1
|
Nardos R, Kowalski TJ, Houpt TA. Increased independent ingestion in Anorexia (anx) mutant mice. Physiol Behav 2025; 295:114908. [PMID: 40203962 DOI: 10.1016/j.physbeh.2025.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Anorexia mutant mice (anx/anx) stop gaining weight by postnatal day 14 and die from starvation within 3-4 weeks. Their defect is not conclusively identified: a point mutation in Tyro3 is present and modulates the phenotype. The behavioral or physiological mechanisms causing starvation are unknown. To determine if anx causes decreased independent ingestion, pups were given short-term access to half-and-half on postnatal days 14 and 19. The anx mutants ingested similar or larger amounts than wildtype on both days. The anx/anx mutation may decrease growth not by hypophagia per se, but as result of other complications such as decreased maternally-dependent suckling or failure to transition to independent ingestion.
Collapse
Affiliation(s)
- Rahel Nardos
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.
| | | | - Thomas A Houpt
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
2
|
Leeson-Payne A, Iyinikkel J, Malcolm C, Lam BYH, Sommer N, Dowsett GKC, Martinez de Morentin PB, Thompson D, Mackenzie A, Chianese R, Kentistou K, Gardner EJ, Perry JRB, Grassmann F, Speakman JR, Rochford JJ, Yeo GSH, Murray F, Heisler LK. Loss of GPR75 protects against non-alcoholic fatty liver disease and body fat accumulation. Cell Metab 2024; 36:1076-1087.e4. [PMID: 38653246 DOI: 10.1016/j.cmet.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/04/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Approximately 1 in 4 people worldwide have non-alcoholic fatty liver disease (NAFLD); however, there are currently no medications to treat this condition. This study investigated the role of adiposity-associated orphan G protein-coupled receptor 75 (GPR75) in liver lipid accumulation. We profiled Gpr75 expression and report that it is most abundant in the brain. Next, we generated the first single-cell-level analysis of Gpr75 and identified a subpopulation co-expressed with key appetite-regulating hypothalamic neurons. CRISPR-Cas9-deleted Gpr75 mice fed a palatable western diet high in fat adjusted caloric intake to remain in energy balance, thereby preventing NAFLD. Consistent with mouse results, analysis of whole-exome sequencing data from 428,719 individuals (UK Biobank) revealed that variants in GPR75 are associated with a reduced likelihood of hepatic steatosis. Here, we provide a significant advance in understanding of the expression and function of GPR75, demonstrating that it is a promising pharmaceutical target for NAFLD treatment.
Collapse
Affiliation(s)
| | - Jean Iyinikkel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Cameron Malcolm
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Nadine Sommer
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Georgina K C Dowsett
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | | | - Dawn Thompson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | - Katherine Kentistou
- Medical Research Council Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eugene J Gardner
- Medical Research Council Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John R B Perry
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Medical Research Council Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Felix Grassmann
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Giles S H Yeo
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Fiona Murray
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | - Lora K Heisler
- The Rowett Institute, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
3
|
Ziegler AA, Lawton SBR, Grobe CC, Reho JJ, Freudinger BP, Burnett CML, Nakagawa P, Grobe JL, Segar JL. Early-life sodium deprivation programs long-term changes in ingestive behaviors and energy expenditure in C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R576-R592. [PMID: 37720996 PMCID: PMC10866575 DOI: 10.1152/ajpregu.00137.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Postnatal growth failure remains a significant problem for infants born prematurely, despite aggressive efforts to improve perinatal nutrition. Though often dysregulated in early life when children are born preterm, sodium (Na) homeostasis is vital to achieve optimal growth. We hypothesize that insufficient Na supply in this critical period contributes to growth restriction and programmed risks for cardiometabolic disease in later adulthood. Thus, we sought to ascertain the effects of prolonged versus early-life Na depletion on weight gain, body composition, food and water intake behaviors, and energy expenditure in C57BL/6J mice. In one study, mice were provided a low (0.04%)- or normal/high (0.30%)-Na diet between 3 and 18 wk of age. Na-restricted mice demonstrated delayed growth and elevated basal metabolic rate. In a second study, mice were provided 0.04% or 0.30% Na diet between 3 and 6 wk of age and then returned to standard (0.15%)-Na diet through the end of the study. Na-restricted mice exhibited growth delays that quickly caught up on return to standard diet. Between 6 and 18 wk of age, previously restricted mice exhibited sustained, programmed changes in feeding behaviors, reductions in total food intake, and increases in water intake and aerobic energy expenditure while maintaining normal body composition. Although having no effect in control mice, administration of the ganglionic blocker hexamethonium abolished the programmed increase in basal metabolic rate in previously restricted mice. Together these data indicate that early-life Na restriction can cause programmed changes in ingestive behaviors, autonomic function, and energy expenditure that persist well into adulthood.
Collapse
Affiliation(s)
- Alisha A Ziegler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Samuel B R Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Connie C Grobe
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Bonnie P Freudinger
- Engineering Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Colin M L Burnett
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Wisconsin, United States
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
4
|
Sweeney P, Gimenez LE, Hernandez CC, Cone RD. Targeting the central melanocortin system for the treatment of metabolic disorders. Nat Rev Endocrinol 2023; 19:507-519. [PMID: 37365323 DOI: 10.1038/s41574-023-00855-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
A large body of preclinical and clinical data shows that the central melanocortin system is a promising therapeutic target for treating various metabolic disorders such as obesity and cachexia, as well as anorexia nervosa. Setmelanotide, which functions by engaging the central melanocortin circuitry, was approved by the FDA in 2020 for use in certain forms of syndromic obesity. Furthermore, the FDA approvals in 2019 of two peptide drugs targeting melanocortin receptors for the treatment of generalized hypoactive sexual desire disorder (bremelanotide) and erythropoietic protoporphyria-associated phototoxicity (afamelanotide) demonstrate the safety of this class of peptides. These approvals have also renewed excitement in the development of therapeutics targeting the melanocortin system. Here, we review the anatomy and function of the melanocortin system, discuss progress and challenges in developing melanocortin receptor-based therapeutics, and outline potential metabolic and behavioural disorders that could be addressed using pharmacological agents targeting these receptors.
Collapse
Affiliation(s)
- Patrick Sweeney
- School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, College of Literature Science and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Balapattabi K, Yavuz Y, Jiang J, Deng G, Mathieu NM, Ritter ML, Opichka MA, Reho JJ, McCorvy JD, Nakagawa P, Morselli LL, Mouradian GC, Atasoy D, Cui H, Hodges MR, Sigmund CD, Grobe JL. Angiotensin AT 1A receptor signal switching in Agouti-related peptide neurons mediates metabolic rate adaptation during obesity. Cell Rep 2023; 42:112935. [PMID: 37540598 PMCID: PMC10530419 DOI: 10.1016/j.celrep.2023.112935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Resting metabolic rate (RMR) adaptation occurs during obesity and is hypothesized to contribute to failed weight management. Angiotensin II (Ang-II) type 1 (AT1A) receptors in Agouti-related peptide (AgRP) neurons contribute to the integrative control of RMR, and deletion of AT1A from AgRP neurons causes RMR adaptation. Extracellular patch-clamp recordings identify distinct cellular responses of individual AgRP neurons from lean mice to Ang-II: no response, inhibition via AT1A and Gαi, or stimulation via Ang-II type 2 (AT2) receptors and Gαq. Following diet-induced obesity, a subset of Ang-II/AT1A-inhibited AgRP neurons undergo a spontaneous G-protein "signal switch," whereby AT1A stop inhibiting the cell via Gαi and instead begin stimulating the cell via Gαq. DREADD-mediated activation of Gαi, but not Gαq, in AT1A-expressing AgRP cells stimulates RMR in lean and obese mice. Thus, loss of AT1A-Gαi coupling within the AT1A-expressing AgRP neuron subtype represents a molecular mechanism contributing to RMR adaptation.
Collapse
Affiliation(s)
| | - Yavuz Yavuz
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Natalia M Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan A Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lisa L Morselli
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
6
|
Haspula D, Cui Z. Neurochemical Basis of Inter-Organ Crosstalk in Health and Obesity: Focus on the Hypothalamus and the Brainstem. Cells 2023; 12:1801. [PMID: 37443835 PMCID: PMC10341274 DOI: 10.3390/cells12131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Precise neural regulation is required for maintenance of energy homeostasis. Essential to this are the hypothalamic and brainstem nuclei which are located adjacent and supra-adjacent to the circumventricular organs. They comprise multiple distinct neuronal populations which receive inputs not only from other brain regions, but also from circulating signals such as hormones, nutrients, metabolites and postprandial signals. Hence, they are ideally placed to exert a multi-tier control over metabolism. The neuronal sub-populations present in these key metabolically relevant nuclei regulate various facets of energy balance which includes appetite/satiety control, substrate utilization by peripheral organs and glucose homeostasis. In situations of heightened energy demand or excess, they maintain energy homeostasis by restoring the balance between energy intake and expenditure. While research on the metabolic role of the central nervous system has progressed rapidly, the neural circuitry and molecular mechanisms involved in regulating distinct metabolic functions have only gained traction in the last few decades. The focus of this review is to provide an updated summary of the mechanisms by which the various neuronal subpopulations, mainly located in the hypothalamus and the brainstem, regulate key metabolic functions.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
7
|
Han Y, He Y, Harris L, Xu Y, Wu Q. Identification of a GABAergic neural circuit governing leptin signaling deficiency-induced obesity. eLife 2023; 12:e82649. [PMID: 37043384 PMCID: PMC10097419 DOI: 10.7554/elife.82649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The hormone leptin is known to robustly suppress food intake by acting upon the leptin receptor (LepR) signaling system residing within the agouti-related protein (AgRP) neurons of the hypothalamus. However, clinical studies indicate that leptin is undesirable as a therapeutic regiment for obesity, which is at least partly attributed to the poorly understood complex secondary structure and key signaling mechanism of the leptin-responsive neural circuit. Here, we show that the LepR-expressing portal neurons send GABAergic projections to a cohort of α3-GABAA receptor expressing neurons within the dorsomedial hypothalamic nucleus (DMH) for the control of leptin-mediated obesity phenotype. We identified the DMH as a key brain region that contributes to the regulation of leptin-mediated feeding. Acute activation of the GABAergic AgRP-DMH circuit promoted food intake and glucose intolerance, while activation of post-synaptic MC4R neurons in the DMH elicited exactly opposite phenotypes. Rapid deletion of LepR from AgRP neurons caused an obesity phenotype which can be rescued by blockage of GABAA receptor in the DMH. Consistent with behavioral results, these DMH neurons displayed suppressed neural activities in response to hunger or hyperglycemia. Furthermore, we identified that α3-GABAA receptor signaling within the DMH exerts potent bi-directional regulation of the central effects of leptin on feeding and body weight. Together, our results demonstrate a novel GABAergic neural circuit governing leptin-mediated feeding and energy balance via a unique α3-GABAA signaling within the secondary leptin-responsive neural circuit, constituting a new avenue for therapeutic interventions in the treatment of obesity and associated comorbidities.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yang He
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Lauren Harris
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Qi Wu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
8
|
Liu SM, Ifebi B, Johnson F, Xu A, Ho J, Yang Y, Schwartz G, Jo YH, Chua S. The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis. J Clin Invest 2023; 133:e164185. [PMID: 36787185 PMCID: PMC10065075 DOI: 10.1172/jci164185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids' ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/enhancer regions that direct transcription of each of their own AGRP transcripts. One of these Agrp promoters/enhancers, Agrp-B, is regulated by bile acids. We generated an Agrp-B knockin FLP/knockout allele. AGRP-B-expressing cells are found in endocrine cells of the pars tuberalis and coexpress diacylglycerol lipase B - an endocannabinoid biosynthetic enzyme - distinct from pars tuberalis thyrotropes. AGRP-B expression is also found in the folliculostellate cells of the pituitary's anterior lobe. Mice without AGRP-B were protected from glucose intolerance induced by high-fat feeding but not from excess weight gain. Chemogenetic inhibition of AGRP-B cells improved glucose tolerance by enhancing glucose-stimulated insulin secretion. Inhibition of the AGRP-B cells also caused weight loss. The improved glucose tolerance and reduced body weight persisted up to 6 weeks after cessation of the DREADD-mediated inhibition, suggesting the presence of a biological switch for glucose homeostasis that is regulated by long-term stability of food availability.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunlei Yang
- Department of Medicine
- Department of Neuroscience, and
| | - Gary Schwartz
- Department of Medicine
- Department of Neuroscience, and
| | - Young Hwan Jo
- Department of Medicine
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | | |
Collapse
|
9
|
Fang X, Chen Y, Wang J, Zhang Z, Bai Y, Denney K, Gan L, Guo M, Weintraub NL, Lei Y, Lu XY. Increased intrinsic and synaptic excitability of hypothalamic POMC neurons underlies chronic stress-induced behavioral deficits. Mol Psychiatry 2023; 28:1365-1382. [PMID: 36473997 PMCID: PMC10005948 DOI: 10.1038/s41380-022-01872-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Chronic stress exposure induces maladaptive behavioral responses and increases susceptibility to neuropsychiatric conditions. However, specific neuronal populations and circuits that are highly sensitive to stress and trigger maladaptive behavioral responses remain to be identified. Here we investigate the patterns of spontaneous activity of proopiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus following exposure to chronic unpredictable stress (CUS) for 10 days, a stress paradigm used to induce behavioral deficits such as anhedonia and behavioral despair [1, 2]. CUS exposure increased spontaneous firing of POMC neurons in both male and female mice, attributable to reduced GABA-mediated synaptic inhibition and increased intrinsic neuronal excitability. While acute activation of POMC neurons failed to induce behavioral changes in non-stressed mice of both sexes, subacute (3 days) and chronic (10 days) repeated activation of POMC neurons was sufficient to induce anhedonia and behavioral despair in males but not females under non-stress conditions. Acute activation of POMC neurons promoted susceptibility to subthreshold unpredictable stress in both male and female mice. Conversely, acute inhibition of POMC neurons was sufficient to reverse CUS-induced anhedonia and behavioral despair in both sexes. Collectively, these results indicate that chronic stress induces both synaptic and intrinsic plasticity of POMC neurons, leading to neuronal hyperactivity. Our findings suggest that POMC neuron dysfunction drives chronic stress-related behavioral deficits.
Collapse
Affiliation(s)
- Xing Fang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yuting Chen
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jiangong Wang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ziliang Zhang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yu Bai
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kirstyn Denney
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ming Guo
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Neal L Weintraub
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yun Lei
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
10
|
Pei Z, He Y, Bean JC, Yang Y, Liu H, Yu M, Yu K, Hyseni I, Cai X, Liu H, Qu N, Tu L, Conde KM, Wang M, Li Y, Yin N, Zhang N, Han J, Potts CHS, Scarcelli NA, Yan Z, Xu P, Wu Q, He Y, Xu Y, Wang C. Gabra5 plays a sexually dimorphic role in POMC neuron activity and glucose balance. Front Endocrinol (Lausanne) 2022; 13:889122. [PMID: 36120438 PMCID: PMC9471380 DOI: 10.3389/fendo.2022.889122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Pro-opiomelanocortin (POMC) neurons are important for the regulation of body weight and glucose balance. The inhibitory tone to POMC neurons is mediated primarily by the GABA receptors. However, the detailed mechanisms and functions of GABA receptors are not well understood. The α5 subunit of GABAA receptor, Gabra5, is reported to regulate feeding, and we found that Gabra5 is highly expressed in POMC neurons. To explore the function of Gabra5 in POMC neurons, we knocked down Gabra5 specifically from mature hypothalamic POMC neurons using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 strategy. This POMC-specific knock-down of Gabra5 did not affect body weight or food intake in either male or female mice. Interestingly, the loss of Gabra5 caused significant increases in the firing frequency and resting membrane potential, and a decrease in the amplitude of the miniature inhibitory postsynaptic current (mIPSC) in male POMC neurons. However, the loss of Gabra5 only modestly decreased the frequency of mIPSC in female POMC neurons. Consistently, POMC-specific knock-down of Gabra5 significantly improved glucose tolerance in male mice but not in female mice. These results revealed a sexually dimorphic role of Gabra5 in POMC neuron activity and glucose balance, independent of body weight control.
Collapse
Affiliation(s)
- Zhou Pei
- Department of Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Yang He
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan C. Bean
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Hailan Liu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Kaifan Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Ilirjana Hyseni
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Xing Cai
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Hesong Liu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Na Qu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Longlong Tu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Kristine M. Conde
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Mengjie Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Yongxiang Li
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Na Yin
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nan Zhang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Junying Han
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Camille HS. Potts
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nikolas A. Scarcelli
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Zili Yan
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Qi Wu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, United States
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Banerjee J, Dorfman MD, Fasnacht R, Douglass JD, Wyse-Jackson AC, Barria A, Thaler JP. CX3CL1 Action on Microglia Protects from Diet-Induced Obesity by Restoring POMC Neuronal Excitability and Melanocortin System Activity Impaired by High-Fat Diet Feeding. Int J Mol Sci 2022; 23:6380. [PMID: 35742824 PMCID: PMC9224384 DOI: 10.3390/ijms23126380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Both hypothalamic microglial inflammation and melanocortin pathway dysfunction contribute to diet-induced obesity (DIO) pathogenesis. Previous studies involving models of altered microglial signaling demonstrate altered DIO susceptibility with corresponding POMC neuron cytological changes, suggesting a link between microglia and the melanocortin system. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling to protect against DIO. We performed metabolic analyses in high fat diet (HFD)-fed mice with targeted viral overexpression of CX3CL1 in the hypothalamus. Electrophysiologic recording in hypothalamic slices from POMC-MAPT-GFP mice was used to determine the effects of HFD feeding and microglial silencing via minocycline or CX3CL1 on GFP-labeled POMC neurons. Finally, mice with hypothalamic overexpression of CX3CL1 received central treatment with the melanocortin receptor antagonist SHU9119 to determine whether melanocortin signaling is required for the metabolic benefits of CX3CL1. Hypothalamic overexpression of CX3CL1 increased leptin sensitivity and POMC gene expression, while reducing weight gain in animals fed an HFD. In electrophysiological recordings from hypothalamic slice preparations, HFD feeding was associated with reduced POMC neuron excitability and increased amplitude of inhibitory postsynaptic currents. Microglial silencing using minocycline or CX3CL1 treatment reversed these HFD-induced changes in POMC neuron electrophysiologic properties. Correspondingly, blockade of melanocortin receptor signaling in vivo prevented both the acute and chronic reduction in food intake and body weight mediated by CX3CL1. Our results show that suppressing microglial activation during HFD feeding reduces DIO susceptibility via a mechanism involving increased POMC neuron excitability and melanocortin signaling.
Collapse
Affiliation(s)
- Jineta Banerjee
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| | - Mauricio D. Dorfman
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| | - Rachael Fasnacht
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| | - John D. Douglass
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| | - Alice C. Wyse-Jackson
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA;
| | - Joshua P. Thaler
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| |
Collapse
|
12
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
13
|
Perelló M, Cornejo MP, De Francesco PN, Fernandez G, Gautron L, Valdivia LS. The controversial role of the vagus nerve in mediating ghrelin´s actions: gut feelings and beyond. IBRO Neurosci Rep 2022; 12:228-239. [PMID: 35746965 PMCID: PMC9210457 DOI: 10.1016/j.ibneur.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.
Collapse
|
14
|
Caron A, Jane Michael N. New Horizons: Is Obesity a Disorder of Neurotransmission? J Clin Endocrinol Metab 2021; 106:e4872-e4886. [PMID: 34117881 DOI: 10.1210/clinem/dgab421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/19/2022]
Abstract
Obesity is a disease of the nervous system. While some will view this statement as provocative, others will take it as obvious. Whatever our side is, the pharmacology tells us that targeting the nervous system works for promoting weight loss. It works, but at what cost? Is the nervous system a safe target for sustainable treatment of obesity? What have we learned-and unlearned-about the central control of energy balance in the last few years? Herein we provide a thought-provoking exploration of obesity as a disorder of neurotransmission. We discuss the state of knowledge on the brain pathways regulating energy homeostasis that are commonly targeted in anti-obesity therapy and explore how medications affecting neurotransmission such as atypical antipsychotics, antidepressants, and antihistamines relate to body weight. Our goal is to provide the endocrine community with a conceptual framework that will help expending our understanding of the pathophysiology of obesity, a disease of the nervous system.
Collapse
Affiliation(s)
- Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
15
|
Cavalcanti-de-Albuquerque JP, Donato J. Rolling out physical exercise and energy homeostasis: Focus on hypothalamic circuitries. Front Neuroendocrinol 2021; 63:100944. [PMID: 34425188 DOI: 10.1016/j.yfrne.2021.100944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
Energy balance is the fine regulation of energy expenditure and energy intake. Negative energy balance causes body weight loss, while positive energy balance promotes weight gain. Modern societies offer a maladapted way of life, where easy access to palatable foods and the lack of opportunities to perform physical activity are considered the roots of the obesity pandemic. Physical exercise increases energy expenditure and, consequently, is supposed to promote weight loss. Paradoxically, physical exercise acutely drives anorexigenic-like effects, but the mechanisms are still poorly understood. Using an evolutionary background, this review aims to highlight the potential involvement of the melanocortin system and other hypothalamic neural circuitries regulating energy balance during and after physical exercise. The physiological significance of these changes will be explored, and possible signalling agents will be addressed. The knowledge discussed here might be important for clarifying obesity aetiology as well as new therapeutic approaches for body weight loss.
Collapse
Affiliation(s)
| | - José Donato
- Department of Physiology and Biophysics, University of São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
16
|
Rohrbach A, Caron E, Dali R, Brunner M, Pasquettaz R, Kolotuev I, Santoni F, Thorens B, Langlet F. Ablation of glucokinase-expressing tanycytes impacts energy balance and increases adiposity in mice. Mol Metab 2021; 53:101311. [PMID: 34325016 PMCID: PMC8379510 DOI: 10.1016/j.molmet.2021.101311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023] Open
Abstract
Objectives Glucokinase (GCK) is critical for glucosensing. In rats, GCK is expressed in hypothalamic tanycytes and appears to play an essential role in feeding behavior. In this study, we investigated the distribution of GCK-expressing tanycytes in mice and their role in the regulation of energy balance. Methods In situ hybridization, reporter gene assay, and immunohistochemistry were used to assess GCK expression along the third ventricle in mice. To evaluate the impact of GCK-expressing tanycytes on arcuate neuron function and mouse physiology, Gck deletion along the ventricle was achieved using loxP/Cre recombinase technology in adult mice. Results GCK expression was low along the third ventricle, but detectable in tanycytes facing the ventromedial arcuate nucleus from bregma −1.5 to −2.2. Gck deletion induced the death of this tanycyte subgroup through the activation of the BAD signaling pathway. The ablation of GCK-expressing tanycytes affected different aspects of energy balance, leading to an increase in adiposity in mice. This phenotype was systematically associated with a defect in NPY neuron function. In contrast, the regulation of glucose homeostasis was mostly preserved, except for glucoprivic responses. Conclusions This study describes the role of GCK in tanycyte biology and highlights the impact of tanycyte loss on the regulation of energy balance. vmARH tanycytes express glucokinase. Glucokinase deletion in tanycytes induces cell death. Ablation of vmARH tanycytes alters energy balance and adiposity. Ablation of vmARH tanycytes alters NPY neuron function.
Collapse
Affiliation(s)
- Antoine Rohrbach
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S, 1172, Lille, France
| | - Rafik Dali
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Maxime Brunner
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Faculty of Biology and Medicine, 1011, Lausanne, Switzerland
| | - Roxane Pasquettaz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Irina Kolotuev
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Faculty of Biology and Medicine, 1011, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fanny Langlet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
17
|
Yeo GSH, Chao DHM, Siegert AM, Koerperich ZM, Ericson MD, Simonds SE, Larson CM, Luquet S, Clarke I, Sharma S, Clément K, Cowley MA, Haskell-Luevano C, Van Der Ploeg L, Adan RAH. The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol Metab 2021; 48:101206. [PMID: 33684608 PMCID: PMC8050006 DOI: 10.1016/j.molmet.2021.101206] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Over the past 20 years, insights from human and mouse genetics have illuminated the central role of the brain leptin-melanocortin pathway in controlling mammalian food intake, with genetic disruption resulting in extreme obesity, and more subtle polymorphic variations influencing the population distribution of body weight. At the end of 2020, the U.S. Food and Drug Administration (FDA) approved setmelanotide, a melanocortin 4 receptor agonist, for use in individuals with severe obesity due to either pro-opiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. SCOPE OF REVIEW Herein, we chart the melanocortin pathway's history, explore its pharmacology, genetics, and physiology, and describe how a neuropeptidergic circuit became an important druggable obesity target. MAJOR CONCLUSIONS Unravelling the genetics of the subset of severe obesity has revealed the importance of the melanocortin pathway in appetitive control; coupling this with studying the molecular pharmacology of compounds that bind melanocortin receptors has brought a new obesity drug to the market. This process provides a drug discovery template for complex disorders, which for setmelanotide took 25 years to transform from a single gene into an approved drug.
Collapse
Affiliation(s)
- Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Stephanie E Simonds
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Courtney M Larson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.
| | - Iain Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France, Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches (NutriOmics) Research Unit, Paris, France.
| | - Michael A Cowley
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | | | - Roger A H Adan
- Department of Translational Neuroscience, UMCU Brain Centre, University Medical Centre Utrecht, Utrecht University, the Netherlands; Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
18
|
Nilsson IAK, Hökfelt T, Schalling M. The Anorectic Phenotype of the anx/anx Mouse Is Associated with Hypothalamic Dysfunction. NEUROMETHODS 2021:297-317. [DOI: 10.1007/978-1-0716-0924-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Sutton Hickey AK, Krashes MJ. Integrating Hunger with Rival Motivations. Trends Endocrinol Metab 2020; 31:495-507. [PMID: 32387196 DOI: 10.1016/j.tem.2020.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Motivated behaviors have fascinated neuroscientists and ethologists for decades due to their necessity for organism survival. Motivations guide behavioral choice through an intricate synthesis of internal state detection, external stimulus exposure, and learned associations. One critical motivation, hunger, provides an accessible example for understanding purposeful behavior. Neuroscientists commonly focus research efforts on neural circuits underlying individual motivations, sacrificing ethological relevance for tight experimental control. This restrictive focus deprives the field of a more nuanced understanding of the unified nervous system in weighing multiple motivations simultaneously and choosing, moment-to-moment, optimal behaviors for survival. Here, we explore the reciprocal interplay between hunger, encoded via hypothalamic neurons marked by the expression of Agouti-related peptide, and alternative need-based motivational systems.
Collapse
Affiliation(s)
- Ames K Sutton Hickey
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
20
|
Effects of metabolic state on the regulation of melanocortin circuits. Physiol Behav 2020; 224:113039. [PMID: 32610101 PMCID: PMC7387173 DOI: 10.1016/j.physbeh.2020.113039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Dysfunction in neurophysiological systems that regulate food intake and metabolism are at least partly responsible for obesity and related comorbidities. An important component of this process is the hypothalamic melanocortin system, where an imbalance can result in severe obesity and deficits in glucose metabolism. Exercise offers many health benefits related to cardiovascular improvements, hunger control, and blood glucose homeostasis. However, the molecular mechanism underlying the exercise-induced improvements to the melanocortin system remain undefined. Here, we review the role of the melanocortin system to sense hormonal, nutrient, and neuronal signals of energy status. This information is then relayed onto secondary neurons in order to regulate physiological parameters, which promote proper energy and glucose balance. We also provide an overview on the effects of physical exercise to induce biophysical changes in the melanocortin circuit which may regulate food intake, glucose metabolism and improve overall metabolic health.
Collapse
|
21
|
Gosztonyi G, Ludwig H, Bode L, Kao M, Sell M, Petrusz P, Halász B. Obesity induced by Borna disease virus in rats: key roles of hypothalamic fast-acting neurotransmitters and inflammatory infiltrates. Brain Struct Funct 2020; 225:1459-1482. [PMID: 32394093 DOI: 10.1007/s00429-020-02063-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 12/30/2022]
Abstract
Human obesity epidemic is increasing worldwide with major adverse consequences on health. Among other possible causes, the hypothesis of an infectious contribution is worth it to be considered. Here, we report on an animal model of virus-induced obesity which might help to better understand underlying processes in human obesity. Eighty Wistar rats, between 30 and 60 days of age, were intracerebrally inoculated with Borna disease virus (BDV-1), a neurotropic negative-strand RNA virus infecting an unusually broad host spectrum including humans. Half of the rats developed fatal encephalitis, while the other half, after 3-4 months, continuously gained weight. At tripled weights, rats were sacrificed by trans-cardial fixative perfusion. Neuropathology revealed prevailing inflammatory infiltrates in the median eminence (ME), progressive degeneration of neurons of the paraventricular nucleus, the entorhinal cortex and the amygdala, and a strikingly high-grade involution of the hippocampus with hydrocephalus. Immune histology revealed that major BDV-1 antigens were preferentially present at glutamatergic receptor sites, while GABAergic areas remained free from BDV-1. Virus-induced suppression of the glutamatergic system caused GABAergic predominance. In the hypothalamus, this shifted the energy balance to the anabolic appetite-stimulating side governed by GABA, allowing for excessive fat accumulation in obese rats. Furthermore, inflammatory infiltrates in the ME and ventro-medial arcuate nucleus hindered free access of appetite-suppressing hormones leptin and insulin. The hormone transport system in hypothalamic areas outside the ME became blocked by excessively produced leptin, leading to leptin resistance. The resulting hyperleptinemic milieu combined with suppressed glutamatergic mechanisms was a characteristic feature of the found metabolic pathology. In conclusion, the study provided clear evidence that BDV-1 induced obesity in the rat model is the result of interdependent structural and functional metabolic changes. They can be explained by an immunologically induced hypothalamic microcirculation-defect, combined with a disturbance of neurotransmitter regulatory systems. The proposed mechanism may also have implications for human health. BDV-1 infection has been frequently found in depressive patients. Independently, comorbidity between depression and obesity has been reported, either. Future studies should address the exciting question of whether BDV-1 infection could be a link, whatsoever, between these two conditions.
Collapse
Affiliation(s)
- Georg Gosztonyi
- Institute of Neuropathology, Charité, University Medicine Berlin, 10117, Berlin, Germany.
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Liv Bode
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Moujahed Kao
- Landesbetrieb Hessisches Landeslabor, 35392, Giessen, Germany
| | - Manfred Sell
- Division of Pathology, Martin Luther Hospital, 12351, Berlin, Germany
| | - Peter Petrusz
- Department of Cell and Developmental Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Béla Halász
- Neuromorphological and Neuroendocrine Research Laboratory, Semmelweis University, 1094, Budapest, Hungary
| |
Collapse
|
22
|
Hypothalamic NAD +-Sirtuin Axis: Function and Regulation. Biomolecules 2020; 10:biom10030396. [PMID: 32143417 PMCID: PMC7175325 DOI: 10.3390/biom10030396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
The rapidly expanding elderly population and obesity endemic have become part of continuing global health care problems. The hypothalamus is a critical center for the homeostatic regulation of energy and glucose metabolism, circadian rhythm, and aging-related physiology. Nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuins are referred to as master metabolic regulators that link the cellular energy status to adaptive transcriptional responses. Mounting evidence now indicates that hypothalamic sirtuins are essential for adequate hypothalamic neuronal functions. Owing to the NAD+-dependence of sirtuin activity, adequate hypothalamic NAD+ contents are pivotal for maintaining energy homeostasis and circadian physiology. Here, we comprehensively review the regulatory roles of the hypothalamic neuronal NAD+-sirtuin axis in a normal physiological context and their changes in obesity and the aging process. We also discuss the therapeutic potential of NAD+ biology-targeting drugs in aging/obesity-related metabolic and circadian disorders.
Collapse
|
23
|
Relationship of α-MSH and AgRP axons to the perikarya of melanocortin-4 receptor neurons. Brain Res 2019; 1717:136-146. [DOI: 10.1016/j.brainres.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022]
|
24
|
GABAergic Inputs to POMC Neurons Originating from the Dorsomedial Hypothalamus Are Regulated by Energy State. J Neurosci 2019; 39:6449-6459. [PMID: 31235650 DOI: 10.1523/jneurosci.3193-18.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
Neuronal circuits regulating hunger and satiety synthesize information encoding the energy state of the animal and translate those signals into motivated behaviors to meet homeostatic needs. Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus are activated by energy surfeits and inhibited by energy deficits. When activated, these cells inhibit food intake and facilitate weight loss. Conversely, decreased activity in POMC cells is associated with increased food intake and obesity. Circulating nutrients and hormones modulate the activity of POMC neurons over protracted periods of time. However, recent work indicates that calcium activity in POMC cells changes in response to food cues on times scales consistent with the rapid actions of amino acid transmitters. Indeed, the frequency of spontaneous IPSCs (sIPSCs) onto POMC neurons increases during caloric deficits. However, the afferent brain regions responsible for this inhibitory modulation are currently unknown. Here, through the use of brain region-specific deletion of GABA release in both male and female mice we show that neurons in the dorsomedial hypothalamus (DMH) are responsible for the majority of sIPSCs in POMC neurons as well as the fasting-induced increase in sIPSC frequency. Further, the readily releasable pool of GABA vesicles and the release probability of GABA is increased at DMH-to-POMC synapses following an overnight fast. Collectively these data provide evidence that DMH-to-POMC GABA circuitry conveys inhibitory neuromodulation onto POMC cells that is sensitive to the animal's energy state.SIGNIFICANCE STATEMENT Activation of proopiomelanocortin (POMC) cells signals satiety, whereas GABAergic cells in the dorsomedial hypothalamus (DMH) can increase food consumption. However, communication between these cells, particularly in response to changes in metabolic state, is unknown. Here, through targeted inhibition of DMH GABA release, we show that DMH neurons contribute a significant portion of spontaneously released GABA onto POMC cells and are responsible for increased GABAergic inhibition of POMC cells during fasting, likely mediated through increased release probability of GABA at DMH terminals. These data provide important information about inhibitory modulation of metabolic circuitry and provide a mechanism through which POMC neurons could be inhibited, or disinhibited, rapidly in response to food availability.
Collapse
|
25
|
Anderson EJP, Ghamari-Langroudi M, Cakir I, Litt MJ, Chen V, Reggiardo RE, Millhauser GL, Cone RD. Late onset obesity in mice with targeted deletion of potassium inward rectifier Kir7.1 from cells expressing the melanocortin-4 receptor. J Neuroendocrinol 2019; 31:e12670. [PMID: 30561082 PMCID: PMC6533113 DOI: 10.1111/jne.12670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
Abstract
Energy stores in fat tissue are determined in part by the activity of hypothalamic neurones expressing the melanocortin-4 receptor (MC4R). Even a partial reduction in MC4R expression levels in mice, rats or humans produces hyperphagia and morbid obesity. Thus, it is of great interest to understand the molecular basis of neuromodulation by the MC4R. The MC4R is a G protein-coupled receptor that signals efficiently through GαS , and this signalling pathway is essential for normal MC4R function in vivo. However, previous data from hypothalamic slice preparations indicated that activation of the MC4R depolarised neurones via G protein-independent regulation of the ion channel Kir7.1. In the present study, we show that deletion of Kcnj13 (ie, the gene encoding Kir7.1) specifically from MC4R neurones produced resistance to melanocortin peptide-induced depolarisation of MC4R paraventricular nucleus neurones in brain slices, resistance to the sustained anorexic effect of exogenously administered melanocortin peptides, late onset obesity, increased linear growth and glucose intolerance. Some MC4R-mediated phenotypes appeared intact, including Agouti-related peptide-induced stimulation of food intake and MC4R-mediated induction of peptide YY release from intestinal L cells. Thus, a subset of the consequences of MC4R signalling in vivo appears to be dependent on expression of the Kir7.1 channel in MC4R cells.
Collapse
Affiliation(s)
- E. J. P. Anderson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - M. Ghamari-Langroudi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - I. Cakir
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - M. J. Litt
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Valerie Chen
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| | - Roman E. Reggiardo
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| | - R. D. Cone
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Pharmacology, School of Medicine, University of Michigan, Ann Arbor, Michigan
- Correspondence: Roger D. Cone, Life Sciences Institute, 210 Washtenaw Ave., Ann Arbor, MI 48109,
| |
Collapse
|
26
|
Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat Neurosci 2018; 22:7-14. [PMID: 30531847 DOI: 10.1038/s41593-018-0286-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022]
Abstract
Astrocytes, microglia, and tanycytes play active roles in the regulation of hypothalamic feeding circuits. These non-neuronal cells are crucial in determining the functional interactions of specific neuronal subpopulations involved in the control of metabolism. Recent advances in biology, optics, genetics, and pharmacology have resulted in the emergence of novel and highly sophisticated approaches for studying hypothalamic neuronal-glial networks. Here we summarize the progress in the field and argue that glial-neuronal interactions provide a core hub integrating food-related cues, interoceptive signals, and internal states to adapt a complex set of physiological responses operating on different timescales to finely tune behavior and metabolism according to metabolic status. This expanding knowledge helps to redefine our understanding of the physiology of food intake and energy metabolism.
Collapse
|
27
|
Idelevich A, Baron R. Brain to bone: What is the contribution of the brain to skeletal homeostasis? Bone 2018; 115:31-42. [PMID: 29777919 PMCID: PMC6110971 DOI: 10.1016/j.bone.2018.05.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
The brain, which governs most, if not all, physiological functions in the body, from the complexities of cognition, learning and memory, to the regulation of basal body temperature, heart rate and breathing, has long been known to affect skeletal health. In particular, the hypothalamus - located at the base of the brain in close proximity to the medial eminence, where the blood-brain-barrier is not as tight as in other regions of the brain but rather "leaky", due to fenestrated capillaries - is exposed to a variety of circulating body cues, such as nutrients (glucose, fatty acids, amino acids), and hormones (insulin, glucagon, leptin, adiponectin) [1-3].Information collected from the body via these peripheral cues is integrated by hypothalamic sensing neurons and glial cells [4-7], which express receptors for these nutrients and hormones, transforming these cues into physiological outputs. Interestingly, many of the same molecules, including leptin, adiponectin and insulin, regulate both energy and skeletal homeostasis. Moreover, they act on a common set of hypothalamic nuclei and their residing neurons, activating endocrine and neuronal systems, which ultimately fine-tune the body to new physiological states. This review will focus exclusively on the brain-to-bone pathway, highlighting the most important anatomical sites within the brain, which are known to affect bone, but not covering the input pathways and molecules informing the brain of the energy and bone metabolic status, covered elsewhere [8-10]. The discussion in each section will present side by side the metabolic and bone-related functions of hypothalamic nuclei, in an attempt to answer some of the long-standing questions of whether energy is affected by bone remodeling and homeostasis and vice versa.
Collapse
Affiliation(s)
- Anna Idelevich
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
28
|
Targeting AgRP neurons to maintain energy balance: Lessons from animal models. Biochem Pharmacol 2018; 155:224-232. [PMID: 30012460 DOI: 10.1016/j.bcp.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/12/2018] [Indexed: 01/19/2023]
Abstract
The current obesity epidemic is a major worldwide health and economic burden. In the modern environment, an increase in the intake of high-fat and high-sugar foods plays a crucial role in the development of obesity by disrupting the mechanisms governing food intake and energy balance. Food intake and whole-body energy balance are regulated by the central nervous system through a sophisticated neuronal network located mostly in the hypothalamus. In particular, the hypothalamic arcuate nucleus (ARC) is a fundamental center that senses hormonal and nutrient-related signals informing about the energy state of the organism. The ARC contains two small, defined populations of neurons with opposite functions: anorexigenic proopiomelanocortin (POMC)-expressing neurons and orexigenic Agouti-related protein (AgRP)-expressing neurons. AgRP neurons, which also co-produce neuropeptide Y (NPY) and γ-Aminobutyric acid (GABA), are involved in an increase in hunger and a decrease in energy expenditure. In this review, we summarize the key findings from the most common animal models targeting AgRP neurons and the tools used to discern the role of this specific neuronal population in the control of peripheral metabolism, appetite, feeding-related behavior, and other complex behaviors. We also discuss how knowledge gained from these studies has revealed new pathways and key proteins that could be potential therapeutic targets to reduce appetite and food addictions in obesity and other diseases.
Collapse
|
29
|
Güemes A, Georgiou P. Review of the role of the nervous system in glucose homoeostasis and future perspectives towards the management of diabetes. Bioelectron Med 2018; 4:9. [PMID: 32232085 PMCID: PMC7098234 DOI: 10.1186/s42234-018-0009-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/10/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a disease caused by a breakdown in the glucose metabolic process resulting in abnormal blood glucose fluctuations. Traditionally, control has involved external insulin injection in response to elevated blood glucose to substitute the role of the beta cells in the pancreas which would otherwise perform this function in a healthy individual. The central nervous system (CNS), however, also plays a vital role in glucose homoeostasis through the control of pancreatic secretion and insulin sensitivity which could potentially be used as a pathway for enhancing glucose control. In this review, we present an overview of the brain regions, peripheral nerves and molecular mechanisms by which the CNS regulates glucose metabolism and the potential benefits of modulating them for diabetes management. Development of technologies to interface to the nervous system will soon become a reality through bioelectronic medicine and we present the emerging opportunities for the treatment of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Amparo Güemes
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
30
|
Maier MT, Vilhelmsson A, Louie SM, Vagena E, Nomura DK, Koliwad SK, Xu AW. Regulation of Hepatic Lipid Accumulation and Distribution by Agouti-Related Protein in Male Mice. Endocrinology 2018; 159:2408-2420. [PMID: 29750244 PMCID: PMC6692877 DOI: 10.1210/en.2018-00040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022]
Abstract
Proper regulation of energy metabolism requires neurons in the central nervous system to respond dynamically to signals that reflect the body's energy reserve, and one such signal is leptin. Agouti-related protein (AgRP) is a hypothalamic neuropeptide that is markedly upregulated in leptin deficiency, a condition that is associated with severe obesity, diabetes, and hepatic steatosis. Because deleting AgRP in mice does not alter energy balance, we sought to determine whether AgRP plays an indispensable role in regulating energy and hepatic lipid metabolism in the sensitized background of leptin deficiency. We generated male mice that are deficient for both leptin and AgRP [double-knockout (DKO)]. DKO mice and ob/ob littermates had similar body weights, food intake, energy expenditure, and plasma insulin levels, although DKO mice surprisingly developed heightened hyperglycemia with advancing age. Overall hepatic lipid content was reduced in young prediabetic DKO mice, but not in the older diabetic counterparts. Intriguingly, however, both young and older DKO mice had an altered zonal distribution of hepatic lipids with reduced periportal lipid deposition. Moreover, leptin stimulated, whereas AgRP inhibited, hepatic sympathetic activity. Ablating sympathetic nerves to the liver, which primarily innervate the portal regions, produced periportal lipid accumulation in wild-type mice. Collectively, our results highlight AgRP as a regulator of hepatic sympathetic activity and metabolic zonation.
Collapse
Affiliation(s)
- Matthew T Maier
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Anna Vilhelmsson
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Sharon M Louie
- Department of Chemistry, University of California, Berkeley, Berkeley, California
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California
| | - Eirini Vagena
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, California
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California
| | - Suneil K Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Allison W Xu
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Department of Anatomy, University of California, San Francisco, San Francisco, California
- Correspondence: Allison W. Xu, PhD, Diabetes Center, University of California, San Francisco, San Francisco, Box 0534 , S-1222, California 94143, E-mail:
| |
Collapse
|
31
|
Kirsch M, Mertens W. On the Drive Specificity of Freudian Drives for the Generation of SEEKING Activities: The Importance of the Underestimated Imperative Motor Factor. Front Psychol 2018; 9:616. [PMID: 29774002 PMCID: PMC5943553 DOI: 10.3389/fpsyg.2018.00616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Doubters of Freud's theory of drives frequently mentioned that his approach is outdated and therefore cannot be useful for solving current problems in patients with mental disorders. At present, many scientists believe that affects rather than drives are of utmost importance for the emotional life and the theoretical framework of affective neuroscience, developed by Panksepp, strongly underpinned this view. Panksepp evaluated seven so-called command systems and the SEEKING system is therein of central importance. Panksepp used Pankseppian drives as inputs for the SEEKING system but noted the missing explanation of drive-specific generation of SEEKING activities in his description. Drive specificity requires dual action of the drive: the activation of a drive-specific brain area and the release of the neurotransmitter dopamine. Noticeably, as Freud claimed drive specificity too, it was here analyzed whether a Freudian drive can evoke the generation of drive-specific SEEKING activities. Special importance was addressed to the imperative motor factor in Freud's drive theory because Panksepp's formulations focused on neural pathways without specifying underlying neurotransmitter/endocrine factors impelling motor activity. As Panksepp claimed sleep as a Pankseppian drive, we firstly had to classified sleep as a Freudian drive by using three evaluated criteria for a Freudian drive. After that it was possible to identify the imperative motor factors of hunger, thirst, sex, and sleep. Most importantly, all of these imperative motor factors can both activate a drive-specific brain area and release dopamine from dopaminergic neurons, i.e., they can achieve the so-called drive specificity. Surprisingly, an impaired Freudian drive can alter via endocrinological pathways the concentration of the imperative motor factor of a second Freudian drive, obviously in some independence to the level of the metabolic deficit, thereby offering the possibility to modulate the generation of SEEKING activities of this second Freudian drive. This novel possibility might help to refine the general understanding of the action of Freudian drives. As only imperative motor factors of Freudian drives can guarantee drive specificity for the generation of SEEKING activities, the impact of Freud's construct Eros (with its constituents hunger, thirst, sex, and sleep) should be revisited.
Collapse
Affiliation(s)
- Michael Kirsch
- Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Wolfgang Mertens
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Faculty of Psychology and Educational Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
32
|
Palmiter RD. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm. Trends Neurosci 2018; 41:280-293. [PMID: 29703377 PMCID: PMC5929477 DOI: 10.1016/j.tins.2018.03.007] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/17/2018] [Accepted: 03/07/2018] [Indexed: 12/24/2022]
Abstract
The parabrachial nucleus (PBN), which is located in the pons and is dissected by one of the major cerebellar output tracks, is known to relay sensory information (visceral malaise, taste, temperature, pain, itch) to forebrain structures including the thalamus, hypothalamus, and extended amygdala. The availability of mouse lines expressing Cre recombinase selectively in subsets of PBN neurons and viruses for Cre-dependent gene expression is beginning to reveal the connectivity and functions of PBN component neurons. This review focuses on PBN neurons expressing calcitonin gene-related peptide (CGRPPBN) that play a major role in regulating appetite and transmitting real or potential threat signals to the extended amygdala. The functions of other specific PBN neuronal populations are also discussed. This review aims to encourage investigation of the numerous unanswered questions that are becoming accessible.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute, and Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Functional Interrogation of the AgRP Neural Circuits in Control of Appetite, Body Weight, and Behaviors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:1-16. [PMID: 30390282 DOI: 10.1007/978-981-13-1286-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons expressing agouti-related protein (AgRP), the so-called hunger neurons, protect mammals from starvation by promoting food-seeking behaviors (Trends Neurosci 36:504-512, 2013). Now an increasing amount of evidence show that these hunger-sensing neurons not only motivate animals to forage and ingest food but also help conserve energy by inhibiting innate processes that demand large amounts of energy such as growth, reproduction, and stress response. It has further been perceived that AgRP neurons transmit signals with negative valence to reward and cognitive centers so as to engage the motivational behavior toward seeking and obtaining foods (Physiol Behav 190:34-42, 2017). Recent advancement in genome editing and neurotechniques unleashed an escalated research of uniquely defined neuronal populations and neural circuits underlying the behavioral regulation of body weight and food responses (Nat Biotechnol 32:347-355, 2014; Proc Natl Acad Sci 113, 2016). In this chapter we will review literatures describing the functional organization of the AgRP circuit and its correlative signaling components that influence ingestive, foraging, motivational, and cognitive responses, a framework that reshaped our thinking toward the new hope and challenges in treatment of obesity and eating disorders.
Collapse
|
34
|
Xi D, Long C, Lai M, Casella A, O'Lear L, Kublaoui B, Roizen JD. Ablation of Oxytocin Neurons Causes a Deficit in Cold Stress Response. J Endocr Soc 2017; 1:1041-1055. [PMID: 29264556 PMCID: PMC5686635 DOI: 10.1210/js.2017-00136] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/07/2017] [Indexed: 12/16/2022] Open
Abstract
The paraventricular nucleus (PVN) is a critical locus of energy balance control. Three sets of neurons in the PVN are involved in regulating energy balance: oxytocin-expressing neurons (OXT-neurons), thyrotropin-releasing hormone–expressing neurons, and corticotrophin-releasing hormone–expressing neurons. To examine the role of OXT-neurons in energy balance, we ablated these neurons in mice by injecting diphtheria toxin into mice possessing both the oxytocin promoter driving cre expression and a cre-inducible diphtheria toxin receptor. Immunohistochemistry and real-time reverse transcriptase polymerase chain reaction confirmed that this injection caused a significant decrease in PVN OXT-neurons and OXT-mRNA abundance. OXT-neuron ablation did not alter food intake, weight, or energy expenditure at room temperature on either chow or a high-fat diet. To further characterize OXT-neuron–ablated mice, we examined their response to 1) intraperitoneal cholecystokinin (CCK) injection and 2) thermogenic stress. OXT-neuron–ablated mice had a blunted decrease in feeding response to CCK. When exposed to the extreme cold (4°C) for 3 hours, OXT-neuron–ablated mice had significant decreases in both rectal and brown adipose tissue temperature relative to controls, which was rescued by OXT treatment. Thermographic imaging revealed that OXT-neuron–ablated mice had increased body surface temperature. Thus, we report that OXT-neuron ablation shows no role for OXT-neurons in energy homeostasis at neutral temperature but reveals a heretofore unappreciated role for OXT-neurons and oxytocin specifically in regulating the thermogenic stress response.
Collapse
Affiliation(s)
- Dong Xi
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Caela Long
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Meizan Lai
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Alex Casella
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Lauren O'Lear
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Bassil Kublaoui
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jeffrey D Roizen
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
35
|
The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release. J Neurosci 2017; 37:7362-7372. [PMID: 28667175 DOI: 10.1523/jneurosci.0647-17.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022] Open
Abstract
Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA release from AgRP neurons either by cell type-specific deletion of the vesicular GABA transporter or by expression of botulinum toxin in AgRP neurons to prevent vesicle-associated membrane protein 2-dependent vesicle fusion. Additionally, there was no difference in the ability of μ-opioid receptor (MOR) agonists to inhibit sIPSCs in POMC neurons when MORs were deleted from AgRP neurons, and activation of the inhibitory designer receptor hM4Di on AgRP neurons did not affect sIPSCs recorded from POMC neurons. These approaches collectively indicate that AgRP neurons do not significantly contribute to the strong spontaneous GABA input to POMC neurons. Despite these observations, optogenetic stimulation of AgRP neurons reliably produced evoked IPSCs in POMC neurons, leading to the inhibition of POMC neuron firing. Thus, AgRP neurons can potently affect POMC neuron function without contributing a significant source of spontaneous GABA input to POMC neurons. Together, these results indicate that the relevance of GABAergic inputs from AgRP to POMC neurons is state dependent and highlight the need to consider different types of transmitter release in circuit mapping and physiologic regulation.SIGNIFICANCE STATEMENT Agouti-related peptide (AgRP) neurons play an important role in driving food intake, while proopiomelanocortin (POMC) neurons inhibit feeding. Despite the importance of these two well characterized neuron types in maintaining metabolic homeostasis, communication between these cells remains poorly understood. To provide clarity to this circuit, we made electrophysiological recordings from mouse brain slices and found that AgRP neurons do not contribute spontaneously released GABA onto POMC neurons, although when activated with channelrhodopsin AgRP neurons inhibit POMC neurons through GABA-mediated transmission. These findings indicate that the relevance of AgRP to POMC neuron GABA connectivity depends on the state of AgRP neuron activity and suggest that different types of transmitter release should be considered when circuit mapping.
Collapse
|
36
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
37
|
Ruud J, Steculorum SM, Brüning JC. Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat Commun 2017; 8:15259. [PMID: 28469281 PMCID: PMC5418592 DOI: 10.1038/ncomms15259] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/14/2017] [Indexed: 12/19/2022] Open
Abstract
The central nervous system (CNS) has an important role in the regulation of peripheral insulin sensitivity and glucose homeostasis. Research in this dynamically developing field has progressed rapidly due to techniques allowing targeted transgenesis and neurocircuitry mapping, which have defined the primary responsive neurons, associated molecular mechanisms and downstream neurocircuitries and processes involved. Here we review the brain regions, neurons and molecular mechanisms by which the CNS controls peripheral glucose metabolism, particularly via regulation of liver, brown adipose tissue and pancreatic function, and highlight the potential implications of these regulatory pathways in type 2 diabetes and obesity. The brain controls peripheral glucose metabolism, for example by modulating hepatic gluconeogenesis or by regulating glucose uptake into brown adipose tissue. Here, the authors review the brain regions, neurons and molecular mechanisms involved in these processes, and discuss their relevance to disease.
Collapse
Affiliation(s)
- Johan Ruud
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Sophie M. Steculorum
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Jens C. Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- National Center for Diabetes Research (DZD), Ingolstädter Land Strasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
38
|
Kim DY, Yu J, Mui RK, Niibori R, Taufique HB, Aslam R, Semple JW, Cordes SP. The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy) neuron survival in the mouse anorexia ( anx) mutation. Dis Model Mech 2017; 10:581-595. [PMID: 28093506 PMCID: PMC5451163 DOI: 10.1242/dmm.027433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy) and agouti-related peptide (Agrp) in adult mice or in mice homozygous for the anorexia (anx) mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T) that converts an arginine to a tryptophan (R7W) in the TYRO3 protein tyrosine kinase 3 (Tyro3) gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3-/- mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19). The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions targeting detrimental weight loss.
Collapse
Affiliation(s)
- Dennis Y Kim
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Joanna Yu
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Ryan K Mui
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Hamza Bin Taufique
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Rukhsana Aslam
- Keenan Research Centre for Biomedical Science, St. Michaels Hospital, Toronto, ON M5B 1W8, Canada
- Canadian Blood Services, 67 College Street, Toronto, ON M5G 2M1, Canada
| | - John W Semple
- Keenan Research Centre for Biomedical Science, St. Michaels Hospital, Toronto, ON M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canadian Blood Services, 67 College Street, Toronto, ON M5G 2M1, Canada
| | - Sabine P Cordes
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
39
|
Abstract
Mammalian reproductive function depends upon a neuroendocrine circuit that evokes the pulsatile release of gonadotropin hormones (luteinizing hormone and follicle-stimulating hormone) from the pituitary. This reproductive circuit is sensitive to metabolic perturbations. When challenged with starvation, insufficient energy reserves attenuate gonadotropin release, leading to infertility. The reproductive neuroendocrine circuit is well established, composed of two populations of kisspeptin-expressing neurons (located in the anteroventral periventricular hypothalamus, Kiss1AVPV, and arcuate hypothalamus, Kiss1ARH), which drive the pulsatile activity of gonadotropin-releasing hormone (GnRH) neurons. The reproductive axis is primarily regulated by gonadal steroid and circadian cues, but the starvation-sensitive input that inhibits this circuit during negative energy balance remains controversial. Agouti-related peptide (AgRP)-expressing neurons are activated during starvation and have been implicated in leptin-associated infertility. To test whether these neurons relay information to the reproductive circuit, we used AgRP-neuron ablation and optogenetics to explore connectivity in acute slice preparations. Stimulation of AgRP fibers revealed direct, inhibitory synaptic connections with Kiss1ARH and Kiss1AVPV neurons. In agreement with this finding, Kiss1ARH neurons received less presynaptic inhibition in the absence of AgRP neurons (neonatal toxin-induced ablation). To determine whether enhancing the activity of AgRP neurons is sufficient to attenuate fertility in vivo, we artificially activated them over a sustained period and monitored fertility. Chemogenetic activation with clozapine N-oxide resulted in delayed estrous cycles and decreased fertility. These findings are consistent with the idea that, during metabolic deficiency, AgRP signaling contributes to infertility by inhibiting Kiss1 neurons.
Collapse
|
40
|
Abstract
Successfully rearing young places multiple demands on the mammalian female. These are met by a wide array of alterations in maternal physiology and behavior that are coordinated with the needs of the developing young, and include adaptations in neuroendocrine systems not directly involved in maternal behavior or lactation. In this article, attenuations in the behavioral and neuroendocrine responses to stressors, the alterations in metabolic pathways facilitating both increased food intake and conservation of energy, and the changes in fertility that occur postpartum are described. The mechanisms underlying these processes as well as the factors that contribute to them and the relative contributions of these stimuli at different times postpartum are also reviewed. The induction and maintenance of the adaptations observed in the postpartum maternal brain are dependent on mother-young interaction and, in most cases, on suckling stimulation and its consequences for the hormonal profile of the mother. The peptide hormone prolactin acting on receptors within the brain makes a major contribution to changes in metabolic pathways, suppression of fertility and the attenuation of the neuroendocrine response to stress during lactation. Oxytocin is also released, both into the circulation and in some hypothalamic nuclei, in response to suckling stimulation and this hormone has been implicated in the decrease in anxiety behavior seen in the early postpartum period. The relative importance of these hormones changes across lactation and it is becoming increasingly clear that many of the adaptations to motherhood reviewed here reflect the outcome of multiple influences. © 2016 American Physiological Society. Compr Physiol 6:1493-1518, 2016.
Collapse
Affiliation(s)
- Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Anderson EJP, Çakir I, Carrington SJ, Cone RD, Ghamari-Langroudi M, Gillyard T, Gimenez LE, Litt MJ. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J Mol Endocrinol 2016; 56:T157-74. [PMID: 26939593 PMCID: PMC5027135 DOI: 10.1530/jme-16-0014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
The melanocortin peptides derived from pro-opiomelanocortin (POMC) were originally understood in terms of the biological actions of α-melanocyte-stimulating hormone (α-MSH) on pigmentation and adrenocorticotrophic hormone on adrenocortical glucocorticoid production. However, the discovery of POMC mRNA and melanocortin peptides in the CNS generated activities directed at understanding the direct biological actions of melanocortins in the brain. Ultimately, discovery of unique melanocortin receptors expressed in the CNS, the melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors, led to the development of pharmacological tools and genetic models leading to the demonstration that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Indeed, mutations in MC4R are now known to be the most common cause of early onset syndromic obesity, accounting for 2-5% of all cases. This review discusses the history of these discoveries, as well as the latest work attempting to understand the molecular and cellular basis of regulation of feeding and energy homeostasis by the predominant melanocortin peptide in the CNS, α-MSH.
Collapse
Affiliation(s)
- Erica J P Anderson
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Isin Çakir
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sheridan J Carrington
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roger D Cone
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taneisha Gillyard
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA Meharry Medical CollegeDepartment of Neuroscience and Pharmacology, Nashville, Tennessee, USA
| | - Luis E Gimenez
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael J Litt
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
42
|
New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism. Proc Natl Acad Sci U S A 2016; 113:3645-50. [PMID: 26976589 DOI: 10.1073/pnas.1602049113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes.
Collapse
|
43
|
Abstract
AgRP and POMC neurons are two key cell types that regulate feeding in response to hormones and nutrients. Recently, it was discovered that these neurons are also rapidly modulated by the mere sight and smell of food. This rapid sensory regulation "resets" the activity of AgRP and POMC neurons before a single bite of food has been consumed. This surprising and counterintuitive discovery challenges longstanding assumptions about the function and regulation of these cells. Here we review these recent findings and discuss their implications for our understanding of feeding behavior. We propose several alternative hypotheses for how these new observations might be integrated into a revised model of the feeding circuit, and also highlight some of the key questions that remain to be answered.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
44
|
Dicken MS, Hughes AR, Hentges ST. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus. Eur J Neurosci 2015; 42:2644-53. [PMID: 26370162 DOI: 10.1111/ejn.13076] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/29/2022]
Abstract
The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse.
Collapse
Affiliation(s)
- Matthew S Dicken
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Alexander R Hughes
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|
45
|
Sickness: From the focus on cytokines, prostaglandins, and complement factors to the perspectives of neurons. Neurosci Biobehav Rev 2015; 57:30-45. [PMID: 26363665 DOI: 10.1016/j.neubiorev.2015.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/06/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022]
Abstract
Systemic inflammation leads to a variety of physiological (e.g. fever) and behavioral (e.g. anorexia, immobility, social withdrawal, depressed mood, disturbed sleep) responses that are collectively known as sickness. While these phenomena have been studied for the past few decades, the neurobiological mechanisms by which sickness occurs remain unclear. In this review, we first revisit how the body senses and responds to infections and injuries by eliciting systemic inflammation. Next, we focus on how peripheral inflammatory molecules such as cytokines, prostaglandins, and activated complement factors communicate with the brain to trigger neuroinflammation and sickness. Since depression also involves inflammation, we further elaborate on the interrelationship between sickness and depression. Finally, we discuss how immune activation can modulate neurons in the brain, and suggest future perspectives to help unravel how changes in neuronal functions relate to sickness responses.
Collapse
|
46
|
Mountjoy KG. Pro-Opiomelanocortin (POMC) Neurones, POMC-Derived Peptides, Melanocortin Receptors and Obesity: How Understanding of this System has Changed Over the Last Decade. J Neuroendocrinol 2015; 27:406-18. [PMID: 25872650 DOI: 10.1111/jne.12285] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022]
Abstract
Following the cloning of the melanocortin receptor and agouti protein genes, a model was developed for the central melanocortin system with respect to the regulation of energy and glucose homeostasis. This model comprised leptin regulation of melanocortin peptides and agouti-related peptide (AgRP) produced from central pro-opiomelanocortin (POMC) and AgRP neurones, respectively, as well as AgRP competitive antagonism of melanocortin peptides activating melanocortin 4 receptor (MC4R) to Gαs and the cAMP signalling pathway. In the last decade, there have been paradigm shifts in our understanding of the central melanocortin system as a result of the application of advanced new technologies, including Cre-LoxP transgenic mouse technology, pharmacogenetics and optogenetics. During this period, our understanding of G protein coupled receptor signal transduction has also dramatically changed, such that these receptors are now known to exist in the plasma membrane oscillating between various inactive and active conformational states, and the active states signal through G protein-dependent and G protein-independent pathways. The present review focuses on evidence obtained over the past decade that has changed our understanding of POMC gene expression and regulation in the central nervous system, POMC and AgRP neuronal circuitry, neuroanatomical functions of melanocortin receptors, melanocortin 3 receptor (MC3R) and MC4R, and signal transduction through MC3R and MC4R.
Collapse
Affiliation(s)
- K G Mountjoy
- Departments of Physiology and Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
47
|
Méquinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 2015; 6:68. [PMID: 26042085 PMCID: PMC4436882 DOI: 10.3389/fendo.2015.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.
Collapse
Affiliation(s)
- Mathieu Méquinion
- INSERM UMR-S1172, Development and Plasticity of Postnatal Brain, Lille, France
| | - Christophe Chauveau
- Pathophysiology of Inflammatory Bone Diseases, EA 4490, University of the Littoral Opal Coast, Boulogne sur Mer, France
| | - Odile Viltart
- INSERM UMR-S1172, Early stages of Parkinson diseases, University Lille 1, Lille, France
| |
Collapse
|
48
|
Nuzzaci D, Laderrière A, Lemoine A, Nédélec E, Pénicaud L, Rigault C, Benani A. Plasticity of the Melanocortin System: Determinants and Possible Consequences on Food Intake. Front Endocrinol (Lausanne) 2015; 6:143. [PMID: 26441833 PMCID: PMC4568417 DOI: 10.3389/fendo.2015.00143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
The melanocortin system is one of the most important neuronal pathways involved in the regulation of food intake and is probably the best characterized. Agouti-related peptide (AgRP) and proopiomelanocortin (POMC) expressing neurons located in the arcuate nucleus of the hypothalamus are the key elements of this system. These two neuronal populations are sensitive to circulating molecules and receive many excitatory and inhibitory inputs from various brain areas. According to sensory and metabolic information they integrate, these neurons control different aspects of feeding behavior and orchestrate autonomic responses aimed at maintaining energy homeostasis. Interestingly, composition and abundance of pre-synaptic inputs onto arcuate AgRP and POMC neurons vary in the adult hypothalamus in response to changes in the metabolic state, a phenomenon that can be recapitulated by treatment with hormones, such as leptin or ghrelin. As described in other neuroendrocrine systems, glia might be determinant to shift the synaptic configuration of AgRP and POMC neurons. Here, we discuss the physiological outcome of the synaptic plasticity of the melanocortin system, and more particularly its contribution to the control of energy balance. The discovery of this attribute has changed how we view obesity and related disorders, and opens new perspectives for their management.
Collapse
Affiliation(s)
- Danaé Nuzzaci
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Amélie Laderrière
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Aleth Lemoine
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Emmanuelle Nédélec
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Luc Pénicaud
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Caroline Rigault
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Alexandre Benani
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
- *Correspondence: Alexandre Benani, Centre des Sciences du Goût et de l’Alimentation (CSGA), CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, 9E Boulevard Jeanne d’Arc, Dijon 21000, France,
| |
Collapse
|
49
|
Joly-Amado A, Cansell C, Denis RGP, Delbes AS, Castel J, Martinez S, Luquet S. The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract Res Clin Endocrinol Metab 2014; 28:725-37. [PMID: 25256767 DOI: 10.1016/j.beem.2014.03.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The arcuate nucleus (ARC) of the hypothalamus is particularly regarded as a critical platform that integrates circulating signals of hunger and satiety reflecting energy stores and nutrient availability. Among ARC neurons, pro-opiomelanocortin (POMC) and agouti-related protein and neuropeptide Y (NPY/AgRP neurons) are considered as two opposing branches of the melanocortin signaling pathway. Integration of circulating signals of hunger and satiety results in the release of the melanocortin receptor ligand α-melanocyte-stimulating hormone (αMSH) by the POMC neurons system and decreases feeding and increases energy expenditure. The orexigenic/anabolic action of NPY/AgRP neurons is believed to rely essentially on their inhibitory input onto POMC neurons and second-orders targets. Recent updates in the field have casted a new light on the role of the ARC neurons in the coordinated regulation of peripheral organs involved in the control of nutrient storage, transformation and substrate utilization independent of food intake.
Collapse
Affiliation(s)
- Aurélie Joly-Amado
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - Céline Cansell
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - Raphaël G P Denis
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - Anne-Sophie Delbes
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - Julien Castel
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - Sarah Martinez
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR 8251 CNRS, F-75205 Paris, France.
| |
Collapse
|
50
|
Koch M, Horvath TL. Molecular and cellular regulation of hypothalamic melanocortin neurons controlling food intake and energy metabolism. Mol Psychiatry 2014; 19:752-61. [PMID: 24732669 DOI: 10.1038/mp.2014.30] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/25/2022]
Abstract
The brain receives and integrates environmental and metabolic information, transforms these signals into adequate neuronal circuit activities, and generates physiological behaviors to promote energy homeostasis. The responsible neuronal circuitries show lifetime plasticity and guaranty metabolic health and survival. However, this highly evolved organization has become challenged nowadays by chronic overload with nutrients and reduced physical activity, which results in an ever-increasing number of obese individuals worldwide. Research within the last two decades has aimed to decipher the responsible molecular and cellular mechanisms for regulation of the hypothalamic melanocortin neurons, which have a key role in the control of food intake and energy metabolism. This review maps the central connections of the melanocortin system and highlights its global position and divergent character in physiological and pathological metabolic events. Moreover, recently uncovered molecular and cellular processes in hypothalamic neurons and glial cells that drive plastic morphological and physiological changes in these cells, and account for regulation of food intake and energy metabolism, are brought into focus. Finally, potential functional interactions between metabolic disorders and psychiatric diseases are discussed.
Collapse
Affiliation(s)
- M Koch
- 1] Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA [2] Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - T L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|