. [PMID: 27368417 DOI: 10.1016/j.bbr.2016.06.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/09/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
Abstract
The aged population is growing rapidly, which has sparked tremendous interest in elucidating mechanisms of aging in both the body and the brain. Animal models have become an indispensable tool in biomedical science, but because of the cost and extended timeframe associated with aging animals to appropriate time points, studies that rely on using aged animals are often not feasible. Somewhat surprisingly, there are relatively few animal models that have been specifically engineered to mimic physiological changes known to occur during "normal" aging. Developing transgenic animal models that faithfully mimic key aspects of aging would likely be of great utility in studying both age-related deficits in the absence of overt pathology as well as an adjunct for transgenic models of diseases where aging is a primary risk factor. In particular, there are several alterations in the aged brain that are amenable to being modeled genetically. We have focused on one key aspect that has been repeatedly demonstrated in aged animals - an increase in the L-type voltage-gated calcium channel CaV1.3. Here we present a novel transgenic mouse line in which expression of CaV1.3 is increased by approximately 50% in the forebrain of young mice. These mice do not display any overt physical or non-cognitive deficits, exhibiting normal exploratory behavior, motor function, and affective-like responses, suggesting that these mice can be successfully deployed to assess the impact of an "aged brain" in a variety of conditions.
Collapse
Affiliation(s)
- Jamie N Krueger
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Shannon J Moore
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Rachel Parent
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brandon C McKinney
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Amy Lee
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, United States
| | - Geoffrey G Murphy
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Physiology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
8
|
Zanos P, Bhat S, Terrillion CE, Smith RJ, Tonelli LH, Gould TD. Sex-dependent modulation of age-related cognitive decline by the L-type calcium channel gene Cacna1c (Cav 1.2). Eur J Neurosci 2015; 42:2499-507. [PMID: 25989111 PMCID: PMC4615431 DOI: 10.1111/ejn.12952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/27/2015] [Accepted: 05/14/2015] [Indexed: 11/27/2022]
Abstract
Increased calcium influx through L-type voltage-gated calcium channels has been implicated in the neuronal dysfunction underlying age-related memory declines. The present study aimed to test the specific role of Cacna1c (which encodes Cav 1.2) in modulating age-related memory dysfunction. Short-term, spatial and contextual/emotional memory was evaluated in young and aged, wild-type as well as mice with one functional copy of Cacna1c (haploinsufficient), using the novel object recognition, Y-maze and passive avoidance tasks, respectively. Hippocampal expression of Cacna1c mRNA was measured by quantitative polymerase chain reaction. Ageing was associated with object recognition and contextual/emotional memory deficits, and a significant increase in hippocampal Cacna1c mRNA expression. Cacna1c haploinsufficiency was associated with decreased Cacna1c mRNA expression in both young and old animals. However, haploinsufficient mice did not manifest an age-related increase in expression of this gene. Behaviourally, Cacna1c haploinsufficiency prevented object recognition deficits during ageing in both male and female mice. A significant correlation between higher Cacna1c levels and decreased object recognition performance was observed in both sexes. Also, a sex-dependent protective role of decreased Cacna1c levels in contextual/emotional memory loss has been observed, specifically in male mice. These data provide evidence for an association between increased hippocampal Cacna1c expression and age-related cognitive decline. Additionally, they indicate an interaction between the Cacna1c gene and sex in the modulation of age-related contextual memory declines.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Shambhu Bhat
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | | | - Robert J. Smith
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Leonardo H. Tonelli
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Hopp SC, D'Angelo HM, Royer SE, Kaercher RM, Adzovic L, Wenk GL. Differential rescue of spatial memory deficits in aged rats by L-type voltage-dependent calcium channel and ryanodine receptor antagonism. Neuroscience 2014; 280:10-8. [PMID: 25224829 DOI: 10.1016/j.neuroscience.2014.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 10/25/2022]
Abstract
Age-associated memory impairments may result as a consequence of neuroinflammatory induction of intracellular calcium (Ca(+2)) dysregulation. Altered L-type voltage-dependent calcium channel (L-VDCC) and ryanodine receptor (RyR) activity may underlie age-associated learning and memory impairments. Various neuroinflammatory markers are associated with increased activity of both L-VDCCs and RyRs, and increased neuroinflammation is associated with normal aging. In vitro, pharmacological blockade of L-VDCCs and RyRs has been shown to be anti-inflammatory. Here, we examined whether pharmacological blockade of L-VDCCs or RyRs with the drugs nimodipine and dantrolene, respectively, could improve spatial memory and reduce age-associated increases in microglia activation. Dantrolene and nimodipine differentially attenuated age-associated spatial memory deficits but were not anti-inflammatory in vivo. Furthermore, RyR gene expression was inversely correlated with spatial memory, highlighting the central role of Ca(+2) dysregulation in age-associated memory deficits.
Collapse
Affiliation(s)
- S C Hopp
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - H M D'Angelo
- Department of Psychology, Ohio State University, Columbus, OH 43210, USA
| | - S E Royer
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - R M Kaercher
- Department of Psychology, Ohio State University, Columbus, OH 43210, USA
| | - L Adzovic
- Department of Psychology, Ohio State University, Columbus, OH 43210, USA
| | - G L Wenk
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Regionally specific expression of high-voltage-activated calcium channels in thalamic nuclei of epileptic and non-epileptic rats. Mol Cell Neurosci 2014; 61:110-22. [PMID: 24914823 DOI: 10.1016/j.mcn.2014.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 11/21/2022] Open
Abstract
The polygenic origin of generalized absence epilepsy results in dysfunction of ion channels that allows the switch from physiological asynchronous to pathophysiological highly synchronous network activity. Evidence from rat and mouse models of absence epilepsy indicates that altered Ca(2+) channel activity contributes to cellular and network alterations that lead to seizure activity. Under physiological circumstances, high voltage-activated (HVA) Ca(2+) channels are important in determining the thalamic firing profile. Here, we investigated a possible contribution of HVA channels to the epileptic phenotype using a rodent genetic model of absence epilepsy. In this study, HVA Ca(2+) currents were recorded from neurons of three different thalamic nuclei that are involved in both sensory signal transmission and rhythmic-synchronized activity during epileptic spike-and-wave discharges (SWD), namely the dorsal part of the lateral geniculate nucleus (dLGN), the ventrobasal thalamic complex (VB) and the reticular thalamic nucleus (NRT) of epileptic Wistar Albino Glaxo rats from Rijswijk (WAG/Rij) and non-epileptic August Copenhagen Irish (ACI) rats. HVA Ca(2+) current densities in dLGN neurons were significantly increased in epileptic rats compared with non-epileptic controls while other thalamic regions revealed no differences between the strains. Application of specific channel blockers revealed that the increased current was carried by L-type Ca(2+) channels. Electrophysiological evidence of increased L-type current correlated with up-regulated mRNA and protein expression of a particular L-type channel, namely Cav1.3, in dLGN of epileptic rats. No significant changes were found for other HVA Ca(2+) channels. Moreover, pharmacological inactivation of L-type Ca(2+) channels results in altered firing profiles of thalamocortical relay (TC) neurons from non-epileptic rather than from epileptic rats. While HVA Ca(2+) channels influence tonic and burst firing in ACI and WAG/Rij differently, it is discussed that increased Cav1.3 expression may indirectly contribute to increased robustness of burst firing and thereby the epileptic phenotype of absence epilepsy.
Collapse
|
11
|
Núñez-Santana FL, Oh MM, Antion MD, Lee A, Hell JW, Disterhoft JF. Surface L-type Ca2+ channel expression levels are increased in aged hippocampus. Aging Cell 2014; 13:111-20. [PMID: 24033980 PMCID: PMC3947046 DOI: 10.1111/acel.12157] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 12/30/2022] Open
Abstract
Age-related increase in L-type Ca2+ channel (LTCC) expression in hippocampal pyramidal neurons has been hypothesized to underlie the increased Ca2+ influx and subsequent reduced intrinsic neuronal excitability of these neurons that lead to age-related cognitive deficits. Here, using specific antibodies against Cav1.2 and Cav1.3 subunits of LTCCs, we systematically re-examined the expression of these proteins in the hippocampus from young (3 to 4 month old) and aged (30 to 32 month old) F344xBN rats. Western blot analysis of the total expression levels revealed significant reductions in both Cav1.2 and Cav1.3 subunits from all three major hippocampal regions of aged rats. Despite the decreases in total expression levels, surface biotinylation experiments revealed significantly higher proportion of expression on the plasma membrane of Cav1.2 in the CA1 and CA3 regions and of Cav1.3 in the CA3 region from aged rats. Furthermore, the surface biotinylation results were supported by immunohistochemical analysis that revealed significant increases in Cav1.2 immunoreactivity in the CA1 and CA3 regions of aged hippocampal pyramidal neurons. In addition, we found a significant increase in the level of phosphorylated Cav1.2 on the plasma membrane in the dentate gyrus of aged rats. Taken together, our present findings strongly suggest that age-related cognitive deficits cannot be attributed to a global change in L-type channel expression nor to the level of phosphorylation of Cav1.2 on the plasma membrane of hippocampal neurons. Rather, increased expression and density of LTCCs on the plasma membrane may underlie the age-related increase in L-type Ca2+ channel activity in CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Félix Luis Núñez-Santana
- Department of Physiology; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
| | - Myongsoo Matthew Oh
- Department of Physiology; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
| | - Marcia Diana Antion
- Department of Physiology; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
| | - Amy Lee
- Departments of Molecular Physiology and Biophysics, Otolaryngology-Head and Neck Surgery, and Neurology; University of Iowa; Iowa City IA 52242 USA
| | | | - John Francis Disterhoft
- Department of Physiology; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
| |
Collapse
|
12
|
Gant JC, Blalock EM, Chen KC, Kadish I, Porter NM, Norris CM, Thibault O, Landfield PW. FK506-binding protein 1b/12.6: a key to aging-related hippocampal Ca2+ dysregulation? Eur J Pharmacol 2013; 739:74-82. [PMID: 24291098 DOI: 10.1016/j.ejphar.2013.10.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/25/2022]
Abstract
It has been recognized for some time that the Ca(2+)-dependent slow afterhyperpolarization (sAHP) is larger in hippocampal neurons of aged compared with young animals. In addition, extensive studies since have shown that other Ca(2+)-mediated electrophysiological responses are increased in hippocampus with aging, including Ca(2+) transients, L-type voltage-gated Ca(2+) channel activity, Ca(2+) spike duration and action potential accommodation. Elevated Ca(2+)-induced Ca(2+) release from ryanodine receptors (RyRs) appears to drive amplification of the Ca(2+) responses. Components of this Ca(2+) dysregulation phenotype correlate with deficits in cognitive function and plasticity, indicating they may play critical roles in aging-related impairment of brain function. However, the molecular mechanisms underlying aging-related Ca(2+) dysregulation are not well understood. FK506-binding proteins 1a and 1b (FKBP1a/1b, also known as FKBP12/12.6) are immunophilin proteins that bind the immunosuppressant drugs FK506 and rapamycin. In muscle cells, FKBP1a/1b also bind RyRs and inhibits Ca(2+)-induced Ca(2+) release, but it is not clear whether FKBPs act similarly in brain cells. Recently, we found that selectively disrupting hippocampal FKBP1b function in young rats, either by microinjecting adeno-associated viral vectors expressing siRNA, or by treatment with rapamycin, increases the sAHP and recapitulates much of the hippocampal Ca(2+) dysregulation phenotype. Moreover, in microarray studies, we found FKBP1b gene expression was downregulated in hippocampus of aging rats and early-stage Alzheimer's disease subjects. These results suggest the novel hypothesis that declining FKBP function is a key factor in aging-related Ca(2+) dysregulation in the brain and point to potential new therapeutic targets for counteracting unhealthy brain aging.
Collapse
Affiliation(s)
- J C Gant
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - E M Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - K-C Chen
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - I Kadish
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - N M Porter
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - C M Norris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - O Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - P W Landfield
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States.
| |
Collapse
|
13
|
Feng Y, Wang B, Du F, Li H, Wang S, Hu C, Zhu C, Yu X. The involvement of PI3K-mediated and L-VGCC-gated transient Ca2+ influx in 17β-estradiol-mediated protection of retinal cells from H2O2-induced apoptosis with Ca2+ overload. PLoS One 2013; 8:e77218. [PMID: 24223708 PMCID: PMC3818527 DOI: 10.1371/journal.pone.0077218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Intracellular calcium concentration ([Ca2+]i) plays an important role in regulating most cellular processes, including apoptosis and survival, but its alterations are different and complicated under diverse conditions. In this study, we focused on the [Ca2+]i and its control mechanisms in process of hydrogen peroxide (H2O2)-induced apoptosis of primary cultured Sprague-Dawley (SD) rat retinal cells and 17β-estradiol (βE2) anti-apoptosis. Fluo-3AM was used as a Ca2+ indicator to detect [Ca2+]i through fluorescence-activated cell sorting (FACS), cell viability was assayed using MTT assay, and apoptosis was marked by Hoechst 33342 and annexin V/Propidium Iodide staining. Besides, PI3K activity was detected by Western blotting. Results showed: a) 100 μM H2O2-induced retinal cell apoptosis occurred at 4 h after H2O2 stress and increased in a time-dependent manner, but [Ca2+]i increased earlier at 2 h, sustained to 12 h, and then recovered at 24 h after H2O2 stress; b) 10 μM βE2 treatment for 0.5-24 hrs increased cell viability by transiently increasing [Ca2+]i, which appeared only at 0.5 h after βE2 application; c) increased [Ca2+]i under 100 µM H2O2 treatment for 2 hrs or 10 µM βE2 treatment for 0.5 hrs was, at least partly, due to extracellular Ca2+ stores; d) importantly, the transiently increased [Ca2+]i induced by 10 µM βE2 treatment for 0.5 hrs was mediated by the phosphatidylinositol-3-kinase (PI3K) and gated by the L-type voltage-gated Ca2+ channels (L-VGCC), but the increased [Ca2+]i induced by 100 µM H2O2 treatment for 2 hrs was not affected; and e) pretreatment with 10 µM βE2 for 0.5 hrs effectively protected retinal cells from apoptosis induced by 100 µM H2O2, which was also associated with its transient [Ca2+]i increase through L-VGCC and PI3K pathway. These findings will lead to better understanding of the mechanisms of βE2-mediated retinal protection and to exploration of the novel therapeutic strategies for retina degeneration.
Collapse
Affiliation(s)
- Yan Feng
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Baoying Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Fangying Du
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Hongbo Li
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Shaolan Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chenghu Hu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chunhui Zhu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Xiaorui Yu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment-and-Gene Related Diseases of the Ministry of Education, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- * E-mail:
| |
Collapse
|
14
|
Sama DM, Mohmmad Abdul H, Furman JL, Artiushin IA, Szymkowski DE, Scheff SW, Norris CM. Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations and Ca2+ dysregulation in aged rats. PLoS One 2012; 7:e38170. [PMID: 22666474 PMCID: PMC3362564 DOI: 10.1371/journal.pone.0038170] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 12/14/2022] Open
Abstract
The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4–6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca2+ channel (VSCC) activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling.
Collapse
Affiliation(s)
- Diana M. Sama
- Graduate Center for Gerontology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hafiz Mohmmad Abdul
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jennifer L. Furman
- Molecular & Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Irina A. Artiushin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Stephen W. Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Molecular & Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
15
|
Gamelli AE, McKinney BC, White JA, Murphy GG. Deletion of the L-type calcium channel Ca(V) 1.3 but not Ca(V) 1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons. Hippocampus 2011; 21:133-41. [PMID: 20014384 DOI: 10.1002/hipo.20728] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium-dependent postburst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases in the AHP are correlated with age-related cognitive impairment. The AHP develops primarily as the result of activation of outward calcium-activated potassium currents; however, the precise source of calcium for activation of the AHP remains unclear. There is substantial experimental evidence suggesting that calcium influx via voltage-gated L-type calcium channels (L-VGCCs) contributes to the generation of the AHP. Two L-VGCC subtypes are predominately expressed in the hippocampus, Ca(V) 1.2 and Ca(V) 1.3; however, it is not known which L-VGCC subtype is involved in generation of the AHP. This ambiguity is due in large part to the fact that at present there are no subunit-specific agonists or antagonists. Therefore, using mice in which the gene encoding Ca(V) 1.2 or Ca(V) 1.3 was deleted, we sought to determine the impact of alterations in levels of these two L-VCGG subtypes on neuronal excitability. No differences in any AHP measure were seen between neurons from Ca(V) 1.2 knockout mice and controls. However, the total area of the AHP was significantly smaller in neurons from Ca(V) 1.3 knockout mice as compared with neurons from wild-type controls. A significant reduction in the amplitude of the AHP was also seen at the 1 s time point in neurons from Ca(V) 1.3 knockout mice as compared with those from controls. Reductions in both the area and 1 s amplitude suggest the involvement of calcium influx via Ca(V) 1.3 in the slow AHP (sAHP). Thus, the results of our study demonstrate that deletion of Ca(V) 1.3, but not Ca(V) 1.2, significantly impacts the generation of the sAHP.
Collapse
Affiliation(s)
- Amy E Gamelli
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
16
|
Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning. Neurobiol Aging 2011; 33:1744-57. [PMID: 21531046 DOI: 10.1016/j.neurobiolaging.2011.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
Cognitive flexibility is critical for survival and reflects the malleability of the central nervous system (CNS) in response to changing environmental demands. Normal aging results in difficulties modifying established behaviors, which may involve medial prefrontal cortex (mPFC) dysfunction. Using extinction of conditioned fear in rats to assay cognitive flexibility, we demonstrate that extinction deficits reminiscent of mPFC dysfunction first appear during middle age, in the absence of hippocampus-dependent context deficits. Emergence of aging-related extinction deficits paralleled a redistribution of neuronal excitability across two critical mPFC regions via two distinct mechanisms. First, excitability decreased in regular spiking neurons of infralimbic-mPFC (IL), a region whose activity is required for extinction. Second, excitability increased in burst spiking neurons of prelimbic-mPFC (PL), a region whose activity hinders extinction. Experiments using synaptic blockers revealed that these aging-related differences were intrinsic. Thus, changes in IL and PL intrinsic excitability may contribute to cognitive flexibility impairments observed during normal aging.
Collapse
|
17
|
Disrupting function of FK506-binding protein 1b/12.6 induces the Ca²+-dysregulation aging phenotype in hippocampal neurons. J Neurosci 2011; 31:1693-703. [PMID: 21289178 DOI: 10.1523/jneurosci.4805-10.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With aging, multiple Ca(2+)-associated electrophysiological processes exhibit increased magnitude in hippocampal pyramidal neurons, including the Ca(2+)-dependent slow afterhyperpolarization (sAHP), L-type voltage-gated Ca(2+) channel (L-VGCC) activity, Ca(2+)-induced Ca(2+) release (CICR) from ryanodine receptors (RyRs), and Ca(2+) transients. This pattern of Ca(2+) dysregulation correlates with reduced neuronal excitability/plasticity and impaired learning/memory and has been proposed to contribute to unhealthy brain aging and Alzheimer's disease. However, little is known about the underlying molecular mechanisms. In cardiomyocytes, FK506-binding protein 1b/12.6 (FKBP1b) binds and stabilizes RyR2 in the closed state, inhibiting RyR-mediated Ca(2+) release. Moreover, we recently found that hippocampal Fkbp1b expression is downregulated, whereas Ryr2 and Frap1/Mtor (mammalian target of rapamycin) expression is upregulated with aging in rats. Here, we tested the hypothesis that disrupting FKBP1b function also destabilizes Ca(2+) homeostasis in hippocampal neurons and is sufficient to induce the aging phenotype of Ca(2+) dysregulation in young animals. Selective knockdown of Fkbp1b with interfering RNA in vitro (96 h) enhanced voltage-gated Ca(2+) current in cultured neurons, whereas in vivo Fkbp1b knockdown by microinjection of viral vector (3-4 weeks) dramatically increased the sAHP in hippocampal slice neurons from young-adult rats. Rapamycin, which displaces FKBP1b from RyRs in myocytes, similarly enhanced VGCC current and the sAHP and also increased CICR. Moreover, FKBP1b knockdown in vivo was associated with upregulation of RyR2 and mTOR protein expression. Thus, disruption of FKBP1b recapitulated much of the Ca(2+)-dysregulation aging phenotype in young rat hippocampus, supporting a novel hypothesis that declining FKBP function plays a major role in unhealthy brain aging.
Collapse
|
18
|
Norris CM, Blalock EM, Chen KC, Porter NM, Thibault O, Kraner SD, Landfield PW. Hippocampal 'zipper' slice studies reveal a necessary role for calcineurin in the increased activity of L-type Ca(2+) channels with aging. Neurobiol Aging 2010; 31:328-38. [PMID: 18471936 PMCID: PMC2795015 DOI: 10.1016/j.neurobiolaging.2008.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/18/2008] [Accepted: 03/26/2008] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that inhibition of the Ca(2+)-/calmodulin-dependent protein phosphatase calcineurin (CN) blocks L-type voltage sensitive Ca(2+) channel (L-VSCC) activity in cultured hippocampal neurons. However, it is not known whether CN contributes to the increase in hippocampal L-VSCC activity that occurs with aging in at least some mammalian species. It is also unclear whether CN's necessary role in VSCC activity is simply permissive or is directly enhancing. To resolve these questions, we used partially dissociated hippocampal "zipper" slices to conduct cell-attached patch recording and RT-PCR on largely intact single neurons from young-adult, mid-aged, and aged rats. Further, we tested for direct CN enhancement of L-VSCCs using virally mediated infection of cultured neurons with an activated form of CN. Similar to previous work, L-VSCC activity was elevated in CA1 neurons of mid-aged and aged rats relative to young adults. The CN inhibitor, FK-506 (5muM) completely blocked the aging-related increase in VSCC activity, reducing the activity level in aged rat neurons to that in younger rat neurons. However, aging was not associated with an increase in neuronal CN mRNA expression, nor was CN expression correlated with VSCC activity. Delivery of activated CN to primary hippocampal cultures induced an increase in neuronal L-VSCC activity but did not elevate L-VSCC protein levels. Together, the results provide the first evidence that CN activity, but not increased expression, plays a selective and necessary role in the aging-related increase in available L-VSCCs, possibly by direct activation. Thus, these studies point to altered CN function as a novel and potentially key factor in aging-dependent neuronal Ca(2+) dysregulation.
Collapse
Affiliation(s)
- Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kumar A, Bodhinathan K, Foster TC. Susceptibility to Calcium Dysregulation during Brain Aging. Front Aging Neurosci 2009; 1:2. [PMID: 20552053 PMCID: PMC2874411 DOI: 10.3389/neuro.24.002.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/27/2009] [Indexed: 01/06/2023] Open
Abstract
Calcium (Ca(2+)) is a highly versatile intracellular signaling molecule that is essential for regulating a variety of cellular and physiological processes ranging from fertilization to programmed cell death. Research has provided ample evidence that brain aging is associated with altered Ca(2+) homeostasis. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review takes a broader perspective, assessing age-related changes in Ca(2+) sources, Ca(2+) sequestration, and Ca(2+) binding proteins throughout the nervous system. The nature of altered Ca(2+) homeostasis is cell specific and may represent a deficit or a compensatory mechanism, producing complex patterns of impaired cellular function. Incorporating the knowledge of the complexity of age-related alterations in Ca(2+) homeostasis will positively shape the development of highly effective therapeutics to treat brain disorders.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|
20
|
Xiang K, Earl DE, Davis KM, Giovannucci DR, Greenfield LJ, Tietz EI. Chronic benzodiazepine administration potentiates high voltage-activated calcium currents in hippocampal CA1 neurons. J Pharmacol Exp Ther 2008; 327:872-83. [PMID: 18812492 DOI: 10.1124/jpet.108.144444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Signs of physical dependence as a consequence of long-term drug use and a moderate abuse liability limit benzodiazepine clinical usefulness. Growing evidence suggests a role for voltage-gated calcium channel (VGCC) regulation in mediating a range of chronic drug effects from drug withdrawal phenomena to dependence on a variety of drugs of abuse. High voltage-activated (HVA) calcium currents were measured in whole-cell recordings from acutely isolated hippocampal CA1 neurons after a 1-week flurazepam (FZP) treatment that results in withdrawal-anxiety. An approximately 1.8-fold increase in Ca(2+) current density was detected immediately after and up to 2 days but not 3 or 4 days after drug withdrawal. Current density was unchanged after acute desalkyl-FZP treatment. A significant negative shift of the half-maximal potential of activation of HVA currents was also observed but steady-state inactivation remained unchanged. FZP and diazepam showed use- and concentration-dependent inhibition of Ca(2+) currents in hippocampal cultured cells following depolarizing trains (FZP, IC(50) = 1.8 microM; diazepam, IC(50) = 36 microM), pointing to an additional mechanism by which benzodiazepines modulate HVA Ca(2+) channels. Systemic preinjection of nimodipine (10 mg/kg), an L-type (L)-VGCC antagonist, prevented the benzodiazepine-induced increase in alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid receptor (AMPAR)-mediated miniature excitatory postsynaptic current in CA1 neurons 2 days after FZP withdrawal, suggesting that AMPAR potentiation, previously linked to withdrawal-anxiety may require enhanced L-VGCC-mediated Ca(2+) influx. Taken together with prior work, these findings suggest that enhanced Ca(2+) entry through HVA Ca(2+) channels may contribute to hippocampal AMPAR plasticity and serve as a potential mechanism underlying benzodiazepine physical dependence.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|
21
|
Artola A. Diabetes-, stress- and ageing-related changes in synaptic plasticity in hippocampus and neocortex — The same metaplastic process? Eur J Pharmacol 2008; 585:153-62. [DOI: 10.1016/j.ejphar.2007.11.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/04/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
|
22
|
Liebmann L, Karst H, Sidiropoulou K, van Gemert N, Meijer OC, Poirazi P, Joëls M. Differential Effects of Corticosterone on the Slow Afterhyperpolarization in the Basolateral Amygdala and CA1 Region: Possible Role of Calcium Channel Subunits. J Neurophysiol 2008; 99:958-68. [DOI: 10.1152/jn.01137.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The stress hormone corticosterone increases the amplitude of the slow afterhyperpolarization (sAHP) in CA1 pyramidal neurons, without affecting resting membrane potential, input resistance, or action potential characteristics. We here examined how corticosterone affects these properties in the basolateral amygdala (BLA). In the amygdala, corticosterone does not change the AHP amplitude, nor any of the passive and active membrane properties studied. The lack of effect on the AHP is surprising since in both areas corticosterone increases high-voltage–activated sustained calcium currents, which supposedly regulate the sAHP. We wondered whether corticosterone targets different calcium channel subunits in the two areas because currents through only one of the subunits (Cav1.3) are thought to alter the AHP amplitude. In situ hybridization studies revealed that CA1 cells express Cav1.2 and Cav1.3 subunits; corticosterone does not transcriptionally regulate Cav1.2 but increases Cav1.3 expression compared with vehicle treatment. In the BLA, Cav1.3 expression was not detectable, both after control and corticosterone treatment. Cav1.2 is moderately expressed. In a modeling study, we examined putative consequences of changes in specific calcium channel subunit expression and calcium extrusion by corticosterone for the AHP in CA1 and amygdala neurons. A differential distribution and transcriptional regulation of Cav1.2 and Cav1.3 in the CA1 area versus BLA partly explain the observed differences in AHP amplitude. The functional implication of these findings could be that stress-induced arousal of activity in the BLA is more prolonged than that in the CA1 hippocampal area, so that information with an emotional component is more effectively encoded.
Collapse
|
23
|
Abstract
Normal aging subjects, including humans, have difficulty learning hippocampus-dependent tasks. For example, at least 50% of normal aging rabbits and rats fail to meet a learning criterion in trace eyeblink conditioning. Many factors may contribute to this age-related learning impairment. An important cause is the reduced intrinsic excitability observed in hippocampal pyramidal neurons from normal aging subjects, as reflected by an enlarged postburst afterhyperpolarization (AHP) and an increased spike-frequency adaptation (accommodation). In this review, we will focus on the alterations in the AHP and accommodation during learning and normal aging. We propose that age-related increases in the postburst AHP and accommodation in hippocampal pyramidal neurons play an integral role in the learning impairment observed in normal aging subjects.
Collapse
Affiliation(s)
- John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
24
|
Raza M, Deshpande LS, Blair RE, Carter DS, Sombati S, DeLorenzo RJ. Aging is associated with elevated intracellular calcium levels and altered calcium homeostatic mechanisms in hippocampal neurons. Neurosci Lett 2007; 418:77-81. [PMID: 17374449 PMCID: PMC2094130 DOI: 10.1016/j.neulet.2007.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Aging is associated with increased vulnerability to neurodegenerative conditions such as Parkinson's and Alzheimer's disease and greater neuronal deficits after stroke and epilepsy. Emerging studies have implicated increased levels of intracellular calcium ([Ca(2+)](i)) for the neuronal loss associated with aging related disorders. Recent evidence demonstrates increased expression of voltage gated Ca(2+) channel proteins and associated Ca(2+) currents with aging. However, a direct comparison of [Ca(2+)](i) levels and Ca(2+) homeostatic mechanisms in hippocampal neurons acutely isolated from young and mid-age adult animals has not been performed. In this study, Fura-2 was used to determine [Ca(2+)](i) levels in CA1 hippocampal neurons acutely isolated from young (4-5 months) and mid-age (12-16 months) Sprague-Dawley rats. Our data provide the first direct demonstration that mid-age neurons in comparison to young neurons manifest significant elevations in basal [Ca(2+)](i) levels. Upon glutamate stimulation and a subsequent [Ca(2+)](i) load, mid-age neurons took longer to remove the excess [Ca(2+)](i) in comparison to young neurons, providing direct evidence that altered Ca(2+) homeostasis may be present in animals at significantly younger ages than those that are commonly considered aged (> or =24 months). These alterations in Ca(2+) dynamics may render aging neurons more vulnerable to neuronal death following stroke, seizures or head trauma. Elucidating the functionality of Ca(2+) homeostatic mechanisms may offer an understanding of the increased neuronal loss that occurs with aging, and allow for the development of novel therapeutic agents targeted towards decreasing [Ca(2+)](i) levels thereby restoring the systems that maintain normal Ca(2+) homeostasis in aged neurons.
Collapse
Affiliation(s)
- Mohsin Raza
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | | | | | | | | | | |
Collapse
|
25
|
Li XM, Yang JM, Hu DH, Hou FQ, Zhao M, Zhu XH, Wang Y, Li JG, Hu P, Chen L, Qin LN, Gao TM. Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion. J Neurosci 2007; 27:5249-5259. [PMID: 17494711 PMCID: PMC6672382 DOI: 10.1523/jneurosci.0802-07.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 04/09/2007] [Accepted: 04/11/2007] [Indexed: 11/21/2022] Open
Abstract
Transient forebrain ischemia induces delayed, selective neuronal death in the CA1 region of the hippocampus. The underlying molecular mechanisms are as yet unclear, but it is known that activation of L-type Ca2+ channels specifically increases the expression of a group of genes required for neuronal survival. Accordingly, we examined temporal changes in L-type calcium-channel activity in CA1 and CA3 pyramidal neurons of rat hippocampus after transient forebrain ischemia by patch-clamp techniques. In vulnerable CA1 neurons, L-type Ca2+-channel activity was persistently downregulated after ischemic insult, whereas in invulnerable CA3 neurons, no change occurred. Downregulation of L-type calcium channels was partially caused by oxidation modulation in postischemic channels. Furthermore, L-type but neither N-type nor P/Q-type Ca2+-channel antagonists alone significantly inhibited the survival of cultured hippocampal neurons. In contrast, specific L-type calcium-channel agonist remarkably reduced neuronal cell death and restored the inhibited channels induced by nitric oxide donor. More importantly, L-type calcium-channel agonist applied after reoxygenation or reperfusion significantly decreased neuronal injury in in vitro oxygen-glucose deprivation ischemic model and in animals subjected to forebrain ischemia-reperfusion. Together, the present results suggest that ischemia-induced inhibition of L-type calcium currents may give rise to delayed death of neurons in the CA1 region, possibly via oxidation mechanisms. Our findings may lead to a new perspective on neuronal death after ischemic insult and suggest that a novel therapeutic approach, activation of L-type calcium channels, could be tested at late stages of reperfusion for stroke treatment.
Collapse
Affiliation(s)
- Xiao-Ming Li
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jian-Ming Yang
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - De-Hui Hu
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Feng-Qing Hou
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Miao Zhao
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xin-Hong Zhu
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ying Wang
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jian-Guo Li
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ping Hu
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Liang Chen
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Lu-Ning Qin
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Tian-Ming Gao
- Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
26
|
Disterhoft JF, Oh MM. Learning, aging and intrinsic neuronal plasticity. Trends Neurosci 2006; 29:587-99. [PMID: 16942805 DOI: 10.1016/j.tins.2006.08.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 06/14/2006] [Accepted: 08/17/2006] [Indexed: 11/28/2022]
Abstract
In vitro experiments indicate that intrinsic neuronal excitability, as evidenced by changes in the post-burst afterhyperpolarization (AHP) and spike-frequency accommodation, is altered during learning and normal aging in the brain. Here we review these studies, highlighting two consistent findings: (i) that AHP and accommodation are reduced in pyramidal neurons from animals that have learned a task; and (ii) that AHP and accommodation are enhanced in pyramidal neurons from aging subjects, a cellular change that might contribute to age-related learning impairments. Findings from in vivo single-neuron recording studies complement the in vitro data. From these consistently reproduced findings, we propose that the intrinsic AHP level might determine the degree of synaptic plasticity and learning. Furthermore, it seems that reductions in the AHP must occur before learning if young and aging subjects are to learn a task successfully.
Collapse
Affiliation(s)
- John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
27
|
Weber TJ, Smallwood HS, Kathmann LE, Markillie LM, Squier TC, Thrall BD. Functional link between TNF biosynthesis and CaM-dependent activation of inducible nitric oxide synthase in RAW 264.7 macrophages. Am J Physiol Cell Physiol 2006; 290:C1512-20. [PMID: 16421203 DOI: 10.1152/ajpcell.00527.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammatory responses stimulated by bacterial endotoxin LPS involve Ca2+-mediated signaling, yet the cellular sensors that determine cell fate in response to LPS remain poorly understood. We report that exposure of RAW 264.7 macrophage-like cells to LPS induces a rapid increase in CaM abundance, which is associated with the modulation of the inflammatory response. Increases in CaM abundance precede nuclear localization of key transcription factors (i.e., NF-κB p65 subunit, phospho-c-Jun, Sp1) and subsequent increases in the proinflammatory cytokine TNF-α and inducible nitric oxide synthase (iNOS). Cellular apoptosis after LPS challenge is blocked upon inhibition of iNOS activity using the pharmacological inhibitor 1400W. LPS-mediated iNOS expression and apoptosis also were inhibited by siRNA-mediated silencing of TNF induction, indicating TNF induction both precedes and is necessary for subsequent regulation of iNOS expression. Increasing the level of cellular CaM by stable transfection results in reductions in LPS-induced expression of TNF and iNOS, along with reduced activation of their transcriptional regulators and concomitant protection against apoptosis. Thus the level of CaM available for Ca2+-dependent signaling regulation plays a key role in determining the expression of the proinflammatory and proapoptotic cascade during cellular activation by LPS. These results indicate a previously unrecognized central role for CaM in maintaining cellular homeostasis in response to LPS such that, under resting conditions, cellular concentrations of CaM are sufficient to inhibit the biosynthesis of proinflammatory mediators associated with macrophage activation. Although CaM and iNOS protein levels are coordinately increased as part of the oxidative burst, limiting cellular concentrations of CaM due to association with iNOS (and other high-affinity binders) commit the cell to an unchecked inflammatory cascade leading to apoptosis.
Collapse
Affiliation(s)
- Thomas J Weber
- Cell Biology and Biochemistry Group, Pacific Northwest National Laboratory, 790 Sixth St., Richland, WA 99354, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kelly KM, Nadon NL, Morrison JH, Thibault O, Barnes CA, Blalock EM. The neurobiology of aging. Epilepsy Res 2005; 68 Suppl 1:S5-20. [PMID: 16386406 DOI: 10.1016/j.eplepsyres.2005.07.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/27/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Basic principles of the neurobiology of aging were reviewed within selected topic areas chosen for their potential relevance to epileptogenesis in the aging brain. The availability of National Institute on Aging-supported aged mouse and rat strains and other biological resources for studies of aging and age-associated diseases was presented, and general principles of animal use in gerontological research were discussed. Neurobiological changes during normal brain aging were compared and contrasted with neuropathological events of Alzheimer's disease (AD) and age-associated memory impairment (AAMI). Major themes addressed were the loss of synaptic connections as vulnerable neurons die and circuits deteriorate in AD, the absence of significant neuron loss but potential synaptic alteration in the same circuits in AAMI, and the effects of decreased estrogen on normal aging. The "calcium hypothesis of brain aging" was examined by a review of calcium dyshomeostasis and synaptic communication in aged hippocampus, with particular emphasis on the role of L-type voltage-gated calcium channels during normal aging. Established and potential mechanisms of hippocampal plasticity during aging were discussed, including long-term potentiation, changes in functional connectivity, and increased gap junctions, the latter possibly being related to enhanced network excitability. Lastly, application of microarray gene chip technology to aging brain studies was presented and use of the hippocampal "zipper slice" preparation to study aged neurons was described.
Collapse
Affiliation(s)
- K M Kelly
- Department of Neurology, Drexel University College of Medicine, Allegheny General Hospital, 940 S. Tower, 320 E. North Ave, Pittsburgh, PA 15212, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Oh MM, Wu WW, Power JM, Disterhoft JF. Galantamine increases excitability of CA1 hippocampal pyramidal neurons. Neuroscience 2005; 137:113-23. [PMID: 16242849 DOI: 10.1016/j.neuroscience.2005.08.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/03/2005] [Accepted: 08/30/2005] [Indexed: 11/25/2022]
Abstract
Galantamine is a third generation cholinesterase inhibitor and an allosteric potentiating ligand of nicotinic acetylcholine receptors. It enhances learning in aging rabbits and alleviates cognitive deficits observed in patients with Alzheimer's disease. We examined galantamine's effect on CA1 neurons from hippocampal slices of young and aging rabbits using current-clamp, intracellular recording techniques. Galantamine (10-200 microM) dose-dependently reduced the postburst afterhyperpolarization and the spike-frequency accommodation of CA1 neurons from both young and aging animals. These reductions were partially, but significantly, reversed by the addition of the muscarinic receptor antagonist, atropine (1 microM), to the perfusate. In contrast, the nicotinic acetylcholine receptor antagonist, alpha-bungarotoxin (10 nM), had no effect; i.e. alpha-bungarotoxin did not reverse the afterhyperpolarization and accommodation reductions. The allosteric potentiating ligand effect was examined by stimulating the Schaffer collateral and measuring the excitatory postsynaptic potentials for 30 min during bath application of galantamine. Galantamine (200 microM) significantly enhanced the excitatory postsynaptic potential amplitude and area over time. These effects were blocked by 10 nM alpha-bungarotoxin, supporting a role for galantamine as an allosteric potentiating ligand. We did not observe a facilitation of the excitatory postsynaptic potentials with 1 microM galantamine. However, when the excitatory postsynaptic potential was pharmacologically isolated by adding 10 microM gabazine (GABA(A) receptor antagonist) to the perfusate, 1 microM galantamine potentiated the subthreshold excitatory postsynaptic potentials into action potentials. We propose that the learning enhancement observed in aging animals and the alleviation of cognitive deficits associated with Alzheimer's disease after galantamine treatment may in part be due to the enhanced function of both nicotinic and muscarinic excitatory transmission on hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- M M Oh
- Department of Physiology and Institute for Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA.
| | | | | | | |
Collapse
|
30
|
Disterhoft JF, Wu WW, Ohno M. Biophysical alterations of hippocampal pyramidal neurons in learning, ageing and Alzheimer's disease. Ageing Res Rev 2004; 3:383-406. [PMID: 15541708 DOI: 10.1016/j.arr.2004.07.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 07/12/2004] [Indexed: 12/12/2022]
Abstract
A series of behavioral, electrophysiological, and molecular biochemical experiments are reviewed indicating that when animals learn hippocampus-dependent tasks, output neurons in the CA1 and CA3 hippocampal subfields show reductions in the slow, post-burst afterhyperpolarization (AHP). The slow AHP is mediated by an apamin-insensitive calcium-activated potassium current. A reduction in the slow AHP makes hippocampal neurons more excitable and facilitates NMDA receptor-mediated response and temporal summation. During normal aging and in a mouse model of Alzheimer's disease (AD), the slow AHP is increased, making neurons less excitable and making learning more difficult. The subgroup of aging animals that are able to learn demonstrates the capacity to increase neuronal excitability by reducing the size of the slow AHP. Similarly, in a mouse model of AD, mice that are able to learn normally after a genetic alteration have a normal capacity for increasing hippocampal neuron excitability by reducing their slow AHP. We suggest that reduction in the slow AHP is basic to learning in young and aging animals. Inability to modulate the slow AHP contributes to learning deficits that occur during aging and early stages of AD.
Collapse
Affiliation(s)
- John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave., Chicago, IL 60611-3008, USA.
| | | | | |
Collapse
|
31
|
Davare MA, Hell JW. Increased phosphorylation of the neuronal L-type Ca(2+) channel Ca(v)1.2 during aging. Proc Natl Acad Sci U S A 2003; 100:16018-23. [PMID: 14665691 PMCID: PMC307685 DOI: 10.1073/pnas.2236970100] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Indexed: 11/18/2022] Open
Abstract
An increase in Ca2+ influx through L-type Ca2+ channels is thought to contribute to neuronal dysfunctions that underlie senile symptoms and Alzheimer's disease. The molecular basis of the age-dependent up-regulation in neuronal L-type Ca2+ channel activity is largely unknown. We show that phosphorylation of the L-type channel Cav1.2 by cAMP-dependent protein kinase is increased >2-fold in the hippocampus of aged rats. The hippocampus is critical for learning and is one of the first brain regions to be affected in Alzheimer's disease. Phosphorylation of Cav1.2 by cAMP-dependent protein kinase strongly enhances its activity. Therefore, increased Cav1.2 phosphorylation may account for a substantial portion of the age-related rise in neuronal Ca2+ influx and its neuropathological consequences.
Collapse
Affiliation(s)
- Monika A Davare
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706-1532, USA
| | | |
Collapse
|
32
|
Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 2003. [PMID: 12736351 DOI: 10.1523/jneurosci.23-09-03807.2003] [Citation(s) in RCA: 388] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gene expression microarrays provide a powerful new tool for studying complex processes such as brain aging. However, inferences from microarray data are often hindered by multiple comparisons, small sample sizes, and uncertain relationships to functional endpoints. Here we sought gene expression correlates of aging-dependent cognitive decline, using statistical profiling of gene microarrays in well powered groups of young, mid-aged, and aged rats (n = 10 per group). Animals were trained on two memory tasks, and the hippocampal CA1 region of each was analyzed on an individual microarray (one chip per animal). Aging- and cognition-related genes were identified by testing each gene by ANOVA (for aging effects) and then by Pearson's test (correlating expression with memory). Genes identified by this algorithm were associated with several phenomena known to be aging-dependent, including inflammation, oxidative stress, altered protein processing, and decreased mitochondrial function, but also with multiple processes not previously linked to functional brain aging. These novel processes included downregulated early response signaling, biosynthesis and activity-regulated synaptogenesis, and upregulated myelin turnover, cholesterol synthesis, lipid and monoamine metabolism, iron utilization, structural reorganization, and intracellular Ca2+ release pathways. Multiple transcriptional regulators and cytokines also were identified. Although most gene expression changes began by mid-life, cognition was not clearly impaired until late life. Collectively, these results suggest a new integrative model of brain aging in which genomic alterations in early adulthood initiate interacting cascades of decreased signaling and synaptic plasticity in neurons, extracellular changes, and increased myelin turnover-fueled inflammation in glia that cumulatively induce aging-related cognitive impairment.
Collapse
|
33
|
Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC, Landfield PW. Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 2003; 23:3807-19. [PMID: 12736351 PMCID: PMC6742177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Gene expression microarrays provide a powerful new tool for studying complex processes such as brain aging. However, inferences from microarray data are often hindered by multiple comparisons, small sample sizes, and uncertain relationships to functional endpoints. Here we sought gene expression correlates of aging-dependent cognitive decline, using statistical profiling of gene microarrays in well powered groups of young, mid-aged, and aged rats (n = 10 per group). Animals were trained on two memory tasks, and the hippocampal CA1 region of each was analyzed on an individual microarray (one chip per animal). Aging- and cognition-related genes were identified by testing each gene by ANOVA (for aging effects) and then by Pearson's test (correlating expression with memory). Genes identified by this algorithm were associated with several phenomena known to be aging-dependent, including inflammation, oxidative stress, altered protein processing, and decreased mitochondrial function, but also with multiple processes not previously linked to functional brain aging. These novel processes included downregulated early response signaling, biosynthesis and activity-regulated synaptogenesis, and upregulated myelin turnover, cholesterol synthesis, lipid and monoamine metabolism, iron utilization, structural reorganization, and intracellular Ca2+ release pathways. Multiple transcriptional regulators and cytokines also were identified. Although most gene expression changes began by mid-life, cognition was not clearly impaired until late life. Collectively, these results suggest a new integrative model of brain aging in which genomic alterations in early adulthood initiate interacting cascades of decreased signaling and synaptic plasticity in neurons, extracellular changes, and increased myelin turnover-fueled inflammation in glia that cumulatively induce aging-related cognitive impairment.
Collapse
Affiliation(s)
- Eric M Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Veng LM, Mesches MH, Browning MD. Age-related working memory impairment is correlated with increases in the L-type calcium channel protein alpha1D (Cav1.3) in area CA1 of the hippocampus and both are ameliorated by chronic nimodipine treatment. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:193-202. [PMID: 12591156 DOI: 10.1016/s0169-328x(02)00643-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The hippocampus is critical for spatial memory formation in rodents. Calcium currents through L-type voltage-sensitive calcium channels (L-VSCCs) are increased in CA1 neurons of the hippocampus of aged rats. We have recently shown that expression of the calcium conducting L-VSCC subunit alpha(1D) (Ca(v)1.3) is selectively increased in area CA1 of aged rats. We and others have speculated that excessive Ca(2+) influx through L-VSCC may be detrimental to memory formation. Therefore, we investigated the relationship between age-related working memory decline and alpha(1D) protein expression in the hippocampus. In addition, we studied the effects of chronic treatment with the L-VSCC antagonist nimodipine (NIM) on age-related working memory deficits and alpha(1D) expression in the hippocampus. Here we report that age-related increases in alpha(1D) expression in area CA1 correlate with working memory impairment in Fischer 344 rats. Furthermore, we demonstrate that chronic NIM treatment ameliorates age-related working memory deficits and reduces expression of alpha(1D) protein in the hippocampus. The present results suggest that L-VSCCs participate in processes underlying memory formation and that increases in L-VSCC protein and currents observed with aging may play a role in age-related memory decline. Furthermore, the amelioration in age-related memory decline produced by NIM treatment may be mediated, at least in part, by reductions in the abnormally high levels of alpha(1D) protein in the aged hippocampus. These findings may have implications for patients with Alzheimer's disease, who show increased L-VSCC protein expression in the hippocampus, and for patients receiving chronic treatment with L-VSCC antagonists.
Collapse
Affiliation(s)
- Lone M Veng
- Neuroscience Training Program, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | |
Collapse
|
35
|
Veng LM, Browning MD. Regionally selective alterations in expression of the alpha(1D) subunit (Ca(v)1.3) of L-type calcium channels in the hippocampus of aged rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 107:120-7. [PMID: 12425941 DOI: 10.1016/s0169-328x(02)00453-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calcium currents through the L-type voltage-sensitive calcium channel (L-VSCC) are increased in neurons of area CA1 of the hippocampus in aged rats and rabbits. Furthermore, increases in mRNA for the pore forming subunit alpha(1D) (Ca(v)1.3) have been observed in the hippocampus of aged rats. We have studied the protein expression of the two pore forming subunits, alpha(1C) (Ca(v)1.2) and alpha(1D), of L-VSCCs in the hippocampus of young and aged rats. Here we report selective age-related changes in expression of alpha(1D) in the hippocampus. Specifically, we find that alpha(1D) protein is increased in area CA1 of aged rats while it is decreased in area CA3. Our data suggest that the altered calcium currents seen in aged animals may be due, at least in part, to alterations in the expression of the alpha(1D) subunit of the L-type calcium channel. These findings contribute to our understanding of the mechanisms responsible for changes in calcium homeostasis during aging.
Collapse
Affiliation(s)
- Lone M Veng
- Department of Pharmacology, Box C236, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
36
|
Age-related enhancement of the slow outward calcium-activated potassium current in hippocampal CA1 pyramidal neurons in vitro. J Neurosci 2002. [PMID: 12177218 DOI: 10.1523/jneurosci.22-16-07234.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aging is associated with learning deficits and a decrease in neuronal excitability, reflected by an enhanced post-burst afterhyperpolarization (AHP), in CA1 hippocampal pyramidal neurons. To identify the current(s) underlying the AHP altered in aging neurons, whole-cell voltage-clamp recording experiments were performed in hippocampal slices from young and aging rabbits. Similar to previous reports, aging neurons were found to rest at more hyperpolarized potentials and have larger AHPs than young neurons. Given that compounds that reduce the slow outward calcium-activated potassium current (sI(AHP)), a major constituent of the AHP, also facilitate learning in aging animals, the sI(AHP) was pharmacologically isolated and characterized. Aging neurons were found to have an enhanced sI(AHP,) the amplitude of which was significantly correlated to the amplitude of the AHP (r = 0.63; p < 0.001). Thus, an enhanced sI(AHP) contributes to the enhanced AHP in aging. No differences were found in the membrane resistance, capacitance, or kinetic and voltage-dependent properties of the sI(AHP). Because enhanced AHP in aging neurons has been hypothesized to be secondary to an enhanced Ca2+ influx via the voltage-gated L-type Ca2+ channels, we further examined the sI(AHP) in the presence of an L-type Ca2+ channel blocker, nimodipine (10 microm). Nimodipine caused quantitatively greater reductions in the sI(AHP) in aging neurons than in young neurons; however, the residual sI(AHP) was still significantly larger in aging neurons than in young neurons. Our data, in conjunction with previous studies showing a correlation between the AHP and learning, suggest that the enhancement of the sI(AHP) in aging is a mechanism that contributes to age-related learning deficits.
Collapse
|
37
|
Lancaster E, Oh EJ, Gover T, Weinreich D. Calcium and calcium-activated currents in vagotomized rat primary vagal afferent neurons. J Physiol 2002; 540:543-56. [PMID: 11956342 PMCID: PMC2290244 DOI: 10.1113/jphysiol.2001.013121] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Adult inferior vagal ganglion neurons (nodose ganglion neurons, NGNs) were acutely isolated 4-6 days after section of their peripheral axons (vagotomy) and examined with the whole-cell patch-clamp technique. A subset (approximately 25 %) of vagotomized NGNs displayed depolarizing after-potentials (DAPs), not present in control NGNs. DAPs were inhibited by niflumic acid (125 microM) or cadmium (100 microM), and had a reversal potential near E(Cl), indicating that they were due to Ca(2+)-activated chloride current (I(Cl(Ca))). N-type, L-type, T-/R- and other types of voltage-dependent Ca(2+) channels provided about 43, 2, 16 and 40 % of the trigger Ca(2+) for DAP generation, respectively. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was estimated using fura-2 fluorescence. Resting [Ca(2+)](i) and peak [Ca(2+)](i) elevation induced by activating Ca(2+)-induced Ca(2+) release (CICR) stores with 10 mM caffeine were not significantly different among control NGNs, vagotomized NGNs with DAPs and vagotomized NGNs without DAPs, averaging 54 +/- 7.9 (n = 19; P = 0.49) and 2022 +/- 1059 nM (n = 19; P = 0.44), respectively. Blocking CICR with 10 microM ryanodine reduced DAP amplitude by approximately 37 %. Ca(2+) influx induced by action potential waveforms was increased by over 250 % in vagotomized NGNs with DAPs (19.0 +/- 2.1 pC) compared to control NGNs (5.0 +/- 0.8 pC) or vagotomized NGNs without DAPs (7.0 +/- 0.8 pC). L-type, N-type, T-/R-type and other types of Ca(2+) influx were increased proportionately in vagotomized NGNs with DAPs. In conclusion, a subset of vagotomized NGNs have increased Ca(2+) currents and express I(Cl(Ca)). These NGNs respond electrically to increases in [Ca(2+)](i) during regeneration.
Collapse
Affiliation(s)
- Eric Lancaster
- The Neuroscience Program, University of Maryland, School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201-1559, USA
| | | | | | | |
Collapse
|
38
|
Han SH, McCool BA, Murchison D, Nahm SS, Parrish AR, Griffith WH. Single-cell RT-PCR detects shifts in mRNA expression profiles of basal forebrain neurons during aging. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 98:67-80. [PMID: 11834297 DOI: 10.1016/s0169-328x(01)00322-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The medial septum and nucleus of the diagonal band (MS/nDB) contain cholinergic and GABAergic neuronal populations that have been identified based on immunohistochemical staining and/or electrophysiological properties. We explored the molecular diversity of MS/nDB neurons using single-cell reverse transcription-polymerase chain reaction (scRT-PCR) to assess gene expression profiles during aging in individual neurons acutely isolated from young (2-4 months) and aged (26-27 months) F344 rats. Neuronal gene expression profiles were characterized by detection of mRNAs for choline acetyltransferase (ChAT, cholinergic) and glutamate decarboxylase (GAD67, GABAergic), as well as mRNAs for calcium binding proteins (CaBPs) calbindin-D28k, calretinin and parvalbumin. Four major neuronal populations were identified: ChAT-positive (ChAT+) cells, GAD-positive (GAD+) cells, ChAT+/GAD+ cells and ChAT negative/GAD negative (ChAT-/GAD-) cells. With age, the percentage of cells expressing ChAT mRNA decreased from 53% in young to 40%, and the expression of GAD67 mRNA was reduced from 56 to 35% of the cells tested. The percentage of cells with detectable levels of both ChAT and GAD67 mRNA was reduced from 24% in young to 9% in aged. Concomitantly, the percentage of ChAT-/GAD- cells increased from 15 to 34% with age. Of the CaBPs, calretinin expression was observed most frequently in this study, and its detection decreased from 33 to 22% of the cells with age. Observations concerning the CaBPs were confirmed using in situ hybridization. These results suggest a shift in the mRNA expression profiles of MS/nDB neuronal populations during aging and exemplify the molecular diversity of cholinergic and GABAergic cells.
Collapse
Affiliation(s)
- Sun-Ho Han
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
39
|
Norris CM, Blalock EM, Chen KC, Porter NM, Landfield PW. Calcineurin enhances L-type Ca(2+) channel activity in hippocampal neurons: increased effect with age in culture. Neuroscience 2002; 110:213-25. [PMID: 11958864 PMCID: PMC1473990 DOI: 10.1016/s0306-4522(01)00574-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin, modulates a number of key Ca(2+) signaling pathways in neurons, and has been implicated in Ca(2+)-dependent negative feedback inactivation of N-methyl-D-aspartate receptors and voltage-sensitive Ca(2+) channels. In contrast, we report here that three mechanistically disparate calcineurin inhibitors, FK-506, cyclosporin A, and the calcineurin autoinhibitory peptide, inhibited high-voltage-activated Ca(2+) channel currents by up to 40% in cultured hippocampal neurons, suggesting that calcineurin acts to enhance Ca(2+) currents. This effect occurred with Ba(2+) or Ca(2+) as charge carrier, and with or without intracellular Ca(2+) buffered by EGTA. Ca(2+)-dependent inactivation of Ca(2+) channels was not affected by FK-506. The immunosuppressant, rapamycin, and the protein phosphatase 1/2A inhibitor, okadaic acid, did not decrease Ca(2+) channel current, showing specificity for effects on calcineurin. Blockade of L-type Ca(2+) channels with nimodipine fully negated the effect of FK-506 on Ca(2+) channel current, while blockade of N-, and P-/Q-type Ca(2+) channels enhanced FK-506-mediated inhibition of the remaining L-type-enriched current. FK-506 also inhibited substantially more Ca(2+) channel current in 4-week-old vs. 2-week-old cultures, an effect paralleled by an increase in calcineurin A mRNA levels. These studies provide the first evidence that calcineurin selectively enhances L-type Ca(2+) channel activity in neurons. Moreover, this action appears to be increased concomitantly with the well-characterized increase in L-type Ca(2+) channel availability in hippocampal neurons with age-in-culture.
Collapse
Key Words
- protein phosphatase
- aging
- ca2+ channel currents
- fk-506
- cyclosporin a
- nimodipine
- conotoxins
- anova, analysis of variance
- [ca2+]i,intracellular ca2+ concentration
- cn-aip, calcineurin autoinhibitory peptide
- cnqx, 6-cyano-7-nitroquinoxaline-2,3-dione disodium
- csa, cyclosporin a
- div, days in vitro
- edta, ethylene glycol-bis(2-aminoethyl-ether)-n,n,n′,n′-tetraacetic acid
- fkbp-12, fk-506-binding protein 12
- hepes, n-(2-hydroxyethyl)pipera-zine-n′-(2-ethanesulphonic acid)
- hva, high-voltage activated
- hplc, high-performance liquid chromatography
- nmdar, n-methyl-d-aspartate receptor
- pcr, polymerase chain reaction
- rt, reverse transcription
- tea, tetraethylammonium
- vscc., voltage-sensitive ca2+ channel
Collapse
Affiliation(s)
- C M Norris
- Department of Molecular and Biomedical Pharmacology, College of Medicine, MS-310 UKMC, University of Kentucky, Lexington, KY 40536-0298, USA.
| | | | | | | | | |
Collapse
|
40
|
Blalock EM, Chen KC, Vanaman TC, Landfield PW, Slevin JT. Epilepsy-induced decrease of L-type Ca2+ channel activity and coordinate regulation of subunit mRNA in single neurons of rat hippocampal 'zipper' slices. Epilepsy Res 2001; 43:211-26. [PMID: 11248533 DOI: 10.1016/s0920-1211(00)00199-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
L-type voltage-sensitive Ca2+ channels (VSCCs) preferentially modulate several neuronal processes that are thought to be important in epileptogenesis, including the slow afterhyperpolarization (AHP), LTP, and trophic factor gene expression. However, little is yet known about the roles of L-type VSCCs in the epileptogenic process. Here, we used cell-attached patch recording techniques and single cell mRNA analyses to study L-type VSCCs in CA1 neurons from partially dissociated (zipper) hippocampal slices from entorhinally-kindled rats. L-type Ca2+-channel activity was reduced by >50% at 1.5-3 months after kindling. Following recording, the same single neurons were extracted and collected for mRNA analysis using a recently developed method that does not amputate major dendritic processes. Therefore, neurons contained essentially full complements of mRNA. For each collected neuron, mRNA contents for the L-type pore-forming alpha1D/Ca(v)1.3-subunit and for calmodulin were then analyzed by semiquantitative kinetic RT-PCR. L-type alpha1D-subunit mRNA was correlated with L-type Ca2+-channel activity across single cells, whereas calmodulin mRNA was not. Thus, these results appear to provide the first direct evidence at the single channel and gene expression levels that chronic expression of an identified Ca2+-channel type is modulated by epileptiform activity. Moreover, the present data suggest the hypothesis that down regulation of alpha1D-gene expression by kindling may contribute to the long-term maintenance of epileptiform activity, possibly through reduced Ca2+-dependent AHP and/or altered expression of other relevant genes.
Collapse
Affiliation(s)
- E M Blalock
- Department of Pharmacology, College of Medicine, University of Kentucky, MS-310 UKMC, Lexington, KY 40536, USA.
| | | | | | | | | |
Collapse
|
41
|
Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001. [PMID: 11150325 DOI: 10.1523/jneurosci.21-01-00098.2001] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although vitamin D hormone (VDH; 1,25-dihydroxyvitamin D(3)), the active metabolite of vitamin D, is the major Ca(2+)-regulatory steroid hormone in the periphery, it is not known whether it also modulates Ca(2+) homeostasis in brain neurons. Recently, chronic treatment with VDH was reported to protect brain neurons in both aging and animal models of stroke. However, it is unclear whether those actions were attributable to direct effects on brain cells or indirect effects mediated via peripheral pathways. VDH modulates L-type voltage-sensitive Ca(2+) channels (L-VSCCs) in peripheral tissues, and an increase in L-VSCCs appears linked to both brain aging and neuronal vulnerability. Therefore, we tested the hypothesis that VDH has direct neuroprotective actions and, in parallel, targets L-VSCCs in hippocampal neurons. Primary rat hippocampal cultures, treated for several days with VDH, exhibited a U-shaped concentration-response curve for neuroprotection against excitotoxic insults: lower concentrations of VDH (1-100 nm) were protective, but higher, nonphysiological concentrations (500-1000 nm) were not. Parallel studies using patch-clamp techniques found a similar U-shaped curve in which L-VSCC current was reduced at lower VDH concentrations and increased at higher (500 nm) concentrations. Real-time PCR studies demonstrated that VDH monotonically downregulated mRNA expression for the alpha(1C) and alpha(1D) pore-forming subunits of L-VSCCs. However, 500 nm VDH also nonspecifically reduced a range of other mRNA species. Thus, these studies provide the first evidence of (1) direct neuroprotective actions of VDH at relatively low concentrations, and (2) selective downregulation of L-VSCC expression in brain neurons at the same, lower concentrations.
Collapse
|
42
|
Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001; 21:98-108. [PMID: 11150325 PMCID: PMC6762438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2000] [Revised: 10/11/2000] [Accepted: 10/12/2000] [Indexed: 02/18/2023] Open
Abstract
Although vitamin D hormone (VDH; 1,25-dihydroxyvitamin D(3)), the active metabolite of vitamin D, is the major Ca(2+)-regulatory steroid hormone in the periphery, it is not known whether it also modulates Ca(2+) homeostasis in brain neurons. Recently, chronic treatment with VDH was reported to protect brain neurons in both aging and animal models of stroke. However, it is unclear whether those actions were attributable to direct effects on brain cells or indirect effects mediated via peripheral pathways. VDH modulates L-type voltage-sensitive Ca(2+) channels (L-VSCCs) in peripheral tissues, and an increase in L-VSCCs appears linked to both brain aging and neuronal vulnerability. Therefore, we tested the hypothesis that VDH has direct neuroprotective actions and, in parallel, targets L-VSCCs in hippocampal neurons. Primary rat hippocampal cultures, treated for several days with VDH, exhibited a U-shaped concentration-response curve for neuroprotection against excitotoxic insults: lower concentrations of VDH (1-100 nm) were protective, but higher, nonphysiological concentrations (500-1000 nm) were not. Parallel studies using patch-clamp techniques found a similar U-shaped curve in which L-VSCC current was reduced at lower VDH concentrations and increased at higher (500 nm) concentrations. Real-time PCR studies demonstrated that VDH monotonically downregulated mRNA expression for the alpha(1C) and alpha(1D) pore-forming subunits of L-VSCCs. However, 500 nm VDH also nonspecifically reduced a range of other mRNA species. Thus, these studies provide the first evidence of (1) direct neuroprotective actions of VDH at relatively low concentrations, and (2) selective downregulation of L-VSCC expression in brain neurons at the same, lower concentrations.
Collapse
Affiliation(s)
- L D Brewer
- Departments of Pharmacology and Internal Medicine, Division of Nephrology, Bone and Mineral Metabolism, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|