1
|
Tarapara B, Shah F. Role of MRE11 in DNA damage repair pathway dynamics and its diagnostic and prognostic significance in hereditary breast and ovarian cancer. BMC Cancer 2025; 25:650. [PMID: 40205351 PMCID: PMC11984277 DOI: 10.1186/s12885-025-14082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND DNA damage repair pathway genes are key components for maintaining genomic stability and are mainly associated with hereditary breast and ovarian cancer. METHODS The present study aimed to investigate the gene expression profile of DNA damage repair pathway genes, including BRCA1, BRCA2, ATM, TP53, CHEK2, MRE11, RAD50, BARD1, PALB2, and NBN, in hereditary breast and ovarian cancer patients using quantitative real-time PCR. RESULTS The study showed significant upregulation of most DNA damage repair genes in HBOC patients compared to controls, except MRE11, which was downregulated. Receiver operating characteristic (ROC) curve analysis revealed that MRE11 (p < 0.001), BRCA1 (p < 0.001), BRCA2 (p < 0.001), and PALB2 (p < 0.001) can be used as potential diagnostic biomarkers for hereditary breast and ovarian cancer. Spearman correlation analysis showed that RAD50 was significantly associated with the BRCA1/2 mutation status (p = 0.05). Furthermore, bivariate analysis revealed a strong positive correlation between BARD1 gene expression and the expression of BRCA1, PALB2, and NBN genes. Kaplan-Meier survival analysis showed that reduces expression of the MRE11 gene was associated with better overall survival. CONCLUSIONS The study findings may lead to a better understanding of the molecular mechanisms underlying hereditary breast and ovarian cancer, suggesting its role as a potential diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Bhoomi Tarapara
- Department of Life-Science, Gujarat University and Young Scientist (DHR-ICMR), Molecular Diagnostic & Research Lab-3, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky Shah
- Department of Cancer Biology, Molecular Diagnostic & Research Lab- 3, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
2
|
Haj M, Frey Y, Levon A, Maliah A, Ben-Yishay T, Slutsky R, Smoom R, Tzfati Y, Ben-David U, Levy C, Elkon R, Ziv Y, Shiloh Y. The cGAS-STING, p38 MAPK, and p53 pathways link genome instability to accelerated cellular senescence in ATM-deficient murine lung fibroblasts. Proc Natl Acad Sci U S A 2025; 122:e2419196122. [PMID: 39772747 PMCID: PMC11745328 DOI: 10.1073/pnas.2419196122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging. We found that lung fibroblasts derived from ATM-deficient mice provide a versatile experimental system to explore the mechanisms driving the premature senescence of primary fibroblasts lacking ATM. Atm-/- fibroblasts failed to proliferate under ambient oxygen conditions (21%). Although they initially proliferated under physiological oxygen levels (3%), they rapidly entered senescence. In contrast, wild-type (WT) lung fibroblasts did not senesce under 3% oxygen and eventually underwent immortalization and neoplastic transformation. However, rapid senescence could be induced in WT cells either by Atm gene ablation or persistent chemical inhibition of ATM kinase activity, with senescence induced by ATM inhibition being reversible upon inhibitor removal. Moreover, the concomitant loss of ATM and p53 led to senescence evasion, vigorous growth, rampant genome instability, and subsequent immortalization and transformation. Our findings reveal that the rapid senescence of Atm-/- lung fibroblasts is driven by the collaborative action of the cGAS-STING, p38 MAPK, and p53 pathways in response to persistent DNA damage, ultimately leading to the induction of interferon-α1 and downstream interferon-stimulated genes. We propose that accelerated cellular senescence may exacerbate specific A-T symptoms, particularly contributing to the progressive, life-threatening interstitial lung disease often observed in A-T patients during adulthood.
Collapse
Affiliation(s)
- Majd Haj
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Yann Frey
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Amit Levon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Avishai Maliah
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Rachel Slutsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190501, Israel
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190501, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
3
|
Bishop A, Romero JC, Tonapi S, Parihar M, Loranc E, Miller H, Lawrence L, Bassani N, Robledo D, Cao L, Nie J, Kanda K, Stoja A, Garcia N, Gorthi A, Stoveken B, Lane A, Fan T, Cassel T, Zha S, Musi N. ATM phosphorylation of CD98HC increases antiporter membrane localization and prevents chronic toxic glutamate accumulation in Ataxia telangiectasia. RESEARCH SQUARE 2024:rs.3.rs-4947457. [PMID: 39281865 PMCID: PMC11398575 DOI: 10.21203/rs.3.rs-4947457/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Ataxia telangiectasia (A-T) is a rare genetic disorder characterized by neurological defects, immunodeficiency, cancer predisposition, radiosensitivity, decreased blood vessel integrity, and diabetes. ATM, the protein mutated in A-T, responds to DNA damage and oxidative stress, but its functional relationship to the progressive clinical manifestation of A-T is not understood. CD98HC chaperones cystine/glutamate (x c - ) and cationic/neutral amino acid (y + L) antiporters to the cell membrane, and CD98HC phosphorylation by ATM accelerates membrane localization to acutely increase amino acid transport. Loss of ATM impacts tissues reliant on SLC family antiporters relevant to A-T phenotypes, such as endothelial cells (telangiectasia) and pancreatic α-cells (fatty liver and diabetes) with toxic glutamate accumulation. Bypassing the antiporters restores intracellular metabolic balance both in ATM-deficient cells and mouse models. These findings provide new insight into the long-known benefits of N-acetyl cysteine to A-T cells beyond oxidative stress through removing excess glutamate by production of glutathione.
Collapse
|
4
|
Yin X, Zeng D, Liao Y, Tang C, Li Y. The Function of H2A Histone Variants and Their Roles in Diseases. Biomolecules 2024; 14:993. [PMID: 39199381 PMCID: PMC11352661 DOI: 10.3390/biom14080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation, which is characterized by reversible and heritable genetic alterations without changing DNA sequences, has recently been increasingly studied in diseases. Histone variant regulation is an essential component of epigenetic regulation. The substitution of canonical histones by histone variants profoundly alters the local chromatin structure and modulates DNA accessibility to regulatory factors, thereby exerting a pivotal influence on gene regulation and DNA damage repair. Histone H2A variants, mainly including H2A.Z, H2A.B, macroH2A, and H2A.X, are the most abundant identified variants among all histone variants with the greatest sequence diversity. Harboring varied chromatin occupancy and structures, histone H2A variants perform distinct functions in gene transcription and DNA damage repair. They are implicated in multiple pathophysiological mechanisms and the emergence of different illnesses. Cancer, embryonic development abnormalities, neurological diseases, metabolic diseases, and heart diseases have all been linked to histone H2A variant alterations. This review focuses on the functions of H2A histone variants in mammals, including H2A.Z, H2A.B, macroH2A, and H2A.X, and their current roles in various diseases.
Collapse
Affiliation(s)
- Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yingjun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
5
|
Harley J, Santosa MM, Ng CY, Grinchuk OV, Hor JH, Liang Y, Lim VJ, Tee WW, Ong DST, Ng SY. Telomere shortening induces aging-associated phenotypes in hiPSC-derived neurons and astrocytes. Biogerontology 2024; 25:341-360. [PMID: 37987889 PMCID: PMC10998800 DOI: 10.1007/s10522-023-10076-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Telomere shortening is a well-established hallmark of cellular aging. Telomerase reverse transcriptase (TERT) plays a crucial role in maintaining the length of telomeres, which are specialised protective caps at the end of chromosomes. The lack of in vitro aging models, particularly for the central nervous system (CNS), has impeded progress in understanding aging and age-associated neurodegenerative diseases. In this study, we aimed to explore the possibility of inducing aging-associated features in cell types of the CNS using hiPSC (human induced pluripotent stem cell) technology. To achieve this, we utilised CRISPR/Cas9 to generate hiPSCs with a loss of telomerase function and shortened telomeres. Through directed differentiation, we generated motor neurons and astrocytes to investigate whether telomere shortening could lead to age-associated phenotypes. Our findings revealed that shortened telomeres induced age-associated characteristics in both motor neurons and astrocytes including increased cellular senescence, heightened inflammation, and elevated DNA damage. We also observed cell-type specific age-related morphology changes. Additionally, our study highlighted the fundamental role of TERT and telomere shortening in neural progenitor cell (NPC) proliferation and neuronal differentiation. This study serves as a proof of concept that telomere shortening can effectively induce aging-associated phenotypes, thereby providing a valuable tool to investigate age-related decline and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jasmine Harley
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Munirah Mohamad Santosa
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Chong Yi Ng
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Oleg V Grinchuk
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Jin-Hui Hor
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Yajing Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Valerie Jingwen Lim
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Wee Wei Tee
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Shi-Yan Ng
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
6
|
Karagiannis TC, Orlowski C, Ververis K, Pitsillou E, Sarila G, Keating ST, Foong LJ, Fabris S, Ngo-Nguyen C, Malik N, Okabe J, Hung A, Mantamadiotis T, El-Osta A. γH2AX in mouse embryonic stem cells: Distribution during differentiation and following γ-irradiation. Cells Dev 2024; 177:203882. [PMID: 37956740 DOI: 10.1016/j.cdev.2023.203882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Phosphorylated histone H2AX (γH2AX) represents a sensitive molecular marker of DNA double-strand breaks (DSBs) and is implicated in stem cell biology. We established a model of mouse embryonic stem cell (mESC) differentiation and examined the dynamics of γH2AX foci during the process. Our results revealed high numbers of γH2AX foci in undifferentiated mESCs, decreasing as the cells differentiated towards the endothelial cell lineage. Notably, we observed two distinct patterns of γH2AX foci: the typical discrete γH2AX foci, which colocalize with the transcriptionally permissive chromatin mark H3K4me3, and the less well-characterized clustered γH2AX regions, which were only observed in intermediate progenitor cells. Next, we explored responses of mESCs to γ-radiation (137Cs). Following exposure to γ-radiation, mESCs showed a reduction in cell viability and increased γH2AX foci, indicative of radiosensitivity. Despite irradiation, surviving mESCs retained their differentiation potential. To further exemplify our findings, we investigated neural stem progenitor cells (NSPCs). Similar to mESCs, NSPCs displayed clustered γH2AX foci associated with progenitor cells and discrete γH2AX foci indicative of embryonic stem cells or differentiated cells. In conclusion, our findings demonstrate that γH2AX serves as a versatile marker of DSBs and may have a role as a biomarker in stem cell differentiation. The distinct patterns of γH2AX foci in differentiating mESCs and NSPCs provide valuable insights into DNA repair dynamics during differentiation, shedding light on the intricate balance between genomic integrity and cellular plasticity in stem cells. Finally, the clustered γH2AX foci observed in intermediate progenitor cells is an intriguing feature, requiring further exploration.
Collapse
Affiliation(s)
- Tom C Karagiannis
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia; Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Christian Orlowski
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Katherine Ververis
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia; School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Gulcan Sarila
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Samuel T Keating
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Laura J Foong
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Stefanie Fabris
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Christina Ngo-Nguyen
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Neha Malik
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery (RMH), The University of Melbourne, Parkville, VIC 3010, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong; Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong; Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Tang H, Liu S, Yan X, Jin Y, He X, Huang H, Liu L, Hu W, Wu A. Inhibition of LNC EBLN3P Enhances Radiation-Induced Mitochondrial Damage in Lung Cancer Cells by Targeting the Keap1/Nrf2/HO-1 Axis. BIOLOGY 2023; 12:1208. [PMID: 37759607 PMCID: PMC10525126 DOI: 10.3390/biology12091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Lung cancer remains the leading cause of cancer-related deaths in both women and men, claiming millions of lives worldwide. Radiotherapy is an effective modality for treating early-stage lung cancer; however, it cannot completely eradicate certain tumor cells due to their radioresistance. Radioresistance is commonly observed in conventionally fractionated radiotherapy, which can lead to treatment failure, metastasis, cancer recurrence, and poor prognosis for cancer patients. Identifying the underlying molecular mechanisms of radioresistance in lung cancer can promote the development of effective radiosensitizers, thereby improving patients' life expectancy and curability. In this study, we identified LNC EBLN3P as a regulator of lung cancer cell proliferation and radiosensitivity. The repression of LNC EBLN3P could increase ROS production and mitochondrial injury in NSCLC cells. In addition, knocking down LNC EBLN3P increased the binding of Nrf2 to Keap1, resulting in enhanced Nrf2 degradation, decreased translocation of Nrf2 to the nucleus, reduced expression of antioxidant protein HO-1, weakened cellular antioxidant capacity, and increased radiosensitivity of NSCLC cells. These findings suggest that targeting LNC EBLN3P could be a promising strategy for developing novel radiosensitizers in the context of conventional radiotherapy for NSCLC.
Collapse
Affiliation(s)
- Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shanghai Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiangyu Yan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yusheng Jin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lu Liu
- Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Shao Z, Lee BJ, Zhang H, Lin X, Li C, Jiang W, Chirathivat N, Gershik S, Shen MM, Baer R, Zha S. Inactive PARP1 causes embryonic lethality and genome instability in a dominant-negative manner. Proc Natl Acad Sci U S A 2023; 120:e2301972120. [PMID: 37487079 PMCID: PMC10401025 DOI: 10.1073/pnas.2301972120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
PARP1 (poly-ADP ribose polymerase 1) is recruited and activated by DNA strand breaks, catalyzing the generation of poly-ADP-ribose (PAR) chains from NAD+. PAR relaxes chromatin and recruits other DNA repair factors, including XRCC1 and DNA Ligase 3, to maintain genomic stability. Here we show that, in contrast to the normal development of Parp1-null mice, heterozygous expression of catalytically inactive Parp1 (E988A, Parp1+/A) acts in a dominant-negative manner to disrupt murine embryogenesis. As such, all the surviving F1 Parp1+/A mice are chimeras with mixed Parp1+/AN (neoR retention) cells that act similarly to Parp1+/-. Pure F2 Parp1+/A embryos were found at Mendelian ratios at the E3.5 blastocyst stage but died before E9.5. Compared to Parp1-/- cells, genotype and expression-validated pure Parp1+/A cells retain significant ADP-ribosylation and PARylation activities but accumulate markedly higher levels of sister chromatid exchange and mitotic bridges. Despite proficiency for homologous recombination and nonhomologous end-joining measured by reporter assays and supported by normal lymphocyte and germ cell development, Parp1+/A cells are hypersensitive to base damages, radiation, and Topoisomerase I and II inhibition. The sensitivity of Parp1+/A cells to base damages and Topo inhibitors exceed Parp1-/- controls. The findings show that the enzymatically inactive PARP1 dominant negatively blocks DNA repair in selective pathways beyond wild-type PARP1 and establishes a crucial physiological difference between PARP1 inactivation vs. deletion. As a result, the expression of enzymatically inactive PARP1 from one allele is sufficient to abrogate murine embryonic development, providing a mechanism for the on-target side effect of PARP inhibitors used for cancer therapy.
Collapse
Affiliation(s)
- Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Brian J. Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Hanwen Zhang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Chen Li
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Napon Chirathivat
- Department of Medicine, Columbia University Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Medical Center, New York, NY10032
- Department of Urology, Columbia University Medical Center, New York, NY10032
- Department of Systems Biology, Columbia University Medical Center, New York, NY10032
| | - Steven Gershik
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Michael M. Shen
- Department of Medicine, Columbia University Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Medical Center, New York, NY10032
- Department of Urology, Columbia University Medical Center, New York, NY10032
- Department of Systems Biology, Columbia University Medical Center, New York, NY10032
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| |
Collapse
|
9
|
Nesovic Ostojic J, Zivotic M, Kovacevic S, Ivanov M, Brkic P, Mihailovic-Stanojevic N, Karanovic D, Vajic UJ, Miloradovic Z, Jovovic D, Radojevic Skodric S. Immunohistochemical Pattern of Histone H2A Variant Expression in an Experimental Model of Ischemia-Reperfusion-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:ijms24098085. [PMID: 37175793 PMCID: PMC10179385 DOI: 10.3390/ijms24098085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is a frequent cause of AKI, resulting in vasoconstriction, cellular dysfunction, inflammation and the induction of oxidative stress. DNA damage, including physical DNA strand breaks, is also a potential consequence of renal IRI. The histone H2A variants, primary H2AX and H2AZ participate in DNA damage response pathways to promote genome stability. The aim of this study was to evaluate the immunohistochemical pattern of histone H2A variants' (H2AX, γH2AX(S139), H2AXY142ph and H2AZ) expression in an experimental model of ischemia-reperfusion-induced acute kidney injury in spontaneously hypertensive rats. Comparing the immunohistochemical nuclear expression of γH2AX(S139) and H2AXY142ph in AKI, we observed that there is an inverse ratio of these two histone H2AX variants. If we follow different regions from the subcapsular structures to the medulla, there is an increasing extent gradient in the nuclear expression of H2AXY142ph, accompanied by a decreasing nuclear expression of γH2AX. In addition, we observed that different structures dominated when γH2AX and H2AXY142ph expression levels were compared. γH2AX was expressed only in the proximal tubule, with the exception of when they were dilated. In the medulla, H2AXY142ph is predominantly expressed in the loop of Henle and the collecting ducts. Our results show moderate sporadic nuclear H2AZ expression mainly in the cells of the distal tubules and the collecting ducts that were surrounded by dilated tubules with PAS (periodic acid-Schiff stain)-positive casts. These findings may indicate the degree of DNA damage, followed by postischemic AKI, with potential clinical and prognostic implications regarding this condition.
Collapse
Affiliation(s)
- Jelena Nesovic Ostojic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanjin Kovacevic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Ivanov
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Predrag Brkic
- Department of Medical Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nevena Mihailovic-Stanojevic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Karanovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Una Jovana Vajic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Miloradovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Djurdjica Jovovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | | |
Collapse
|
10
|
Oberdoerffer P, Miller KM. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Semin Cell Dev Biol 2023; 135:59-72. [PMID: 35331626 PMCID: PMC9489817 DOI: 10.1016/j.semcdb.2022.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.
Collapse
Affiliation(s)
- Philipp Oberdoerffer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Sible E, Attaway M, Fiorica G, Michel G, Chaudhuri J, Vuong BQ. Ataxia Telangiectasia Mutated and MSH2 Control Blunt DNA End Joining in Ig Class Switch Recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:369-376. [PMID: 36603026 PMCID: PMC9915862 DOI: 10.4049/jimmunol.2200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Class-switch recombination (CSR) produces secondary Ig isotypes and requires activation-induced cytidine deaminase (AID)-dependent DNA deamination of intronic switch regions within the IgH (Igh) gene locus. Noncanonical repair of deaminated DNA by mismatch repair (MMR) or base excision repair (BER) creates DNA breaks that permit recombination between distal switch regions. Ataxia telangiectasia mutated (ATM)-dependent phosphorylation of AID at serine 38 (pS38-AID) promotes its interaction with apurinic/apyrimidinic endonuclease 1 (APE1), a BER protein, suggesting that ATM regulates CSR through BER. However, pS38-AID may also function in MMR during CSR, although the mechanism remains unknown. To examine whether ATM modulates BER- and/or MMR-dependent CSR, Atm-/- mice were bred to mice deficient for the MMR gene mutS homolog 2 (Msh2). Surprisingly, the predicted Mendelian frequencies of Atm-/-Msh2-/- adult mice were not obtained. To generate ATM and MSH2-deficient B cells, Atm was conditionally deleted on an Msh2-/- background using a floxed ATM allele (Atmf) and B cell-specific Cre recombinase expression (CD23-cre) to produce a deleted ATM allele (AtmD). As compared with AtmD/D and Msh2-/- mice and B cells, AtmD/DMsh2-/- mice and B cells display a reduced CSR phenotype. Interestingly, Sμ-Sγ1 junctions from AtmD/DMsh2-/- B cells that were induced to switch to IgG1 in vitro showed a significant loss of blunt end joins and an increase in insertions as compared with wild-type, AtmD/D, or Msh2-/- B cells. These data indicate that the absence of both ATM and MSH2 blocks nonhomologous end joining, leading to inefficient CSR. We propose a model whereby ATM and MSH2 function cooperatively to regulate end joining during CSR through pS38-AID.
Collapse
Affiliation(s)
- Emily Sible
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Mary Attaway
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Giuseppe Fiorica
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Genesis Michel
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | | | - Bao Q. Vuong
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| |
Collapse
|
12
|
Kim D, Park G, Huuhtanen J, Ghimire B, Rajala H, Moriggl R, Chan WC, Kankainen M, Myllymäki M, Mustjoki S. STAT3 activation in large granular lymphocyte leukemia is associated with cytokine signaling and DNA hypermethylation. Leukemia 2021; 35:3430-3443. [PMID: 34075200 PMCID: PMC8632689 DOI: 10.1038/s41375-021-01296-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Large granular lymphocyte leukemia (LGLL) is characterized by somatic gain-of-function STAT3 mutations. However, the functional effects of STAT3 mutations on primary LGLL cells have not been studied in detail. In this study, we show that CD8+ T cells isolated from STAT3 mutated LGLL patients have high protein levels of epigenetic regulators, such as DNMT1, and are characterized by global hypermethylation. Correspondingly, treatment of healthy CD8+ T cells with IL-6, IL-15, and/or MCP-1 cytokines resulted in STAT3 activation, increased DNMT1, EZH2, c-MYC, l-MYC, MAX, and NFκB levels, increased DNA methylation, and increased oxidative stress. Similar results were discovered in KAI3 NK cells overexpressing gain-of-function STAT3Y640F and STAT3G618R mutants compared to KAI3 NK cells overexpressing STAT3WT. Our results also confirm that STAT3 forms a direct complex with DNMT1, EZH2, and HDAC1. In STAT3 mutated LGLL cells, DNA methyltransferase (DNMT) inhibitor azacitidine abrogated the activation of STAT3 via restored SHP1 expression. In conclusion, STAT3 mutations cause DNA hypermethylation resulting in sensitivity to DNMT inhibitors, which could be considered as a novel treatment option for LGLL patients with resistance to standard treatments.
Collapse
Affiliation(s)
- Daehong Kim
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Giljun Park
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Hanna Rajala
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Mikko Myllymäki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
13
|
Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol 2021; 22:796-814. [PMID: 34429537 DOI: 10.1038/s41580-021-00394-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
Collapse
|
14
|
Carver A, Zhang X. Rad51 filament dynamics and its antagonistic modulators. Semin Cell Dev Biol 2021; 113:3-13. [PMID: 32631783 DOI: 10.1016/j.semcdb.2020.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023]
Abstract
Rad51 recombinase is the central player in homologous recombination, the faithful repair pathway for double-strand breaks and key event during meiosis. Rad51 forms nucleoprotein filaments on single-stranded DNA, exposed by a double-strand break. These filaments are responsible for homology search and strand invasion, which lead to homology-directed repair. Due to its central roles in DNA repair and genome stability, Rad51 is modulated by multiple factors and post-translational modifications. In this review, we summarize our current understanding of the dynamics of Rad51 filaments, the roles of other factors and their modes of action in modulating key stages of Rad51 filaments: formation, stability and disassembly.
Collapse
Affiliation(s)
- Alexander Carver
- Section of Structural Biology, Department of Infectious Diseases, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Diseases, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
15
|
Dereli I, Stanzione M, Olmeda F, Papanikos F, Baumann M, Demir S, Carofiglio F, Lange J, de Massy B, Baarends WM, Turner J, Rulands S, Tóth A. Four-pronged negative feedback of DSB machinery in meiotic DNA-break control in mice. Nucleic Acids Res 2021; 49:2609-2628. [PMID: 33619545 PMCID: PMC7969012 DOI: 10.1093/nar/gkab082] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
In most taxa, halving of chromosome numbers during meiosis requires that homologous chromosomes (homologues) pair and form crossovers. Crossovers emerge from the recombination-mediated repair of programmed DNA double-strand breaks (DSBs). DSBs are generated by SPO11, whose activity requires auxiliary protein complexes, called pre-DSB recombinosomes. To elucidate the spatiotemporal control of the DSB machinery, we focused on an essential SPO11 auxiliary protein, IHO1, which serves as the main anchor for pre-DSB recombinosomes on chromosome cores, called axes. We discovered that DSBs restrict the DSB machinery by at least four distinct pathways in mice. Firstly, by activating the DNA damage response (DDR) kinase ATM, DSBs restrict pre-DSB recombinosome numbers without affecting IHO1. Secondly, in their vicinity, DSBs trigger IHO1 depletion mainly by another DDR kinase, ATR. Thirdly, DSBs enable homologue synapsis, which promotes the depletion of IHO1 and pre-DSB recombinosomes from synapsed axes. Finally, DSBs and three DDR kinases, ATM, ATR and PRKDC, enable stage-specific depletion of IHO1 from all axes. We hypothesize that these four negative feedback pathways protect genome integrity by ensuring that DSBs form without excess, are well-distributed, and are restricted to genomic locations and prophase stages where DSBs are functional for promoting homologue pairing and crossover formation.
Collapse
Affiliation(s)
- Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Fabrizio Olmeda
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Marek Baumann
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Sevgican Demir
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Fabrizia Carofiglio
- Department of Developmental Biology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bernard de Massy
- Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, 34396 Montpellier cedex 5, France
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - James Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Pfotenhauer Strasse 108, 01307 Dresden, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| |
Collapse
|
16
|
Saunders RA, Michniacki TF, Hames C, Moale HA, Wilke C, Kuo ME, Nguyen J, Hartlerode AJ, Moore BB, Sekiguchi JM. Elevated inflammatory responses and targeted therapeutic intervention in a preclinical mouse model of ataxia-telangiectasia lung disease. Sci Rep 2021; 11:4268. [PMID: 33608602 PMCID: PMC7895952 DOI: 10.1038/s41598-021-83531-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive, multisystem disorder characterized by cerebellar degeneration, cancer predisposition, and immune system defects. A major cause of mortality in A-T patients is severe pulmonary disease; however, the underlying causes of the lung complications are poorly understood, and there are currently no curative therapeutic interventions. In this study, we examined the lung phenotypes caused by ATM-deficient immune cells using a mouse model of A-T pulmonary disease. In response to acute lung injury, ATM-deficiency causes decreased survival, reduced blood oxygen saturation, elevated neutrophil recruitment, exaggerated and prolonged inflammatory responses and excessive lung injury compared to controls. We found that ATM null bone marrow adoptively transferred to WT recipients induces similar phenotypes that culminate in impaired lung function. Moreover, we demonstrated that activated ATM-deficient macrophages exhibit significantly elevated production of harmful reactive oxygen and nitrogen species and pro-inflammatory cytokines. These findings indicate that ATM-deficient immune cells play major roles in causing the lung pathologies in A-T. Based on these results, we examined the impact of inhibiting the aberrant inflammatory responses caused by ATM-deficiency with reparixin, a CXCR1/CXCR2 chemokine receptor antagonist. We demonstrated that reparixin treatment reduces neutrophil recruitment, edema and tissue damage in ATM mutant lungs. Thus, our findings indicate that targeted inhibition of CXCR1/CXCR2 attenuates pulmonary phenotypes caused by ATM-deficiency and suggest that this treatment approach represents a viable therapeutic strategy for A-T lung disease.
Collapse
Affiliation(s)
- Rudel A Saunders
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA
| | - Thomas F Michniacki
- Department of Pediatric Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Courtney Hames
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hilary A Moale
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA
| | - Carol Wilke
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Molly E Kuo
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Johnathan Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Bethany B Moore
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - JoAnn M Sekiguchi
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Milanovic M, Shao Z, Estes VM, Wang XS, Menolfi D, Lin X, Lee BJ, Xu J, Cupo OM, Wang D, Zha S. FATC Domain Deletion Compromises ATM Protein Stability, Blocks Lymphocyte Development, and Promotes Lymphomagenesis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1228-1239. [PMID: 33536256 DOI: 10.4049/jimmunol.2000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a master regulator of the DNA damage response, and loss of ATM leads to primary immunodeficiency and greatly increased risk for lymphoid malignancies. The FATC domain is conserved in phosphatidylinositol-3-kinase-related protein kinases (PIKKs). Truncation mutation in the FATC domain (R3047X) selectively compromised reactive oxygen species-induced ATM activation in cell-free assays. In this article, we show that in mouse models, knock-in ATM-R3057X mutation (Atm RX , corresponding to R3047X in human ATM) severely compromises ATM protein stability and causes T cell developmental defects, B cell Ig class-switch recombination defects, and infertility resembling ATM-null. The residual ATM-R3057X protein retains minimal yet functional measurable DNA damage-induced checkpoint activation and significantly delays lymphomagenesis in Atm RX/RX mice compared with Atm -/- . Together, these results support a physiological role of the FATC domain in ATM protein stability and show that the presence of minimal residual ATM-R3057X protein can prevent growth retardation and delay tumorigenesis without restoring lymphocyte development and fertility.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Olivia M Cupo
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; .,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
18
|
Milanovic M, Sprinzen L, Menolfi D, Lee JH, Yamamoto K, Li Y, Lee BJ, Xu J, Estes VM, Wang D, Mckinnon PJ, Paull TT, Zha S. The Cancer-Associated ATM R3008H Mutation Reveals the Link between ATM Activation and Its Exchange. Cancer Res 2021; 81:426-437. [PMID: 33239428 PMCID: PMC8137556 DOI: 10.1158/0008-5472.can-20-2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022]
Abstract
ATM kinase is a tumor suppressor and a master regulator of the DNA damage response. Most cancer-associated alterations to ATM are missense mutations at the PI3-kinase regulatory domain (PRD) or the kinase domain. Expression of kinase-dead (KD) ATM protein solely accelerates lymphomagenesis beyond ATM loss. To understand how PRD suppresses lymphomagenesis, we introduced the cancer-associated PRD mutation R3008H (R3016 in mouse) into mice. R3008H abrogated DNA damage- and oxidative stress-induced activation of ATM without consistently affecting ATM protein stability and recruitment. In contrast to the early embryonic lethality of AtmKD/KD mice, AtmR3016H (AtmR/R ) mice were viable, immunodeficient, and displayed spontaneous craniofacial abnormalities and delayed lymphomagenesis compared with Atm-/- controls. Mechanistically, R3008H rescued the tardy exchange of ATM-KD at DNA damage foci, indicating that PRD coordinates ATM activation with its exchange at DNA-breaks. Taken together, our results reveal a unique tumorigenesis profile for PRD mutations that is distinct from null or KD mutations. SIGNIFICANT: This study functionally characterizes the most common ATM missense mutation R3008H in cancer and identifies a unique role of PI3-kinase regulatory domain in ATM activation.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Lisa Sprinzen
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Demis Menolfi
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Ji-Hoon Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Kenta Yamamoto
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Yang Li
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brian J Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Verna M Estes
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York.
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York City, New York
| |
Collapse
|
19
|
Roger E, Gout J, Arnold F, Beutel AK, Müller M, Abaei A, Barth TFE, Rasche V, Seufferlein T, Perkhofer L, Kleger A. Maintenance Therapy for ATM-Deficient Pancreatic Cancer by Multiple DNA Damage Response Interferences after Platinum-Based Chemotherapy. Cells 2020; 9:cells9092110. [PMID: 32948057 PMCID: PMC7563330 DOI: 10.3390/cells9092110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Personalized medicine in treating pancreatic ductal adenocarcinoma (PDAC) is still in its infancy, albeit PDAC-related deaths are projected to rise over the next decade. Only recently, maintenance therapy with the PARP inhibitor olaparib showed improved progression-free survival in germline BRCA1/2-mutated PDAC patients after platinum-based induction for the first time. Transferability of such a concept to other DNA damage response (DDR) genes remains unclear. Here, we conducted a placebo-controlled, three-armed preclinical trial to evaluate the efficacy of multi-DDR interference (mDDRi) as maintenance therapy vs. continuous FOLFIRINOX treatment, implemented with orthotopically transplanted ATM-deficient PDAC cell lines. Kaplan–Meier analysis, cross-sectional imaging, histology, and in vitro analysis served as analytical readouts. Median overall survival was significantly longer in the mDDRi maintenance arm compared to the maintained FOLFIRINOX treatment. This survival benefit was mirrored in the highest DNA-damage load, accompanied by superior disease control and reduced metastatic burden. In vitro analysis suggests FOLFIRINOX-driven selection of invasive subclones, erased by subsequent mDDRi treatment. Collectively, this preclinical trial substantiates mDDRi in a maintenance setting as a novel therapeutic option and extends the concept to non-germline BRCA1/2-mutant PDAC.
Collapse
Affiliation(s)
- Elodie Roger
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Johann Gout
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Frank Arnold
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Alica K. Beutel
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Martin Müller
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Alireza Abaei
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany; (A.A.); (V.R.)
| | - Thomas F. E. Barth
- Institute of Pathology, University Medical Center Ulm, 89081 Ulm, Germany;
| | - Volker Rasche
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany; (A.A.); (V.R.)
| | - Thomas Seufferlein
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Lukas Perkhofer
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
- Correspondence: (L.P.); (A.K.); Tel.: +49-731-500 44769 (L.P.); +49-731-500 44728 (A.K.)
| | - Alexander Kleger
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
- Correspondence: (L.P.); (A.K.); Tel.: +49-731-500 44769 (L.P.); +49-731-500 44728 (A.K.)
| |
Collapse
|
20
|
Yang D, Sun Y, Chen J, Zhang Y, Fan S, Huang M, Xie X, Cai Y, Shang Y, Gui T, Sun L, Hu J, Dong J, Yeap LS, Wang X, Xiao W, Meng FL. REV7 is required for processing AID initiated DNA lesions in activated B cells. Nat Commun 2020; 11:2812. [PMID: 32499490 PMCID: PMC7272641 DOI: 10.1038/s41467-020-16632-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/13/2020] [Indexed: 01/10/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates both antibody class switch recombination (CSR) and somatic hypermutation (SHM) in antibody diversification. DNA double-strand break response (DSBR) factors promote rearrangement in CSR, while translesion synthesis (TLS) polymerases generate mutations in SHM. REV7, a component of TLS polymerase zeta, is also a downstream effector of 53BP1-RIF1 DSBR pathway. Here, we study the multi-functions of REV7 and find that REV7 is required for the B cell survival upon AID-deamination, which is independent of its roles in DSBR, G2/M transition or REV1-mediated TLS. The cell death in REV7-deficient activated B cells can be fully rescued by AID-deficiency in vivo. We further identify that REV7-depedent TLS across UNG-processed apurinic/apyrimidinic sites is required for cell survival upon AID/APOBEC deamination. This study dissects the multiple roles of Rev7 in antibody diversification, and discovers that TLS is not only required for sequence diversification but also B cell survival upon AID-initiated lesions. REV7 has emerged as a critical regulator of DNA double-strand breaks repair. Here, the authors show that REV7 is crucial for both antibody class switch recombination and somatic hypermutation in activated B cells, in addition to their survival upon AID-deamination.
Collapse
Affiliation(s)
- Dingpeng Yang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Sun
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jingjing Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ying Zhang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuangshuang Fan
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Huang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Xie
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanni Cai
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yafang Shang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tuantuan Gui
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liming Sun
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Genome Editing Research Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Leng-Siew Yeap
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Beck C, Castañeda-Zegarra S, Huse C, Xing M, Oksenych V. Mediator of DNA Damage Checkpoint Protein 1 Facilitates V(D)J Recombination in Cells Lacking DNA Repair Factor XLF. Biomolecules 2019; 10:biom10010060. [PMID: 31905950 PMCID: PMC7023129 DOI: 10.3390/biom10010060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) trigger the Ataxia telangiectasia mutated (ATM)-dependent DNA damage response (DDR), which consists of histone H2AX, MDC1, RNF168, 53BP1, PTIP, RIF1, Rev7, and Shieldin. Early stages of B and T lymphocyte development are dependent on recombination activating gene (RAG)-induced DSBs that form the basis for further V(D)J recombination. Non-homologous end joining (NHEJ) pathway factors recognize, process, and ligate DSBs. Based on numerous loss-of-function studies, DDR factors were thought to be dispensable for the V(D)J recombination. In particular, mice lacking Mediator of DNA Damage Checkpoint Protein 1 (MDC1) possessed nearly wild-type levels of mature B and T lymphocytes in the spleen, thymus, and bone marrow. NHEJ factor XRCC4-like factor (XLF)/Cernunnos is functionally redundant with ATM, histone H2AX, and p53-binding protein 1 (53BP1) during the lymphocyte development in mice. Here, we genetically inactivated MDC1, XLF, or both MDC1 and XLF in murine vAbl pro-B cell lines and, using chromosomally integrated substrates, demonstrated that MDC1 stimulates the V(D)J recombination in cells lacking XLF. Moreover, combined inactivation of MDC1 and XLF in mice resulted in synthetic lethality. Together, these findings suggest that MDC1 and XLF are functionally redundant during the mouse development, in general, and the V(D)J recombination, in particular.
Collapse
Affiliation(s)
- Carole Beck
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway
| | - Sergio Castañeda-Zegarra
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway
| | - Camilla Huse
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway
| | - Mengtan Xing
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway
- Department of Biosciences and Nutrition (BioNuT), Karolinska Institutet, 14183 Huddinge, Sweden
- Correspondence:
| |
Collapse
|
22
|
Warren R, Domm W, Yee M, Campbell A, Malone J, Wright T, Mayer-Pröschel M, O'Reilly MA. Ataxia-telangiectasia mutated is required for the development of protective immune memory after influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2019; 317:L591-L601. [PMID: 31509427 PMCID: PMC6879906 DOI: 10.1152/ajplung.00031.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 01/26/2023] Open
Abstract
Ataxia-telangiectasia (A-T), caused by mutations in the A-T mutated (ATM) gene, is a neurodegenerative disorder affecting ∼1 in 40,000-100,000 children. Recurrent respiratory infections are a common and challenging comorbidity, often leading to the development of bronchiectasis in individuals with A-T. The role of ATM in development of immune memory in response to recurrent respiratory viral infections is not well understood. Here, we infect wild-type (WT) and Atm-null mice with influenza A virus (IAV; HKx31, H3N2) and interrogate the immune memory with secondary infections designed to challenge the B cell memory response with homologous infection (HKx31) and the T cell memory response with heterologous infection (PR8, H1N1). Although Atm-null mice survived primary and secondary infections, they lost more weight than WT mice during secondary infections. This enhanced morbidity to secondary infections was not attributed to failure to effectively clear virus during the primary IAV infection. Instead, Atm-null mice developed persistent peribronchial inflammation, characterized in part by clusters of B220+ B cells. Additionally, levels of select serum antibodies to hemagglutinin-specific IAV were significantly lower in Atm-null than WT mice. These findings reveal that Atm is required to mount a proper memory response to a primary IAV infection, implying that vaccination of children with A-T by itself may not be sufficiently protective against respiratory viral infections.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - William Domm
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Andrew Campbell
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Jane Malone
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Terry Wright
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
23
|
Foster H, Ruiz EJ, Moore C, Stamp GWH, Nye EL, Li N, Pan Y, He Y, Downward J, Behrens A. ATMIN Is a Tumor Suppressor Gene in Lung Adenocarcinoma. Cancer Res 2019; 79:5159-5166. [PMID: 31481498 PMCID: PMC6797498 DOI: 10.1158/0008-5472.can-19-0647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/09/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
Tumor cells proliferate rapidly and thus are frequently subjected to replication stress and the risk of incomplete duplication of the genome. Fragile sites are replicated late, making them more vulnerable to damage when DNA replication fails to complete. Therefore, genomic alterations at fragile sites are commonly observed in tumors. FRA16D is one of the most common fragile sites in lung cancer, however, the nature of the tumor suppressor genes affected by FRA16D alterations has been controversial. Here, we show that the ATMIN gene, which encodes a cofactor required for activation of ATM kinase by replication stress, is located close to FRA16D and is commonly lost in lung adenocarcinoma. Low ATMIN expression was frequently observed in human lung adenocarcinoma tumors and was associated with reduced patient survival, suggesting that ATMIN functions as a tumor suppressor in lung adenocarcinoma. Heterozygous Atmin deletion significantly increased tumor cell proliferation, tumor burden, and tumor grade in the LSL-KRasG12D; Trp53 F/F (KP) mouse model of lung adenocarcinoma, identifying ATMIN as a haploinsufficient tumor suppressor. ATMIN-deficient KP lung tumor cells showed increased survival in response to replication stress and consequently accumulated DNA damage. Thus, our data identify ATMIN as a key gene affected by genomic deletions at FRA16D in lung adenocarcinoma. SIGNIFICANCE: These findings identify ATMIN as a tumor suppressor in LUAD; fragility at chr16q23 correlates with loss of ATMIN in human LUAD and deletion of Atmin increases tumor burden in a LUAD mouse model.
Collapse
Affiliation(s)
- Hanna Foster
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - E Josue Ruiz
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christopher Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gordon W H Stamp
- Experimental Histopathology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Emma L Nye
- Experimental Histopathology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ningning Li
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.
- School of Medicine, King's College London, Guy's Campus, London, United Kingdom
| |
Collapse
|
24
|
Nicolas L, Cols M, Smolkin R, Fernandez KC, Yewdell WT, Yen WF, Zha S, Vuong BQ, Chaudhuri J. Cutting Edge: ATM Influences Germinal Center Integrity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3137-3142. [PMID: 31028119 PMCID: PMC6529280 DOI: 10.4049/jimmunol.1801033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/09/2019] [Indexed: 01/21/2023]
Abstract
The DNA damage response protein ATM has long been known to influence class switch recombination in ex vivo-cultured B cells. However, an assessment of B cell-intrinsic requirement of ATM in humoral responses in vivo was confounded by the fact that its germline deletion affects T cell function, and B:T cell interactions are critical for in vivo immune responses. In this study, we demonstrate that B cell-specific deletion of ATM in mice leads to reduction in germinal center (GC) frequency and size in response to immunization. We find that loss of ATM induces apoptosis of GC B cells, likely due to unresolved DNA lesions in cells attempting to undergo class-switch recombination. Accordingly, suboptimal GC responses in ATM-deficient animals are characterized by decreased titers of class-switched Abs and decreased rates of somatic hypermutation. These results unmask the critical B cell-intrinsic role of ATM in maintaining an optimal GC response following immunization.
Collapse
Affiliation(s)
- Laura Nicolas
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Montserrat Cols
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Ryan Smolkin
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Keith C Fernandez
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| | - William T Yewdell
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Wei-Feng Yen
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pediatrics, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; and
| | - Bao Q Vuong
- Department of Biology, City College of New York, City University of New York, New York, NY 10031
| | - Jayanta Chaudhuri
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
25
|
Jiang W, Estes VM, Wang XS, Shao Z, Lee BJ, Lin X, Crowe JL, Zha S. Phosphorylation at S2053 in Murine (S2056 in Human) DNA-PKcs Is Dispensable for Lymphocyte Development and Class Switch Recombination. THE JOURNAL OF IMMUNOLOGY 2019; 203:178-187. [PMID: 31101667 DOI: 10.4049/jimmunol.1801657] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/22/2019] [Indexed: 11/19/2022]
Abstract
The classical nonhomologous end-joining (cNHEJ) pathway is a major DNA double-strand break repair pathway in mammalian cells and is required for lymphocyte development and maturation. The DNA-dependent protein kinase (DNA-PK) is a cNHEJ factor that encompasses the Ku70-Ku80 (KU) heterodimer and the large DNA-PK catalytic subunit (DNA-PKcs). In mouse models, loss of DNA-PKcs (DNA-PKcs-/- ) abrogates end processing (e.g., hairpin opening), but not end-ligation, whereas expression of the kinase-dead DNA-PKcs protein (DNA-PKcsKD/KD ) abrogates end-ligation, suggesting a kinase-dependent structural function of DNA-PKcs during cNHEJ. Lymphocyte development is abolished in DNA-PKcs-/- and DNA-PKcsKD/KD mice because of the requirement for both hairpin opening and end-ligation during V(D)J recombination. DNA-PKcs itself is the best-characterized substrate of DNA-PK. The S2056 cluster is the best-characterized autophosphorylation site in human DNA-PKcs. In this study, we show that radiation can induce phosphorylation of murine DNA-PKcs at the corresponding S2053. We also generated knockin mouse models with alanine- (DNA-PKcsPQR) or phospho-mimetic aspartate (DNA-PKcsSD) substitutions at the S2053 cluster. Despite moderate radiation sensitivity in the DNA-PKcsPQR/PQR fibroblasts and lymphocytes, both DNA-PKcsPQR/PQR and DNA-PKcsSD/SD mice retained normal kinase activity and underwent efficient V(D)J recombination and class switch recombination, indicating that phosphorylation at the S2053 cluster of murine DNA-PKcs (corresponding to S2056 of human DNA-PKcs), although important for radiation resistance, is dispensable for the end-ligation and hairpin-opening function of DNA-PK essential for lymphocyte development.
Collapse
Affiliation(s)
- Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jennifer L Crowe
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; .,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
26
|
Torok JA, Oh P, Castle KD, Reinsvold M, Ma Y, Luo L, Lee CL, Kirsch DG. Deletion of Atm in Tumor but not Endothelial Cells Improves Radiation Response in a Primary Mouse Model of Lung Adenocarcinoma. Cancer Res 2019; 79:773-782. [PMID: 30315114 PMCID: PMC6377832 DOI: 10.1158/0008-5472.can-17-3103] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 11/16/2022]
Abstract
Stereotactic body radiotherapy is utilized to treat lung cancer. The mechanism of tumor response to high-dose radiotherapy (HDRT) is controversial, with competing hypotheses of increased direct tumor cell killing versus indirect effects on stroma including endothelial cells. Here we used dual recombinase technology in a primary murine lung cancer model to test whether tumor cells or endothelial cells are critical HDRT targets. Lenti-Cre deleted one or two copies of ataxia-telangiectasia mutated gene (Atm; KPAFL/+ or KPAFL/FL), whereas adeno-FlpO-infected mice expressed Cre in endothelial cells to delete one or both copies of Atm (KPVAFL/+ or KPVAFL/FL) to modify tumor cell or endothelial cell radiosensitivity, respectively. Deletion of Atm in either tumor cells or endothelial cells had no impact on tumor growth in the absence of radiation. Despite increased endothelial cell death in KPVAFL/FL mice following irradiation, tumor growth delay was not significantly increased. In contrast, a prolonged tumor growth delay was apparent in KPAFL/FL mice. Primary tumor cell lines lacking Atm expression also demonstrated enhanced radiosensitivity as determined via a clonogenic survival assay. These findings indicate that tumor cells, rather than endothelial cells, are critical targets of HDRT in primary murine lung cancer. SIGNIFICANCE: These findings establish radiosensitizing tumor cells rather than endothelial cells as the primary mechanism of tumor response to high-dose radiotherapy, supporting efforts to maximize local control by radiosensitizing tumors cells.See related commentary by Hallahan, p. 704.
Collapse
Affiliation(s)
- Jordan A Torok
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Patrick Oh
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Katherine D Castle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Michael Reinsvold
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
27
|
Yin S, Gambe RG, Sun J, Martinez AZ, Cartun ZJ, Regis FFD, Wan Y, Fan J, Brooks AN, Herman SEM, Ten Hacken E, Taylor-Weiner A, Rassenti LZ, Ghia EM, Kipps TJ, Obeng EA, Cibulskis CL, Neuberg D, Campagna DR, Fleming MD, Ebert BL, Wiestner A, Leshchiner I, DeCaprio JA, Getz G, Reed R, Carrasco RD, Wu CJ, Wang L. A Murine Model of Chronic Lymphocytic Leukemia Based on B Cell-Restricted Expression of Sf3b1 Mutation and Atm Deletion. Cancer Cell 2019; 35:283-296.e5. [PMID: 30712845 PMCID: PMC6372356 DOI: 10.1016/j.ccell.2018.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/24/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022]
Abstract
SF3B1 is recurrently mutated in chronic lymphocytic leukemia (CLL), but its role in the pathogenesis of CLL remains elusive. Here, we show that conditional expression of Sf3b1-K700E mutation in mouse B cells disrupts pre-mRNA splicing, alters cell development, and induces a state of cellular senescence. Combination with Atm deletion leads to the overcoming of cellular senescence and the development of CLL-like disease in elderly mice. These CLL-like cells show genome instability and dysregulation of multiple CLL-associated cellular processes, including deregulated B cell receptor signaling, which we also identified in human CLL cases. Notably, human CLLs harboring SF3B1 mutations exhibit altered response to BTK inhibition. Our murine model of CLL thus provides insights into human CLL disease mechanisms and treatment.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Alternative Splicing
- Animals
- Antineoplastic Agents/pharmacology
- Ataxia Telangiectasia Mutated Proteins/deficiency
- Ataxia Telangiectasia Mutated Proteins/genetics
- Ataxia Telangiectasia Mutated Proteins/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cellular Senescence/drug effects
- DNA Damage
- Gene Deletion
- Genetic Predisposition to Disease
- Genomic Instability
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mutation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Phenotype
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Piperidines
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- RNA Splicing Factors/genetics
- RNA Splicing Factors/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Shanye Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Rutendo G Gambe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jing Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Zachary J Cartun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fara Faye D Regis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Youzhong Wan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jean Fan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Sarah E M Herman
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisa Ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Laura Z Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emanuela M Ghia
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | - Donna Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dean R Campagna
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ruben D Carrasco
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Lili Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, USA.
| |
Collapse
|
28
|
Tal E, Alfo M, Zha S, Barzilai A, De Zeeuw CI, Ziv Y, Shiloh Y. Inactive Atm abrogates DSB repair in mouse cerebellum more than does Atm loss, without causing a neurological phenotype. DNA Repair (Amst) 2018; 72:10-17. [PMID: 30348496 PMCID: PMC7985968 DOI: 10.1016/j.dnarep.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The genome instability syndrome, ataxia-telangiectasia (A-T) is caused by null mutations in the ATM gene, that lead to complete loss or inactivation of the gene's product, the ATM protein kinase. ATM is the primary mobilizer of the cellular response to DNA double-strand breaks (DSBs) - a broad signaling network in which many components are ATM targets. The major clinical feature of A-T is cerebellar atrophy, characterized by relentless loss of Purkinje and granule cells. In Atm-knockout (Atm-KO) mice, complete loss of Atm leads to a very mild neurological phenotype, suggesting that Atm loss is not sufficient to markedly abrogate cerebellar structure and function in this organism. Expression of inactive ("kinase-dead") Atm (AtmKD) in mice leads to embryonic lethality, raising the question of whether conditional expression of AtmKD in the murine nervous system would lead to a more pronounced neurological phenotype than Atm loss. We generated two mouse strains in which AtmKD was conditionally expressed as the sole Atm species: one in the CNS and one specifically in Purkinje cells. Focusing our analysis on Purkinje cells, the dynamics of DSB readouts indicated that DSB repair was delayed longer in the presence of AtmKD compared to Atm loss. However, both strains exhibited normal life span and displayed no gross cerebellar histological abnormalities or significant neurological phenotype. We conclude that the presence of AtmKD is indeed more harmful to DSB repair than Atm loss, but the murine central nervous system can reasonably tolerate the extent of this DSB repair impairment. Greater pressure needs to be exerted on genome stability to obtain a mouse model that recapitulates the severe A-T neurological phenotype.
Collapse
Affiliation(s)
- Efrat Tal
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Marina Alfo
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, and the Royal Netherlands Academy of Art & Science, Amsterdam, Netherlands
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States.
| |
Collapse
|
29
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
30
|
Li D, Li X, Li G, Meng Y, Jin Y, Shang S, Li Y. Alpinumisoflavone causes DNA damage in Colorectal Cancer Cells via blocking DNA repair mediated by RAD51. Life Sci 2018; 216:259-270. [PMID: 30448264 DOI: 10.1016/j.lfs.2018.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023]
Abstract
AIMS Colorectal Cancer (CRC) accounts for 6.1% incidence and 9.2% mortality worldwide. The current study aimed to investigate the effect of alpinumisoflavone (AIF) on CRC and its possible molecular mechanism. METHODS HCT-116 and SW480 cells were chosen as cell model to study the anti-cancer activity of AIF in vitro experiments. Cells proliferative capacity and clonogenicity were examined by CCK-8 assay and colony formation assay, while cell apoptosis was detected by Hoechst 33258 staining and Flow cytometer. The protein expression levels of related gene were examined by western blotting. Transcriptome analyses were conducted to identify the differentially expressed genes in CRC cells, following AIF treatment. DNA damage was examined by γH2AX foci assay. The anti-cancer effect of AIF in vivo was validated in CRC xenograft model. KEY FINDINGS We found that AIF inhibited CRC cell proliferation and promoted apoptosis in a dose-dependent manner, as well as increased the number of γ-H2AX foci. In addition, microarray analysis showed that the DNA-double strand break (DSB) repair gene RAD51 was aberrantly overexpressed in CRC tissues, and was positively correlated with lymph node metastasis, TNM stage and poor outcomes. Both in vitro and in vivo experiments confirm that AIF treatment significantly decreased RAD51 levels. Knockdown RAD51 could enhance the anti-cancer activity of AIF against CRC, while abrogated by RAD51 overexpression. SIGNIFICANCE These findings suggest that AIF can be regarded as a potential anti-cancer drug and provide new insights into CRC treatment.
Collapse
Affiliation(s)
- Dong Li
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China.
| | - Xiaoyan Li
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| | - Genqu Li
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| | - Yan Meng
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| | - Yanghong Jin
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| | - Shuang Shang
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| | - Yanjie Li
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| |
Collapse
|
31
|
Horwitz E, Krogvold L, Zhitomirsky S, Swisa A, Fischman M, Lax T, Dahan T, Hurvitz N, Weinberg-Corem N, Klochendler A, Powers AC, Brissova M, Jörns A, Lenzen S, Glaser B, Dahl-Jørgensen K, Dor Y. β-Cell DNA Damage Response Promotes Islet Inflammation in Type 1 Diabetes. Diabetes 2018; 67:2305-2318. [PMID: 30150306 PMCID: PMC6198335 DOI: 10.2337/db17-1006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 08/18/2018] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease where pancreatic β-cells are destroyed by islet-infiltrating T cells. Although a role for β-cell defects has been suspected, β-cell abnormalities are difficult to demonstrate. We show a β-cell DNA damage response (DDR), presented by activation of the 53BP1 protein and accumulation of p53, in biopsy and autopsy material from patients with recently diagnosed T1D as well as a rat model of human T1D. The β-cell DDR is more frequent in islets infiltrated by CD45+ immune cells, suggesting a link to islet inflammation. The β-cell toxin streptozotocin (STZ) elicits DDR in islets, both in vivo and ex vivo, and causes elevation of the proinflammatory molecules IL-1β and Cxcl10. β-Cell-specific inactivation of the master DNA repair gene ataxia telangiectasia mutated (ATM) in STZ-treated mice decreases the expression of proinflammatory cytokines in islets and attenuates the development of hyperglycemia. Together, these data suggest that β-cell DDR is an early event in T1D, possibly contributing to autoimmunity.
Collapse
Affiliation(s)
- Elad Horwitz
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Lars Krogvold
- Paediatric Department, Oslo University Hospital HF, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sophia Zhitomirsky
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Avital Swisa
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Maya Fischman
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Tsuria Lax
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Tehila Dahan
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Noa Hurvitz
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Noa Weinberg-Corem
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Experimental Diabetes Research and Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Knut Dahl-Jørgensen
- Paediatric Department, Oslo University Hospital HF, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
- Corresponding author: Yuval Dor, , or Knut Dahl-Jørgensen,
| |
Collapse
|
32
|
Henssen AG, Reed C, Jiang E, Garcia HD, von Stebut J, MacArthur IC, Hundsdoerfer P, Kim JH, de Stanchina E, Kuwahara Y, Hosoi H, Ganem NJ, Dela Cruz F, Kung AL, Schulte JH, Petrini JH, Kentsis A. Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors. Sci Transl Med 2018; 9:9/414/eaam9078. [PMID: 29093183 DOI: 10.1126/scitranslmed.aam9078] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/15/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Despite intense efforts, the cure rates of childhood and adult solid tumors are not satisfactory. Resistance to intensive chemotherapy is common, and targets for molecular therapies are largely undefined. We have found that the majority of childhood solid tumors, including rhabdoid tumors, neuroblastoma, medulloblastoma, and Ewing sarcoma, express an active DNA transposase, PGBD5, that can promote site-specific genomic rearrangements in human cells. Using functional genetic approaches, we discovered that mouse and human cells deficient in nonhomologous end joining (NHEJ) DNA repair cannot tolerate the expression of PGBD5. In a chemical screen of DNA damage signaling inhibitors, we identified AZD6738 as a specific sensitizer of PGBD5-dependent DNA damage and apoptosis. We found that expression of PGBD5, but not its nuclease activity-deficient mutant, was sufficient to induce sensitivity to AZD6738. Depletion of endogenous PGBD5 conferred resistance to AZD6738 in human tumor cells. PGBD5-expressing tumor cells accumulated unrepaired DNA damage in response to AZD6738 treatment and underwent apoptosis in both dividing and G1-phase cells in the absence of immediate DNA replication stress. Accordingly, AZD6738 exhibited nanomolar potency against most neuroblastoma, medulloblastoma, Ewing sarcoma, and rhabdoid tumor cells tested while sparing nontransformed human and mouse embryonic fibroblasts in vitro. Finally, treatment with AZD6738 induced apoptosis and regression of human neuroblastoma and medulloblastoma tumors engrafted in immunodeficient mice in vivo. This effect was potentiated by combined treatment with cisplatin, including substantial antitumor activity against patient-derived primary neuroblastoma xenografts. These findings delineate a therapeutically actionable synthetic dependency induced in PGBD5-expressing solid tumors.
Collapse
Affiliation(s)
- Anton G Henssen
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Berlin Institute of Health, 10178 Berlin, Germany.,Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Cancer Consortium (DKTK), 10117 Berlin, Germany
| | - Casie Reed
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eileen Jiang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jennifer von Stebut
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ian C MacArthur
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patrick Hundsdoerfer
- Berlin Institute of Health, 10178 Berlin, Germany.,Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jun Hyun Kim
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Neil J Ganem
- Section of Hematology and Medical Oncology, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02215, USA
| | - Filemon Dela Cruz
- Department of Pediatrics, Weill Cornell Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Kung
- Department of Pediatrics, Weill Cornell Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Johannes H Schulte
- Berlin Institute of Health, 10178 Berlin, Germany.,Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Cancer Consortium (DKTK), 10117 Berlin, Germany.,Deutsches Krebsforschungszentrum Heidelberg, 69120 Heidelberg, Germany
| | - John H Petrini
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Department of Pediatrics, Weill Cornell Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
33
|
Widger A, Mahadevaiah SK, Lange J, ElInati E, Zohren J, Hirota T, Pacheco S, Maldonado-Linares A, Stanzione M, Ojarikre O, Maciulyte V, de Rooij DG, Tóth A, Roig I, Keeney S, Turner JMA. ATR is a multifunctional regulator of male mouse meiosis. Nat Commun 2018; 9:2621. [PMID: 29976923 PMCID: PMC6033951 DOI: 10.1038/s41467-018-04850-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
Meiotic cells undergo genetic exchange between homologs through programmed DNA double-strand break (DSB) formation, recombination and synapsis. In mice, the DNA damage-regulated phosphatidylinositol-3-kinase-like kinase (PIKK) ATM regulates all of these processes. However, the meiotic functions of the PIKK ATR have remained elusive, because germline-specific depletion of this kinase is challenging. Here we uncover roles for ATR in male mouse prophase I progression. ATR deletion causes chromosome axis fragmentation and germ cell elimination at mid pachynema. This elimination cannot be rescued by deletion of ATM and the third DNA damage-regulated PIKK, PRKDC, consistent with the existence of a PIKK-independent surveillance mechanism in the mammalian germline. ATR is required for synapsis, in a manner genetically dissociable from DSB formation. ATR also regulates loading of recombinases RAD51 and DMC1 to DSBs and recombination focus dynamics on synapsed and asynapsed chromosomes. Our studies reveal ATR as a critical regulator of mouse meiosis.
Collapse
Affiliation(s)
- Alexander Widger
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Shantha K Mahadevaiah
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julian Lange
- Molecular Biology Program, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elias ElInati
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Takayuki Hirota
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sarai Pacheco
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Andros Maldonado-Linares
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Obah Ojarikre
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Valdone Maciulyte
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dirk G de Rooij
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Scott Keeney
- Molecular Biology Program, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - James M A Turner
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
34
|
Histone H2AX deficiency causes neurobehavioral deficits and impaired redox homeostasis. Nat Commun 2018; 9:1526. [PMID: 29670103 PMCID: PMC5906610 DOI: 10.1038/s41467-018-03948-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/14/2018] [Indexed: 12/30/2022] Open
Abstract
ATM drives DNA repair by phosphorylating the histone variant H2AX. While ATM mutations elicit prominent neurobehavioral phenotypes, neural roles for H2AX have been elusive. We report impaired motor learning and balance in H2AX-deficient mice. Mitigation of reactive oxygen species (ROS) with N-acetylcysteine (NAC) reverses the behavioral deficits. Mouse embryonic fibroblasts deficient for H2AX exhibit increased ROS production and failure to activate the antioxidant response pathway controlled by the transcription factor NRF2. The NRF2 targets GCLC and NQO1 are depleted in the striatum of H2AX knockouts, one of the regions most vulnerable to ROS-mediated damage. These findings establish a role for ROS in the behavioral deficits of H2AX knockout mice and reveal a physiologic function of H2AX in mediating influences of oxidative stress on NRF2-transcriptional targets and behavior. H2AX is a histone variant with an essential function in DNA double-strand break repair and genome stability. Here, Weyemi and colleagues show that loss of neuronal H2AX leads to locomotor dysfunction and alteration in oxidative stress response.
Collapse
|
35
|
Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat Commun 2018; 9:697. [PMID: 29449575 PMCID: PMC5814445 DOI: 10.1038/s41467-017-02688-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution. T-cell prolymphocytic leukemia (T-PLL) is a rare malignancy with a poor prognosis. Here, the authors investigate the genomic landscape, gene expression profiles and functional mechanisms in 111 patients, highlighting TCL1 overexpression and ATM aberrations as core lesions which co-operate to impair DNA damage processing.
Collapse
|
36
|
Bohrer RC, Dicks N, Gutierrez K, Duggavathi R, Bordignon V. Double‐strand DNA breaks are mainly repaired by the homologous recombination pathway in early developing swine embryos. FASEB J 2018; 32:1818-1829. [DOI: 10.1096/fj.201700800r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Naomi Dicks
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Karina Gutierrez
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Raj Duggavathi
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Vilceu Bordignon
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
37
|
Ren Z, Tao Z. Molecular Basis of Colorectal Cancer: Tumor Biology. SURGICAL TREATMENT OF COLORECTAL CANCER 2018:23-34. [DOI: 10.1007/978-981-10-5143-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
38
|
Li T, Liu X, Jiang L, Manfredi J, Zha S, Gu W. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging. Oncotarget 2017; 7:11838-49. [PMID: 26943586 PMCID: PMC4914251 DOI: 10.18632/oncotarget.7864] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
Abstract
Although p53-mediated cell cycle arrest, senescence and apoptosis are well accepted as major tumor suppression mechanisms, the loss of these functions does not directly lead to tumorigenesis, suggesting that the precise roles of these canonical activities of p53 need to be redefined. Here, we report that the cells derived from the mutant mice expressing p533KR, an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, exhibit high levels of aneuploidy upon DNA damage. Moreover, the embryonic lethality caused by the deficiency of XRCC4, a key DNA double strand break repair factor, can be fully rescued in the p533KR/3KR background. Notably, despite high levels of genomic instability, p533KR/3KRXRCC4−/− mice, unlike p53−/− XRCC4−/− mice, are not succumbed to pro-B-cell lymphomas. Nevertheless, p533KR/3KR XRCC4−/− mice display aging-like phenotypes including testicular atrophy, kyphosis, and premature death. Further analyses demonstrate that SLC7A11 is downregulated and that p53-mediated ferroptosis is significantly induced in spleens and testis of p533KR/3KRXRCC4−/− mice. These results demonstrate that the direct role of p53-mediated cell cycle arrest, senescence and apoptosis is to control genomic stability in vivo. Our study not only validates the importance of ferroptosis in p53-mediated tumor suppression in vivo but also reveals that the combination of genomic instability and activation of ferroptosis may promote aging-associated phenotypes.
Collapse
Affiliation(s)
- Tongyuan Li
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xiangyu Liu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Le Jiang
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - James Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shan Zha
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
39
|
Darrah EJ, Kulinski JM, Mboko WP, Xin G, Malherbe LP, Gauld SB, Cui W, Tarakanova VL. B Cell-Specific Expression of Ataxia-Telangiectasia Mutated Protein Kinase Promotes Chronic Gammaherpesvirus Infection. J Virol 2017; 91:e01103-17. [PMID: 28701397 PMCID: PMC5599758 DOI: 10.1128/jvi.01103-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/28/2023] Open
Abstract
Manipulation of host cellular pathways is a strategy employed by gammaherpesviruses, including mouse gammaherpesvirus 68 (MHV68), in order to negotiate a chronic infection. Ataxia-telangiectasia mutated (ATM) plays a unique yet incompletely understood role in gammaherpesvirus infection, as it has both proviral and antiviral effects. Chronic gammaherpesvirus infection is poorly controlled in a host with global ATM insufficiency, whether the host is a mouse or a human. In contrast, ATM facilitates replication, reactivation, and latency establishment of several gammaherpesviruses in vitro, suggesting that ATM is proviral in the context of infected cell cultures. The proviral role of ATM is also evident in vivo, as myeloid-specific ATM expression facilitates MHV68 reactivation during the establishment of viral latency. In order to better understand the complex relationship between host ATM and gammaherpesvirus infection, we depleted ATM specifically in B cells, a cell type critical for chronic gammaherpesvirus infection. B cell-specific ATM deficiency attenuated the establishment of viral latency due to compromised differentiation of ATM-deficient B cells. Further, we found that during long-term infection, peritoneal B-1b, but not related B-1a, B cells display the highest frequency of gammaherpesvirus infection. While ATM expression did not affect gammaherpesvirus tropism for B-1 B cells, B cell-specific ATM expression was necessary to support viral reactivation from peritoneal cells during long-term infection. Thus, our study reveals a role of ATM as a host factor that promotes chronic gammaherpesvirus infection of B cells.IMPORTANCE Gammaherpesviruses infect a majority of the human population and are associated with cancer, including B cell lymphomas. ATM is a unique host kinase that has both proviral and antiviral roles in the context of gammaherpesvirus infection. Further, there is insufficient understanding of the interplay of these roles in vivo during chronic infection. In this study, we show that ATM expression by splenic B cells is required for efficient establishment of gammaherpesvirus latency. We also show that ATM expression by peritoneal B cells is required to facilitate viral reactivation during long-term infection. Thus, our study defines a proviral role of B cell-specific ATM expression during chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- Eric J Darrah
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joseph M Kulinski
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wadzanai P Mboko
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gang Xin
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Laurent P Malherbe
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stephen B Gauld
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Weiguo Cui
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
40
|
Díaz-Muñoz MD, Kiselev VY, Le Novère N, Curk T, Ule J, Turner M. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nat Commun 2017; 8:530. [PMID: 28904350 PMCID: PMC5597594 DOI: 10.1038/s41467-017-00454-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 06/30/2017] [Indexed: 11/24/2022] Open
Abstract
Post-transcriptional regulation of cellular mRNA is essential for protein synthesis. Here we describe the importance of mRNA translational repression and mRNA subcellular location for protein expression during B lymphocyte activation and the DNA damage response. Cytoplasmic RNA granules are formed upon cell activation with mitogens, including stress granules that contain the RNA binding protein Tia1. Tia1 binds to a subset of transcripts involved in cell stress, including p53 mRNA, and controls translational silencing and RNA granule localization. DNA damage promotes mRNA relocation and translation in part due to dissociation of Tia1 from its mRNA targets. Upon DNA damage, p53 mRNA is released from stress granules and associates with polyribosomes to increase protein synthesis in a CAP-independent manner. Global analysis of cellular mRNA abundance and translation indicates that this is an extended ATM-dependent mechanism to increase protein expression of key modulators of the DNA damage response.Sequestering mRNA in cytoplasmic stress granules is a mechanism for translational repression. Here the authors find that p53 mRNA, present in stress granules in activated B lymphocytes, is released upon DNA damage and is translated in a CAP-independent manner.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043 / CNRS U5282, Toulouse, 31300, France.
| | - Vladimir Yu Kiselev
- Laboratory of Signalling, The Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - Nicolas Le Novère
- Laboratory of Signalling, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Tomaz Curk
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|
41
|
Knittel G, Rehkämper T, Korovkina D, Liedgens P, Fritz C, Torgovnick A, Al-Baldawi Y, Al-Maarri M, Cun Y, Fedorchenko O, Riabinska A, Beleggia F, Nguyen PH, Wunderlich FT, Ortmann M, Montesinos-Rongen M, Tausch E, Stilgenbauer S, P Frenzel L, Herling M, Herling C, Bahlo J, Hallek M, Peifer M, Buettner R, Persigehl T, Reinhardt HC. Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia. Nat Commun 2017; 8:153. [PMID: 28751718 PMCID: PMC5532225 DOI: 10.1038/s41467-017-00210-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) remains an incurable disease. Two recurrent cytogenetic aberrations, namely del(17p), affecting TP53, and del(11q), affecting ATM, are associated with resistance against genotoxic chemotherapy (del17p) and poor outcome (del11q and del17p). Both del(17p) and del(11q) are also associated with inferior outcome to the novel targeted agents, such as the BTK inhibitor ibrutinib. Thus, even in the era of targeted therapies, CLL with alterations in the ATM/p53 pathway remains a clinical challenge. Here we generated two mouse models of Atm- and Trp53-deficient CLL. These animals display a significantly earlier disease onset and reduced overall survival, compared to controls. We employed these models in conjunction with transcriptome analyses following cyclophosphamide treatment to reveal that Atm deficiency is associated with an exquisite and genotype-specific sensitivity against PARP inhibition. Thus, we generate two aggressive CLL models and provide a preclinical rational for the use of PARP inhibitors in ATM-affected human CLL. ATM and TP53 mutations are associated with poor prognosis in chronic lymphocytic leukaemia (CLL). Here the authors generate mouse models of Tp53- and Atm-defective CLL mimicking the high-risk form of human disease and show that Atm-deficient CLL is sensitive to PARP1 inhibition.
Collapse
Affiliation(s)
- Gero Knittel
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany. .,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany. .,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany.
| | - Tim Rehkämper
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Darya Korovkina
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Paul Liedgens
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Christian Fritz
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Alessandro Torgovnick
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Yussor Al-Baldawi
- Department of Radiology, Medical Faculty, University Hospital of Cologne, Cologne, 50931, Germany
| | - Mona Al-Maarri
- Max-Planck-Institute for Metabolism Research, Cologne, 50931, Germany
| | - Yupeng Cun
- Department of Translational Genomics, University of Cologne, Cologne, 50931, Germany
| | - Oleg Fedorchenko
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Arina Riabinska
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Filippo Beleggia
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Phuong-Hien Nguyen
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | | | - Monika Ortmann
- Institute of Pathology, University Hospital of Cologne, Cologne, 50931, Germany
| | | | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, 89070, Germany
| | | | - Lukas P Frenzel
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Marco Herling
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, 50931, Germany
| | - Carmen Herling
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Jasmin Bahlo
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany
| | - Michael Hallek
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Martin Peifer
- Department of Translational Genomics, University of Cologne, Cologne, 50931, Germany
| | - Reinhard Buettner
- Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, 50931, Germany
| | - Thorsten Persigehl
- Department of Radiology, Medical Faculty, University Hospital of Cologne, Cologne, 50931, Germany
| | - H Christian Reinhardt
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany. .,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany. .,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany. .,Center of Molecular Medicine, University of Cologne, Cologne, 50931, Germany.
| |
Collapse
|
42
|
Chen CC, Kass EM, Yen WF, Ludwig T, Moynahan ME, Chaudhuri J, Jasin M. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair. Proc Natl Acad Sci U S A 2017; 114:7665-7670. [PMID: 28659469 PMCID: PMC5530697 DOI: 10.1073/pnas.1706392114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1-53BP1 antagonism and that its HDR function can become critical in certain contexts.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| | - Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Wei-Feng Yen
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Thomas Ludwig
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, Columbus, OH 43210
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
43
|
ATM Deficiency Is Associated with Sensitivity to PARP1- and ATR Inhibitors in Lung Adenocarcinoma. Cancer Res 2017; 77:3040-3056. [DOI: 10.1158/0008-5472.can-16-3398] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/09/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022]
|
44
|
Morales AJ, Carrero JA, Hung PJ, Tubbs AT, Andrews JM, Edelson BT, Calderon B, Innes CL, Paules RS, Payton JE, Sleckman BP. A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages. eLife 2017; 6. [PMID: 28362262 PMCID: PMC5409825 DOI: 10.7554/elife.24655] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/30/2017] [Indexed: 01/06/2023] Open
Abstract
Macrophages produce genotoxic agents, such as reactive oxygen and nitrogen species, that kill invading pathogens. Here we show that these agents activate the DNA damage response (DDR) kinases ATM and DNA-PKcs through the generation of double stranded breaks (DSBs) in murine macrophage genomic DNA. In contrast to other cell types, initiation of this DDR depends on signaling from the type I interferon receptor. Once activated, ATM and DNA-PKcs regulate a genetic program with diverse immune functions and promote inflammasome activation and the production of IL-1β and IL-18. Indeed, following infection with Listeria monocytogenes, DNA-PKcs-deficient murine macrophages produce reduced levels of IL-18 and are unable to optimally stimulate IFN-γ production by NK cells. Thus, genomic DNA DSBs act as signaling intermediates in murine macrophages, regulating innate immune responses through the initiation of a type I IFN-dependent DDR.
Collapse
Affiliation(s)
- Abigail J Morales
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, United States
| | - Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Putzer J Hung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Anthony T Tubbs
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Jared M Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Boris Calderon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Cynthia L Innes
- Environmental Stress and Cancer Group, National Institute of Environmental Health Sciences, Durham, United States.,NIEHS Microarray Group, National Institute of Environmental Health Sciences, Durham, United States
| | - Richard S Paules
- Environmental Stress and Cancer Group, National Institute of Environmental Health Sciences, Durham, United States.,NIEHS Microarray Group, National Institute of Environmental Health Sciences, Durham, United States
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, United States
| |
Collapse
|
45
|
Yoon YM, Storm KJ, Kamimae-Lanning AN, Goloviznina NA, Kurre P. Endogenous DNA Damage Leads to p53-Independent Deficits in Replicative Fitness in Fetal Murine Fancd2 -/- Hematopoietic Stem and Progenitor Cells. Stem Cell Reports 2016; 7:840-853. [PMID: 27720904 PMCID: PMC5106485 DOI: 10.1016/j.stemcr.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
Our mechanistic understanding of Fanconi anemia (FA) pathway function in hematopoietic stem and progenitor cells (HSPCs) owes much to their role in experimentally induced DNA crosslink lesion repair. In bone marrow HSPCs, unresolved stress confers p53-dependent apoptosis and progressive cell attrition. The role of FA proteins during hematopoietic development, in the face of physiological replicative demand, remains elusive. Here, we reveal a fetal HSPC pool in Fancd2−/− mice with compromised clonogenicity and repopulation. Without experimental manipulation, fetal Fancd2−/− HSPCs spontaneously accumulate DNA strand breaks and RAD51 foci, associated with a broad transcriptional DNA-damage response, and constitutive activation of ATM as well as p38 stress kinase. Remarkably, the unresolved stress during rapid HSPC pool expansion does not trigger p53 activation and apoptosis; rather, it constrains proliferation. Collectively our studies point to a role for the FA pathway during hematopoietic development and provide a new model for studying the physiological function of FA proteins. Fancd2−/− fetal HSPCs show spontaneous deficits on replicative stress in development Fancd2−/− FL HSPCs show activated DNA-damage responses and strand-break accumulation Fancd2−/− FL deficits occur without apoptosis and independent of p53 activation MAPK (p38) inhibition rescues Fancd2−/− progenitor defects in vitro and in vivo
Collapse
Affiliation(s)
- Young Me Yoon
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kelsie J Storm
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashley N Kamimae-Lanning
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalya A Goloviznina
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter Kurre
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
46
|
Meek K, Xu Y, Bailie C, Yu K, Neal JA. The ATM Kinase Restrains Joining of Both VDJ Signal and Coding Ends. THE JOURNAL OF IMMUNOLOGY 2016; 197:3165-3174. [PMID: 27574300 DOI: 10.4049/jimmunol.1600597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/06/2016] [Indexed: 11/19/2022]
Abstract
The evidence that ATM affects resolution of RAG-induced DNA double-strand breaks is profuse and unequivocal; moreover, it is clear that the RAG complex itself cooperates (in an undetermined way) with ATM to facilitate repair of these double-strand breaks by the classical nonhomologous end-joining pathway. The mechanistic basis for the cooperation between ATM and the RAG complex has not been defined, although proposed models invoke ATM and RAG2's C terminus in maintaining the RAG postcleavage complex. In this study, we show that ATM reduces the rate of both coding and signal joining in a robust episomal assay; we suggest that this is the result of increased stability of the postcleavage complex. ATM's ability to inhibit VDJ joining requires its enzymatic activity. The noncore C termini of both RAG1 and RAG2 are also required for ATM's capacity to limit signal (but not coding) joining. Moreover, potential phosphorylation targets within the C terminus of RAG2 are also required for ATM's capacity to limit signal joining. These data suggest a model whereby the RAG signal end complex is stabilized by phosphorylation of RAG2 by ATM.
Collapse
Affiliation(s)
- Katheryn Meek
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; .,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Yao Xu
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Caleb Bailie
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, College of Human Medicine, Michigan State University, East Lansing, MI 48824
| | - Jessica A Neal
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| |
Collapse
|
47
|
Yamamoto K, Wang J, Sprinzen L, Xu J, Haddock CJ, Li C, Lee BJ, Loredan DG, Jiang W, Vindigni A, Wang D, Rabadan R, Zha S. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors. eLife 2016; 5. [PMID: 27304073 PMCID: PMC4957979 DOI: 10.7554/elife.14709] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Pathobiology and Molecular Medicine Graduate Program, Columbia University, New York, United States
| | - Jiguang Wang
- Department of Biomedical Informatics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| | - Lisa Sprinzen
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Pathobiology and Molecular Medicine Graduate Program, Columbia University, New York, United States
| | - Jun Xu
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
| | - Christopher J Haddock
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
| | - Chen Li
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Denis G Loredan
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Alessandro Vindigni
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
| | - Dong Wang
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
| | - Raul Rabadan
- Department of Biomedical Informatics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| | - Shan Zha
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Columbia University, New York, United States.,Department of Pediatrics, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| |
Collapse
|
48
|
Neal JA, Xu Y, Abe M, Hendrickson E, Meek K. Restoration of ATM Expression in DNA-PKcs-Deficient Cells Inhibits Signal End Joining. THE JOURNAL OF IMMUNOLOGY 2016; 196:3032-42. [PMID: 26921311 DOI: 10.4049/jimmunol.1501654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022]
Abstract
Unlike most DNA-dependent protein kinase, catalytic subunit (DNA-PKcs)-deficient mouse cell strains, we show in the present study that targeted deletion of DNA-PKcs in two different human cell lines abrogates VDJ signal end joining in episomal assays. Although the mechanism is not well defined, DNA-PKcs deficiency results in spontaneous reduction of ATM expression in many cultured cell lines (including those examined in this study) and in DNA-PKcs-deficient mice. We considered that varying loss of ATM expression might explain differences in signal end joining in different cell strains and animal models, and we investigated the impact of ATM and/or DNA-PKcs loss on VDJ recombination in cultured human and rodent cell strains. To our surprise, in DNA-PKcs-deficient mouse cell strains that are proficient in signal end joining, restoration of ATM expression markedly inhibits signal end joining. In contrast, in DNA-PKcs-deficient cells that are deficient in signal end joining, complete loss of ATM enhances signal (but not coding) joint formation. We propose that ATM facilitates restriction of signal ends to the classical nonhomologous end-joining pathway.
Collapse
Affiliation(s)
- Jessica A Neal
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Yao Xu
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Masumi Abe
- National Institute of Radiological Sciences, Chiba 263-8555, Japan; and
| | - Eric Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Katheryn Meek
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824;
| |
Collapse
|
49
|
Balestrini A, Nicolas L, Yang-Lott K, Guryanova OA, Levine RL, Bassing CH, Chaudhuri J, Petrini JHJ. Defining ATM-Independent Functions of the Mre11 Complex with a Novel Mouse Model. Mol Cancer Res 2015; 14:185-95. [PMID: 26538284 DOI: 10.1158/1541-7786.mcr-15-0281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023]
Abstract
UNLABELLED The Mre11 complex (Mre11, Rad50, and Nbs1) occupies a central node of the DNA damage response (DDR) network and is required for ATM activation in response to DNA damage. Hypomorphic alleles of MRE11 and NBS1 confer embryonic lethality in ATM-deficient mice, indicating that the complex exerts ATM-independent functions that are essential when ATM is absent. To delineate those functions, a conditional ATM allele (ATM(flox)) was crossed to hypomorphic NBS1 mutants (Nbs1(ΔB/ΔB) mice). Nbs1(ΔB/ΔB) Atm(-/-) hematopoietic cells derived by crossing to vav(cre) were viable in vivo. Nbs1(ΔB/ΔB) Atm(-/-) (VAV) mice exhibited a pronounced defect in double-strand break repair and completely penetrant early onset lymphomagenesis. In addition to repair defects observed, fragile site instability was noted, indicating that the Mre11 complex promotes genome stability upon replication stress in vivo. The data suggest combined influences of the Mre11 complex on DNA repair, as well as the responses to DNA damage and DNA replication stress. IMPLICATIONS A novel mouse model was developed, by combining a vav(cre)-inducible ATM knockout mouse with an NBS1 hypomorphic mutation, to analyze ATM-independent functions of the Mre11 complex in vivo. These data show that the DNA repair, rather than DDR signaling functions of the complex, is acutely required in the context of ATM deficiency to suppress genome instability and lymphomagenesis.
Collapse
Affiliation(s)
- Alessia Balestrini
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York
| | - Laura Nicolas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine Yang-Lott
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Olga A Guryanova
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Craig H Bassing
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John H J Petrini
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York.
| |
Collapse
|
50
|
Kulinski JM, Darrah EJ, Broniowska KA, Mboko WP, Mounce BC, Malherbe LP, Corbett JA, Gauld SB, Tarakanova VL. ATM facilitates mouse gammaherpesvirus reactivation from myeloid cells during chronic infection. Virology 2015; 483:264-74. [PMID: 26001649 PMCID: PMC4516584 DOI: 10.1016/j.virol.2015.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/22/2015] [Accepted: 04/30/2015] [Indexed: 12/28/2022]
Abstract
Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro. We hypothesized that ATM mediates both pro- and antiviral activities to regulate chronic gammaherpesvirus infection in an immunocompetent host. To test the proposed proviral activity of ATM in vivo, we generated mice with ATM deficiency limited to myeloid cells. Myeloid-specific ATM deficiency attenuated gammaherpesvirus infection during the establishment of viral latency. The results of our study uncover a proviral role of ATM in the context of gammaherpesvirus infection in vivo and support a model where ATM combines pro- and antiviral functions to facilitate both gammaherpesvirus-specific T cell immune response and viral reactivation in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John A Corbett
- Biochemistry, Medical College of Wisconsin, United States
| | - Stephen B Gauld
- Division of Allergy and Clinical Immunology, Department of Pediatrics, United States
| | - Vera L Tarakanova
- Microbiology and Molecular Genetics, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|