1
|
Meng Y, Bilyal A, Chen L, Mederos Y Schnitzler M, Kocabiyik J, Gudermann T, Riols F, Haid M, Marques JG, Horak J, Koletzko B, Sun J, Beuschlein F, Heinrich DA, Adolf C, Reincke M, Schneider H. Endothelial epoxyeicosatrienoic acid release is intact in aldosterone excess. Atherosclerosis 2024; 398:118591. [PMID: 39277963 DOI: 10.1016/j.atherosclerosis.2024.118591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND AIMS Endothelial dysfunction (ED) is considered to be a major driver of the increased incidence of cardiovascular disease in primary aldosteronism (PA). The functionality of the epoxyeicosatrienoic acid (EET) pathway, involving the release of beneficial endothelium-derived lipid mediators, in PA is unknown. Evidence suggests this pathway to be disturbed in various models of experimental hypertension. We therefore assessed EET production in primary human coronary artery endothelial cells exposed to aldosterone excess and measured circulating EET in patients with PA. METHODS We used qPCR to investigate changes in the expression levels of essential genes for the synthesis and degradation of EET, calcium imaging to address the functional impact on overall endothelial function, as well as mass spectrometry to determine endothelial synthetic capacity to release EET upon stimulation. RNA-seq was performed to gain further mechanistic insights. Eicosanoid concentrations in patient's plasma were also determined by mass spectrometry. RESULTS Aldosterone, while eliciting proinflammatory VCAM1 expression and disturbed calcium response to acetylcholine, did not negatively affect stimulated release of endothelial EET. Likewise, no differences were observed in eicosanoid concentrations in plasma from patients with PA when compared to essential hypertensive controls. However, an inhibitor of soluble epoxide hydrolase abrogated aldosterone-mediated VCAM1 induction and led to a normalized endothelial calcium response probably by restoring expression of CHRNE. CONCLUSION EET release appears intact despite aldosterone excess. Epoxide hydrolase inhibition may revert aldosterone-induced functional changes in endothelial cells. These findings indicate a potential new therapeutic principle to address ED, which should be explored in future preclinical and clinical trials.
Collapse
Affiliation(s)
- Yao Meng
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Aynur Bilyal
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Li Chen
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Mederos Y Schnitzler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Julien Kocabiyik
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Neuherberg, Germany
| | - Jair G Marques
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jeannie Horak
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Berthold Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jing Sun
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix Beuschlein
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitäts Spital Zürich (USZ) and Universität Zürich (UZH), Zurich, Switzerland
| | - Daniel A Heinrich
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian Adolf
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Reincke
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Holger Schneider
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
2
|
Ho QV, Young MJ. Mineralocorticoid receptors, macrophages and new mechanisms for cardiovascular disease. Mol Cell Endocrinol 2024; 593:112340. [PMID: 39134137 DOI: 10.1016/j.mce.2024.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Quoc Viet Ho
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia; Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Tang H, Hu Y, Deng J. Extracellular Vesicles and Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:69-80. [PMID: 37603273 DOI: 10.1007/978-981-99-1443-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Hypertension implicates multiple organs and systems, accounting for the majority of cardiovascular diseases and cardiac death worldwide. Extracellular vesicles derived from various types of cells could transfer a variety of substances such as proteins, lipids, and nucleic acids from cells to cells, playing essential roles in both physiological and pathological processes. Extracellular vesicles are demonstrated to be closely associated with the development of essential hypertension by mediating the renin-angiotensin-aldosterone system and crosstalk between multiple vascular cells. Extracellular vesicles also participate in various kinds of pathogenesis of secondary hypertensions including acute kidney injury, renal parenchymal diseases, kidney transplantation, secretory diseases (primary aldosteronism, pheochromocytoma and paraganglioma, Cushing's syndrome), and obstructive sleep apnea. Extracellular vesicles have been proved to have the potential to be served as new biomarkers in the diagnosis, treatment, and prognosis assessment of hypertension. In the future, large multicenter cohorts are highly in demand for further verifying the sensitivity and specificity of extracellular vesicles as biomarkers.
Collapse
Affiliation(s)
- Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxue Hu
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Jiali Deng
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Eplerenone Prevents Cardiac Fibrosis by Inhibiting Angiogenesis in Unilateral Urinary Obstruction Rats. J Renin Angiotensin Aldosterone Syst 2022; 2022:1283729. [PMID: 36185701 PMCID: PMC9509279 DOI: 10.1155/2022/1283729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Cardiovascular disease constitutes the leading cause of mortality in patients with chronic kidney disease (CKD), which is termed cardiorenal syndrome type 4 (CRS-4). Here, we report the development of pathological cardiac remodeling and fibrosis in unilateral urinary obstruction (UUO) rats. Methods Hematoxylin and eosin (H&E) staining was performed to observe the pathology of myocardial tissue. The degree of myocardial tissue fibrosis was observed by Masson and Sirius red staining. Immunohistochemical staining was applied to detect the expression of CD34 and CD105 in myocardial tissue, and immunofluorescent staining was performed to examine the expression of CD34, collagen I/collagen III, and alpha smooth muscle actin (α-SMA). The expression of the signal pathway-related proteins vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), nuclear factor κB (NF-κB), and interleukin (IL)-1β was tested by western blotting. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the mRNA levels of serum and glucocorticoid-inducible kinase (SGK)-1, NF-κB, and interleukin-1β (IL-1β). Results The results showed the development of pathological cardiac remodeling and cardiac dysfunction in UUO rats. Moreover, there was more angiogenesis and endothelial-mesenchymal transition (End-MT) in the UUO group, and these effects were inhibited by eplerenone. Conclusions The results indicated that this cardiac fibrosis was associated with angiogenesis and that End-MT was related to aldosterone and mineralocorticoid receptor (MR) activation. Moreover, in association with the MR/IL-1β/VEGFA signaling pathway, early treatment with the MR antagonist eplerenone in rats with UUO-induced CKD may significantly attenuate MR activation and cardiac fibrosis.
Collapse
|
5
|
Aldosterone Increases Vascular Permeability in Rat Skin. Cells 2022; 11:cells11172707. [PMID: 36078114 PMCID: PMC9454878 DOI: 10.3390/cells11172707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the effect of acute aldosterone (ALDO) administration on the vascular permeability of skin. ALDO was injected intradermally into rats, and vascular permeability was measured. Eplerenone (EPL), a selective mineralocorticoid receptor (MR) antagonist, was used. Skin biopsies were carried out for immunohistochemical (IHC) staining, and polymerase chain reactions were performed to analyze the expression of MR, 11β-hydroxysteroid dehydrogenase type 2, von Willebrand factor (vWF), vascular endothelial growth factor (VEGF), and zonula occludens 1. Our study showed the presence of MR in the rat skin vasculature for the first time. It was found that ALDO injection resulted in a more than 30% increase in vascular permeability and enhanced the endothelial exocytosis of vWF. The effect of ALDO diminished after EPL administration. An accumulation of vWF and a reduction in VEGF IHC staining were observed following chronic EPL administration. No effect of ALDO or EPL on the mRNA expression of the studied genes or skin structure was observed. The results suggest that ALDO increases vascular permeability in the skin via an MR-dependent mechanism. This effect of ALDO on skin microcirculation may have important therapeutic implications for diseases characterized by increased levels of ALDO and coexisting skin microangiopathy.
Collapse
|
6
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Primary Aldosteronism, Aldosterone, and Extracellular Vesicles. Endocrinology 2022; 163:6433012. [PMID: 34918071 DOI: 10.1210/endocr/bqab240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Primary aldosteronism (PA) is an endocrine related condition leading to arterial hypertension due to inappropriately high and unregulated aldosterone concentration. Recently, a broad spectrum of PA has been recognized, which brings new challenges associated with early identification of this condition that affect renal epithelial and extrarenal tissues. Reports have shown the potential role of extracellular vesicles (EVs) and EV cargo as novel and complementary biomarkers in diagnosis and prognosis of PA. In vivo and in vitro studies have identified specific EV surface antigens, EV-proteins, and EV microRNAs that can be useful to develop novel diagnostic algorithms to detect, confirm, or follow up the PA. Moreover, the study of EVs in the field of PA provides further insight in the pathophysiological mechanism of the PA disease.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Serum Alpha-1-Acid Glycoprotein-1 and Urinary Extracellular Vesicle miR-21-5p as Potential Biomarkers of Primary Aldosteronism. Front Immunol 2021; 12:768734. [PMID: 34804057 PMCID: PMC8603108 DOI: 10.3389/fimmu.2021.768734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension and reaches a prevalence of 6-10%. PA is an endocrine disorder, currently identified as a broad-spectrum phenotype, spanning from normotension to hypertension. In this regard, several studies have made advances in the identification of mediators and novel biomarkers of PA as specific proteins, miRNAs, and lately, extracellular vesicles (EVs) and their cargo. Aim To evaluate lipocalins LCN2 and AGP1, and specific urinary EV miR-21-5p and Let-7i-5p as novel biomarkers for PA. Subjects and Methods A cross-sectional study was performed in 41 adult subjects classified as normotensive controls (CTL), essential hypertensives (EH), and primary aldosteronism (PA) subjects, who were similar in gender, age, and BMI. Systolic (SBP) and diastolic (DBP) blood pressure, aldosterone, plasma renin activity (PRA), and aldosterone to renin ratio (ARR) were determined. Inflammatory parameters were defined as hs-C-reactive protein (hs-CRP), PAI-1, MMP9, IL6, LCN2, LCN2-MMP9, and AGP1. We isolated urinary EVs (uEVs) and measured two miRNA cargo miR-21-5p and Let-7i-5p by Taqman-qPCR. Statistical analyses as group comparisons were performed by Kruskall-Wallis, and discriminatory analyses by ROC curves were performed with SPSS v21 and Graphpad-Prism v9. Results PA and EH subjects have significantly higher SBP and DBP (p <0.05) than the control group. PA subjects have similar hs-CRP, PAI-1, IL-6, MMP9, LCN2, and LCN2-MMP9 but have higher levels of AGP1 (p <0.05) than the CTL&EH group. The concentration and size of uEVs and miRNA Let-7i-5p did not show any difference between groups. In PA, we found significantly lower levels of miR-21-5p than controls (p <0.05). AGP1 was associated with aldosterone, PRA, and ARR. ROC curves detected AUC for AGP1 of 0.90 (IC 95 [0.79 - 1.00], p <0.001), and combination of AGP1 and EV-miR-21-5p showed an AUC of 0.94 (IC 95 [0.85 - 1.00], p<0.001) to discriminate the PA condition from EH and controls. Conclusion Serum AGP1 protein was found to be increased, and miR-21-5p in uEVs was decreased in subjects classified as PA. Association of AGP1 with aldosterone, renin activity, and ARR, besides the high discriminatory capacity of AGP1 and uEV-miR-21-5p to identify the PA condition, place both as potential biomarkers of PA.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Chifu I, Detomas M, Dischinger U, Kimpel O, Megerle F, Hahner S, Fassnacht M, Altieri B. Management of Patients With Glucocorticoid-Related Diseases and COVID-19. Front Endocrinol (Lausanne) 2021; 12:705214. [PMID: 34594302 PMCID: PMC8476969 DOI: 10.3389/fendo.2021.705214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health crisis affecting millions of people worldwide. SARS-CoV-2 enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2) after being cleaved by the transmembrane protease serine 2 (TMPRSS2). In addition to the lung, gastrointestinal tract and kidney, ACE2 is also extensively expressed in endocrine tissues, including the pituitary and adrenal glands. Although glucocorticoids could play a central role as immunosuppressants during the cytokine storm, they can have both stimulating and inhibitory effects on immune response, depending on the timing of their administration and their circulating levels. Patients with adrenal insufficiency (AI) or Cushing's syndrome (CS) are therefore vulnerable groups in relation to COVID-19. Additionally, patients with adrenocortical carcinoma (ACC) could also be more vulnerable to COVID-19 due to the immunosuppressive state caused by the cancer itself, by secreted glucocorticoids, and by anticancer treatments. This review comprehensively summarizes the current literature on susceptibility to and outcome of COVID-19 in AI, CS and ACC patients and emphasizes potential pathophysiological mechanisms of susceptibility to COVID-19 as well as the management of these patients in case of SARS-CoV-2. Finally, by performing an in silico analysis, we describe the mRNA expression of ACE2, TMPRSS2 and the genes encoding their co-receptors CTSB, CTSL and FURIN in normal adrenal and adrenocortical tumors (both adenomas and carcinomas).
Collapse
Affiliation(s)
- Irina Chifu
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Mario Detomas
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Ulrich Dischinger
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Otilia Kimpel
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Felix Megerle
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Stefanie Hahner
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
- Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Abstract
Neurohormones and inflammatory mediators have effects in both the heart and the peripheral vasculature. In patients with heart failure (HF), neurohormonal activation and increased levels of inflammatory mediators promote ventricular remodeling and development of HF, as well as vascular dysfunction and arterial stiffness. These processes may lead to a vicious cycle, whereby arterial stiffness perpetuates further ventricular remodeling leading to exacerbation of symptoms. Although significant advances have been made in the treatment of HF, currently available treatment strategies slow, but do not halt, this cycle. The current treatment for HF patients involves the inhibition of neurohormonal activation, which can reduce morbidity and mortality related to this condition. Beyond benefits associated with neurohormonal blockade, other strategies have focused on inhibition of inflammatory pathways implicated in the pathogenesis of HF. Unfortunately, attempts to target inflammation have not yet been successful to improve prognosis of HF. Further work is required to interrupt key maladaptive mechanisms involved in disease progression.
Collapse
|
10
|
Kim CS, Yea K, Morrell CN, Jeong Y, Lowenstein CJ. Estrogen activates endothelial exocytosis. Biochem Biophys Res Commun 2021; 558:29-35. [PMID: 33895548 DOI: 10.1016/j.bbrc.2021.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Estrogen therapy is used to treat patients with post-menopausal symptoms, such as hot flashes and dyspareunia. Estrogen therapy also decreases the risk of fractures from osteoporosis in post-menopausal women. However, estrogen increases the risk of venous thromboembolic events, such as pulmonary embolism, but the pathways through which estrogen increase the risk of thromboembolism is unknown. Here, we show that estrogen elicits endothelial exocytosis, the key step in vascular thrombosis and inflammation. Exogenous 17β-estradiol (E2) stimulated endothelial exocytosis of Weibel-Palade bodies (WPBs), releasing von Willebrand factor (vWF) and interleukin-8 (IL-8). Conversely, the estrogen antagonist ICI-182,780 interfered with E2-induced endothelial exocytosis. The ERα agonist propyl pyrazole triol (PPT) but not the ERβ agonist diarylpropionitrile (DPN) induced vWF release, while ERα silencing counteracted vWF release by E2, suggesting that ERα mediates this effect. Exocytosis triggered by E2 occurred rapidly within 15 min and was not inhibited by either actinomycin D or cycloheximide. On the contrary, it was inhibited by the pre-treatment of U0126 or SB203580, an ERK or a p38 inhibitor, respectively, suggesting that E2-induced endothelial exocytosis is non-genomically mediated by the MAP kinase pathway. Finally, E2 treatment enhanced platelet adhesion to endothelial cells ex vivo, which was interfered with the pre-treatment of ICI-182,780 or U0126. Taken together, our data show that estrogen activates endothelial exocytosis non-genomically through the ERα-MAP kinase pathway. Our data suggest that adverse cardiovascular effects such as vascular inflammation and thrombosis should be considered in patients before menopausal hormone treatment.
Collapse
Affiliation(s)
| | - Kyungmoo Yea
- Department of New Biology, DGIST, Daegu, 42988, South Korea
| | - Craig N Morrell
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| | - Youngtae Jeong
- Department of New Biology, DGIST, Daegu, 42988, South Korea.
| | - Charles J Lowenstein
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
11
|
Wang Y, Wang J, Yang R, Wang P, Porche R, Kim S, Lutfy K, Liu L, Friedman TC, Jiang M, Liu Y. Decreased 11β-Hydroxysteroid Dehydrogenase Type 2 Expression in the Kidney May Contribute to Nicotine/Smoking-Induced Blood Pressure Elevation in Mice. Hypertension 2021; 77:1940-1952. [PMID: 33813843 DOI: 10.1161/hypertensionaha.120.16458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ying Wang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (Y.W., R.Y., Y.L.).,Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Jian Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,Department of Neonatology, The First Hospital of Jilin University, Changchun, China (J.W.)
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (Y.W., R.Y., Y.L.)
| | - Piwen Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Rene Porche
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Samuel Kim
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Kabirullah Lutfy
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,College of Pharmacy, Western University of Health Sciences, Pomona, CA (K.L.)
| | - Limei Liu
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, China (L.L.)
| | - Theodore C Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,David Geffen School of Medicine at University of California, Los Angeles (T.C.F., Y.L.)
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (M.J.)
| | - Yanjun Liu
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (Y.W., R.Y., Y.L.).,Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,David Geffen School of Medicine at University of California, Los Angeles (T.C.F., Y.L.)
| |
Collapse
|
12
|
Barros ER, Rigalli JP, Tapia-Castillo A, Vecchiola A, Young MJ, Hoenderop JGJ, Bindels RJM, Fardella CE, Carvajal CA. Proteomic Profile of Urinary Extracellular Vesicles Identifies AGP1 as a Potential Biomarker of Primary Aldosteronism. Endocrinology 2021; 162:6134351. [PMID: 33580265 DOI: 10.1210/endocr/bqab032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Primary aldosteronism (PA) represents 6% to 10% of all essential hypertension patients and is diagnosed using the aldosterone-to-renin ratio (ARR) and confirmatory studies. The complexity of PA diagnosis encourages the identification of novel PA biomarkers. Urinary extracellular vesicles (uEVs) are a potential source of biomarkers, considering that their cargo reflects the content of the parent cell. OBJECTIVE We aimed to evaluate the proteome of uEVs from PA patients and identify potential biomarker candidates for PA. METHODS Second morning spot urine was collected from healthy controls (n = 8) and PA patients (n = 7). The uEVs were isolated by ultracentrifugation and characterized. Proteomic analysis on uEVs was performed using LC-MS Orbitrap. RESULTS Isolated uEVs carried extracellular vesicle markers, showed a round shape and sizes between 50 and 150 nm. The concentration of uEVs showed a direct correlation with urinary creatinine (r = 0.6357; P = 0.0128). The uEV size mean (167 ± 6 vs 183 ± 4nm) and mode (137 ± 7 vs 171 ± 11nm) was significantly smaller in PA patients than in control subjects, but similar in concentration. Proteomic analysis of uEVs from PA patients identified an upregulation of alpha-1-acid glycoprotein 1 (AGP1) in PA uEVs, which was confirmed using immunoblot. A receiver operating characteristic curve analysis showed an area under the curve of 0.92 (0.82 to 1; P = 0.0055). CONCLUSION Proteomic and further immunoblot analyses of uEVs highlights AGP1 as potential biomarker for PA.
Collapse
Affiliation(s)
- Eric R Barros
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, HB Nijmegen, The Netherlands
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Rigalli
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Morag J Young
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| |
Collapse
|
13
|
Edwards C. New Horizons: Does Mineralocorticoid Receptor Activation by Cortisol Cause ATP Release and COVID-19 Complications? J Clin Endocrinol Metab 2021; 106:622-635. [PMID: 33249452 PMCID: PMC7798966 DOI: 10.1210/clinem/dgaa874] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/23/2022]
Abstract
This paper attempts to explain how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus causes the complications that make coronavirus disease 2019 (COVID-19) a serious disease in specific patient subgroups. It suggests that cortisol-associated activation of the mineralocorticoid receptor (MR) in epithelial and endothelial cells infected with the virus stimulates the release of adenosine 5'-triphosphate (ATP), which then acts back on purinergic receptors. In the lung this could produce the nonproductive cough via purinergic P2X3 receptors on vagal afferent nerves. In endothelial cells it could stimulate exocytosis of Weibel-Palade bodies (WPBs) that contain angiopoietin-2, which is important in the pathogenesis of acute respiratory distress syndrome (ARDS) by increasing capillary permeability and von Willebrand factor (VWF), which mediates platelet adhesion to the endothelium and hence clotting. Angiopoietin-2 and VWF levels both are markedly elevated in COVID-19-associated ARDS. This paper offers an explanation for the sex differences in SARS-CoV-2 complications and also for why these are strongly associated with age, race, diabetes, and body mass index. It also explains why individuals with blood group A have a higher risk of severe infection than those with blood group O. Dexamethasone has been shown to be of benefit in coronavirus ARDS patients and has been thought to act as an anti-inflammatory drug. This paper suggests that a major part of its effect may be due to suppression of cortisol secretion. There is an urgent need to trial the combination of dexamethasone and an MR antagonist such as spironolactone to more effectively block the MR and hence the exocytosis of WPBs.
Collapse
|
14
|
Erbaş İM, Altincik SA, Çatli G, Ünüvar T, Özhan B, Abaci A, Anik A. Does fludrocortisone treatment cause hypomagnesemia in children with primary adrenal insufficiency? Turk J Med Sci 2021; 51:231-237. [PMID: 33155789 PMCID: PMC7991856 DOI: 10.3906/sag-2008-167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/05/2020] [Indexed: 11/18/2022] Open
Abstract
Background/aim Aldosterone is a mineralocorticoid that secreted from adrenal glands and a known factor to increase magnesium excretion by direct and indirect effects on renal tubular cells. Although the frequency of hypomagnesemia was found to be approximately 5% in adult studies, there is no study in the literature investigating the frequency of hypomagnesemia in children by using fludrocortisone, which has a mineralocorticoid activity. Materials and methods A multi-center retrospective study was conducted, including children who were under fludrocortisone treatment for primary adrenal insufficiency and applied to participant pediatric endocrinology outpatient clinics. Results Forty-three patients (58.1% male, 41.9% prepubertal) included in the study, whose median age was 9.18 (0.61-19) years, and the most common diagnosis among the patients was a salt-wasting form of congenital adrenal hyperplasia (67.4%). Mean serum magnesium level was 2.05 (±0.13) mg/dL, and hypomagnesemia was not observed in any of the patients treated with fludrocortisone. None of the patients had increased urinary excretion of magnesium. Conclusion Unlike the studies performed in adults, we could not find any evidence of magnesium wasting effect of fludrocortisone treatment with normal or even high doses in children and adolescents.
Collapse
Affiliation(s)
- İbrahim Mert Erbaş
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Selda Ayça Altincik
- Department of Pediatric Endocrinology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gönül Çatli
- Department of Pediatric Endocrinology, Faculty of Medicine, İzmir Kâtip Çelebi University, İzmir, Turkey
| | - Tolga Ünüvar
- Department of Pediatric Endocrinology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Bayram Özhan
- Department of Pediatric Endocrinology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ayhan Abaci
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ahmet Anik
- Department of Pediatric Endocrinology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
15
|
Edwards C, Klekot O, Halugan L, Korchev Y. Follow Your Nose: A Key Clue to Understanding and Treating COVID-19. Front Endocrinol (Lausanne) 2021; 12:747744. [PMID: 34867791 PMCID: PMC8636831 DOI: 10.3389/fendo.2021.747744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
This paper suggests that ATP release induced by the SARS-CoV-2 virus plays a key role in the genesis of the major symptoms and complications of COVID-19. Infection of specific cells which contain the Angiotensin-Converting Enzyme 2 (ACE2) receptor results in a loss of protection of the Mineralocorticoid Receptor (MR). Local activation by cortisol stimulates the release of ATP initially into the basolateral compartment and then by lysosomal exocytosis from the cell surface. This then acts on adjacent cells. In the nose ATP acts as a nociceptive stimulus which results in anosmia. It is suggested that a similar paracrine mechanism is responsible for the loss of taste. In the lung ATP release from type 2 alveolar cells produces the non-productive cough by acting on purinergic receptors on adjacent neuroepithelial cells and activating, via the vagus, the cough reflex. Infection of endothelial cells results in the exocytosis of WeibelPalade bodies. These contain the Von Willebrand Factor responsible for micro-clotting and angiopoietin-2 which increases vascular permeability and plays a key role in the Acute Respiratory Distress Syndrome. To test this hypothesis this paper reports proof of concept studies in which MR blockade using spironolactone and low dose dexamethasone (SpiDex) was given to PCR-confirmed COVID-19 patients. In 80 patients with moderate to severe respiratory failure 40 were given SpiDex and 40 conventional treatment with high dose dexamethasone (HiDex). There was 1 death in the HiDex group and none in the SpiDex. As judged by clinical, biochemical and radiological parameters there were clear statistically significant benefits of SpiDex in comparison to HiDex. A further 20 outpatients with COVID-19 were given SpiDex. There was no control group and the aim was to demonstrate safety. No adverse effects were noted and no patient became hyperkalaemic. 90% were asymptomatic at 10 days. The very positive results suggest that blockade of the MR can produce major benefit in COVID19 patients. Further larger controlled studies of inpatients and outpatients are required not only for SARS-CoV-2 infection per se but also to determine if this treatment affects the incidence of Long COVID.
Collapse
Affiliation(s)
- Christopher Edwards
- Hammersmith Hospital, Imperial College, London, United Kingdom
- *Correspondence: Christopher Edwards, ; orcid.org/0000-0003-1025-2095
| | - Oleksandra Klekot
- Clinical Pharmacology Department, Vinnytsia National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | - Larisa Halugan
- Infection Department, Vinnytsia State Clinical Hospital #3, Vinnytsia, Ukraine
| | - Yuri Korchev
- Hammersmith Hospital, Imperial College, London, United Kingdom
| |
Collapse
|
16
|
Moss ME, Carvajal B, Jaffe IZ. The endothelial mineralocorticoid receptor: Contributions to sex differences in cardiovascular disease. Pharmacol Ther 2019; 203:107387. [PMID: 31271793 PMCID: PMC6848769 DOI: 10.1016/j.pharmthera.2019.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease remains the leading cause of death for both men and women. The observation that premenopausal women are protected from cardiovascular disease relative to age-matched men, and that this protection is lost with menopause, has led to extensive study of the role of sex steroid hormones in the pathogenesis of cardiovascular disease. However, the molecular basis for sex differences in cardiovascular disease is still not fully understood, limiting the ability to tailor therapies to male and female patients. Therefore, there is a growing need to investigate molecular pathways outside of traditional sex hormone signaling to fully understand sex differences in cardiovascular disease. Emerging evidence points to the mineralocorticoid receptor (MR), a steroid hormone receptor activated by the adrenal hormone aldosterone, as one such mediator of cardiovascular disease risk, potentially serving as a sex-dependent link between cardiovascular risk factors and disease. Enhanced activation of the MR by aldosterone is associated with increased risk of cardiovascular disease. Emerging evidence implicates the MR specifically within the endothelial cells lining the blood vessels in mediating some of the sex differences observed in cardiovascular pathology. This review summarizes the available clinical and preclinical literature concerning the role of the MR in the pathophysiology of endothelial dysfunction, hypertension, atherosclerosis, and heart failure, with a special emphasis on sex differences in the role of endothelial-specific MR in these pathologies. The available data regarding the molecular mechanisms by which endothelial-specific MR may contribute to sex differences in cardiovascular disease is also summarized. A paradigm emerges from synthesis of the literature in which endothelial-specific MR regulates vascular function in a sex-dependent manner in response to cardiovascular risk factors to contribute to disease. Limitations in this field include the relative paucity of women in clinical trials and, until recently, the nearly exclusive use of male animals in preclinical investigations. Enhanced understanding of the sex-specific roles of endothelial MR could lead to novel mechanistic insights underlying sex differences in cardiovascular disease incidence and outcomes and could identify additional therapeutic targets to effectively treat cardiovascular disease in men and women.
Collapse
Affiliation(s)
- M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Brigett Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
17
|
Chen ZW, Tsai CH, Pan CT, Chou CH, Liao CW, Hung CS, Wu VC, Lin YH. Endothelial Dysfunction in Primary Aldosteronism. Int J Mol Sci 2019; 20:ijms20205214. [PMID: 31640178 PMCID: PMC6829211 DOI: 10.3390/ijms20205214] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Primary aldosteronism (PA) is characterized by excess production of aldosterone from the adrenal glands and is the most common and treatable cause of secondary hypertension. Aldosterone is a mineralocorticoid hormone that participates in the regulation of electrolyte balance, blood pressure, and tissue remodeling. The excess of aldosterone caused by PA results in an increase in cardiovascular and cerebrovascular complications, including coronary artery disease, myocardial infarction, stroke, transient ischemic attack, and even arrhythmia and heart failure. Endothelial dysfunction is a well-established fundamental cause of cardiovascular diseases and also a predictor of worse clinical outcomes. Accumulating evidence indicates that aldosterone plays an important role in the initiation and progression of endothelial dysfunction. Several mechanisms have been shown to contribute to aldosterone-induced endothelial dysfunction, including aldosterone-mediated vascular tone dysfunction, aldosterone- and endothelium-mediated vascular inflammation, aldosterone-related atherosclerosis, and vascular remodeling. These mechanisms are activated by aldosterone through genomic and nongenomic pathways in mineralocorticoid receptor-dependent and independent manners. In addition, other cells have also been shown to participate in these mechanisms. The complex interactions among endothelium, inflammatory cells, vascular smooth muscle cells and fibroblasts are crucial for aldosterone-mediated endothelial dysregulation. In this review, we discuss the association between aldosterone and endothelial function and the complex mechanisms from a molecular aspect. Furthermore, we also review current clinical research of endothelial dysfunction in patients with PA.
Collapse
Affiliation(s)
- Zheng-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan.
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City 20844, Taiwan.
| | - Chien-Ting Pan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan.
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10041, Taiwan.
| | - Che-Wei Liao
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30059, Taiwan.
| | - Chi-Sheng Hung
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
| |
Collapse
|
18
|
Heming N, Sivanandamoorthy S, Meng P, Bounab R, Annane D. Immune Effects of Corticosteroids in Sepsis. Front Immunol 2018; 9:1736. [PMID: 30105022 PMCID: PMC6077259 DOI: 10.3389/fimmu.2018.01736] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/13/2018] [Indexed: 12/29/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction, results from a dysregulated host response to invading pathogens that may be characterized by overwhelming systemic inflammation or some sort of immune paralysis. Sepsis remains a major cause of morbidity and mortality. Treatment is nonspecific and relies on source control and organ support. Septic shock, the most severe form of sepsis is associated with the highest rate of mortality. Two large multicentre trials, undertaken 15 years apart, found that the combination of hydrocortisone and fludrocortisone significantly reduces mortality in septic shock. The corticosteroids family is composed of several molecules that are usually characterized according to their glucocorticoid and mineralocorticoid power, relative to hydrocortisone. While the immune effects of glucocorticoids whether mediated or not by the intracellular glucocorticoid receptor have been investigated for several decades, it is only very recently that potential immune effects of mineralocorticoids via non-renal mineralocorticoid receptors have gained popularity. We reviewed the respective role of glucocorticoids and mineralocorticoids in counteracting sepsis-associated dysregulated immune systems.
Collapse
Affiliation(s)
- Nicholas Heming
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France.,U1173 Laboratory Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-Le-Bretonneux, France
| | | | - Paris Meng
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France
| | - Rania Bounab
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France
| | - Djillali Annane
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France.,U1173 Laboratory Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-Le-Bretonneux, France
| |
Collapse
|
19
|
Whaley-Connell A, Sowers JR. Obesity and kidney disease: from population to basic science and the search for new therapeutic targets. Kidney Int 2017; 92:313-323. [DOI: 10.1016/j.kint.2016.12.034] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/22/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
|
20
|
Plasma aldosterone level within the normal range is less associated with cardiovascular and cerebrovascular risk in primary aldosteronism. J Hypertens 2017; 35:1079-1085. [DOI: 10.1097/hjh.0000000000001251] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Kluft C, Zimmerman Y, Mawet M, Klipping C, Duijkers IJ, Neuteboom J, Foidart JM, Bennink HC. Reduced hemostatic effects with drospirenone-based oral contraceptives containing estetrol vs. ethinyl estradiol. Contraception 2017; 95:140-147. [DOI: 10.1016/j.contraception.2016.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
22
|
Ong GSY, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol 2017; 58:R33-R57. [PMID: 27821439 DOI: 10.1530/jme-15-0318] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease.
Collapse
Affiliation(s)
- Gregory S Y Ong
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of PhysiologySchool of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Valinsky WC, Jolly A, Miquel P, Touyz RM, Shrier A. Aldosterone Upregulates Transient Receptor Potential Melastatin 7 (TRPM7). J Biol Chem 2016; 291:20163-72. [PMID: 27466368 PMCID: PMC5025699 DOI: 10.1074/jbc.m116.735175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed Mg(2+)-permeable ion channel fused to a C-terminal α-kinase domain. Recently, aldosterone was shown to increase intracellular Mg(2+) levels and alter inflammatory signaling in TRPM7-expressing HEK293 cells. This study was undertaken to assess whether these effects were related to an aldosterone-mediated increase of TRPM7 current and/or plasma membrane localization. Using HEK293 cells stably expressing WT-TRPM7, we found that 18-h application of aldosterone significantly increased TRPM7 current and TRPM7 plasma membrane protein expression by 48% and 34%, respectively. The aldosterone-mediated increase of TRPM7 current was inhibited by eplerenone, a mineralocorticoid receptor (MR) blocker, and GSK-650394, an inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1). SGK1 blockade also prevented the aldosterone-induced increase of TRPM7 plasma membrane protein. It was further determined that K1648R-TRPM7, the phosphotransferase-inactive TRPM7 mutant, was unresponsive to aldosterone. Therefore, chronic aldosterone treatment increases the plasma membrane expression of TRPM7, which is associated with an increase of TRPM7 current. This process occurs via an MR-dependent, genomic signaling cascade involving SGK1 and a functioning TRPM7 α-kinase domain. We suggest that this mechanism may be of general relevance when interpreting the effects of aldosterone because the MR receptor is found in multiple tissues, and TRPM7 and SGK1 are ubiquitously expressed.
Collapse
Affiliation(s)
- William C Valinsky
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Anna Jolly
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Perrine Miquel
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Rhian M Touyz
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Alvin Shrier
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| |
Collapse
|
24
|
Shaqura M, Li X, Al-Madol MA, Tafelski S, Beyer-Koczorek A, Mousa SA, Schäfer M. Acute mechanical sensitization of peripheral nociceptors by aldosterone through non-genomic activation of membrane bound mineralocorticoid receptors in naive rats. Neuropharmacology 2016; 107:251-261. [PMID: 27016023 DOI: 10.1016/j.neuropharm.2016.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 12/24/2022]
Abstract
Recently, there is increasing interest in the role of peripheral mineralocorticoid receptors (MR) to modulate pain, but their localization in neurons and glia of the periphery and their distinct involvement in pain control remains elusive. In naive Wistar rats our double immunofluorescence confocal microscopy of the spinal cord, dorsal root ganglia, sciatic nerve and innervated skin revealed that MR predominantly colocalized with calcitonin-gene-related peptide (CGRP)- and trkA-immunoreactive (IR) nociceptive neurons and only marginally with myelinated trkB-IR mechanoreceptive and trkC-IR proprioreceptive neurons underscoring a pivotal role for MR in the modulation of pain. MR could not be detected in Schwann cells, satellite cells, and astrocytes and only scarcely in spinal microglia cells excluding a relevant functional role of glia-derived MR at least in naïve rats. Intrathecal (i.t.) and intraplantar (i.pl.) application of increasing doses of the MR selective agonist aldosterone acutely increased nociceptive behavior which was reversible by a MR selective antagonist and most likely due to non-genomic effects. This was further substantiated by the first identification of membrane bound MR specific binding sites in sensory neurons of dorsal root ganglia and spinal cord. Therefore, a crucial role of MR on nociceptive neurons but not on glia cells and their impact on nociceptive behavior most likely due to immediate non-genomic effects has to be considered under normal but more so under pathological conditions in future studies.
Collapse
Affiliation(s)
- Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Xiongjuan Li
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Mohammed A Al-Madol
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Sascha Tafelski
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Antje Beyer-Koczorek
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Shaaban A Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
25
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|
26
|
Vascular mineralocorticoid receptor and blood pressure regulation. Curr Opin Pharmacol 2015; 21:138-44. [DOI: 10.1016/j.coph.2015.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/16/2023]
|
27
|
Ferrario CM, Schiffrin EL. Role of mineralocorticoid receptor antagonists in cardiovascular disease. Circ Res 2015; 116:206-13. [PMID: 25552697 PMCID: PMC4283558 DOI: 10.1161/circresaha.116.302706] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022]
Abstract
Aldosterone exerts its best known sodium homeostasis actions by controlling sodium excretion at the level of the distal tubules via activation of the apical epithelial sodium channel and the basolateral Na(+)/K(+)ATPase pump. Recently, this mineralocorticoid hormone has been demonstrated to act on the heart and blood vessels. Excess release of aldosterone in relation to the salt status induces both genomic and nongenomic effects that by promoting endothelial dysfunction, and vascular and cardiorenal adverse remodeling, contribute to the target organ damage found in hypertension, heart failure, myocardial infarction, and chronic renal failure. Mineralocorticoid receptor blockers have been shown to be highly effective in resistant hypertension and to slow down heart failure progression, and in experimental animals, the development of atherosclerosis. Blockade of the action of aldosterone and potentially other mineralocorticoid steroids has been increasingly demonstrated to be an extremely beneficial therapy in different forms of cardiovascular disease. This review provides a summary of the knowledge that exists on aldosterone actions in the cardiovascular system and, in providing the translational impact of this knowledge to the clinical arena, illustrates how much more needs to be achieved in exploring the use of mineralocorticoid receptor blockers in less advanced stages of heart, renal, and vascular disease.
Collapse
Affiliation(s)
- Carlos M Ferrario
- From the Hypertension Translational Research Laboratory, Departments of Surgery, Internal Medicine-Nephrology, and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston Salem, NC (C.M.F.); and Department of Medicine and Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, PQ, Canada (E.L.S.).
| | - Ernesto L Schiffrin
- From the Hypertension Translational Research Laboratory, Departments of Surgery, Internal Medicine-Nephrology, and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston Salem, NC (C.M.F.); and Department of Medicine and Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, PQ, Canada (E.L.S.)
| |
Collapse
|
28
|
Hoirisch-Clapauch S, Nardi AE. A role for tissue plasminogen activator in thrombotic thrombocytopenic purpura. Med Hypotheses 2014; 83:747-50. [PMID: 25459148 DOI: 10.1016/j.mehy.2014.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a life-threatening disease characterized by generalized microvascular occlusion. TTP has been related to severe deficiency of ADAMTS13, an enzyme that cleaves von Willebrand factor multimers into less adhesive molecules. However, ADAMTS13 deficiency correlates poorly with severity of thrombocytopenia or microangiopathic hemolysis, with the frequency of neurologic complications or the response to plasma exchange. Also, some patients with severe hereditary ADAMTS13 deficiency consistently relapse every few weeks, whereas others remain asymptomatic into their forties. Taken together, these findings suggest that an additional element is missing in the pathophysiology of TTP. We postulate that both low ADAMTS13 activity and low tissue-plasminogen activator activity are required to trigger TTP attacks. Tissue-plasminogen activator end product, plasmin, extensively degrades von Willebrand factor, breaking-down the bonds between platelets and the blood vessel wall, so that low tissue-plasminogen activator activity prevents a mechanism similar to that of ADAMTS13. The hypothesis that low tissue-plasminogen activator activity plays an important role in TTP pathogenesis is further substantiated by TTP comorbidity. Problems prevalent in patients with TTP attacks or with long-term TTP remission, including increased body mass index, major depression, cognitive abnormalities, hypertension, and premature death, are somehow associated with low tissue-plasminogen activator activity.
Collapse
Affiliation(s)
- Silvia Hoirisch-Clapauch
- Department of Hematology, Hospital Federal dos Servidores do Estado, Ministry of Health, Rio de Janeiro, Brazil.
| | - Antonio Egidio Nardi
- Institute of Psychiatry, Federal University of Rio de Janeiro, National Institute for Translational Medicine, INCT-TM, Brazil
| |
Collapse
|
29
|
Zhu Q, Yamakuchi M, Ture S, de la Luz Garcia-Hernandez M, Ko KA, Modjeski KL, LoMonaco MB, Johnson AD, O'Donnell CJ, Takai Y, Morrell CN, Lowenstein CJ. Syntaxin-binding protein STXBP5 inhibits endothelial exocytosis and promotes platelet secretion. J Clin Invest 2014; 124:4503-16. [PMID: 25244095 DOI: 10.1172/jci71245] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/24/2014] [Indexed: 01/25/2023] Open
Abstract
In humans, vWF levels predict the risk of myocardial infarction and thrombosis; however, the factors that influence vWF levels are not completely understood. Recent genome-wide association studies (GWAS) have identified syntaxin-binding protein 5 (STXBP5) as a candidate gene linked to changes in vWF plasma levels, though the functional relationship between STXBP5 and vWF is unknown. We hypothesized that STXBP5 inhibits endothelial cell exocytosis. We found that STXBP5 is expressed in human endothelial cells and colocalizes with and interacts with syntaxin 4. In human endothelial cells reduction of STXBP5 increased exocytosis of vWF and P-selectin. Mice lacking Stxbp5 had higher levels of vWF in the plasma, increased P-selectin translocation, and more platelet-endothelial interactions, which suggests that STXBP5 inhibits endothelial exocytosis. However, Stxbp5 KO mice also displayed hemostasis defects, including prolonged tail bleeding times and impaired mesenteric arteriole and carotid artery thrombosis. Furthermore, platelets from Stxbp5 KO mice had defects in platelet secretion and activation; thus, STXBP5 inhibits endothelial exocytosis but promotes platelet secretion. Our study reveals a vascular function for STXBP5, validates the functional relevance of a candidate gene identified by GWAS, and suggests that variation within STXBP5 is a genetic risk for venous thromboembolic disease.
Collapse
|
30
|
Feldman RD, Gros R. Vascular effects of aldosterone: sorting out the receptors and the ligands. Clin Exp Pharmacol Physiol 2014; 40:916-21. [PMID: 23902478 DOI: 10.1111/1440-1681.12157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/27/2023]
Abstract
Aldosterone has actions far beyond its role as a renal regulator of sodium reabsorption, and broader mechanisms of action than simply a transcriptional regulator. Aldosterone has a number of vascular effects, including regulation of vascular reactivity and vascular growth and/or development. Aldosterone-mediated effects on vascular reactivity reflect a balance between its endothelial-dependent vasodilator effects and its direct smooth muscle vasoconstrictor effects. The endothelial vasodilator effects of aldosterone are mediated by phosphatidylinositol 3-kinase-dependent activation of nitric oxide synthase. G-Protein oestrogen receptor (GPER) is a recently recognized G-protein coupled receptor (GPCR) that is activated by steroid hormones. It was first recognized as the GPCR mediating the rapid effects of oestrogens. Activation of GPER also mediates at least some of the vascular effects of aldosterone in smooth muscle and endothelial cells. In vascular endothelial cells, aldosterone activation of GPER mediates vasodilation. In contrast, activation of endothelial mineralocorticoid receptors has been linked to enhanced vasoconstrictor and/or impaired vasodilator responses.
Collapse
Affiliation(s)
- Ross D Feldman
- Departments of Medicine and of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Vascular Biology Research Group, Robarts Research Institute, London, ON, Canada
| | | |
Collapse
|
31
|
Lagrange J, Li Z, Fassot C, Bourhim M, Louis H, Nguyen Dinh Cat A, Parlakian A, Wahl D, Lacolley P, Jaisser F, Regnault V. Endothelial mineralocorticoid receptor activation enhances endothelial protein C receptor and decreases vascular thrombosis in mice. FASEB J 2014; 28:2062-72. [PMID: 24451386 DOI: 10.1096/fj.13-238188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have shown that aldosterone, which activates the mineralocorticoid receptor (MR), promotes thrombosis in animal models. Our objective was to determine whether MR activation/expression in the vascular endothelium could modify thrombotic risk in vivo and to examine thrombin generation at the surface of aortic endothelial cells (HAECs). MR was conditionally overexpressed in vivo in vascular endothelial cells in mice (MR-EC mice) or stimulated with aldosterone in HAECs. Thrombosis after ferric chloride injury was delayed in MR-EC mice compared with controls as well as in wild-type FVB/NRj mice treated with aldosterone (60 μg/kg/d for 21 d). Thrombin generation in platelet-poor plasma did not differ between MR-EC mice and controls. In MR-EC mice, aortic endothelial cell protein C receptor (EPCR) expression was increased. Aldosterone (10(-8) M) attenuated thrombin generation at the surface of cultured HAECs, and this effect was associated with up-regulation of expression of EPCR, which promotes formation of activated protein C. Aldosterone increases EPCR expression via a transcriptional mechanism involving interaction of MR with the specificity protein 1 site. These findings demonstrate that MR activation acts on endothelial cells to protect against thrombosis in physiological conditions and that MR-mediated EPCR overexpression drives this antithrombotic property through enhancing protein C activation.
Collapse
Affiliation(s)
- Jérémy Lagrange
- 2INSERM U1116, Faculté de Médecine, 9 Avenue de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Oberleithner H. Vascular endothelium: a vulnerable transit zone for merciless sodium. Nephrol Dial Transplant 2013; 29:240-6. [PMID: 24335504 DOI: 10.1093/ndt/gft461] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In humans, when plasma sodium concentration rises slightly beyond 140 mM, vascular endothelium sharply stiffens and nitric oxide release declines. In search of a vascular sodium sensor, the endothelial glycocalyx was identified as being a negatively charged biopolymer capable of selectively buffering sodium ions. Sodium excess damages the glycocalyx and renders vascular endothelium increasingly permeable for sodium. In the long term, sodium accumulates in the interstitium and gradually damages the organism. It was discovered that circulating red blood cells (RBC) 'report' surface properties of the vascular endothelium. To some extent, the RBC glycocalyx mirrors the endothelial glycocalyx. A poor (charge-deprived) endothelial glycocalyx causes a poor RBC glycocalyx and vice versa. This observation led to the assumption that the current state of an individual's vascular endothelium in terms of electrical surface charges and sodium-buffering capabilities could be read simply from a blood sample. Recently, a so-called salt blood test was introduced that quantifies the RBC sodium buffer capacity and thus characterizes the endothelial function. The arguments are outlined in this article spanning a bridge from cellular nano-mechanics to clinical application.
Collapse
Affiliation(s)
- Hans Oberleithner
- Institute of Physiology II, Medical Faculty, University of Münster, Münster 48149, Germany
| |
Collapse
|
33
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
34
|
Mineralocorticoid receptor activation as an etiological factor in kidney diseases. Clin Exp Nephrol 2013; 18:16-23. [DOI: 10.1007/s10157-013-0827-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
|
35
|
Abstract
The steroid hormone aldosterone regulates sodium and potassium homeostasis. Aldosterone and activation of the mineralocorticoid receptor also causes inflammation and fibrosis of the heart, fibrosis and remodelling of blood vessels and tubulointerstitial fibrosis and glomerular injury in the kidney. Aldosterone and mineralocorticoid-receptor activation initiate an inflammatory response by increasing the generation of reactive oxygen species by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. High salt intake potentiates these effects, in part by activating the Rho family member Rac1, a regulatory subunit of reduced NADPH oxidase that activates the mineralocorticoid receptor. Studies in mice in which the mineralocorticoid receptor has been deleted from specific cell types suggest a key role for macrophages in promoting inflammation and fibrosis. Aldosterone can exert mineralocorticoid-receptor-independent effects via the angiotensin II receptor and via G-protein-coupled receptor 30. Mineralocorticoid-receptor antagonists are associated with decreased mortality in patients with heart disease and show promise in patients with kidney injury, but can elevate serum potassium concentration. Studies in rodents genetically deficient in aldosterone synthase or treated with a pharmacological aldosterone-synthase inhibitor are providing insight into the relative contribution of aldosterone compared with the contribution of mineralocorticoid-receptor activation in inflammation, fibrosis, and injury. Aldosterone-synthase inhibitors are under development in humans.
Collapse
|
36
|
Yagi S, Akaike M, Aihara KI, Fukuda D, Ishida M, Ise T, Niki T, Sumitomo-Ueda Y, Yamaguchi K, Iwase T, Taketani Y, Yamada H, Soeki T, Wakatsuki T, Shimabukuro M, Sata M. Pharmacology of Aldosterone and the Effects of Mineralocorticoid Receptor Blockade on Cardiovascular Systems. ACTA CARDIOLOGICA SINICA 2013; 29:201-207. [PMID: 27122708 PMCID: PMC4804831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/14/2013] [Indexed: 06/05/2023]
Abstract
UNLABELLED It is well-known that aldosterone plays an important role in reabsorption of sodium and fluid, and in potassium excretion in kidneys via epithelial mineralocorticoid receptor (MR) activation. Recent studies have shown that aldosterone causes cardiovascular remodeling not only in a blood pressure-dependent manner, but also in a blood pressure-independent manner by decreasing nitric oxide bioavailability and modulating oxidative stress, leading to vascular inflammation. In addition, MR blockade does provide beneficial effects associated with cardiovascular protection, resulting in a reduction of cardiovascular morbidity and mortality. A growing body of evidence suggests that MR blockade is a promising therapeutic target to help prevent cardiovascular events. KEY WORDS Aldosterone; Mineralocorticoid receptor; Nitrix oxide; Renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Shusuke Yagi
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Masashi Akaike
- Department of Medical Education, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Ken-ichi Aihara
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Masayoshi Ishida
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Takayuki Ise
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Toshiyuki Niki
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Yuka Sumitomo-Ueda
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Takashi Iwase
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Yoshio Taketani
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Hirotsugu Yamada
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Michio Shimabukuro
- Department of Cardio-Diabetes Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Japan
| |
Collapse
|
37
|
Kirsch T, Beese M, Wyss K, Klinge U, Haller H, Haubitz M, Fiebeler A. Aldosterone Modulates Endothelial Permeability and Endothelial Nitric Oxide Synthase Activity by Rearrangement of the Actin Cytoskeleton. Hypertension 2013; 61:501-8. [DOI: 10.1161/hypertensionaha.111.196832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Torsten Kirsch
- From the Division of Nephrology, Hannover Medical School, Hannover, Germany (T.K., M.B., K.W., H.H., M.H., A.F.); Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbruck Center for Molecular Medicine, Berlin, Germany (A.F.); Department of Surgery, University Hospital RWTH, Aachen, Germany (U.K.)
| | - Michaela Beese
- From the Division of Nephrology, Hannover Medical School, Hannover, Germany (T.K., M.B., K.W., H.H., M.H., A.F.); Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbruck Center for Molecular Medicine, Berlin, Germany (A.F.); Department of Surgery, University Hospital RWTH, Aachen, Germany (U.K.)
| | - Kristin Wyss
- From the Division of Nephrology, Hannover Medical School, Hannover, Germany (T.K., M.B., K.W., H.H., M.H., A.F.); Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbruck Center for Molecular Medicine, Berlin, Germany (A.F.); Department of Surgery, University Hospital RWTH, Aachen, Germany (U.K.)
| | - Uwe Klinge
- From the Division of Nephrology, Hannover Medical School, Hannover, Germany (T.K., M.B., K.W., H.H., M.H., A.F.); Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbruck Center for Molecular Medicine, Berlin, Germany (A.F.); Department of Surgery, University Hospital RWTH, Aachen, Germany (U.K.)
| | - Hermann Haller
- From the Division of Nephrology, Hannover Medical School, Hannover, Germany (T.K., M.B., K.W., H.H., M.H., A.F.); Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbruck Center for Molecular Medicine, Berlin, Germany (A.F.); Department of Surgery, University Hospital RWTH, Aachen, Germany (U.K.)
| | - Marion Haubitz
- From the Division of Nephrology, Hannover Medical School, Hannover, Germany (T.K., M.B., K.W., H.H., M.H., A.F.); Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbruck Center for Molecular Medicine, Berlin, Germany (A.F.); Department of Surgery, University Hospital RWTH, Aachen, Germany (U.K.)
| | - Anette Fiebeler
- From the Division of Nephrology, Hannover Medical School, Hannover, Germany (T.K., M.B., K.W., H.H., M.H., A.F.); Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbruck Center for Molecular Medicine, Berlin, Germany (A.F.); Department of Surgery, University Hospital RWTH, Aachen, Germany (U.K.)
| |
Collapse
|
38
|
Gros R, Ding Q, Liu B, Chorazyczewski J, Feldman RD. Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation. Am J Physiol Cell Physiol 2013; 304:C532-40. [PMID: 23283935 DOI: 10.1152/ajpcell.00203.2012] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The importance of the rapid vascular effects of aldosterone is increasingly appreciated. Through these rapid pathways, aldosterone has been shown to regulate vascular contractility, cell growth, and apoptosis. In our most recent studies, we demonstrated the effects of aldosterone on cell growth and contractility in vascular smooth muscle cells. We showed that these effects could occur via activation of the classic mineralocorticoid receptor, as well the recently characterized G protein-coupled estrogen receptor (GPER), initially characterized as an estrogen-specific receptor. However, the mechanisms underlying aldosterone's endothelium-dependent actions are unknown. Furthermore, the ERK regulatory and proapoptotic effects of aldosterone mediated by GPER activation in cultured vascular smooth muscle cells were only apparent when GPER was reintroduced into these cells by gene transfer. Whether GPER activation via aldosterone might be an important regulator in native vascular cells has been questioned. Therefore, to determine the role of GPER in mediating aldosterone's effects on cell growth and vascular reactivity in native cells, we examined rat aortic vascular endothelial cells, a model characterized by persistent robust expression of GPER, but without detectable mineralocorticoid receptor expression. In these endothelial cells, the GPER agonist G1 mediates a rapid increase in ERK phosphorylation that is wholly GPER-dependent, paralleling the actions of aldosterone. The effects of G1 and aldosterone to stimulate ERK phosphorylation paralleled their proapoptotic and antiproliferative effects. In previous studies, we reported that aldosterone mediates a rapid endothelium-dependent vasodilatory effect, antagonistic to its direct vasoconstrictor effect in endothelium-denuded preparations. Using a rat aortic ring/organ bath preparation to determine the GPER dependence of aldosterone's endothelium-dependent vasodilator effects, we demonstrate that aldosterone inhibits phenylephrine-mediated contraction. This vasodilator effect parallels the actions of the GPER agonist G1. Furthermore, the effects of aldosterone were completely ablated by the GPER antagonist G15. These data support an important role of GPER activation in aldosterone-mediated regulation of endothelial cell growth, as well as in aldosterone's endothelium-mediated regulation of vasoreactivity.
Collapse
Affiliation(s)
- Robert Gros
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
39
|
Kusche-Vihrog K, Oberleithner H. An emerging concept of vascular salt sensitivity. F1000 BIOLOGY REPORTS 2012; 4:20. [PMID: 23112808 PMCID: PMC3463896 DOI: 10.3410/b4-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Excessive amounts of salt in food, as usually consumed worldwide, affect the vascular system, leading to high blood pressure and premature disabilities. Salt entering the vascular bed after a salty meal is transiently bound to the endothelial glycocalyx, a negatively charged biopolymer lining the inner surface of the blood vessels. This barrier protects the endothelium against salt overload. A poorly-developed glycocalyx increases the salt permeability of the vascular system and the amount of salt being deposited in the body, which affects organ function. A simple test system is now available that evaluates vascular salt sensitivity in humans and identifies individuals who are at risk of salt-induced hypertension. This short review aims to discuss how the underlying basic research can be translated into medical practice and, thus, meaningful health outcomes.
Collapse
Affiliation(s)
- Kristina Kusche-Vihrog
- Institute of Physiology II, Medical Faculty, University of Münster Robert-Koch-Strasse 27, 48149 Münster Germany
| | | |
Collapse
|
40
|
López Andrés N, Tesse A, Regnault V, Louis H, Cattan V, Thornton SN, Labat C, Kakou A, Tual-Chalot S, Faure S, Challande P, Osborne-Pellegrin M, Martínez MC, Lacolley P, Andriantsitohaina R. Increased microparticle production and impaired microvascular endothelial function in aldosterone-salt-treated rats: protective effects of polyphenols. PLoS One 2012; 7:e39235. [PMID: 22808030 PMCID: PMC3393732 DOI: 10.1371/journal.pone.0039235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/17/2012] [Indexed: 12/19/2022] Open
Abstract
We aimed to characterize circulating microparticles in association with arterial stiffness, inflammation and endothelial dysfunction in aldosterone-salt-induced hypertension in rats and to investigate the preventive effects of red wine polyphenols. Uninephrectomized male Sprague-Dawley rats were treated with aldosterone-salt (1 µg.h−1), with or without administration of either red wine polyphenols, Provinols™ (20 mg.kg−1.day−1), or spironolactone (30 mg.kg−1.day−1) for 4 weeks. Microparticles, arterial stiffness, nitric oxide (NO) spin trapping, and mesenteric arterial function were measured. Aldosterone-salt rats showed increased microparticle levels, including those originating from platelets, endothelium and erythrocytes. Hypertension resulted in enhanced aortic stiffness accompanied by increased circulating and aortic NO levels and an upregulation of aortic inducible NO-synthase, NFκB, superoxide anions and nitrotyrosine. Flow-induced dilatation was reduced in mesenteric arteries. These effects were prevented by spironolactone. Provinols™ did not reduce arterial stiffness or systolic hypertension but had effects similar to those of spironolactone on endothelial function assessed by flow-mediated vasodilatation, microparticle generation, aortic NO levels and oxidative stress and apoptosis in the vessel wall. Neither the contractile response nor endothelium-dependent relaxation in mesenteric arteries differed between groups. The in vivo effects of Provinols™ were not mediated by mineralocorticoid receptors or changes in shear stress. In conclusion, vascular remodelling and endothelial dysfunction in aldosterone-salt-mediated hypertension are associated with increased circulating microparticles. Polyphenols prevent the enhanced release of microparticles, macrovascular inflammation and oxidative stress, and microvascular endothelial dysfunction independently of blood pressure, shear stress and mineralocorticoid receptor activation in a model of hyperaldosteronism.
Collapse
Affiliation(s)
- Natalia López Andrés
- Institut National de la Santé et de la Recherche Médicale, U961, Nancy Université, Nancy, France
| | - Angela Tesse
- L’Université Nantes Angers Le Mans, Institut National de la Santé et de la Recherche Médicale, U1063, Angers, France
| | - Véronique Regnault
- Institut National de la Santé et de la Recherche Médicale, U961, Nancy Université, Nancy, France
| | - Huguette Louis
- Institut National de la Santé et de la Recherche Médicale, U961, Nancy Université, Nancy, France
| | - Valérie Cattan
- Institut National de la Santé et de la Recherche Médicale, U961, Nancy Université, Nancy, France
| | - Simon N. Thornton
- Institut National de la Santé et de la Recherche Médicale, U961, Nancy Université, Nancy, France
| | - Carlos Labat
- Institut National de la Santé et de la Recherche Médicale, U961, Nancy Université, Nancy, France
| | - Agustine Kakou
- Institut National de la Santé et de la Recherche Médicale, U961, Nancy Université, Nancy, France
| | - Simon Tual-Chalot
- L’Université Nantes Angers Le Mans, Institut National de la Santé et de la Recherche Médicale, U1063, Angers, France
| | - Sébastien Faure
- L’Université Nantes Angers Le Mans, Institut National de la Santé et de la Recherche Médicale, U1063, Angers, France
| | - Pascale Challande
- Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7190, Paris, France
| | - Mary Osborne-Pellegrin
- Institut National de la Santé et de la Recherche Médicale, U698, Paris Diderot University, Paris, France
| | - M. Carmen Martínez
- L’Université Nantes Angers Le Mans, Institut National de la Santé et de la Recherche Médicale, U1063, Angers, France
| | - Patrick Lacolley
- Institut National de la Santé et de la Recherche Médicale, U961, Nancy Université, Nancy, France
| | - Ramaroson Andriantsitohaina
- L’Université Nantes Angers Le Mans, Institut National de la Santé et de la Recherche Médicale, U1063, Angers, France
- * E-mail:
| |
Collapse
|
41
|
Nossent AY, Hansen JL, Doggen C, Quax PHA, Sheikh SP, Rosendaal FR. SNPs in microRNA binding sites in 3'-UTRs of RAAS genes influence arterial blood pressure and risk of myocardial infarction. Am J Hypertens 2011; 24:999-1006. [PMID: 21677697 DOI: 10.1038/ajh.2011.92] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND We hypothesized that single nucleotide polymorphisms (SNPs) located in microRNA (miR) binding sites in genes of the renin angiotensin aldosterone system (RAAS) can influence blood pressure and risk of myocardial infarction. METHODS Using online databases dbSNP and TargetScan, we identified 10 SNPs in potential miR binding sites in eight RAAS-related genes, common in Caucasians. We genotyped a large case-control study on myocardial infarctions, the Study of Myocardial Infarctions LEiden (SMILE) for these 10 SNPs and found nine SNPs, in seven genes, to be prevalent. Functionality of each SNP in interfering with mRNA/miR binding was tested using a dual luciferase reporter gene system. RESULTS Of these nine SNPs, four SNPs, located in the arginine vasopressin 1A receptor (AVPR1A), bradykinin 2 receptor (BDKRB2), and thromboxane A2 receptor (TBXA2R) genes were associated with blood pressure. The rare allele of the AVPR1A SNP rs11174811, was associated with increased blood pressure whereas the rare alleles of the two linked BDKRB2 SNPs rs5225 and rs2069591 and of the TBXA2R SNP rs13306046 were associated with decreased blood pressure. Although not associated with blood pressure, the rare allele of the mineralocorticoid receptor (NR3C2) SNP rs5534, was associated with a twofold increased risk of myocardial infarction in men younger than 50 years. For all of these five SNPs, except rs2069591, we could demonstrate a reduction in miR-induced repression of gene expression. CONCLUSIONS Common SNPs in miR binding sites of RAAS-related genes can influence both blood pressure and risk of myocardial infarction. These results may imply an important role for SNPs in miR target sites in human disease.
Collapse
|
42
|
Yagi S, Sata M. Pre-clinical data on the role of mineralocorticoid receptor antagonists in reversing vascular inflammation. Eur Heart J Suppl 2011. [DOI: 10.1093/eurheartj/sur012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Kusche-Vihrog K, Urbanova K, Blanqué A, Wilhelmi M, Schillers H, Kliche K, Pavenstädt H, Brand E, Oberleithner H. C-reactive protein makes human endothelium stiff and tight. Hypertension 2010; 57:231-7. [PMID: 21149827 DOI: 10.1161/hypertensionaha.110.163444] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevation of C-reactive protein (CRP) in human blood accompanies inflammatory processes, including cardiovascular diseases. There is increasing evidence that the acute-phase reactant CRP is not only a passive marker protein for systemic inflammation but also affects the vascular system. Further, CRP is an independent risk factor for atherosclerosis and the development of hypertension. Another crucial player in atherosclerotic processes is the mineralocorticoid hormone aldosterone. Even in low physiological concentrations, it stimulates the expression and membrane insertion of the epithelial sodium channel, thereby increasing the mechanical stiffness of endothelial cells. This contributes to the progression of endothelial dysfunction. In the present study, the hypothesis was tested that the acute application of CRP (25 mg/L), in presence of aldosterone (0.5 nmol/L; 24 hour incubation), modifies the mechanical stiffness and permeability of the endothelium. We found that endothelial cells stiffen in response to CRP. In parallel, endothelial epithelial sodium channel is inserted into the plasma membrane, while, surprisingly, the endothelial permeability decreases. CRP actions are prevented either by the inhibition of the intracellular aldosterone receptors using spironolactone (5 nmol/L) or by the inactivation of epithelial sodium channel using specific blockers. In contrast, inhibition of the release of the vasodilating gas nitric oxide via blockade of the phosphoinositide 3-kinase/Akt pathway has no effect on the CRP-induced stiffening of endothelial cells. The data indicate that CRP enhances the effects of aldosterone on the mechanical properties of the endothelium. Thus, CRP could counteract any decrease in arterial blood pressure that accompanies severe acute inflammatory processes.
Collapse
|
44
|
|
45
|
Abstract
PURPOSE OF REVIEW Aldosterone causes tissue inflammation leading to fibrosis and remodeling in the heart, vasculature, and kidney. We summarize recent data regarding the mechanism(s) through which aldosterone stimulates inflammation. RECENT FINDINGS Studies elucidate the cell-specific effects of mineralocorticoid receptor activation on inflammatory cell infiltration and adhesion, and highlight the role of the macrophage in the development of vascular collagen deposition and hypertension. Activation of nuclear factor-kappaB in vascular smooth muscle cells involves a complex interplay between the angiotensin subtype 1 (AT1) receptor and the mineralocorticoid receptor. Activation of the mineralocorticoid receptor by aldosterone stimulates an inflammatory phenotype in adipocytes and contributes to insulin resistance by increasing oxidative stress. SUMMARY Mechanistic studies of aldosterone-induced inflammation provide the rationale for an expanded therapeutic role for mineralocorticoid receptor antagonists and aldosterone synthase inhibitors.
Collapse
Affiliation(s)
- Kimberly C Gilbert
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA
| | | |
Collapse
|
46
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:293-312. [PMID: 20418721 DOI: 10.1097/med.0b013e328339f31e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Kaji K, Yoshiji H, Kitade M, Ikenaka Y, Noguchi R, Shirai Y, Yoshii J, Yanase K, Namisaki T, Yamazaki M, Tsujimoto T, Kawaratani H, Fukui H. Selective aldosterone blocker, eplerenone, attenuates hepatocellular carcinoma growth and angiogenesis in mice. Hepatol Res 2010; 40:540-549. [PMID: 20412330 DOI: 10.1111/j.1872-034x.2010.00636.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM The renin-angiotensin-aldosterone system (RAAS) has become known as a prerequisite for tumor angiogenesis, including hepatocellular carcinoma (HCC). Although angiotensin II is known to play an important role in tumor growth and angiogenesis, the role of aldosterone (Ald) is still obscure. The aim of our current study was to elucidate the effect of eplerenone, a clinically used selective Ald blocker (SAB), on murine HCC development especially in conjunction with angiogenesis. METHODS To create an allograft model, we injected 1 x 10(6) of BNL-HCC cells into the flanks of BALB/c mice. After the tumor was established, SAB was administrated at dose of 100 mg/kg per day. RESULTS Administration of SAB significantly suppressed HCC development along with inhibition of angiogenesis and expression of the vascular endothelial growth factor (VEGF), a potent angiogenic factor. SAB treatment resulted in a marked increase of apoptosis in the tumor, whereas tumor cell proliferation was not altered. Our in vitro study showed that SAB significantly suppressed the Ald-induced endothelial proliferation and tubular formation through inhibition of phosphorylation of the extracellular signal-regulated kinase 1/2. On the contrary, neither Ald nor SAB affected the proliferation of HCC cells in vitro. CONCLUSION Ald plays a pivotal role in HCC development through VEGF-mediated tumor angiogenesis, and SAB may be a potential new strategy in HCC therapy in the future.
Collapse
Affiliation(s)
- Kosuke Kaji
- Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Isobe A, Takeda T, Wakabayashi A, Tsuiji K, Li B, Sakata M, Yaegashi N, Kimura T. Aldosterone stimulates the proliferation of uterine leiomyoma cells. Gynecol Endocrinol 2010; 26:372-7. [PMID: 20050763 DOI: 10.3109/09513590903511521] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Although uterine leiomyomas are the most common gynaecological benign tumour and greatly affect reproductive health and well being, the pathophysiology and epidemiology of uterine leiomyomas are not well known. Elevated blood pressure has an independent, positive association with risk for clinically detected uterine leiomyomas. Aldosterone is a key biological peptide in the renin-angiotensin-aldosterone system that regulates blood pressure. In this study, we investigated the siginificant stimulatory effect of aldosterone on leiomyoma cells proliferation. STUDY DESIGN This study investigated the potential role of aldosterone in the proliferation of ELT-3 leiomyoma cells. RESULTS Aldosterone-induced ELT-3 leiomyoma cell proliferation and the expression of mineralocorticoid receptor (MR) were confirmed. Pre-incubating the cells with the MR blockers spironolactone or eplerenone effectively repressed aldosterone-induced and angiotensin II (Ang II)-induced cell proliferation. Treatment of aldosterone increased the levels of Ang II type-1 receptor mRNA. CONCLUSION These experimental findings in vitro show the presence of complex regulation of Ang II and aldosterone induced leiomyoma cell proliferation.
Collapse
Affiliation(s)
- Aki Isobe
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Aldosterone, a steroid hormone with mineralocorticoid activity, is mainly recognized for its action on sodium reabsorption in the distal nephron of the kidney, which is mediated by the epithelial sodium channel (ENaC). Beyond this well-known action, however, aldosterone exerts other effects on the kidney, blood vessels and the heart, which can have pathophysiological consequences, particularly in the presence of a high salt intake. Aldosterone is implicated in renal inflammatory and fibrotic processes, as well as in podocyte injury and mesangial cell proliferation. In the cardiovascular system, aldosterone has specific hypertrophic and fibrotic effects and can alter endothelial function. Several lines of evidence support the existence of crosstalk between aldosterone and angiotensin II in vascular smooth muscle cells. The deleterious effects of aldosterone on the cardiovascular system require concomitant pathophysiological conditions such as a high salt diet, increased oxidative stress, or inflammation. Large interventional trials have confirmed the benefits of adding mineralocorticoid-receptor antagonists to standard therapy, in particular to angiotensin-converting-enzyme inhibitor and angiotensin II receptor blocker therapy, in patients with heart failure. Small interventional studies in patients with chronic kidney disease have shown promising results, with a significant reduction of proteinuria associated with aldosterone antagonism, but large interventional trials that test the efficacy and safety of mineralocorticoid-receptor antagonists in chronic kidney disease are needed.
Collapse
Affiliation(s)
- Marie Briet
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital and Lady Davis Institute for Medical Research, McGill University, 3755 Côte-Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | | |
Collapse
|