1
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1570-1609. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Kindongo O, Lieb G, Skaggs B, Dusserre Y, Vincenzetti V, Pelet S. Implication of polymerase recycling for nascent transcript quantification by live cell imaging. Yeast 2024; 41:279-294. [PMID: 38389243 DOI: 10.1002/yea.3929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Transcription enables the production of RNA from a DNA template. Due to the highly dynamic nature of transcription, live-cell imaging methods play a crucial role in measuring the kinetics of this process. For instance, transcriptional bursts have been visualized using fluorescent phage-coat proteins that associate tightly with messenger RNA (mRNA) stem loops formed on nascent transcripts. To convert the signal emanating from a transcription site into meaningful estimates of transcription dynamics, the influence of various parameters on the measured signal must be evaluated. Here, the effect of gene length on the intensity of the transcription site focus was analyzed. Intuitively, a longer gene can support a larger number of transcribing polymerases, thus leading to an increase in the measured signal. However, measurements of transcription induced by hyper-osmotic stress responsive promoters display independence from gene length. A mathematical model of the stress-induced transcription process suggests that the formation of gene loops that favor the recycling of polymerase from the terminator to the promoter can explain the observed behavior. One experimentally validated prediction from this model is that the amount of mRNA produced from a short gene should be higher than for a long one as the density of active polymerase on the short gene will be increased by polymerase recycling. Our data suggest that this recycling contributes significantly to the expression output from a gene and that polymerase recycling is modulated by the promoter identity and the cellular state.
Collapse
Affiliation(s)
- Olivia Kindongo
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Lieb
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Benjamin Skaggs
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Yves Dusserre
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Serge Pelet
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Saleh NH, Al-Khafaji ASK, Babaei E. Study of hesperetin effect on modulating transcription levels of MLH1 and MSH2 genes in SKBR3 breast cancer cell line. J Adv Pharm Technol Res 2023; 14:338-344. [PMID: 38107455 PMCID: PMC10723173 DOI: 10.4103/japtr.japtr_278_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 12/19/2023] Open
Abstract
Hesperetin (HSP), a flavonoid, has been validated to modify gene expression and function as an epigenetic agent to stop the development of breast carcinoma cells. HSP was investigated in this research to evaluate the expression of the MLH1 and MSH2 genes in cancerous breast cell lines (SKBR3) and healthy cell lines (MCF-11A) after exposure to different dosages (200, 400, and 600 µM/mL) of HSP. After 48 h of exposure, SKBR3's half-maximal inhibitory concentration was 289.6 µM/mL and MCF-10A's was 855.4 µM/mL. The research found that increasing HSP concentrations were closely correlated with an increase in MLH1 gene levels in the SKBR3 cell line, as shown by median and percentile values. HSP therapy caused the MLH1 gene expression to substantially vary in different groups, and in the SKBR3 cell line, MSH2 gene expressions were elevated in a dose-escalating manner. Moreover, HSP also raised the number of apoptotic cells, with the fraction of apoptotic cells escalating substantially at doses of 400 and 600 µM/mL. The outcomes suggested that HSP has the potential to be utilized as a therapeutic intervention for breast cancer, as it can induce apoptosis and reduce cell viability.
Collapse
Affiliation(s)
- Naser Hameed Saleh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Esmaeil Babaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Hegazy YA, Cloutier SC, Utturkar SM, Das S, Tran E. The genomic region of the 3' untranslated region (3'UTR) of PHO84, rather than the antisense RNA, promotes gene repression. Nucleic Acids Res 2023; 51:7900-7913. [PMID: 37462073 PMCID: PMC10450162 DOI: 10.1093/nar/gkad579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023] Open
Abstract
PHO84 is a budding yeast gene reported to be negatively regulated by its cognate antisense transcripts both in cis and in trans. In this study, we performed Transient-transcriptome sequencing (TT-seq) to investigate the correlation of sense/antisense pairs in a dbp2Δ strain and found over 700 sense/antisense pairs, including PHO84, to be positively correlated, contrasting the prevailing model. To define what mechanism regulates the PHO84 gene and how this regulation could have been originally attributed to repression by the antisense transcript, we conducted a series of molecular biology and genetics experiments. We now report that the 3' untranslated region (3'UTR) of PHO84 plays a repressive role in sense expression, an activity not linked to the antisense transcripts. Moreover, we provide results of a genetic screen for 3'UTR-dependent repression of PHO84 and show that the vast majority of identified factors are linked to negative regulation. Finally, we show that the PHO84 promoter and terminator form gene loops which correlate with transcriptional repression, and that the RNA-binding protein, Tho1, increases this looping and the 3'UTR-dependent repression. Our results negate the current model for antisense non-coding transcripts of PHO84 and suggest that many of these transcripts are byproducts of open chromatin.
Collapse
Affiliation(s)
- Youssef A Hegazy
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
| | - Sara C Cloutier
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
| | - Sagar M Utturkar
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street West Lafayette, IN 47907-2064, USA
| | - Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
| | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street West Lafayette, IN 47907-2064, USA
| |
Collapse
|
5
|
Hasan AK, Babaei E, Al-Khafaji ASK. Hesperetin effect on MLH1 and MSH2 expression on breast cancer cells BT-549. J Adv Pharm Technol Res 2023; 14:241-247. [PMID: 37692022 PMCID: PMC10483912 DOI: 10.4103/japtr.japtr_277_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 09/12/2023] Open
Abstract
Due to its genetic and phenotypic heterogeneity, breast cancer is very difficult to eliminate. The harmful consequences of conventional therapies like radiation and chemotherapy have prompted the search for organic-based alternatives. Hesperetin (HSP), a flavonoid, has been discovered to possess the ability to hinder the proliferation of cell associated with breast cancer by acting as an epigenetic agent and modifying gene expression. In this investigation, breast cancer cells (BT-549) and normal cells (MCF-10a) were subjected to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test and three different doses (200, 400, and 600 μM/mL) of HSP for real-time polymerase chain reaction and flow cytometry to examine its cytotoxic and anti-malignant potential. HSP was shown to be cytotoxic to both normal and breast cancer cells, but had a more pronounced effect on the cancer cell lines. After 48 h of treatment, the half-maximal inhibitory concentration (IC50) for BT-549 was 279.2 μM/mL, whereas the IC50 for MCF-10a was 855.4 μM/mL. At high HSP concentrations, upregulation of the MLH1 and MSH2 genes was observed in both cell lines. The influence of HSP on MLH1 gene expression was concentration dependent. Moreover, HSP had a concentration-dependent effect on MSH2 gene expression in the BT-549 cell line but not in the MCF-10a cell line. Cell death and early apoptosis were shown to be concentration dependent upon the application of HSP, as determined by flow cytometric analysis. HSP's capacity to cause apoptosis and its stronger impact on the malignant cell line when analyzed with the normal cell line imply that it might be useful as an effective therapeutic approach for combating breast cancer.
Collapse
Affiliation(s)
- Assim Khattab Hasan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
6
|
Guiziou S, Maranas CJ, Chu JC, Nemhauser JL. An integrase toolbox to record gene-expression during plant development. Nat Commun 2023; 14:1844. [PMID: 37012288 PMCID: PMC10070421 DOI: 10.1038/s41467-023-37607-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
There are many open questions about the mechanisms that coordinate the dynamic, multicellular behaviors required for organogenesis. Synthetic circuits that can record in vivo signaling networks have been critical in elucidating animal development. Here, we report on the transfer of this technology to plants using orthogonal serine integrases to mediate site-specific and irreversible DNA recombination visualized by switching between fluorescent reporters. When combined with promoters expressed during lateral root initiation, integrases amplify reporter signal and permanently mark all descendants. In addition, we present a suite of methods to tune the threshold for integrase switching, including: RNA/protein degradation tags, a nuclear localization signal, and a split-intein system. These tools improve the robustness of integrase-mediated switching with different promoters and the stability of switching behavior over multiple generations. Although each promoter requires tuning for optimal performance, this integrase toolbox can be used to build history-dependent circuits to decode the order of expression during organogenesis in many contexts.
Collapse
Affiliation(s)
- Sarah Guiziou
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | | | - Jonah C Chu
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
7
|
Asada R, Hirota K. Multi-Layered Regulations on the Chromatin Architectures: Establishing the Tight and Specific Responses of Fission Yeast fbp1 Gene Transcription. Biomolecules 2022; 12:1642. [PMID: 36358992 PMCID: PMC9687179 DOI: 10.3390/biom12111642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 04/08/2024] Open
Abstract
Transcriptional regulation is pivotal for all living organisms and is required for adequate response to environmental fluctuations and intercellular signaling molecules. For precise regulation of transcription, cells have evolved regulatory systems on the genome architecture, including the chromosome higher-order structure (e.g., chromatin loops), location of transcription factor (TF)-binding sequences, non-coding RNA (ncRNA) transcription, chromatin configuration (e.g., nucleosome positioning and histone modifications), and the topological state of the DNA double helix. To understand how these genome-chromatin architectures and their regulators establish tight and specific responses at the transcription stage, the fission yeast fbp1 gene has been analyzed as a model system for decades. The fission yeast fbp1 gene is tightly repressed in the presence of glucose, and this gene is induced by over three orders of magnitude upon glucose starvation with a cascade of multi-layered regulations on various levels of genome and chromatin architecture. In this review article, we summarize the multi-layered transcriptional regulatory systems revealed by the analysis of the fission yeast fbp1 gene as a model system.
Collapse
Affiliation(s)
- Ryuta Asada
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397, Tokyo, Japan
| |
Collapse
|
8
|
Terrone S, Valat J, Fontrodona N, Giraud G, Claude JB, Combe E, Lapendry A, Polvèche H, Ameur LB, Duvermy A, Modolo L, Bernard P, Mortreux F, Auboeuf D, Bourgeois C. RNA helicase-dependent gene looping impacts messenger RNA processing. Nucleic Acids Res 2022; 50:9226-9246. [PMID: 36039747 PMCID: PMC9458439 DOI: 10.1093/nar/gkac717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
DDX5 and DDX17 are DEAD-box RNA helicase paralogs which regulate several aspects of gene expression, especially transcription and splicing, through incompletely understood mechanisms. A transcriptome analysis of DDX5/DDX17-depleted human cells confirmed the large impact of these RNA helicases on splicing and revealed a widespread deregulation of 3' end processing. In silico analyses and experiments in cultured cells showed the binding and functional contribution of the genome organizing factor CTCF to chromatin sites at or near a subset of DDX5/DDX17-dependent exons that are characterized by a high GC content and a high density of RNA Polymerase II. We propose the existence of an RNA helicase-dependent relationship between CTCF and the dynamics of transcription across DNA and/or RNA structured regions, that contributes to the processing of internal and terminal exons. Moreover, local DDX5/DDX17-dependent chromatin loops spatially connect RNA helicase-regulated exons with their cognate promoter, and we provide the first direct evidence that de novo gene looping modifies alternative splicing and polyadenylation. Overall our findings uncover the impact of DDX5/DDX17-dependent chromatin folding on pre-messenger RNA processing.
Collapse
Affiliation(s)
| | | | - Nicolas Fontrodona
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | | | - Jean-Baptiste Claude
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | | | - Audrey Lapendry
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Hélène Polvèche
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France,CECS/AFM, I-STEM, 28 rue Henri Desbruères, F-91100, Corbeil-Essonnes, France
| | - Lamya Ben Ameur
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Arnaud Duvermy
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Laurent Modolo
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Pascal Bernard
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Franck Mortreux
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Cyril F Bourgeois
- To whom correspondence should be addressed. Tel: +33 47272 8663; Fax: +33 47272 8674;
| |
Collapse
|
9
|
Gatti V, Fierro C, Compagnone M, La Banca V, Mauriello A, Montanaro M, Scalera S, De Nicola F, Candi E, Ricci F, Fania L, Melino G, Peschiaroli A. ΔNp63-Senataxin circuit controls keratinocyte differentiation by promoting the transcriptional termination of epidermal genes. Proc Natl Acad Sci U S A 2022; 119:e2104718119. [PMID: 35235452 PMCID: PMC8915885 DOI: 10.1073/pnas.2104718119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022] Open
Abstract
SignificanceΔNp63 is a master regulator of skin homeostasis since it finely controls keratinocyte differentiation and proliferation. Here, we provide cellular and molecular evidence demonstrating the functional role of a ΔNp63 interactor, the R-loop-resolving enzyme Senataxin (SETX), in fine-tuning keratinocyte differentiation. We found that SETX physically binds the p63 DNA-binding motif present in two early epidermal differentiation genes, Keratin 1 (KRT1) and ZNF750, facilitating R-loop removal over their 3' ends and thus allowing efficient transcriptional termination and gene expression. These molecular events translate into the inability of SETX-depleted keratinocytes to undergo the correct epidermal differentiation program. Remarkably, SETX is dysregulated in cutaneous squamous cell carcinoma, suggesting its potential involvement in the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Veronica Gatti
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Mirco Compagnone
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Veronica La Banca
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Stefano Scalera
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca De Nicola
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
- Istituto Dermopatico dell'Immacolata IDI-IRCCS, 00167 Rome, Italy
| | - Francesco Ricci
- Istituto Dermopatico dell'Immacolata IDI-IRCCS, 00167 Rome, Italy
| | - Luca Fania
- Istituto Dermopatico dell'Immacolata IDI-IRCCS, 00167 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| |
Collapse
|
10
|
Enervald E, Powell LM, Boteva L, Foti R, Blanes Ruiz N, Kibar G, Piszczek A, Cavaleri F, Vingron M, Cerase A, Buonomo SBC. RIF1 and KAP1 differentially regulate the choice of inactive versus active X chromosomes. EMBO J 2021; 40:e105862. [PMID: 34786738 DOI: 10.15252/embj.2020105862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
The onset of random X chromosome inactivation in mouse requires the switch from a symmetric to an asymmetric state, where the identities of the future inactive and active X chromosomes are assigned. This process is known as X chromosome choice. Here, we show that RIF1 and KAP1 are two fundamental factors for the definition of this transcriptional asymmetry. We found that at the onset of differentiation of mouse embryonic stem cells (mESCs), biallelic up-regulation of the long non-coding RNA Tsix weakens the symmetric association of RIF1 with the Xist promoter. The Xist allele maintaining the association with RIF1 goes on to up-regulate Xist RNA expression in a RIF1-dependent manner. Conversely, the promoter that loses RIF1 gains binding of KAP1, and KAP1 is required for the increase in Tsix levels preceding the choice. We propose that the mutual exclusion of Tsix and RIF1, and of RIF1 and KAP1, at the Xist promoters establish a self-sustaining loop that transforms an initially stochastic event into a stably inherited asymmetric X-chromosome state.
Collapse
Affiliation(s)
- Elin Enervald
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Lynn Marie Powell
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Lora Boteva
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rossana Foti
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Nerea Blanes Ruiz
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gözde Kibar
- Max-Planck-Institut fuer molekulare Genetik, Berlin, Germany
| | - Agnieszka Piszczek
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Fatima Cavaleri
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Martin Vingron
- Max-Planck-Institut fuer molekulare Genetik, Berlin, Germany
| | - Andrea Cerase
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sara B C Buonomo
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| |
Collapse
|
11
|
Kainth AS, Chowdhary S, Pincus D, Gross DS. Primordial super-enhancers: heat shock-induced chromatin organization in yeast. Trends Cell Biol 2021; 31:801-813. [PMID: 34001402 PMCID: PMC8448919 DOI: 10.1016/j.tcb.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 01/29/2023]
Abstract
Specialized mechanisms ensure proper expression of critically important genes such as those specifying cell identity or conferring protection from environmental stress. Investigations of the heat shock response have been critical in elucidating basic concepts of transcriptional control. Recent studies demonstrate that in response to thermal stress, heat shock-responsive genes associate with high levels of transcriptional activators and coactivators and those in yeast intensely interact across and between chromosomes, coalescing into condensates. In mammalian cells, cell identity genes that are regulated by super-enhancers (SEs) are also densely occupied by transcriptional machinery that form phase-separated condensates. We suggest that the stress-remodeled yeast nucleome bears functional and structural resemblance to mammalian SEs, and will reveal fundamental mechanisms of gene control by transcriptional condensates.
Collapse
Affiliation(s)
- Amoldeep S Kainth
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Surabhi Chowdhary
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - David S Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
12
|
Pancholi A, Klingberg T, Zhang W, Prizak R, Mamontova I, Noa A, Sobucki M, Kobitski AY, Nienhaus GU, Zaburdaev V, Hilbert L. RNA polymerase II clusters form in line with surface condensation on regulatory chromatin. Mol Syst Biol 2021; 17:e10272. [PMID: 34569155 PMCID: PMC8474054 DOI: 10.15252/msb.202110272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
It is essential for cells to control which genes are transcribed into RNA. In eukaryotes, two major control points are recruitment of RNA polymerase II (Pol II) into a paused state, and subsequent pause release toward transcription. Pol II recruitment and pause release occur in association with macromolecular clusters, which were proposed to be formed by a liquid-liquid phase separation mechanism. How such a phase separation mechanism relates to the interaction of Pol II with DNA during recruitment and transcription, however, remains poorly understood. Here, we use live and super-resolution microscopy in zebrafish embryos to reveal Pol II clusters with a large variety of shapes, which can be explained by a theoretical model in which regulatory chromatin regions provide surfaces for liquid-phase condensation at concentrations that are too low for canonical liquid-liquid phase separation. Model simulations and chemical perturbation experiments indicate that recruited Pol II contributes to the formation of these surface-associated condensates, whereas elongating Pol II is excluded from these condensates and thereby drives their unfolding.
Collapse
Affiliation(s)
- Agnieszka Pancholi
- Zoological InstituteDepartment of Systems Biology and BioinformaticsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Tim Klingberg
- Department of BiologyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Max‐Planck‐Zentrum für Physik und MedizinErlangenGermany
| | - Weichun Zhang
- Institute of Applied PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Roshan Prizak
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Irina Mamontova
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Amra Noa
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Marcel Sobucki
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Andrei Yu Kobitski
- Institute of Applied PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Gerd Ulrich Nienhaus
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
- Institute of Applied PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
- Department of PhysicsUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Vasily Zaburdaev
- Department of BiologyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Max‐Planck‐Zentrum für Physik und MedizinErlangenGermany
| | - Lennart Hilbert
- Zoological InstituteDepartment of Systems Biology and BioinformaticsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| |
Collapse
|
13
|
Liu J, Hansen D, Eck E, Kim YJ, Turner M, Alamos S, Garcia HG. Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage. PLoS Comput Biol 2021; 17:e1008999. [PMID: 34003867 PMCID: PMC8162642 DOI: 10.1371/journal.pcbi.1008999] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/28/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022] Open
Abstract
The eukaryotic transcription cycle consists of three main steps: initiation, elongation, and cleavage of the nascent RNA transcript. Although each of these steps can be regulated as well as coupled with each other, their in vivo dissection has remained challenging because available experimental readouts lack sufficient spatiotemporal resolution to separate the contributions from each of these steps. Here, we describe a novel application of Bayesian inference techniques to simultaneously infer the effective parameters of the transcription cycle in real time and at the single-cell level using a two-color MS2/PP7 reporter gene and the developing fruit fly embryo as a case study. Our method enables detailed investigations into cell-to-cell variability in transcription-cycle parameters as well as single-cell correlations between these parameters. These measurements, combined with theoretical modeling, suggest a substantial variability in the elongation rate of individual RNA polymerase molecules. We further illustrate the power of this technique by uncovering a novel mechanistic connection between RNA polymerase density and nascent RNA cleavage efficiency. Thus, our approach makes it possible to shed light on the regulatory mechanisms in play during each step of the transcription cycle in individual, living cells at high spatiotemporal resolution.
Collapse
Affiliation(s)
- Jonathan Liu
- Department of Physics, University of California at Berkeley, Berkeley, California, United States of America
| | - Donald Hansen
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Elizabeth Eck
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Yang Joon Kim
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Meghan Turner
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Simon Alamos
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Hernan G. Garcia
- Department of Physics, University of California at Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, United States of America
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California, United States of America
| |
Collapse
|
14
|
Dwyer K, Agarwal N, Pile L, Ansari A. Gene Architecture Facilitates Intron-Mediated Enhancement of Transcription. Front Mol Biosci 2021; 8:669004. [PMID: 33968994 PMCID: PMC8097089 DOI: 10.3389/fmolb.2021.669004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Introns impact several vital aspects of eukaryotic organisms like proteomic plasticity, genomic stability, stress response and gene expression. A role for introns in the regulation of gene expression at the level of transcription has been known for more than thirty years. The molecular basis underlying the phenomenon, however, is still not entirely clear. An important clue came from studies performed in budding yeast that indicate that the presence of an intron within a gene results in formation of a multi-looped gene architecture. When looping is defective, these interactions are abolished, and there is no enhancement of transcription despite normal splicing. In this review, we highlight several potential mechanisms through which looping interactions may enhance transcription. The promoter-5′ splice site interaction can facilitate initiation of transcription, the terminator-3′ splice site interaction can enable efficient termination of transcription, while the promoter-terminator interaction can enhance promoter directionality and expedite reinitiation of transcription. Like yeast, mammalian genes also exhibit an intragenic interaction of the promoter with the gene body, especially exons. Such promoter-exon interactions may be responsible for splicing-dependent transcriptional regulation. Thus, the splicing-facilitated changes in gene architecture may play a critical role in regulation of transcription in yeast as well as in higher eukaryotes.
Collapse
Affiliation(s)
- Katherine Dwyer
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Neha Agarwal
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Lori Pile
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
15
|
Gagliardi D, Manavella PA. Short-range regulatory chromatin loops in plants. THE NEW PHYTOLOGIST 2020; 228:466-471. [PMID: 32353900 DOI: 10.1111/nph.16632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
In all eukaryotic organisms, gene expression correlates with the condensation state of the chromatin. Highly packed genome regions, known as heterochromatins, are associated with repressed loci, whereas euchromatic regions represent a relaxed state of the chromatin actively transcribed. However, even in these active regions, associations between chromatin domains dynamically modify genome topology and alter gene expression. Long-range interaction within and between chromosomes determines chromatin domains that help to coordinate transcriptional events. On the other hand, short-range chromatin interactions emerged as dynamic mechanisms regulating the expression of specific loci. Our current capacity to decipher genome topology at high resolution allowed us to identify numerous cases of short-range regulatory chromatin interactions, which are reviewed in this Insight article.
Collapse
Affiliation(s)
- Delfina Gagliardi
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Pablo A Manavella
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
16
|
Methods for mapping three-dimensional genome architecture. Methods 2020; 170:1-3. [PMID: 31669352 DOI: 10.1016/j.ymeth.2019.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Chromosome conformation capture that detects novel cis- and trans-interactions in budding yeast. Methods 2019; 170:4-16. [PMID: 31252061 DOI: 10.1016/j.ymeth.2019.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/22/2022] Open
Abstract
Chromosome Conformation Capture (3C) has emerged as a powerful approach for revealing the conformation and features of three-dimensional (3D) genomic organization. Yet attainment of higher resolution in organisms with compact genomes presents a challenge. Here, we describe modifications in the 3C technique that substantially enhance its resolution and sensitivity when applied to the 3D genome of budding yeast. Keys to our approach include use of a 4 bp cutter, Taq I, for cleaving the genome and quantitative PCR for measuring the frequency of ligation. Most importantly, we normalize the percent digestion at each restriction site to account for variation in accessibility of local chromatin structure under a given physiological condition. This strategy has led to the detection of physical interactions between regulatory elements and gene coding regions as well as intricate, stimulus-specific interchromosomal interactions between activated genes. We provide an algorithm that incorporates these and other modifications and allows quantitative determination of chromatin interaction frequencies in yeast under any physiological condition.
Collapse
|
18
|
Milevskiy MJG, Gujral U, Del Lama Marques C, Stone A, Northwood K, Burke LJ, Gee JMW, Nephew K, Clark S, Brown MA. MicroRNA-196a is regulated by ER and is a prognostic biomarker in ER+ breast cancer. Br J Cancer 2019; 120:621-632. [PMID: 30783203 PMCID: PMC6461839 DOI: 10.1038/s41416-019-0395-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/16/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNAs are potent post-transcriptional regulators involved in all hallmarks of cancer. Mir-196a is transcribed from two loci and has been implicated in a wide range of developmental and pathogenic processes, with targets including Hox, Fox, Cdk inhibitors and annexins. Genetic variants and altered expression of MIR196A are associated with risk and progression of multiple cancers including breast cancer, however little is known about the regulation of the genes encoding this miRNA, nor the impact of variants therein. Methods Genomic data and chromatin interaction analysis were used to discover functional promoter and enhancer elements for MIR196A. Expression data were used to associate MIR196A with mechanisms of resistance, breast cancer subtypes and prognosis. Results Here we demonstrate that MIR196A displays complex and dynamic expression patterns, in part controlled by long-range transcriptional regulation between promoter and enhancer elements bound by ERα. Expression of this miRNA is significantly increased in drug-resistant models of hormone-receptor positive disease. The expression of MIR196A also proves to be a robust prognostic factor for patients with advanced and post-menopausal ER+ disease. Conclusion This work sheds light on the normal and abnormal regulation of MIR196A and provides a novel stratification method for therapeutically resistant breast cancer.
Collapse
Affiliation(s)
- Michael J G Milevskiy
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia. .,ACRF Stem Cells and Cancer, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
| | - Udai Gujral
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | | | - Andrew Stone
- Division of Genomics and Epigenetics, Epigenetics Research Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Korinne Northwood
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia.,UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - Lez J Burke
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Julia M W Gee
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Kenneth Nephew
- School of Medicine, Indiana University, Bloomington, IN, USA
| | - Susan Clark
- Division of Genomics and Epigenetics, Epigenetics Research Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
19
|
Burke LJ, Sevcik J, Gambino G, Tudini E, Mucaki EJ, Shirley BC, Whiley P, Parsons MT, De Leeneer K, Gutiérrez‐Enríquez S, Santamariña M, Caputo SM, Santana dos Santos E, Soukupova J, Janatova M, Zemankova P, Lhotova K, Stolarova L, Borecka M, Moles‐Fernández A, Manoukian S, Bonanni B, ENIGMA Consortium, Edwards SL, Blok MJ, van Overeem Hansen T, Rossing M, Diez O, Vega A, Claes KB, Goldgar DE, Rouleau E, Radice P, Peterlongo P, Rogan PK, Caligo M, Spurdle AB, Brown MA. BRCA1 and BRCA2 5' noncoding region variants identified in breast cancer patients alter promoter activity and protein binding. Hum Mutat 2018; 39:2025-2039. [PMID: 30204945 PMCID: PMC6282814 DOI: 10.1002/humu.23652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early-onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5' noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency < 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.-287C>T and PAX5 binding to BRCA2:c.-296C>T. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC.
Collapse
Affiliation(s)
- Leslie J. Burke
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
| | - Jan Sevcik
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Gaetana Gambino
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
- Section of Molecular GeneticsDepartment of Laboratory MedicineUniversity Hospital of PisaPisaItaly
| | - Emma Tudini
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Eliseos J. Mucaki
- University of Western Ontario, Department of BiochemistrySchulich School of Medicine and DentistryLondonOntarioCanada
| | | | - Phillip Whiley
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kim De Leeneer
- Center for Medical GeneticsGhent University Hospitaland Cancer Research Institute Ghent (CRIG)Ghent UniversityGhentBelgium
| | | | - Marta Santamariña
- Fundación Pública Galega de Medicina Xenómica‐SERGASGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | - Sandrine M. Caputo
- Service de GénétiqueDepartment de Biologie des TumeursInstitut CurieParisFrance
| | - Elizabeth Santana dos Santos
- Service de GénétiqueDepartment de Biologie des TumeursInstitut CurieParisFrance
- Department of oncologyCenter for Translational OncologyCancer Institute of the State of São Paulo ‐ ICESPSão PauloBrazil
- A.C.Camargo Cancer CenterSão PauloBrazil
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Klara Lhotova
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Lenka Stolarova
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Mariana Borecka
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | | | - Siranoush Manoukian
- Unit of Medical GeneticsDepartment of Medical Oncology and HematologyFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Bernardo Bonanni
- Division of Cancer Prevention and GeneticsIstituto Europeo di OncologiaMilanItaly
| | - ENIGMA Consortium
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
| | - Stacey L. Edwards
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Marinus J. Blok
- Department of Clinical GeneticsMaastricht University Medical CentreMaastrichtThe Netherlands
| | | | - Maria Rossing
- Center for Genomic MedicineCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Orland Diez
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Area of Clinical and Molecular GeneticsUniversity Hospital Vall d'Hebron (UHVH)BarcelonaSpain
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica‐SERGASGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | - Kathleen B.M. Claes
- Center for Medical GeneticsGhent University Hospitaland Cancer Research Institute Ghent (CRIG)Ghent UniversityGhentBelgium
| | | | | | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | | | - Peter K. Rogan
- University of Western Ontario, Department of BiochemistrySchulich School of Medicine and DentistryLondonOntarioCanada
- CytoGnomix Inc.LondonOntarioCanada
| | - Maria Caligo
- Section of Molecular GeneticsDepartment of Laboratory MedicineUniversity Hospital of PisaPisaItaly
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Melissa A. Brown
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
20
|
Yu D, Ma X, Zuo Z, Wang H, Meng Y. Classification of Transcription Boundary-Associated RNAs (TBARs) in Animals and Plants. Front Genet 2018; 9:168. [PMID: 29868116 PMCID: PMC5960741 DOI: 10.3389/fgene.2018.00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/26/2018] [Indexed: 11/13/2022] Open
Abstract
There is increasing evidence suggesting the contribution of non-coding RNAs (ncRNAs) to the phenotypic and physiological complexity of organisms. A novel ncRNA species has been identified near the transcription boundaries of protein-coding genes in eukaryotes, bacteria, and archaea. This review provides a detailed description of these transcription boundary-associated RNAs (TBARs), including their classification. Based on their genomic distribution, TBARs are divided into two major groups: promoter-associated RNAs (PARs) and terminus-associated RNAs (TARs). Depending on the sequence length, each group is further classified into long RNA species (>200 nt) and small RNA species (<200 nt). According to these rules of TBAR classification, divergent ncRNAs with confusing nomenclatures, such as promoter upstream transcripts (PROMPTs), upstream antisense RNAs (uaRNAs), stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs), upstream non-coding transcripts (UNTs), transcription start site-associated RNAs (TSSaRNAs), transcription initiation RNAs (tiRNAs), and transcription termination site-associated RNAs (TTSaRNAs), were assigned to specific classes. Although the biogenesis pathways of PARs and TARs have not yet been clearly elucidated, previous studies indicate that some of the PARs have originated either through divergent transcription or via RNA polymerase pausing. Intriguing findings regarding the functional implications of the TBARs such as the long-range “gene looping” model, which explains their role in the transcriptional regulation of protein-coding genes, are also discussed. Altogether, this review provides a comprehensive overview of the current research status of TBARs, which will promote further investigations in this research area.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ziwei Zuo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
21
|
Abstract
It is well known that the chromosomes are organized in the nucleus and this spatial arrangement of genome play a crucial role in gene regulation and genome stability. Different techniques have been developed and applied to uncover the intrinsic mechanism of genome architecture, especially the chromosome conformation capture (3C) and 3C-derived methods. 3C and 3C-derived techniques provide us approaches to perform high-throughput chromatin architecture assays at the genome scale. However, the advantage and disadvantage of current methodologies of C-technologies have not been discussed extensively. In this review, we described and compared the methodologies of C-technologies used in genome organization studies with an emphasis on Hi-C method. We also discussed the crucial challenges facing current genome architecture studies based on 3C and 3C-derived technologies and the direction of future technologies to address currently outstanding questions in the field. These latest news contribute to our current understanding of genome structure, and provide a comprehensive reference for researchers to choose the appropriate method in future application. We consider that these constantly improving technologies will offer a finer and more accurate contact profiles of entire genome and ultimately reveal specific molecular machines govern its shape and function.
Collapse
|
22
|
Sun Y, Dai H, Chen S, Xu M, Wang X, Zhang Y, Xu S, Xu A, Weng J, Liu S, Wu L. Graphene oxide regulates cox2 in human embryonic kidney 293T cells via epigenetic mechanisms: dynamic chromosomal interactions. Nanotoxicology 2018; 12:117-137. [PMID: 29338479 DOI: 10.1080/17435390.2018.1425498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To extend the applications of engineered nanomaterials, such as graphene oxide (GO), it is necessary to minimize cytotoxicity. However, the mechanisms underlying this cytotoxicity are unclear. Dynamic chromosomal interactions have been used to illustrate the molecular bases of gene expression, which offers a more sensitive and cutting-edge technology to elucidate complex biological processes associated with epigenetic regulations. In this study, the role of GO-triggered chromatin interactions in the activation of cox2, a hallmark of inflammation, was investigated in normal human cells. Using chromosome conformation capture technology, we showed that GO triggers physical interactions between the downstream enhancer and the cox2 promoter in human embryonic kidney 293T (293T) via p65 and p300 complex-mediated dynamic chromatin looping, which was required for high cox2 expression. Moreover, tumor necrosis factor-α (TNF-α), located upstream of the p65 signaling pathway, contributed to the regulation of cox2 activation through dynamic chromatin architecture. Compared with pristine GO and aminated GO (GO-NH2), poly (acrylic acid)-functionalized GO (GO-PAA) induced a weaker inflammatory response and a weaker effect on chromatin architecture. Our results mechanistically link GO-mediated chromatin interactions with the regulation of cox2 and suggest that GO derivatives may minimize toxicity in practical applications.
Collapse
Affiliation(s)
- Yuxiang Sun
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Hui Dai
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,b University of Science and Technology of China , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Shaopeng Chen
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Ming Xu
- d State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Xuanyu Wang
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Yajun Zhang
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Shengmin Xu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - An Xu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Jian Weng
- e Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials , Xiamen University , Xiamen , People's Republic of China
| | - Sijin Liu
- d State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Lijun Wu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,b University of Science and Technology of China , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| |
Collapse
|
23
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
|
25
|
Dos Santos ES, Caputo SM, Castera L, Gendrot M, Briaux A, Breault M, Krieger S, Rogan PK, Mucaki EJ, Burke LJ, Bièche I, Houdayer C, Vaur D, Stoppa-Lyonnet D, Brown MA, Lallemand F, Rouleau E. Assessment of the functional impact of germline BRCA1/2 variants located in non-coding regions in families with breast and/or ovarian cancer predisposition. Breast Cancer Res Treat 2017; 168:311-325. [PMID: 29236234 DOI: 10.1007/s10549-017-4602-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE The molecular mechanism of breast and/or ovarian cancer susceptibility remains unclear in the majority of patients. While germline mutations in the regulatory non-coding regions of BRCA1 and BRCA2 genes have been described, screening has generally been limited to coding regions. The aim of this study was to evaluate the contribution of BRCA1/2 non-coding variants. METHODS Four BRCA1/2 non-coding regions were screened using high-resolution melting analysis/Sanger sequencing or next-generation sequencing on DNA extracted from index cases with breast and ovarian cancer predisposition (3926 for BRCA1 and 3910 for BRCA2). The impact of a set of variants on BRCA1/2 gene regulation was evaluated by site-directed mutagenesis, transfection, followed by Luciferase gene reporter assay. RESULTS We identified a total of 117 variants and tested twelve BRCA1 and 8 BRCA2 variants mapping to promoter and intronic regions. We highlighted two neighboring BRCA1 promoter variants (c.-130del; c.-125C > T) and one BRCA2 promoter variants (c.-296C > T) inhibiting significantly the promoter activity. In the functional assays, a regulating region within the intron 12 was found with the same enhancing impact as within the intron 2. Furthermore, the variants c.81-3980A > G and c.4186-2022C > T suppress the positive effect of the introns 2 and 12, respectively, on the BRCA1 promoter activity. We also found some variants inducing the promoter activities. CONCLUSION In this study, we highlighted some variants among many, modulating negatively the promoter activity of BRCA1 or 2 and thus having a potential impact on the risk of developing cancer. This selection makes it possible to conduct future validation studies on a limited number of variants.
Collapse
Affiliation(s)
- E Santana Dos Santos
- Department of Oncology, Center for Translational Oncology, Cancer Institute of the State of São Paulo - ICESP, São Paulo, Brazil
- Service de Génétique, Institut Curie, Paris, France
- A.C.Camargo Cancer Center, São Paulo, Brazil
| | - S M Caputo
- Service de Génétique, Institut Curie, Paris, France
| | - L Castera
- Laboratoire de Biologie et de Génétique du Cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de MédecinePersonnalisée, Caen, France
| | - M Gendrot
- Service de Génétique, Institut Curie, Paris, France
| | - A Briaux
- Service de Génétique, Institut Curie, Paris, France
| | - M Breault
- Service de Génétique, Institut Curie, Paris, France
| | - S Krieger
- Laboratoire de Biologie et de Génétique du Cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de MédecinePersonnalisée, Caen, France
| | - P K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - E J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - L J Burke
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - I Bièche
- Service de Génétique, Institut Curie, Paris, France
- Université Paris Descartes, Paris, France
| | - C Houdayer
- Service de Génétique, Institut Curie, Paris, France
- Université Paris Descartes, Paris, France
| | - D Vaur
- Laboratoire de Biologie et de Génétique du Cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de MédecinePersonnalisée, Caen, France
| | - D Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France
- Université Paris Descartes, Paris, France
| | - M A Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - F Lallemand
- Service de Génétique, Institut Curie, Paris, France.
| | | |
Collapse
|
26
|
Tai PWL, Wu H, van Wijnen AJ, Stein GS, Stein JL, Lian JB. Genome-wide DNase hypersensitivity, and occupancy of RUNX2 and CTCF reveal a highly dynamic gene regulome during MC3T3 pre-osteoblast differentiation. PLoS One 2017; 12:e0188056. [PMID: 29176792 PMCID: PMC5703546 DOI: 10.1371/journal.pone.0188056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The ability to discover regulatory sequences that control bone-related genes during development has been greatly improved by massively parallel sequencing methodologies. To expand our understanding of cis-regulatory regions critical to the control of gene expression during osteoblastogenesis, we probed the presence of open chromatin states across the osteoblast genome using global DNase hypersensitivity (DHS) mapping. Our profiling of MC3T3 mouse pre-osteoblasts during differentiation has identified more than 224,000 unique DHS sites. Approximately 65% of these sites are dynamic during temporal stages of osteoblastogenesis, and a majority of them are located within non-promoter (intergenic and intronic) regions. Nearly half of all DHS sites (both constitutive and dynamic) overlap binding events of the bone-essential RUNX2 and/or the chromatin-related CTCF transcription factors. This finding reinforces the role of these regulatory proteins as essential components of the bone gene regulome. We observe a reduction in chromatin accessibility throughout the genome between pre-osteoblast and early osteoblasts. Our analysis also defined a class of differentially expressed genes that harbor DHS peaks centered within 1 kb downstream of transcriptional end sites (TES). These DHSs at the 3’-flanks of genes exhibit dynamic changes during differentiation that may impact regulation of the osteoblast genome. Taken together, the distribution of DHS regions within non-promoter locations harboring osteoblast and chromatin related transcription factor binding motifs, reflect novel cis-regulatory requirements to support temporal gene expression in differentiating osteoblasts.
Collapse
Affiliation(s)
- Phillip W. L. Tai
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Hai Wu
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | | | - Gary S. Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail: (JLS); (JBL)
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail: (JLS); (JBL)
| |
Collapse
|
27
|
Bratkowski M, Unarta IC, Zhu L, Shubbar M, Huang X, Liu X. Structural dissection of an interaction between transcription initiation and termination factors implicated in promoter-terminator cross-talk. J Biol Chem 2017; 293:1651-1665. [PMID: 29158257 DOI: 10.1074/jbc.m117.811521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/10/2017] [Indexed: 11/06/2022] Open
Abstract
Functional cross-talk between the promoter and terminator of a gene has long been noted. Promoters and terminators are juxtaposed to form gene loops in several organisms, and gene looping is thought to be involved in transcriptional regulation. The general transcription factor IIB (TFIIB) and the C-terminal domain phosphatase Ssu72, essential factors of the transcription preinitiation complex and the mRNA processing and polyadenylation complex, respectively, are important for gene loop formation. TFIIB and Ssu72 interact both genetically and physically, but the molecular basis of this interaction is not known. Here we present a crystal structure of the core domain of TFIIB in two new conformations that differ in the relative distance and orientation of the two cyclin-like domains. The observed extraordinary conformational plasticity may underlie the binding of TFIIB to multiple transcription factors and promoter DNAs that occurs in distinct stages of transcription, including initiation, reinitiation, and gene looping. We mapped the binding interface of the TFIIB-Ssu72 complex using a series of systematic, structure-guided in vitro binding and site-specific photocross-linking assays. Our results indicate that Ssu72 competes with acidic activators for TFIIB binding and that Ssu72 disrupts an intramolecular TFIIB complex known to impede transcription initiation. We also show that the TFIIB-binding site on Ssu72 overlaps with the binding site of symplekin, a component of the mRNA processing and polyadenylation complex. We propose a hand-off model in which Ssu72 mediates a conformational transition in TFIIB, accounting for the role of Ssu72 in transcription reinitiation, gene looping, and promoter-terminator cross-talk.
Collapse
Affiliation(s)
- Matthew Bratkowski
- From the Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, and.,the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Ilona Christy Unarta
- the Department of Chemistry and.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lizhe Zhu
- the Department of Chemistry and.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Murtada Shubbar
- From the Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, and.,the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Xuhui Huang
- the Department of Chemistry and.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Liu
- From the Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, and .,the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| |
Collapse
|
28
|
Jia R, Chai P, Zhang H, Fan X. Novel insights into chromosomal conformations in cancer. Mol Cancer 2017; 16:173. [PMID: 29149895 PMCID: PMC5693495 DOI: 10.1186/s12943-017-0741-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Exploring gene function is critical for understanding the complexity of life. DNA sequences and the three-dimensional organization of chromatin (chromosomal interactions) are considered enigmatic factors underlying gene function, and interactions between two distant fragments can regulate transactivation activity via mediator proteins. Thus, a series of chromosome conformation capture techniques have been developed, including chromosome conformation capture (3C), circular chromosome conformation capture (4C), chromosome conformation capture carbon copy (5C), and high-resolution chromosome conformation capture (Hi-C). The application of these techniques has expanded to various fields, but cancer remains one of the major topics. Interactions mediated by proteins or long noncoding RNAs (lncRNAs) are typically found using 4C-sequencing and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET). Currently, Hi-C is used to identify chromatin loops between cancer risk-associated single-nucleotide polymorphisms (SNPs) found by genome-wide association studies (GWAS) and their target genes. Chromosomal conformations are responsible for altered gene regulation through several typical mechanisms and contribute to the biological behavior and malignancy of different tumors, particularly prostate cancer, breast cancer and hematologic neoplasms. Moreover, different subtypes may exhibit different 3D-chromosomal conformations. Thus, C-tech can be used to help diagnose cancer subtypes and alleviate cancer progression by destroying specific chromosomal conformations. Here, we review the fundamentals and improvements in chromosome conformation capture techniques and their clinical applications in cancer to provide insight for future research.
Collapse
Affiliation(s)
- Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| |
Collapse
|
29
|
Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, Shi W, Jiang J, Yao PP, Zhu HP. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci 2017; 13:1387-1397. [PMID: 29209143 PMCID: PMC5715522 DOI: 10.7150/ijbs.21635] [Citation(s) in RCA: 833] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is the second leading cause of cancer deaths among women. The development of breast cancer is a multi-step process involving multiple cell types, and its prevention remains challenging in the world. Early diagnosis of breast cancer is one of the best approaches to prevent this disease. In some developed countries, the 5-year relative survival rate of breast cancer patients is above 80% due to early prevention. In the recent decade, great progress has been made in the understanding of breast cancer as well as in the development of preventative methods. The pathogenesis and tumor drug-resistant mechanisms are revealed by discovering breast cancer stem cells, and many genes are found related to breast cancer. Currently, people have more drug options for the chemoprevention of breast cancer, while biological prevention has been recently developed to improve patients' quality of life. In this review, we will summarize key studies of pathogenesis, related genes, risk factors and preventative methods on breast cancer over the past years. These findings represent a small step in the long fight against breast cancer.
Collapse
Affiliation(s)
- Yi-Sheng Sun
- Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhao Zhao
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital
| | - Zhang-Nv Yang
- Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fang Xu
- Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hang-Jing Lu
- Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhi-Yong Zhu
- Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Wen Shi
- Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianmin Jiang
- Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ping-Ping Yao
- Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Han-Ping Zhu
- Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
30
|
Asada R, Umeda M, Adachi A, Senmatsu S, Abe T, Iwasaki H, Ohta K, Hoffman CS, Hirota K. Recruitment and delivery of the fission yeast Rst2 transcription factor via a local genome structure counteracts repression by Tup1-family corepressors. Nucleic Acids Res 2017; 45:9361-9371. [PMID: 28934464 PMCID: PMC5766161 DOI: 10.1093/nar/gkx555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) determine the transcription activity of target genes and play a central role in controlling the transcription in response to various environmental stresses. Three dimensional genome structures such as local loops play a fundamental role in the regulation of transcription, although the link between such structures and the regulation of TF binding to cis-regulatory elements remains to be elucidated. Here, we show that during transcriptional activation of the fission yeast fbp1 gene, binding of Rst2 (a critical C2H2 zinc-finger TF) is mediated by a local loop structure. During fbp1 activation, Rst2 is first recruited to upstream-activating sequence 1 (UAS1), then it subsequently binds to UAS2 (a critical cis-regulatory site located approximately 600 base pairs downstream of UAS1) through a loop structure that brings UAS1 and UAS2 into spatially close proximity. Tup11/12 (the Tup-family corepressors) suppress direct binding of Rst2 to UAS2, but this suppression is counteracted by the recruitment of Rst2 at UAS1 and following delivery to UAS2 through a loop structure. These data demonstrate a previously unappreciated mechanism for the recruitment and expansion of TF-DNA interactions within a promoter mediated by local three-dimensional genome structures and for timely TF-binding via counteractive regulation by the Tup-family corepressors.
Collapse
Affiliation(s)
- Ryuta Asada
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Miki Umeda
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Akira Adachi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Satoshi Senmatsu
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Takuya Abe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Hiroshi Iwasaki
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology M6-11, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.,Universal Biology Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
31
|
Glubb DM, Johnatty SE, Quinn MC, O’Mara TA, Tyrer JP, Gao B, Fasching PA, Beckmann MW, Lambrechts D, Vergote I, Velez Edwards DR, Beeghly-Fadiel A, Benitez J, Garcia MJ, Goodman MT, Thompson PJ, Dörk T, Dürst M, Modungo F, Moysich K, Heitz F, du Bois A, Pfisterer J, Hillemanns P, On behalf of the AGO Study Group, Karlan BY, Lester J, Goode EL, Cunningham JM, Winham SJ, Larson MC, McCauley BM, Kjær SK, Jensen A, Schildkraut JM, Berchuck A, Cramer DW, Terry KL, Salvesen HB, Bjorge L, Webb PM, Grant P, Pejovic T, Moffitt M, Hogdall CK, Hogdall E, Paul J, Glasspool R, Bernardini M, Tone A, Huntsman D, Woo M, Group AOCS, deFazio A, Kennedy CJ, Pharoah PD, MacGregor S, Chenevix-Trench G. Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci. Oncotarget 2017; 8:64670-64684. [PMID: 29029385 PMCID: PMC5630285 DOI: 10.18632/oncotarget.18501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/27/2017] [Indexed: 02/02/2023] Open
Abstract
We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates at the 1q22 and 19p12 loci, as well as other regional variants, were nominally associated with patient outcome; however, no associations reached our threshold for statistical significance (p<1×10-5). Larger patient numbers will be needed to convincingly identify any true associations at these loci.
Collapse
Affiliation(s)
- Dylan M. Glubb
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sharon E. Johnatty
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michael C.J. Quinn
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A. O’Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jonathan P. Tyrer
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Bo Gao
- Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney, NSW, Australia
- Center for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Peter A. Fasching
- University of California at Los Angeles, David Geffen School of Medicine, Department of Medicine, Division of Hematology and Oncology, Los Angeles, CA, USA
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Matthias W. Beckmann
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Ignace Vergote
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Digna R. Velez Edwards
- Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Centre (CNIO), and Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Maria J. Garcia
- Human Genetics Group, Spanish National Cancer Centre (CNIO), and Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Marc T. Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pamela J. Thompson
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Matthias Dürst
- Department of Gynaecology, University of Jena, Jena, Germany
| | - Francesmary Modungo
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Ovarian Cancer Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirsten Moysich
- Cancer Pathology & Prevention, Division of Cancer Prevention and Population Sciences, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | | | - Peter Hillemanns
- Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - On behalf of the AGO Study Group
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
- Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney, NSW, Australia
- Center for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- University of California at Los Angeles, David Geffen School of Medicine, Department of Medicine, Division of Hematology and Oncology, Los Angeles, CA, USA
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
- Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Human Genetics Group, Spanish National Cancer Centre (CNIO), and Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- Department of Gynaecology, University of Jena, Jena, Germany
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Ovarian Cancer Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Pathology & Prevention, Division of Cancer Prevention and Population Sciences, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Zentrum für Gynäkologische Onkologie, Kiel, Germany
- Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
- Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health Sciences, The University of Virginia, Charlottesville, VA, USA
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Gynaecological Oncology Department, Mercy Hospital for Women, Melbourne, VIC, Australia
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Beatson West of Scotland Cancer Centre, Glasgow, UK
- Division of Gynecologic Oncology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
- British Columbia’s Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, British Columbia, Canada
- Departments of Pathology and Laboratory Medicine, Obstetrics and Gynaecology and Molecular Oncology, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia’s Ovarian Cancer Research (OVCARE) Program, Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Peter MacCallum Cancer Center, The University of Melbourne, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, UK
| | - Beth Y. Karlan
- Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jenny Lester
- Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen L. Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Stacey J. Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C. Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Bryan M. McCauley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Susanne Krüger Kjær
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Joellen M. Schildkraut
- Department of Public Health Sciences, The University of Virginia, Charlottesville, VA, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Daniel W. Cramer
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn L. Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Helga B. Salvesen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Line Bjorge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Penny M. Webb
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter Grant
- Gynaecological Oncology Department, Mercy Hospital for Women, Melbourne, VIC, Australia
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Melissa Moffitt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Claus K. Hogdall
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hogdall
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - James Paul
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | | | - Marcus Bernardini
- Division of Gynecologic Oncology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alicia Tone
- Division of Gynecologic Oncology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - David Huntsman
- British Columbia’s Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, British Columbia, Canada
- Departments of Pathology and Laboratory Medicine, Obstetrics and Gynaecology and Molecular Oncology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Woo
- British Columbia’s Ovarian Cancer Research (OVCARE) Program, Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - AOCS Group
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Peter MacCallum Cancer Center, The University of Melbourne, Australia
| | - Anna deFazio
- Center for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Catherine J. Kennedy
- Center for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Paul D.P. Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, UK
| | - Stuart MacGregor
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
32
|
Hwang SS, Jang SW, Lee GR. RHS6-mediated chromosomal looping and nuclear substructure binding is required for Th2 cytokine gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:383-391. [PMID: 28132936 DOI: 10.1016/j.bbagrm.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 12/24/2022]
Abstract
Subset-specific gene expression is a critical feature of CD4 T cell differentiation. Th2 cells express Th2 cytokine genes including Il4, Il5, and Il13 and mediate the immune response against helminths. The expression of Th2 cytokine genes is regulated by Rad50 hypersensitive site 6 (RHS6) in the Th2 locus control region; however, the molecular mechanisms of RHS6 action at the chromatin level are poorly understood. Here, we demonstrate that RHS6 is crucial for chromosomal interactions and nuclear substructure binding of the Th2 cytokine locus. RHS6-deficient cells had a marked reduction in chromatin remodeling and in intrachromosomal interactions at the Th2 locus. Deficiency of RHS6-binding transcription factors GATA3, SATB1, and IRF4 also caused a great reduction in chromatin remodeling and long-range chromosomal interactions involving the Th2 locus. RHS6 deficiency abrogated association of the Th2 locus with the nuclear substructure and RNA polymerase II. Therefore, RHS6 serves as a crucial cis-acting hub for coordinate regulation of Th2 cytokine genes by forming chromosomal loops and binding to a nuclear substructure.
Collapse
Affiliation(s)
- Soo Seok Hwang
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sung Woong Jang
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
33
|
Babu D, Fullwood MJ. 3D genome organization in health and disease: emerging opportunities in cancer translational medicine. Nucleus 2016; 6:382-93. [PMID: 26553406 PMCID: PMC4915485 DOI: 10.1080/19491034.2015.1106676] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organizing the DNA to fit inside a spatially constrained nucleus is a challenging problem that has attracted the attention of scientists across all disciplines of science. Increasing evidence has demonstrated the importance of genome geometry in several cellular contexts that affect human health. Among several approaches, the application of sequencing technologies has substantially increased our understanding of this intricate organization, also known as chromatin interactions. These structures are involved in transcriptional control of gene expression by connecting distal regulatory elements with their target genes and regulating co-transcriptional splicing. In addition, chromatin interactions play pivotal roles in the organization of the genome, the formation of structural variants, recombination, DNA replication and cell division. Mutations in factors that regulate chromatin interactions lead to the development of pathological conditions, for example, cancer. In this review, we discuss key findings that have shed light on the importance of these structures in the context of cancers, and highlight the applicability of chromatin interactions as potential biomarkers in molecular medicine as well as therapeutic implications of chromatin interactions.
Collapse
Affiliation(s)
- Deepak Babu
- a Cancer Science Institute of Singapore: Singapore; National University of Singapore ; Singapore
| | - Melissa J Fullwood
- a Cancer Science Institute of Singapore: Singapore; National University of Singapore ; Singapore.,b School of Biological Sciences; Nanyang Technological University ; Singapore.,c Institute of Molecular and Cell Biology; Agency for Science; Technology and Research (A*STAR) ; Singapore.,d Yale-NUS Liberal Arts College ; Singapore
| |
Collapse
|
34
|
Bunting KL, Soong TD, Singh R, Jiang Y, Béguelin W, Poloway DW, Swed BL, Hatzi K, Reisacher W, Teater M, Elemento O, Melnick AM. Multi-tiered Reorganization of the Genome during B Cell Affinity Maturation Anchored by a Germinal Center-Specific Locus Control Region. Immunity 2016; 45:497-512. [PMID: 27637145 PMCID: PMC5033726 DOI: 10.1016/j.immuni.2016.08.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
During the humoral immune response, B cells undergo a dramatic change in phenotype to enable antibody affinity maturation in germinal centers (GCs). Using genome-wide chromosomal conformation capture (Hi-C), we found that GC B cells undergo massive reorganization of the genomic architecture that encodes the GC B cell transcriptome. Coordinate expression of genes that specify the GC B cell phenotype-most prominently BCL6-was achieved through a multilayered chromatin reorganization process involving (1) increased promoter connectivity, (2) formation of enhancer networks, (3) 5' to 3' gene looping, and (4) merging of gene neighborhoods that share active epigenetic marks. BCL6 was an anchor point for the formation of GC-specific gene and enhancer loops on chromosome 3. Deletion of a GC-specific, highly interactive locus control region upstream of Bcl6 abrogated GC formation in mice. Thus, large-scale and multi-tiered genomic three-dimensional reorganization is required for coordinate expression of phenotype-driving gene sets that determine the unique characteristics of GC B cells.
Collapse
Affiliation(s)
- Karen L Bunting
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - T David Soong
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rajat Singh
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yanwen Jiang
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David W Poloway
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brandon L Swed
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Katerina Hatzi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - William Reisacher
- Department of Otorhinolaryngology, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY 10065, USA
| | - Matt Teater
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
35
|
Milevskiy MJG, Al-Ejeh F, Saunus JM, Northwood KS, Bailey PJ, Betts JA, McCart Reed AE, Nephew KP, Stone A, Gee JMW, Dowhan DH, Dray E, Shewan AM, French JD, Edwards SL, Clark SJ, Lakhani SR, Brown MA. Long-range regulators of the lncRNA HOTAIR enhance its prognostic potential in breast cancer. Hum Mol Genet 2016; 25:3269-3283. [PMID: 27378691 PMCID: PMC5179926 DOI: 10.1093/hmg/ddw177] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 01/17/2023] Open
Abstract
Predicting response to endocrine therapy and survival in oestrogen receptor positive breast cancer is a significant clinical challenge and novel prognostic biomarkers are needed. Long-range regulators of gene expression are emerging as promising biomarkers and therapeutic targets for human diseases, so we have explored the potential of distal enhancer elements of non-coding RNAs in the prognostication of breast cancer survival. HOTAIR is a long non-coding RNA that is overexpressed, promotes metastasis and is predictive of decreased survival. Here, we describe a long-range transcriptional enhancer of the HOTAIR gene that binds several hormone receptors and associated transcription factors, interacts with the HOTAIR promoter and augments transcription. This enhancer is dependent on Forkhead-Box transcription factors and functionally interacts with a novel alternate HOTAIR promoter. HOTAIR expression is negatively regulated by oestrogen, positively regulated by FOXA1 and FOXM1, and is inversely correlated with oestrogen receptor and directly correlated with FOXM1 in breast tumours. The combination of HOTAIR and FOXM1 enables greater discrimination of endocrine therapy responders and non-responders in patients with oestrogen receptor positive breast cancer. Consistent with this, HOTAIR expression is increased in cell-line models of endocrine resistance. Analysis of breast cancer gene expression data indicates that HOTAIR is co-expressed with FOXA1 and FOXM1 in HER2-enriched tumours, and these factors enhance the prognostic power of HOTAIR in aggressive HER2+ breast tumours. Our study elucidates the transcriptional regulation of HOTAIR, identifies HOTAIR and its regulators as novel biomarkers of patient response to endocrine therapy and corroborates the importance of transcriptional enhancers in cancer.
Collapse
Affiliation(s)
- Michael J G Milevskiy
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jodi M Saunus
- The University of Queensland, UQ Centre for Clinical Research, Herston, Australia
| | - Korinne S Northwood
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,The University of Queensland, UQ Centre for Clinical Research, Herston, Australia
| | - Peter J Bailey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Joshua A Betts
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Amy E McCart Reed
- The University of Queensland, UQ Centre for Clinical Research, Herston, Australia
| | | | - Andrew Stone
- Epigenetics Research Laboratory, Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Julia M W Gee
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Dennis H Dowhan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Eloise Dray
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,Queensland University of Technology, Brisbane, Australia
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Juliet D French
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stacey L Edwards
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sunil R Lakhani
- The University of Queensland, UQ Centre for Clinical Research, Herston, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Herston, Australia.,The University of Queensland School of Medicine, Herston, Australia
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
36
|
Rodriguez-Granados NY, Ramirez-Prado JS, Veluchamy A, Latrasse D, Raynaud C, Crespi M, Ariel F, Benhamed M. Put your 3D glasses on: plant chromatin is on show. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3205-21. [PMID: 27129951 DOI: 10.1093/jxb/erw168] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The three-dimensional organization of the eukaryotic nucleus and its chromosomal conformation have emerged as important features in the complex network of mechanisms behind gene activity and genome connectivity dynamics, which can be evidenced in the regionalized chromosomal spatial distribution and the clustering of diverse genomic regions with similar expression patterns. The development of chromatin conformation capture (3C) techniques has permitted the elucidation of commonalities between the eukaryotic phyla, as well as important differences among them. The growing number of studies in the field performed in plants has shed light on the structural and regulatory features of these organisms. For instance, it has been proposed that plant chromatin can be arranged into different conformations such as Rabl, Rosette-like, and Bouquet, and that both short- and long-range chromatin interactions occur in Arabidopsis. In this review, we compile the current knowledge about chromosome architecture characteristics in plants, as well as the molecular events and elements (including long non-coding RNAs, histone and DNA modifications, chromatin remodeling complexes, and transcription factors) shaping the genome three-dimensional conformation. Furthermore, we discuss the developmental outputs of genome topology-mediated gene expression regulation. It is becoming increasingly clear that new tools and techniques with higher resolution need to be developed and implemented in Arabidopsis and other model plants in order to better understand chromosome architecture dynamics, from an integrative perspective with other fields of plant biology such as development, stress biology, and finally agriculture.
Collapse
Affiliation(s)
- Natalia Y Rodriguez-Granados
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Juan S Ramirez-Prado
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Federico Ariel
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| |
Collapse
|
37
|
Regulation of miR-200c/141 expression by intergenic DNA-looping and transcriptional read-through. Nat Commun 2016; 7:8959. [PMID: 26725650 PMCID: PMC4727242 DOI: 10.1038/ncomms9959] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/21/2015] [Indexed: 02/07/2023] Open
Abstract
The miR-200 family members have been implicated in stress responses and ovarian tumorigenesis. Here, we find that miR-200c/141 transcription is intimately linked to the transcription of the proximal upstream gene PTPN6 (SHP1) in all physiological conditions tested. PTPN6 and miR-200c/141 are transcriptionally co-regulated by two complementary mechanisms. First, a bypass of the regular PTPN6 polyadenylation signal allows the transcription of the downstream miR-200c/141. Second, the promoters of the PTPN6 and miR-200c/141 transcription units physically interact through a 3-dimensional DNA loop and exhibit similar epigenetic regulation. Our findings highlight that transcription of intergenic miRNAs is a novel outcome of transcriptional read-through and reveal a yet unexplored type of DNA loop associating two closely located promoters. These mechanisms have significant relevance in ovarian cancers and stress response, pathophysiological conditions in which miR-200c/141 exert key functions. The miR-141/200 familly of micro RNAs control oxidative stress and impact on ovarian tumorigenesis. Here the authors show that the transcription of miR-200c/141 is regulated through transcriptional read-through of the upstream gene PTPN6, and DNA looping linking the PTPN6 and miR-200c/141 promoters.
Collapse
|
38
|
SHESTAKOVA EA. Epigenetic regulation of BRCA1 expression and its role inbreast cancer stem cell development. Turk J Biol 2016. [DOI: 10.3906/biy-1507-145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
39
|
Vad-Nielsen J, Nielsen AL. Beyond the histone tale: HP1α deregulation in breast cancer epigenetics. Cancer Biol Ther 2015; 16:189-200. [PMID: 25588111 DOI: 10.1080/15384047.2014.1001277] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heterochromatin protein 1α (HP1α) encoded from the CBX5-gene is an evolutionary conserved protein that binds histone H3 di- or tri-methylated at position lysine 9 (H3K9me2/3), a hallmark for heterochromatin, and has an essential role in forming higher order chromatin structures. HP1α has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. Emerging evidence has shown that HP1α serves a unique biological role in breast cancer related processes and in particular for epigenetic control mechanisms involved in aberrant cell proliferation and metastasis. However, how HP1α deregulation plays dual mechanistic functions for cancer cell proliferation and metastasis suppression and the underlying cellular mechanisms are not yet comprehensively described. In this paper we provide an overview of the role of HP1α as a new sight of epigenetics in proliferation and metastasis of human breast cancer. This highlights the importance of addressing HP1α in breast cancer diagnostics and therapeutics.
Collapse
Key Words
- CBX, chromobox homolog
- CD, chromo domain
- CSC, cancer stem cells
- CSD, cromo shadow domain
- CTE, C-terminal extension
- DNMT, DNA-methyltransferase
- EMT, epithelial-to-mesenchymal transition
- HDMT, histone demethylase
- HMT, histone methyltransferase
- HP1, heterochromatin protein 1
- NTE, N-terminal extension
- PEV, position effect variegation
- SOMU, sumoylation
- TGS, transcriptional gene silencing
- TSS, transcriptional start site
- bp, base pair
- breast-cancer, metastasis
- chromatin
- epigenetics
- histone-modifications
- invasion
- mitosis
- proliferation
Collapse
|
40
|
Jégu T, Domenichini S, Blein T, Ariel F, Christ A, Kim SK, Crespi M, Boutet-Mercey S, Mouille G, Bourge M, Hirt H, Bergounioux C, Raynaud C, Benhamed M. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture. PLoS One 2015; 10:e0138276. [PMID: 26457678 PMCID: PMC4601769 DOI: 10.1371/journal.pone.0138276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.
Collapse
Affiliation(s)
- Teddy Jégu
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Séverine Domenichini
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Thomas Blein
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | - Federico Ariel
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | - Aurélie Christ
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Martin Crespi
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | | | - Grégory Mouille
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, Versailles, France
| | - Mickaël Bourge
- Pôle de Biologie Cellulaire, Imagif, Centre de Recherche de Gif, CNRS, IFR87, Gif-sur-Yvette, France
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
- * E-mail:
| |
Collapse
|
41
|
Erdel F, Baum M, Rippe K. The viscoelastic properties of chromatin and the nucleoplasm revealed by scale-dependent protein mobility. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064115. [PMID: 25563347 DOI: 10.1088/0953-8984/27/6/064115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The eukaryotic cell nucleus harbours the DNA genome that is organized in a dynamic chromatin network and embedded in a viscous crowded fluid. This environment directly affects enzymatic reactions and target search processes that access the DNA sequence information. However, its physical properties as a reaction medium are poorly understood. Here, we exploit mobility measurements of differently sized inert green fluorescent tracer proteins to characterize the viscoelastic properties of the nuclear interior of a living human cell. We find that it resembles a viscous fluid on small and large scales but appears viscoelastic on intermediate scales that change with protein size. Our results are consistent with simulations of diffusion through polymers and suggest that chromatin forms a random obstacle network rather than a self-similar structure with fixed fractal dimensions. By calculating how long molecules remember their previous position in dependence on their size, we evaluate how the nuclear environment affects search processes of chromatin targets.
Collapse
Affiliation(s)
- Fabian Erdel
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
42
|
Chromatin-Driven Behavior of Topologically Associating Domains. J Mol Biol 2015; 427:608-25. [DOI: 10.1016/j.jmb.2014.09.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
|
43
|
Glubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, Carlebur S, O'Reilly M, Betts JA, Hillman KM, Kaufmann S, Beesley J, Canisius S, Hopper JL, Southey MC, Tsimiklis H, Apicella C, Schmidt MK, Broeks A, Hogervorst FB, van der Schoot CE, Muir K, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Fasching PA, Ruebner M, Ekici AB, Beckmann MW, Peto J, dos-Santos-Silva I, Fletcher O, Johnson N, Pharoah PDP, Bolla MK, Wang Q, Dennis J, Sawyer EJ, Tomlinson I, Kerin MJ, Miller N, Burwinkel B, Marme F, Yang R, Surowy H, Guénel P, Truong T, Menegaux F, Sanchez M, Bojesen SE, Nordestgaard BG, Nielsen SF, Flyger H, González-Neira A, Benitez J, Zamora MP, Arias Perez JI, Anton-Culver H, Neuhausen SL, Brenner H, Dieffenbach AK, Arndt V, Stegmaier C, Meindl A, Schmutzler RK, Brauch H, Ko YD, Brüning T, Nevanlinna H, Muranen TA, Aittomäki K, Blomqvist C, Matsuo K, Ito H, Iwata H, Tanaka H, Dörk T, Bogdanova NV, Helbig S, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Wu AH, Tseng CC, Van Den Berg D, Stram DO, Lambrechts D, Zhao H, Weltens C, van Limbergen E, Chang-Claude J, Flesch-Janys D, Rudolph A, Seibold P, Radice P, Peterlongo P, Barile M, et alGlubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, Carlebur S, O'Reilly M, Betts JA, Hillman KM, Kaufmann S, Beesley J, Canisius S, Hopper JL, Southey MC, Tsimiklis H, Apicella C, Schmidt MK, Broeks A, Hogervorst FB, van der Schoot CE, Muir K, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Fasching PA, Ruebner M, Ekici AB, Beckmann MW, Peto J, dos-Santos-Silva I, Fletcher O, Johnson N, Pharoah PDP, Bolla MK, Wang Q, Dennis J, Sawyer EJ, Tomlinson I, Kerin MJ, Miller N, Burwinkel B, Marme F, Yang R, Surowy H, Guénel P, Truong T, Menegaux F, Sanchez M, Bojesen SE, Nordestgaard BG, Nielsen SF, Flyger H, González-Neira A, Benitez J, Zamora MP, Arias Perez JI, Anton-Culver H, Neuhausen SL, Brenner H, Dieffenbach AK, Arndt V, Stegmaier C, Meindl A, Schmutzler RK, Brauch H, Ko YD, Brüning T, Nevanlinna H, Muranen TA, Aittomäki K, Blomqvist C, Matsuo K, Ito H, Iwata H, Tanaka H, Dörk T, Bogdanova NV, Helbig S, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Wu AH, Tseng CC, Van Den Berg D, Stram DO, Lambrechts D, Zhao H, Weltens C, van Limbergen E, Chang-Claude J, Flesch-Janys D, Rudolph A, Seibold P, Radice P, Peterlongo P, Barile M, Capra F, Couch FJ, Olson JE, Hallberg E, Vachon C, Giles GG, Milne RL, McLean C, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Simard J, Goldberg MS, Labrèche F, Dumont M, Teo SH, Yip CH, See MH, Cornes B, Cheng CY, Ikram MK, Kristensen V, Zheng W, Halverson SL, Shrubsole M, Long J, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Kauppila S, Andrulis IL, Knight JA, Glendon G, Tchatchou S, Devilee P, Tollenaar RAEM, Seynaeve C, Van Asperen CJ, García-Closas M, Figueroa J, Chanock SJ, Lissowska J, Czene K, Klevebring D, Darabi H, Eriksson M, Hooning MJ, Hollestelle A, Martens JWM, Collée JM, Hall P, Li J, Humphreys K, Shu XO, Lu W, Gao YT, Cai H, Cox A, Cross SS, Reed MWR, Blot W, Signorello LB, Cai Q, Shah M, Ghoussaini M, Kang D, Choi JY, Park SK, Noh DY, Hartman M, Miao H, Lim WY, Tang A, Hamann U, Torres D, Jakubowska A, Lubinski J, Jaworska K, Durda K, Sangrajrang S, Gaborieau V, Brennan P, McKay J, Olswold C, Slager S, Toland AE, Yannoukakos D, Shen CY, Wu PE, Yu JC, Hou MF, Swerdlow A, Ashworth A, Orr N, Jones M, Pita G, Alonso MR, Álvarez N, Herrero D, Tessier DC, Vincent D, Bacot F, Luccarini C, Baynes C, Ahmed S, Healey CS, Brown MA, Ponder BAJ, Chenevix-Trench G, Thompson DJ, Edwards SL, Easton DF, Dunning AM, French JD. Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1. Am J Hum Genet 2015; 96:5-20. [PMID: 25529635 PMCID: PMC4289692 DOI: 10.1016/j.ajhg.2014.11.009] [Show More Authors] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023] Open
Abstract
Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
Collapse
Affiliation(s)
- Dylan M Glubb
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Mel J Maranian
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Karen A Pooley
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Kerstin B Meyer
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Siddhartha Kar
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Saskia Carlebur
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Martin O'Reilly
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Joshua A Betts
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Kristine M Hillman
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Susanne Kaufmann
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Jonathan Beesley
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Sander Canisius
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Melissa C Southey
- Department of Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Helen Tsimiklis
- Department of Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Carmel Apicella
- Department of Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands
| | - Frans B Hogervorst
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands
| | | | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry CV4 7AL, UK; Institute of Population Health, University of Manchester, Manchester M13 9PL, UK
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry CV4 7AL, UK
| | - Sarah Stewart-Brown
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry CV4 7AL, UK
| | | | - Peter A Fasching
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany; Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthias Ruebner
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Matthias W Beckmann
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Isabel dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Elinor J Sawyer
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford OX3 7BN, UK
| | - Michael J Kerin
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Nicola Miller
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, 69115 Heidelberg, Germany
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, 69115 Heidelberg, Germany; National Center for Tumor Diseases, University of Heidelberg, 69120 Heidelberg, Germany
| | - Rongxi Yang
- Department of Obstetrics and Gynecology, University of Heidelberg, 69115 Heidelberg, Germany; Molecular Genetics of Breast Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Harald Surowy
- Department of Obstetrics and Gynecology, University of Heidelberg, 69115 Heidelberg, Germany; Molecular Genetics of Breast Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Pascal Guénel
- Institut National de la Santé et de la Recherche Médicale U1018, Environmental Epidemiology of Cancers, Centre de Recherche en Epidémiologie et Santé des Populations, 94807 Villejuif, France; UMRS 1018, University Paris-Sud, 94807 Villejuif, France
| | - Thérèse Truong
- Institut National de la Santé et de la Recherche Médicale U1018, Environmental Epidemiology of Cancers, Centre de Recherche en Epidémiologie et Santé des Populations, 94807 Villejuif, France; UMRS 1018, University Paris-Sud, 94807 Villejuif, France
| | - Florence Menegaux
- Institut National de la Santé et de la Recherche Médicale U1018, Environmental Epidemiology of Cancers, Centre de Recherche en Epidémiologie et Santé des Populations, 94807 Villejuif, France; UMRS 1018, University Paris-Sud, 94807 Villejuif, France
| | - Marie Sanchez
- Institut National de la Santé et de la Recherche Médicale U1018, Environmental Epidemiology of Cancers, Centre de Recherche en Epidémiologie et Santé des Populations, 94807 Villejuif, France; UMRS 1018, University Paris-Sud, 94807 Villejuif, France
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Børge G Nordestgaard
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sune F Nielsen
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Anna González-Neira
- Centro Nacional de Genotipado Human Genotyping Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Javier Benitez
- Centro de Investigación en Red de Enfermedades Raras, 46010 Valencia, Spain; Human Genetics Group, Spanish National Cancer Centre and Biomedical Network on Rare Diseases, 28029 Madrid, Spain
| | - M Pilar Zamora
- Servicio de Oncología Médica, Hospital Universitario La Paz, 28029 Madrid, Spain
| | | | - Hoda Anton-Culver
- Department of Epidemiology, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany; German Cancer Consortium, 69120 Heidelberg, Germany
| | - Aida Karina Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany; German Cancer Consortium, 69120 Heidelberg, Germany
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, 81675 Munich, Germany
| | - Rita K Schmutzler
- Division of Molecular Gyneco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, 50931 Cologne, Germany; Centre of Familial Breast and Ovarian Cancer, Department of Gynaecology and Obstetrics and Centre for Integrated Oncology, Center for Molecular Medicine Cologne, University Hospital of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50923 Cologne, Germany; Center for Integrated Oncology, Medical Faculty, University Hospital of Cologne, 50937 Cologne, Germany
| | - Hiltrud Brauch
- University of Tübingen, 72074 Tübingen, Germany; Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, 53113 Bonn, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, 44789 Bochum, Germany
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, 00029 Helsinki, Finland
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, 00029 Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Central Hospital, 00029 Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, 00029 Helsinki, Finland
| | - Keitaro Matsuo
- Department of Preventive Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Hideo Tanaka
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Sonja Helbig
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sara Margolin
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Arto Mannermaa
- Cancer Center of Eastern Finland, University of Eastern Finland, 70211 Kuopio, Finland; Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, 70211 Kuopio, Finland; School of Medicine, Institute of Clinical Medicine, Pathology, and Forensic Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Vesa Kataja
- Cancer Center of Eastern Finland, University of Eastern Finland, 70211 Kuopio, Finland; Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, 70211 Kuopio, Finland; School of Medicine, Institute of Clinical Medicine, Pathology, and Forensic Medicine, University of Eastern Finland, 70211 Kuopio, Finland; Cancer Center, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Veli-Matti Kosma
- Cancer Center of Eastern Finland, University of Eastern Finland, 70211 Kuopio, Finland; Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, 70211 Kuopio, Finland; School of Medicine, Institute of Clinical Medicine, Pathology, and Forensic Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jaana M Hartikainen
- Cancer Center of Eastern Finland, University of Eastern Finland, 70211 Kuopio, Finland; Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, 70211 Kuopio, Finland; School of Medicine, Institute of Clinical Medicine, Pathology, and Forensic Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Chiu-chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - David Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Hui Zhao
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | | | | | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Istituto Nazionale Tumori, Fondazione Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paolo Peterlongo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, 20139 Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Fabio Capra
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, 20139 Milan, Italy; Cogentech Cancer Genetic Test Laboratory, 20139 Milan, Italy
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Celine Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Graham G Giles
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC 3053, Australia
| | - Roger L Milne
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC 3053, Australia
| | - Catriona McLean
- Anatomical Pathology, The Alfred, Melbourne, VIC 3004, Australia
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | | | - Jacques Simard
- Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, QC G1V 4G2, Canada
| | - Mark S Goldberg
- Division of Clinical Epidemiology, McGill University Health Centre, Royal Victoria Hospital, Montreal, QC H3A 1A1, Canada; Department of Medicine, McGill University, Montreal, QC H3A 1A1, Canada
| | - France Labrèche
- Département de Médecine Sociale et Préventive, Département de Santé Environnementale et Santé au Travail, Université de Montréal, Montreal, QC H3A 3C2, Canada
| | - Martine Dumont
- Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, QC G1V 4G2, Canada
| | - Soo Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, 47500 Subang Jaya, Malaysia; Breast Cancer Research Unit, University Malaya Cancer Research Institute, University Malaya Medical Centre, 50603 Kuala Lumpur, Malaysia
| | - Cheng Har Yip
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, University Malaya Medical Centre, 50603 Kuala Lumpur, Malaysia
| | - Mee-Hoong See
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, University Malaya Medical Centre, 50603 Kuala Lumpur, Malaysia
| | - Belinda Cornes
- Singapore Eye Research Institute, National University of Singapore, Singapore 168751, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, National University of Singapore, Singapore 168751, Singapore
| | - M Kamran Ikram
- Singapore Eye Research Institute, National University of Singapore, Singapore 168751, Singapore
| | - Vessela Kristensen
- Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway; Department of Clinical Molecular Biology, University of Oslo, 0450 Oslo, Norway
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Sandra L Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Martha Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, NordLab Oulu, Oulu University Hospital, 90210 Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, NordLab Oulu, Oulu University Hospital, 90210 Oulu, Finland
| | - Arja Jukkola-Vuorinen
- Department of Oncology, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Julia A Knight
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Gord Glendon
- Ontario Cancer Genetics Network, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Sandrine Tchatchou
- Ontario Cancer Genetics Network, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Peter Devilee
- Departments of Human Genetics and Pathology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Robert A E M Tollenaar
- Departments of Human Genetics and Pathology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Caroline Seynaeve
- Family Cancer Clinic, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Christi J Van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Montserrat García-Closas
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK; Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Daniel Klevebring
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus University Medical Center Cancer Institute, 3075 EA Rotterdam, the Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus University Medical Center Cancer Institute, 3075 EA Rotterdam, the Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus University Medical Center Cancer Institute, 3075 EA Rotterdam, the Netherlands
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, 3008 AE Rotterdam, the Netherlands
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Wei Lu
- Shanghai Center for Disease Control and Prevention, Changning, Shanghai 200336, China
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai 200032, China
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Angela Cox
- Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, Sheffield S10 2RX, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield S10 2RX, UK
| | - Malcolm W R Reed
- Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, Sheffield S10 2RX, UK
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; International Epidemiology Institute, Rockville, MD 20850, USA
| | - Lisa B Signorello
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; International Epidemiology Institute, Rockville, MD 20850, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Maya Ghoussaini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine and Cancer Research Institute, Seoul National University, Seoul 110-799, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 151-742, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 151-742, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine and Cancer Research Institute, Seoul National University, Seoul 110-799, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 151-742, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University, Bundang Hospital, Seongnam 110-744, Korea
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - Hui Miao
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Wei Yen Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Anthony Tang
- Division of General Surgery, National University Health System, Singapore 119228, Singapore
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Institute of Human Genetics, Pontificia Universidad Javeriana, Bogotá 11001000, Colombia
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | - Katarzyna Jaworska
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | - Katarzyna Durda
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | | | | | - Paul Brennan
- International Agency for Research on Cancer, 69372 Lyon, France
| | - James McKay
- International Agency for Research on Cancer, 69372 Lyon, France
| | - Curtis Olswold
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Susan Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Amanda E Toland
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, Institute of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research "Demokritos," Aghia Paraskevi Attikis, Athens 15310, Greece
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; School of Public Health, China Medical University, Taichung 40402, Taiwan; Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Ming-Feng Hou
- Cancer Center and Department of Surgery, Kaohsiung Medical University, Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton SM2 5NG, UK; Division of Breast Cancer Research, Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Nick Orr
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Michael Jones
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Guillermo Pita
- Centro Nacional de Genotipado Human Genotyping Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - M Rosario Alonso
- Centro Nacional de Genotipado Human Genotyping Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Nuria Álvarez
- Centro Nacional de Genotipado Human Genotyping Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Daniel Herrero
- Centro Nacional de Genotipado Human Genotyping Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Daniel C Tessier
- McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Daniel Vincent
- McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Francois Bacot
- McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Shahana Ahmed
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Catherine S Healey
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bruce A J Ponder
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Stacey L Edwards
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK.
| | - Juliet D French
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
44
|
Wani S, Yuda M, Fujiwara Y, Yamamoto M, Harada F, Ohkuma Y, Hirose Y. Vertebrate Ssu72 regulates and coordinates 3'-end formation of RNAs transcribed by RNA polymerase II. PLoS One 2014; 9:e106040. [PMID: 25166011 PMCID: PMC4148344 DOI: 10.1371/journal.pone.0106040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/26/2014] [Indexed: 01/18/2023] Open
Abstract
In eukaryotes, the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is composed of tandem repeats of the heptapeptide YSPTSPS, which is subjected to reversible phosphorylation at Ser2, Ser5, and Ser7 during the transcription cycle. Dynamic changes in CTD phosphorylation patterns, established by the activities of multiple kinases and phosphatases, are responsible for stage-specific recruitment of various factors involved in RNA processing, histone modification, and transcription elongation/termination. Yeast Ssu72, a CTD phosphatase specific for Ser5 and Ser7, functions in 3′-end processing of pre-mRNAs and in transcription termination of small non-coding RNAs such as snoRNAs and snRNAs. Vertebrate Ssu72 exhibits Ser5- and Ser7-specific CTD phosphatase activity in vitro, but its roles in gene expression and CTD dephosphorylation in vivo remain to be elucidated. To investigate the functions of vertebrate Ssu72 in gene expression, we established chicken DT40 B-cell lines in which Ssu72 expression was conditionally inactivated. Ssu72 depletion in DT40 cells caused defects in 3′-end formation of U2 and U4 snRNAs and GAPDH mRNA. Surprisingly, however, Ssu72 inactivation increased the efficiency of 3′-end formation of non-polyadenylated replication-dependent histone mRNA. Chromatin immunoprecipitation analyses revealed that Ssu72 depletion caused a significant increase in both Ser5 and Ser7 phosphorylation of the Pol II CTD on all genes in which 3′-end formation was affected. These results suggest that vertebrate Ssu72 plays positive roles in 3′-end formation of snRNAs and polyadenylated mRNAs, but negative roles in 3′-end formation of histone mRNAs, through dephosphorylation of both Ser5 and Ser7 of the CTD.
Collapse
Affiliation(s)
- Shotaro Wani
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Masamichi Yuda
- Department of Molecular and Cellular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yosuke Fujiwara
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Masaya Yamamoto
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Fumio Harada
- Department of Molecular and Cellular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yoshiaki Ohkuma
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Yutaka Hirose
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- * E-mail:
| |
Collapse
|
45
|
Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A, Benhamed M, Crespi M. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 2014; 55:383-96. [PMID: 25018019 DOI: 10.1016/j.molcel.2014.06.011] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/29/2014] [Accepted: 06/04/2014] [Indexed: 11/19/2022]
Abstract
The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes.
Collapse
Affiliation(s)
- Federico Ariel
- CNRS, Institut des Sciences du Végétal, Saclay Plant Sciences, 91198 Gif-sur-Yvette and Université Paris Diderot-Paris 7, 75013 Paris, France
| | - Teddy Jegu
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, SPS Saclay Plant Sciences, 91405 Orsay, France
| | - David Latrasse
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, SPS Saclay Plant Sciences, 91405 Orsay, France
| | - Natali Romero-Barrios
- CNRS, Institut des Sciences du Végétal, Saclay Plant Sciences, 91198 Gif-sur-Yvette and Université Paris Diderot-Paris 7, 75013 Paris, France
| | - Aurélie Christ
- CNRS, Institut des Sciences du Végétal, Saclay Plant Sciences, 91198 Gif-sur-Yvette and Université Paris Diderot-Paris 7, 75013 Paris, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, SPS Saclay Plant Sciences, 91405 Orsay, France; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Martin Crespi
- CNRS, Institut des Sciences du Végétal, Saclay Plant Sciences, 91198 Gif-sur-Yvette and Université Paris Diderot-Paris 7, 75013 Paris, France.
| |
Collapse
|
46
|
Grzechnik P, Tan-Wong SM, Proudfoot NJ. Terminate and make a loop: regulation of transcriptional directionality. Trends Biochem Sci 2014; 39:319-27. [PMID: 24928762 PMCID: PMC4085477 DOI: 10.1016/j.tibs.2014.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 01/28/2023]
Abstract
Transcriptional directionality is controlled by premature transcription termination. Transcriptional directionality is enforced by gene looping. mRNA-specific termination signals and factors are required for gene looping.
Bidirectional promoters are a common feature of many eukaryotic organisms from yeast to humans. RNA Polymerase II that is recruited to this type of promoter can start transcribing in either direction using alternative DNA strands as the template. Such promiscuous transcription can lead to the synthesis of unwanted transcripts that may have negative effects on gene expression. Recent studies have identified transcription termination and gene looping as critical players in the enforcement of promoter directionality. Interestingly, both mechanisms share key components. Here, we focus on recent findings relating to the transcriptional output of bidirectional promoters.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sue Mei Tan-Wong
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
47
|
Tai PWL, Zaidi SK, Wu H, Grandy RA, Montecino MM, van Wijnen AJ, Lian JB, Stein GS, Stein JL. The dynamic architectural and epigenetic nuclear landscape: developing the genomic almanac of biology and disease. J Cell Physiol 2014; 229:711-27. [PMID: 24242872 PMCID: PMC3996806 DOI: 10.1002/jcp.24508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Compaction of the eukaryotic genome into the confined space of the cell nucleus must occur faithfully throughout each cell cycle to retain gene expression fidelity. For decades, experimental limitations to study the structural organization of the interphase nucleus restricted our understanding of its contributions towards gene regulation and disease. However, within the past few years, our capability to visualize chromosomes in vivo with sophisticated fluorescence microscopy, and to characterize chromosomal regulatory environments via massively parallel sequencing methodologies have drastically changed how we currently understand epigenetic gene control within the context of three-dimensional nuclear structure. The rapid rate at which information on nuclear structure is unfolding brings challenges to compare and contrast recent observations with historic findings. In this review, we discuss experimental breakthroughs that have influenced how we understand and explore the dynamic structure and function of the nucleus, and how we can incorporate historical perspectives with insights acquired from the ever-evolving advances in molecular biology and pathology.
Collapse
Affiliation(s)
- Phillip W. L. Tai
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Sayyed K. Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Hai Wu
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Rodrigo A. Grandy
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Martin M. Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
48
|
Bastonini E, Jeznach M, Field M, Juszczyk K, Corfield E, Dezfouli M, Ahmat N, Smith A, Womersley H, Jordan P, Ramadass A, Akoulitchev A, Goding CR. Chromatin barcodes as biomarkers for melanoma. Pigment Cell Melanoma Res 2014; 27:788-800. [PMID: 24807349 DOI: 10.1111/pcmr.12258] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/29/2014] [Indexed: 01/27/2023]
Abstract
The major barrier to effective cancer therapy is the presence of genetic and phenotypic heterogeneity within cancer cell populations that provides a reservoir of therapeutically resistant cells. As the degree of heterogeneity present within tumours will be proportional to tumour burden, the development of rapid, robust, accurate and sensitive biomarkers for cancer progression that could detect clinically occult disease before substantial heterogeneity develops would provide a major therapeutic benefit. Here, we explore the application of chromatin conformation capture technology to generate a diagnostic epigenetic barcode for melanoma. The results indicate that binary states from chromatin conformations at 15 loci within five genes can be used to provide rapid, non-invasive multivariate test for the presence of melanoma using as little as 200 μl of patient blood.
Collapse
Affiliation(s)
- Emanuela Bastonini
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
McEachern LA, Murphy PR. Chromatin-remodeling factors mediate the balance of sense-antisense transcription at the FGF2 locus. Mol Endocrinol 2014; 28:477-89. [PMID: 24552587 DOI: 10.1210/me.2013-1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antisense transcription is prevalent in mammalian genomes, yet the function of many antisense transcripts remains elusive. We have previously shown that the fibroblast growth factor 2 (FGF2) gene is regulated endogenously by an overlapping antisense gene called Nudix-type motif 6 (NUDT6). However, the molecular mechanisms that determine the balance of FGF2 and NUDT6 transcripts are not yet well understood. Here we demonstrate that there is a strong negative correlation between FGF2 and NUDT6 across 7 different cell lines. Small interfering RNA-mediated knockdown of NUDT6 causes an increase in nascent FGF2 transcripts, including a short FGF2 variant that lacks sequence complementarity with NUDT6, indicating the involvement of transcriptional mechanisms. In support of this, we show that changes in histone acetylation by trichostatin A treatment, histone deacetylase inhibition, or small interfering RNA knockdown of the histone acetyltransferase CSRP2BP, oppositely affect NUDT6 and FGF2 mRNA levels. A significant increase in histone acetylation with trichostatin A treatment was only detected at the genomic region where the 2 genes overlap, suggesting that this may be an important regulatory region for determining the balance of NUDT6 and FGF2. Knockdown of the histone demethylase KDM4A similarly causes a shift in the balance of NUDT6 and FGF2 transcripts. Expression of CSRP2BP and KDM4A correlates positively with NUDT6 expression and negatively with FGF2 expression. The results presented here indicate that histone acetylation and additional chromatin modifiers are important in determining the relative levels of FGF2 and NUDT6 and support a model in which epigenetic remodeling contributes to their relative expression levels.
Collapse
Affiliation(s)
- Lori A McEachern
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | | |
Collapse
|
50
|
Ferrari F, Alekseyenko AA, Park PJ, Kuroda MI. Transcriptional control of a whole chromosome: emerging models for dosage compensation. Nat Struct Mol Biol 2014; 21:118-25. [PMID: 24500429 PMCID: PMC4342042 DOI: 10.1038/nsmb.2763] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 12/24/2022]
Abstract
Males and females of many animal species differ in their sex-chromosome karyotype, and this creates imbalances between X-chromosome and autosomal gene products that require compensation. Although distinct molecular mechanisms have evolved in three highly studied systems, they all achieve coordinate regulation of an entire chromosome by differential RNA-polymerase occupancy at X-linked genes. High-throughput genome-wide methods have been pivotal in driving the latest progress in the field. Here we review the emerging models for dosage compensation in mammals, flies and nematodes, with a focus on mechanisms affecting RNA polymerase II activity on the X chromosome.
Collapse
Affiliation(s)
- Francesco Ferrari
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Artyom A Alekseyenko
- 1] Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA. [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter J Park
- 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mitzi I Kuroda
- 1] Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA. [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|