1
|
Shin S, Mugnai ML, Thirumalai D. Water-Mediated Interactions between Glycans Are Weakly Repulsive and Unexpectedly Long-Ranged. J Am Chem Soc 2025; 147:17448-17458. [PMID: 40357734 DOI: 10.1021/jacs.5c04126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Glycans on the cell surface play an essential role in mediating cell-cell interactions and immune response. Despite their importance, the interactions between them have not been fully characterized. Here, we reveal, using all-atom molecular dynamics simulations and free energy calculations, that water-mediated interactions between a pair of N-glycans without a net charge are weakly repulsive with a range that exceeds their sizes. Unexpectedly, the effective glycan-glycan interactions decay logarithmically as the separation between them increases. Strikingly, this finding coincides exactly with the predicted interaction, which is entropic in origin, between two star polymers consisting of long flexible polymers grafted onto colloidal particles. The weak repulsive interaction, which extends beyond the size of a glycan, is sensitive to the relative orientation of the glycans. The effective long-range repulsive interaction vanishes if the charges on water are turned off, thus establishing that electrostatic interactions, arising in part due to the persistent hydrogen bonds between water and the glycans, are responsible for the interglycan repulsion.
Collapse
Affiliation(s)
- Sucheol Shin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mauro L Mugnai
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, District of Columbia 20057, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Liu Y, Han D, Liu L. Temporary Structural Supports for Chemical Protein Synthesis. Angew Chem Int Ed Engl 2025:e202504405. [PMID: 40248862 DOI: 10.1002/anie.202504405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The range of functional proteins that can be prepared by chemical protein synthesis includes those bearing complex modifications and incorporating d-amino acids, and exceeds what can be accessed by biological means, but the technique is still limited by the unfavorable solution behavior of many synthetic protein intermediates in buffer, leading to inefficient ligation, purification, and in vitro folding. One approach to address this limitation is the use of temporary structural supports-chemical modifications, usually solubilizing functionalities such as polyamines or carbohydrates-that are installed on either the backbone or side chains of the synthetic protein intermediates and removed at a later stage of chemical protein synthesis. The basic processes for introducing and removing such temporary structural supports are reminiscent of the canonical protecting groups ubiquitous in organic chemistry. However, unlike the synthesis of small organic molecules, where solubility is rarely an issue, the purpose of temporary structural supports is to modulate the solution behavior of the synthetic protein intermediates to prevent them from aggregation, precipitation, or retention in unfavorable solvation-phase conformations. In this review, we summarize recent advances in the development of temporary structural supports for chemical protein synthesis and organize them into three categories: 1) Temporary structural supports to improve solubility; 2) Temporary structural supports to assist chemical ligation; and 3) Temporary structural supports to promote in vitro folding.
Collapse
Affiliation(s)
- Yanbo Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dongyang Han
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Novikov B, Boland DJ, Mertsalov I, Scott H, Dauletbayeva S, Monagas-Valentin P, Panin V. CMP-sialic acid synthetase in Drosophila requires N-glycosylation of a noncanonical site. J Biol Chem 2025; 301:108483. [PMID: 40204091 DOI: 10.1016/j.jbc.2025.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Sialylation plays important roles in animals, affecting numerous molecular and cell interactions. In Drosophila, sialylation regulates neural transmission and mediates communication between neurons and glia. Drosophila CMP-sialic acid synthetase (CSAS), a key enzyme of the sialylation pathway, is localized to the Golgi and modified by N-glycosylation, suggesting that this modification can affect CSAS function. Here, we tested this hypothesis using in vitro and in vivo approaches. We found that CSAS proteins from divergent Drosophila species have two conserved N-glycosylation sites, including the rarely glycosylated noncanonical N-X-C sequon. We investigated CSAS glycosylation by generating CSAS "glycomutants" lacking glycosylation sites and analyzing them in vivo in transgenic rescue assays. The removal of noncanonical glycosylation significantly decreased CSAS activity, while the canonical site mutation did not affect CSAS function. Although all glycomutants were similarly localized to the Golgi, the non-canonical glycosylation, unlike the canonical one, affected CSAS stability in vivo and in vitro. Our results suggested that CSAS functions as a dimer, which was also supported by protein structure predictions that produced a dimer recapitulating the crystal structures of mammalian and bacterial counterparts, highlighting the evolutionary conservation of the CSAS structure-function relationship. This conclusion was supported by the rescue of CSAS mutants using the human ortholog. The noncanonical CSAS glycosylation was discussed in terms of a potential mechanism of temperature-dependent regulation of sialylation in poikilotherms that modulates neural activity in heat shock conditions. Taken together, we uncovered an important regulation of sialylation in Drosophila, highlighting a novel interplay between glycosylation pathways in neural regulation.
Collapse
Affiliation(s)
- Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Devon J Boland
- Texas A&M Institute of Genome Sciences & Society, Texas A&M University, College Station, Texas, USA
| | - Ilya Mertsalov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA; Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Hilary Scott
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Saniya Dauletbayeva
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA; Department of Molecular Biology and Genetics, al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
4
|
Wilson CAM, Alfaro-Valdés HM, Kaplan M, D’Alessio C. Mechanical effect of protein glycosylation on BiP-mediated post-translational translocation and folding in the endoplasmic reticulum. Biophys Rev 2025; 17:435-447. [PMID: 40376427 PMCID: PMC12075051 DOI: 10.1007/s12551-025-01313-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/28/2025] [Indexed: 05/18/2025] Open
Abstract
About one-third of the proteins synthesized in eukaryotic cells are directed to the secretory pathway, where close to 70% are being N-glycosylated. N-glycosylation is a crucial modification for various cellular processes, including endoplasmic reticulum (ER) glycoprotein folding quality control, lysosome delivery, and cell signaling. The defects in N-glycosylation can lead to severe developmental diseases. For the proteins to be glycosylated, they must be translocated to the ER through the Sec61 translocon channel, either via co-translationally or post-translationally. N-glycosylation not only could accelerate post-translational translocation but may also enhance protein stability, while protein folding can assist in their movement into the ER. However, the precise mechanisms by which N-glycosylation and folding influence translocation remain poorly understood. The chaperone BiP is essential for post-translational translocation, using a "ratchet" mechanism to facilitate protein entry into the ER. Although research has explored how BiP interacts with protein substrates, there has been less focus on its binding to glycosylated substrates. Here, we review the effect of N-glycosylation on protein translocation, employing single-molecule studies and ensembles approaches to clarify the roles of BiP and N-glycosylation in these processes. Our review explores the possibility of a direct relationship between translocation and a ratchet effect of glycosylation and the importance of BiP in binding glycosylated proteins for the ER quality control system. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-025-01313-x.
Collapse
Affiliation(s)
- Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Hilda M. Alfaro-Valdés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Faculty of Science, Universidad de Valparaíso, Valparaíso, Chile
| | - Merve Kaplan
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxfordshire, UK
| | - Cecilia D’Alessio
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3)-Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales Aires, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Zuo D, He J, Sun X, Liu H, Xia S, Wang M, Zheng X, Liu H, Shi P. Effects of N-linked glycosylation on the enzymatic properties of GH12 bifunctional enzymes from Aspergillus terreus expressed in Pichia pastoris. Int J Biol Macromol 2025; 304:140755. [PMID: 39922334 DOI: 10.1016/j.ijbiomac.2025.140755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
In industry, bioenergy, food process, and feed application, endoglucanases are highly valuable for lignocellulose degradation with high catalytic activity under high temperatures. The glycoside hydrolase family 12 endoglucanase (AtEglD) from Aspergillus terreus can efficiently hydrolyze both β-glucan and xyloglucan of barley with an optimal temperature of 55 °C under pH 5.0. To enhance the industrial potential of AtEglD, the rational design of its N-glycosylation sites is imperative. The genes encoding AtEglD (N-glycosylation site at Asn65), along with two mutants: D168S (N-glycosylation site at Asn166) and N65Q (which lacks an N-glycosylation site) were successfully expressed and characterized. AtEglD exhibits reduced activity at 60 °C whereas, the N65Q mutant exhibited enhanced activity, maintaining substantial activity even after 90 min incubation. In barley-β-glucan, its specific activity reached 3204.27 U·mg-1, representing 2.73 times increase compared to AtEglD (1175.35 U·mg-1), while the catalytic efficiency was measured at 779.00 S-1·mM-1, indicating a 74.4 % enhancement relative to AtEglD (447.34 S-1·mM-1). For xyloglucan, N65Q demonstrated a significantly greater affinity compared to AtEglD, with 36.0 % increase in catalytic efficiency. Intriguingly, the D168S mutant exhibited a marked reduction in both specific activity and catalytic efficiency across both substrates. The structure analysis of AtEglD revealed that the N65 residues are far away from the catalytic domain, while the N166 residues are close to the catalytic site. It is implied that N-glycosylation proximal to the catalytic site maybe constrict the substrate-binding channel, thereby diminishing substrate recognition. These findings underscore the pivotal role of N-glycosylation site variations of GH12 endoglucanase in modulating enzyme characteristics.
Collapse
Affiliation(s)
- Dinghui Zuo
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jinjian He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xihang Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Hanting Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shenju Xia
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xia Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Huiqin Liu
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China.
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
6
|
Heim S, Teav T, Cortesi F, Gallart-Ayala H, Ivanisevic J, Salamin N. N-acetylated sugars in clownfish and damselfish skin mucus as messengers involved in chemical recognition by anemone host. Sci Rep 2025; 15:2048. [PMID: 39814757 PMCID: PMC11736139 DOI: 10.1038/s41598-024-84495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
The clownfish - sea anemone system is a great example of symbiotic mutualism where host «toxicity» does not impact its symbiont partner, although the underlying protection mechanism remains unclear. The regulation of nematocyst discharge in cnidarians involves N-acetylated sugars like sialic acid, that bind chemoreceptors on the tentacles of sea anemones, leading to the release of stings. It has been suggested that clownfish could be deprived of sialic acid on their skin surface, sparing them from being stung and facilitating mutualism with sea anemones. In this study, we sampled the skin mucus of two anemone symbionts, the clownfish Amphiprion akindynos and the juvenile damselfish Dascyllus trimaculatus, as well as two non-symbiotic adult damselfish Pomacentrus moluccensis and P. pavo. The free and total sialic acid content, including its conjugated form, and three other intermediates of this pathway were quantified using a stable isotope dilution mass spectrometry approach. We found significantly higher levels of sialic acid and its precursor in the non-symbiotic damselfishes. Concentrations of total sialic acid in anemone symbionts ranged between 13 µM and 16 µM, whereas the non-symbiotic damselfishes ranged between 21 µM and 30 µM. The presence of this metabolite and its precursors, as triggers of nematocyst discharge, in anemone symbionts, suggests that this is not the direct mechanism of protection or that the trigger is concentration dependent. This experiment demonstrates that anemone symbionts are not spared by nematocysts because of a lack of N-acetylated sugars, as previously thought, rather the biochemical mechanisms involving N-acetylated sugars are more complex than just a presence/absence of these molecules.
Collapse
Affiliation(s)
- Sara Heim
- Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tony Teav
- Metabolomics and Lipidomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fabio Cortesi
- School of the Environment and Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Hector Gallart-Ayala
- Metabolomics and Lipidomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics and Lipidomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Chen K, Shoulders MD. Protein Glycosylation Patterns Shaped By the IRE1-XBP1s Arm of the Unfolded Protein Response. Isr J Chem 2024; 64:e202300162. [PMID: 40083477 PMCID: PMC11906193 DOI: 10.1002/ijch.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 03/16/2025]
Abstract
The unfolded protein response (UPR) is a sensing and signaling pathway that surveys the endoplasmic reticulum (ER) for protein folding challenges and responds whenever issues are detected. UPR activation leads to upregulation of secretory pathway chaperones and quality control factors, as well as reduces the nascent protein load on the ER, thereby restoring and maintaining proteostasis. This paradigm-defining view of the role of the UPR is accurate, but it elides additional key functions of the UPR in cell biology. In particular, recent work has revealed that the UPR can shape the structure and function of N- and O-glycans installed on ER client proteins. This crosstalk between the UPR's response to protein misfolding and the regulation of glycosylation remains insufficiently understood. Still, emerging evidence makes it clear that the UPR, and particularly the IRE1-XBP1s arm of the UPR, may be a central regulator of protein glycosylation with important biological consequences. In this review, we discuss the crosstalk between proteostasis, the UPR, and glycosylation, present progress towards understanding biological functions of this crosstalk, and examine potential roles in diseases such as cancer.
Collapse
Affiliation(s)
- Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Morgan GJ, Yung Z, Spencer BH, Sanchorawala V, Prokaeva T. Predicting Structural Consequences of Antibody Light Chain N-Glycosylation in AL Amyloidosis. Pharmaceuticals (Basel) 2024; 17:1542. [PMID: 39598451 PMCID: PMC11597191 DOI: 10.3390/ph17111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Antibody light chains form amyloid fibrils that lead to progressive tissue damage in amyloid light chain (AL) amyloidosis. The properties of each patient's unique light chain appear to determine its propensity to form amyloid. One factor is N-glycosylation, which is more frequent in amyloid-associated light chains than in light chains from the normal immune repertoire. However, the mechanisms underlying this association are unknown. Here, we investigate the frequency and position within the light chain sequence of the N-glycosylation sequence motif, or sequon. Methods: Monoclonal light chains from AL amyloidosis and multiple myeloma were identified from the AL-Base repository. Polyclonal light chains were obtained from the Observed Antibody Space resource. We compared the fraction of light chains from each group harboring an N-glycosylation sequon, and the positions of these sequons within the sequences. Results: Sequons are enriched among AL-associated light chains derived from a subset of precursor germline genes. Sequons are observed at multiple positions, which differ between the two types of light chains, κ and λ, but are similar between light chains from AL amyloidosis and multiple myeloma. Positions of sequons map to residues with surface-exposed sidechains that are compatible with the folded structures of light chains. Within the known structures of λ AL amyloid fibrils, many residues where sequons are observed are buried, inconsistent with N-glycosylation. Conclusions: There is no clear structural rationale for why N-glycosylation of κ light chains is associated with AL amyloidosis. A better understanding of the roles of N-glycosylation in AL amyloidosis is required before it can be used as a marker for disease risk.
Collapse
Affiliation(s)
- Gareth J. Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Zach Yung
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Brian H. Spencer
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vaishali Sanchorawala
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Tatiana Prokaeva
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
9
|
Liu R, Zhang R, Dong X, Chen S, Zhang L, Shi T, Yuan J, Hedin N, Chen G. Chirality Transfer of Glycopeptide across Scales Defined by the Continuity of Hydrogen Bonds. ACS NANO 2024; 18:14367-14376. [PMID: 38767458 DOI: 10.1021/acsnano.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In nature, chirality transfer refines biomolecules across all size scales, bestowing them with a myriad of sophisticated functions. Despite recent advances in replicating chirality transfer with biotic or abiotic building blocks, a molecular understanding of the underlying mechanism of chirality transfer remains a daunting challenge. In this paper, the coassembly of two types of glycopeptide molecules differing in capability of forming intermolecular hydrogen bonds enabled the involvement of discontinuous hydrogen bond, which allowed for a nanoscale chirality transfer from glycopeptide molecules to chiral micelles, yet inhibited the micrometer scale chirality transfer toward helix formation, leading to an achiral transfer from chiral micelles to planar monolayer. Upon stacking the monolayer into a bilayer, the nonsuperimposable front and back faces of the chiral micelles involved in the monolayer ribbons lead to the opposite rotation of two layers toward increasing the continuity of H-bonds. The resultant continuity triggered the symmetry breaking of stacked bilayers and thus reactivated the micrometer-scale chirality transfer toward the final helix. This work delineates a promising step toward a better understanding and replicating the naturally occurring chirality transfer events and will be instructive to future chiral material design.
Collapse
Affiliation(s)
- Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Xiaoduo Dong
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Shuyu Chen
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Tongfei Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
10
|
Rowland RR, Brandariz-Nuñez A. Role of N-linked glycosylation in porcine reproductive and respiratory syndrome virus (PRRSV) infection. J Gen Virol 2024; 105:001994. [PMID: 38776134 PMCID: PMC11165596 DOI: 10.1099/jgv.0.001994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 05/24/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.
Collapse
Affiliation(s)
- Raymond R.R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
11
|
Xu X, Yin K, Wu R. Systematic Investigation of the Trafficking of Glycoproteins on the Cell Surface. Mol Cell Proteomics 2024; 23:100761. [PMID: 38593903 PMCID: PMC11087972 DOI: 10.1016/j.mcpro.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Glycoproteins located on the cell surface play a pivotal role in nearly every extracellular activity. N-glycosylation is one of the most common and important protein modifications in eukaryotic cells, and it often regulates protein folding and trafficking. Glycosylation of cell-surface proteins undergoes meticulous regulation by various enzymes in the endoplasmic reticulum (ER) and the Golgi, ensuring their proper folding and trafficking to the cell surface. However, the impacts of protein N-glycosylation, N-glycan maturity, and protein folding status on the trafficking of cell-surface glycoproteins remain to be explored. In this work, we comprehensively and site-specifically studied the trafficking of cell-surface glycoproteins in human cells. Integrating metabolic labeling, bioorthogonal chemistry, and multiplexed proteomics, we investigated 706 N-glycosylation sites on 396 cell-surface glycoproteins in monocytes, either by inhibiting protein N-glycosylation, disturbing N-glycan maturation, or perturbing protein folding in the ER. The current results reveal their distinct impacts on the trafficking of surface glycoproteins. The inhibition of protein N-glycosylation dramatically suppresses the trafficking of many cell-surface glycoproteins. The N-glycan immaturity has more substantial effects on proteins with high N-glycosylation site densities, while the perturbation of protein folding in the ER exerts a more pronounced impact on surface glycoproteins with larger sizes. Furthermore, for N-glycosylated proteins, their trafficking to the cell surface is related to the secondary structures and adjacent amino acid residues of glycosylation sites. Systematic analysis of surface glycoprotein trafficking advances our understanding of the mechanisms underlying protein secretion and surface presentation.
Collapse
Affiliation(s)
- Xing Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
12
|
Le Goupil S, Laprade H, Aubry M, Chevet E. Exploring the IRE1 interactome: From canonical signaling functions to unexpected roles. J Biol Chem 2024; 300:107169. [PMID: 38494075 PMCID: PMC11007444 DOI: 10.1016/j.jbc.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
The unfolded protein response is a mechanism aiming at restoring endoplasmic reticulum (ER) homeostasis and is likely involved in other adaptive pathways. The unfolded protein response is transduced by three proteins acting as sensors and triggering downstream signaling pathways. Among them, inositol-requiring enzyme 1 alpha (IRE1α) (referred to as IRE1 hereafter), an endoplasmic reticulum-resident type I transmembrane protein, exerts its function through both kinase and endoribonuclease activities, resulting in both X-box binding protein 1 mRNA splicing and RNA degradation (regulated ire1 dependent decay). An increasing number of studies have reported protein-protein interactions as regulators of these signaling mechanisms, and additionally, driving other noncanonical functions. In this review, we deliver evolutive and structural insights on IRE1 and further describe how this protein interaction network (interactome) regulates IRE1 signaling abilities or mediates other cellular processes through catalytic-independent mechanisms. Moreover, we focus on newly discovered targets of IRE1 kinase activity and discuss potentially novel IRE1 functions based on the nature of the interactome, thereby identifying new fields to explore regarding this protein's biological roles.
Collapse
Affiliation(s)
- Simon Le Goupil
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France.
| | - Hadrien Laprade
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| | - Marc Aubry
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| |
Collapse
|
13
|
Gao L, Jiang Y, Hong K, Chen X, Wu X. Glycosylation of cellulase: a novel strategy for improving cellulase. Crit Rev Biotechnol 2024; 44:191-201. [PMID: 36592990 DOI: 10.1080/07388551.2022.2144117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 01/04/2023]
Abstract
Protein glycosylation is the most complex posttranslational modification process. Most cellulases from filamentous fungi contain N-glycosylation and O-glycosylation. Here, we discuss the potential roles of glycosylation on the characteristics and function of cellulases. The use of certain cultivation, inducer, and alteration of engineering glycosylation pathway can enable the rational control of cellulase glycosylation. Glycosylation does not occur arbitrarily and may tend to modify the 3D structure of cellulases by using specially distributed glycans. Therefore, glycoengineering should be considered comprehensively along with the spatial structure of cellulases. Cellulase glycosylation may be an evolution phenomenon, which has been considered as an economical way for providing different functions from identical proteins. In addition to gene and transcription regulations, glycosylation may be another regulation on the protein expression level. Enhanced understanding of the potential regulatory role of cellulase glycosylation will enable synthetic biology approaches for the development of commercial cellulase.
Collapse
Affiliation(s)
- Le Gao
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yi Jiang
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - Kai Hong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoyi Chen
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
14
|
Pasala C, Sharma S, Roychowdhury T, Moroni E, Colombo G, Chiosis G. N-Glycosylation as a Modulator of Protein Conformation and Assembly in Disease. Biomolecules 2024; 14:282. [PMID: 38540703 PMCID: PMC10968129 DOI: 10.3390/biom14030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 05/01/2024] Open
Abstract
Glycosylation, a prevalent post-translational modification, plays a pivotal role in regulating intricate cellular processes by covalently attaching glycans to macromolecules. Dysregulated glycosylation is linked to a spectrum of diseases, encompassing cancer, neurodegenerative disorders, congenital disorders, infections, and inflammation. This review delves into the intricate interplay between glycosylation and protein conformation, with a specific focus on the profound impact of N-glycans on the selection of distinct protein conformations characterized by distinct interactomes-namely, protein assemblies-under normal and pathological conditions across various diseases. We begin by examining the spike protein of the SARS virus, illustrating how N-glycans regulate the infectivity of pathogenic agents. Subsequently, we utilize the prion protein and the chaperone glucose-regulated protein 94 as examples, exploring instances where N-glycosylation transforms physiological protein structures into disease-associated forms. Unraveling these connections provides valuable insights into potential therapeutic avenues and a deeper comprehension of the molecular intricacies that underlie disease conditions. This exploration of glycosylation's influence on protein conformation effectively bridges the gap between the glycome and disease, offering a comprehensive perspective on the therapeutic implications of targeting conformational mutants and their pathologic assemblies in various diseases. The goal is to unravel the nuances of these post-translational modifications, shedding light on how they contribute to the intricate interplay between protein conformation, assembly, and disease.
Collapse
Affiliation(s)
- Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Elisabetta Moroni
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
| | - Giorgio Colombo
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
15
|
Greisen PJ, Yi L, Zhou R, Zhou J, Johansson E, Dong T, Liu H, Johnsen LB, Lund S, Svensson LA, Zhu H, Thomas N, Yang Z, Østergaard H. Computational design of N-linked glycans for high throughput epitope profiling. Protein Sci 2023; 32:e4726. [PMID: 37421602 PMCID: PMC10521239 DOI: 10.1002/pro.4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Efficient identification of epitopes is crucial for drug discovery and design as it enables the selection of optimal epitopes, expansion of lead antibody diversity, and verification of binding interface. Although high-resolution low throughput methods like x-ray crystallography can determine epitopes or protein-protein interactions accurately, they are time-consuming and can only be applied to a limited number of complexes. To overcome these limitations, we have developed a rapid computational method that incorporates N-linked glycans to mask epitopes or protein interaction surfaces, thereby providing a mapping of these regions. Using human coagulation factor IXa (fIXa) as a model system, we computationally screened 158 positions and expressed 98 variants to test experimentally for epitope mapping. We were able to delineate epitopes rapidly and reliably through the insertion of N-linked glycans that efficiently disrupted binding in a site-selective manner. To validate the efficacy of our method, we conducted ELISA experiments and high-throughput yeast surface display assays. Furthermore, x-ray crystallography was employed to verify the results, thereby recapitulating through the method of N-linked glycans a coarse-grained mapping of the epitope.
Collapse
Affiliation(s)
| | - Li Yi
- Global Research TechnologiesNovo Nordisk A/SMaaloevDenmark
| | - Rong Zhou
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | - Jian Zhou
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | - Eva Johansson
- Global Research TechnologiesNovo Nordisk A/SMaaloevDenmark
| | - Tiantang Dong
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | - Haimo Liu
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | | | - Søren Lund
- Global Research TechnologiesNovo Nordisk A/SMaaloevDenmark
| | | | - Haisun Zhu
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | - Nidhin Thomas
- Digital Science and InnovationNovo Nordisk A/SSeattleUSA
| | - Zhiru Yang
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | | |
Collapse
|
16
|
Ming Y, Zhang H, Zhao Z, Zhang Z, Wang H, Liang Z. Enhancing the thermostability of carboxypeptidase A by a multiple computer-aided rational design based on amino acids preferences at β-turns. Int J Biol Macromol 2023; 245:125447. [PMID: 37330104 DOI: 10.1016/j.ijbiomac.2023.125447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/27/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Carboxypeptidase A (CPA) with efficient hydrolysis ability has shown vital potential in food and biological fields. In addition, it is also the earliest discovered enzyme with Ochratoxin A (OTA) degradation activity. Thermostability plays an imperative role to catalyze the reactions at high temperatures in industry, but the poor thermostability of CPA restricts its industrial application. In order to improve the thermostability of CPA, flexible loops were predicted through molecular dynamics (MD) simulation. Based on the amino acid preferences at β-turns, three ΔΔG-based computational programs (Rosetta, FoldX and PoPMuSiC) were employed to screen three variants from plentiful candidates and MD simulations were then used to verify two potential variants with enhanced thermostability (R124K and S134P). Results showed that compared to the wild-type CPA, the variants S134P and R124K exhibited rise of 4.2 min and 7.4 min in half-life (t1/2) at 45 °C, 3 °C and 4.1 °C in the half inactivation temperature (T5010), in addition to increase by 1.9 °C and 1.2 °C in the melting temperature (Tm), respectively. The mechanism responsible for the enhanced thermostability was elucidated through the comprehensive analysis of molecular structure. This study shows that the thermostability of CPA can be improved by the multiple computer-aided rational design based on amino acid preferences at β-turns, broadening its industrial applicability of OTA degradation and providing a valuable strategy for the protein engineering of mycotoxin degrading enzymes.
Collapse
Affiliation(s)
- Yue Ming
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Honglei Wang
- Yantai Institute of China Agricultural University, Yantai 264670, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
17
|
Vila JA. Protein folding rate evolution upon mutations. Biophys Rev 2023; 15:661-669. [PMID: 37681091 PMCID: PMC10480377 DOI: 10.1007/s12551-023-01088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/24/2023] [Indexed: 09/09/2023] Open
Abstract
Despite the spectacular success of cutting-edge protein fold prediction methods, many critical questions remain unanswered, including why proteins can reach their native state in a biologically reasonable time. A satisfactory answer to this simple question could shed light on the slowest folding rate of proteins as well as how mutations-amino-acid substitutions and/or post-translational modifications-might affect it. Preliminary results indicate that (i) Anfinsen's dogma validity ensures that proteins reach their native state on a reasonable timescale regardless of their sequence or length, and (ii) it is feasible to determine the evolution of protein folding rates without accounting for epistasis effects or the mutational trajectories between the starting and target sequences. These results have direct implications for evolutionary biology because they lay the groundwork for a better understanding of why, and to what extent, mutations-a crucial element of evolution and a factor influencing it-affect protein evolvability. Furthermore, they may spur significant progress in our efforts to solve crucial structural biology problems, such as how a sequence encodes its folding.
Collapse
Affiliation(s)
- Jorge A. Vila
- IMASL-CONICET, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
18
|
Mukherjee MM, Abramowitz LK, Kumar B, Azadi P, Hanover JA. Selective bioorthogonal probe for N-glycan hybrid structures. RESEARCH SQUARE 2023:rs.3.rs-3093724. [PMID: 37577573 PMCID: PMC10418551 DOI: 10.21203/rs.3.rs-3093724/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metabolic incorporation of chemically tagged monosaccharides is a facile means of labelling cellular glycoprotein and glycolipids. Yet, since the monosaccharide precursors are often shared by several pathways, selectivity has been difficult to attain. For example, N-linked glycosylation is a chemically complex, and ubiquitous post translational modification with three distinct classes of GlcNAc-containing N-glycan structures: oligomannose, hybrid, and complex. Here we describe synthesis of 1,3-Pr2-6-OTs GlcNAlk as a next generation metabolic chemical reporter (MCR) for the specific labeling of hybrid N-glycan structures. We first developed a general strategy for defining the selectivity of labelling with chemically tagged monosaccharides. We then applied this approach to establish that 1,3-Pr2-6-OTs GlcNAlk is specifically incorporated into hybrid N-glycans. Using this MCR as a detection tool, we carried out imaging experiments to define the intracellular localization and trafficking of target proteins bearing hybrid N-glycan structures.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD
| | - Lara K Abramowitz
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Patabandige MW, Pfeifer LD, Nguyen HT, Desaire H. Quantitative clinical glycomics strategies: A guide for selecting the best analysis approach. MASS SPECTROMETRY REVIEWS 2022; 41:901-921. [PMID: 33565652 PMCID: PMC8601598 DOI: 10.1002/mas.21688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/13/2020] [Accepted: 01/24/2021] [Indexed: 05/05/2023]
Abstract
Glycans introduce complexity to the proteins to which they are attached. These modifications vary during the progression of many diseases; thus, they serve as potential biomarkers for disease diagnosis and prognosis. The immense structural diversity of glycans makes glycosylation analysis and quantitation difficult. Fortunately, recent advances in analytical techniques provide the opportunity to quantify even low-abundant glycopeptides and glycans derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Understanding the strengths and weaknesses of different quantitative glycomics analysis methods is important for selecting the best strategy to analyze glycosylation changes in any given set of clinical samples. To provide guidance towards selecting the proper approach, we discuss four widely used quantitative glycomics analysis platforms, including fluorescence-based analysis of released N-linked glycans and three different varieties of MS-based analysis: liquid chromatography (LC)-mass spectrometry (MS) analysis of glycopeptides, matrix-assisted laser desorption ionization-time of flight MS, and LC-ESI-MS analysis of released N-linked glycans. These methods' strengths and weaknesses are compared, particularly associated with the figures of merit that are important for clinical biomarker studies, including: the initial sample requirements, the methods' throughput, sample preparation time, the number of species identified, the methods' utility for isomer separation and structural characterization, method-related challenges associated with quantitation, repeatability, the expertise required, and the cost for each analysis. This review, therefore, provides unique guidance to researchers who endeavor to undertake a clinical glycomics analysis by offering insights on the available analysis technologies.
Collapse
Affiliation(s)
- Milani Wijeweera Patabandige
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Leah D. Pfeifer
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Hanna T. Nguyen
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| |
Collapse
|
20
|
Koseki T, Ishida N, Hirota R, Shiono Y, Makabe K. Mutational analysis of the effects of N-glycosylation sites on the activity and thermal stability of rutinosidase from Aspergillus oryzae. Enzyme Microb Technol 2022; 161:110112. [PMID: 35988320 DOI: 10.1016/j.enzmictec.2022.110112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
Purified recombinant rutinosidase from Aspergillus oryzae expressed in Pichia pastoris (rAoRutM) exhibits increase in thermal stability after treatment with endo-β-N-acetylglucosaminidase H (endo-H). In this study, the role of N-glycosylation in the activity and thermal stability of rAoRutM was analyzed via site-directed mutagenesis. Based on the crystal structure of AoRutM, five N-glycosylation sites (N32, N128, N176, N288, and N359) were identified in the AoRut protein. Among five single variants constructed for these sites, the N128D, N176D, and N359D variants exhibited similar mobility bands compared to that of the wild-type enzyme based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas the N32D and N288D variants exhibited slightly and considerably increasing mobility bands, respectively. The N128D and N288D variants showed increasing and decreasing rutinosidase activity, respectively, compared to the case for the wild-type, without and with endo-H treatments. While the N128D and N176D variants had lower Km values, the N288D and N359D variants had higher Km values, compared to the wild-type, without and with endo-H treatments. Surprisingly, the N32D and N176D variants exhibited considerably greater thermal stability than the wild-type, without or with the endo-H treatments, whereas the N128D and N359D variants exhibited drastically decreased thermal stability. Circular dichroism (CD) spectra of the N128D and N359D variants showed a similar CD profile to that of the wild-type treated with endo-H; however, the molar ellipticity values of the peaks at 208 nm and 212 nm in the above variants varied from those of the intact wild-type and other variants.
Collapse
Affiliation(s)
- Takuya Koseki
- Department of Biosciences, Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan.
| | - Naoki Ishida
- Department of Biosciences, Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Ruka Hirota
- Department of Biosciences, Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Yoshihito Shiono
- Department of Biosciences, Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Faculty of Engineering, Yamagata University, Yonezawa 992-8510, Japan
| |
Collapse
|
21
|
Anglès F, Wang C, Balch WE. Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold. Commun Biol 2022; 5:356. [PMID: 35418593 PMCID: PMC9008016 DOI: 10.1038/s42003-022-03302-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although the impact of genome variation on the thermodynamic properties of function on the protein fold has been studied in vitro, it remains a challenge to assign these relationships across the entire polypeptide sequence in vivo. Using the Gaussian process regression based principle of Spatial CoVariance, we globally assign on a residue-by-residue basis the biological thermodynamic properties that contribute to the functional fold of CFTR in the cell. We demonstrate the existence of a thermodynamically sensitive region of the CFTR fold involving the interface between NBD1 and ICL4 that contributes to its export from endoplasmic reticulum. At the cell surface a new set of residues contribute uniquely to the management of channel function. These results support a general 'quality assurance' view of global protein fold management as an SCV principle describing the differential pre- and post-ER residue interactions contributing to compartmentalization of the energetics of the protein fold for function. Our results set the stage for future analyses of the quality systems managing protein sequence-to-function-to-structure broadly encompassing genome design leading to protein function in complex cellular relationships responsible for diversity and fitness in biology in response to the environment.
Collapse
Affiliation(s)
- Frédéric Anglès
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
22
|
Weaver GC, Arya R, Schneider CL, Hudson AW, Stern LJ. Structural Models for Roseolovirus U20 And U21: Non-Classical MHC-I Like Proteins From HHV-6A, HHV-6B, and HHV-7. Front Immunol 2022; 13:864898. [PMID: 35444636 PMCID: PMC9013968 DOI: 10.3389/fimmu.2022.864898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
Human roseolovirus U20 and U21 are type I membrane glycoproteins that have been implicated in immune evasion by interfering with recognition of classical and non-classical MHC proteins. U20 and U21 are predicted to be type I glycoproteins with extracytosolic immunoglobulin-like domains, but detailed structural information is lacking. AlphaFold and RoseTTAfold are next generation machine-learning-based prediction engines that recently have revolutionized the field of computational three-dimensional protein structure prediction. Here, we review the structural biology of viral immunoevasins and the current status of computational structure prediction algorithms. We use these computational tools to generate structural models for U20 and U21 proteins, which are predicted to adopt MHC-Ia-like folds with closed MHC platforms and immunoglobulin-like domains. We evaluate these structural models and place them within current understanding of the structural basis for viral immune evasion of T cell and natural killer cell recognition.
Collapse
Affiliation(s)
- Grant C. Weaver
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
| | - Richa Arya
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
| | | | - Amy W. Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lawrence J. Stern
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
23
|
Bakshi T, Pham D, Kaur R, Sun B. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. Int J Mol Sci 2022; 23:ijms23073742. [PMID: 35409101 PMCID: PMC8998389 DOI: 10.3390/ijms23073742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins involved in a large number of diseases. Both in the past and in recent times, the enzymes and chaperones regulating these PTMs have been constantly discovered to directly interact with each other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects N-glycan modification and disulfide bonding at selective sites in individual proteins is largely unknown. Here, we reviewed the literature to discover the current status in understanding the relationships between NG and DBs in individual proteins. Our results showed that more than 2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the associations between NG and DBs. We summarized both these proteins with the reported relationships in the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely understudied field, more investigations can be encouraged to unveil the hidden relationships of NG and DBs in the majority of membranes and secreted proteins for pathophysiological understanding and biotherapeutic development.
Collapse
Affiliation(s)
- Tania Bakshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - David Pham
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Raminderjeet Kaur
- Faculty of Health Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Bingyun Sun
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence:
| |
Collapse
|
24
|
Conformational preferences of triantennary and tetraantennary hybrid N-glycans in aqueous solution: Insights from 20 μs long atomistic molecular dynamic simulations. J Biomol Struct Dyn 2022; 41:3305-3320. [PMID: 35262462 DOI: 10.1080/07391102.2022.2047109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the current study, we have investigated the conformational dynamics of a triantennary (N-glycan1) and tetraantennary (N-glycan2) hybrid N-glycans found on the surface of the HIV glycoprotein using 20 μs long all-atom molecular dynamics (MD) simulations. The main objective of the present study is to elucidate the influence of adding a complex branch on the overall glycan structural dynamics. Our investigation suggests that the average RMSD value increases when a complex branch is added to N-glycan1. However, the RMSD distribution is relatively wider in the case of N-glycan1 compared to N-glycan2, which indicates that multiple complex branches restrict the conformational variability of glycans. A similar observation is obtained from the principal component analysis of both glycans. All the puckering states (4C1 to 1C4) of each monosaccharide except mannose are sampled in our simulations, although the 4C1 chair form is energetically more favorable than 1C4. In N-glycan1, the 1-6 linkage in the mannose branch [Man(9)-α(1-6)-Man(5)] stays in the gauche-gauche cluster, whereas it moves towards trans-gauche in N-glycan2. For both glycans, mannose branches are more flexible than the complex branches, and adding a complex branch does not influence the dynamics of the mannose branches. We have noticed that the end-to-end distance of the complex branch shortens by ∼ 10 Å in the presence of another complex branch. This suggests that in the presence of an additional complex branch, the other complex branch adopts a close folded structure. All these conformational changes involve the selective formation of inter-residue and water-mediated hydrogen-bond networks.
Collapse
|
25
|
OUP accepted manuscript. Glycobiology 2022; 32:380-390. [DOI: 10.1093/glycob/cwac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
|
26
|
Morgan GJ. Transient disorder along pathways to amyloid. Biophys Chem 2021; 281:106711. [PMID: 34839162 DOI: 10.1016/j.bpc.2021.106711] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023]
Abstract
High-resolution structures of amyloid fibrils formed from normally-folded proteins have revealed non-native conformations of the polypeptide chains. Attaining these conformations apparently requires transition from the native state via a highly disordered conformation, in contrast to earlier models that posited a role for assembly of partially folded proteins. Modifications or interactions that extend the lifetime or constrain the conformations of these disordered states could act to enhance or suppress amyloid formation. Understanding how the properties of both the folded and transiently disordered structural ensembles influence the process of amyloid formation is a substantial challenge, but research into the properties of intrinsically disordered proteins will deliver important insights.
Collapse
Affiliation(s)
- Gareth J Morgan
- The Amyloidosis Center and Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
27
|
Mule SN, Rosa-Fernandes L, Coutinho JVP, Gomes VDM, Macedo-da-Silva J, Santiago VF, Quina D, de Oliveira GS, Thaysen-Andersen M, Larsen MR, Labriola L, Palmisano G. Systems-wide analysis of glycoprotein conformational changes by limited deglycosylation assay. J Proteomics 2021; 248:104355. [PMID: 34450331 DOI: 10.1016/j.jprot.2021.104355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
A new method to probe the conformational changes of glycoproteins on a systems-wide scale, termed limited deglycosylation assay (LDA), is described. The method measures the differential rate of deglycosylation of N-glycans on natively folded proteins by the common peptide:N-glycosidase F (PNGase F) enzyme which in turn informs on their spatial presentation and solvent exposure on the protein surface hence ultimately the glycoprotein conformation. LDA involves 1) protein-level N-deglycosylation under native conditions, 2) trypsin digestion, 3) glycopeptide enrichment, 4) peptide-level N-deglycosylation and 5) quantitative MS-based analysis of formerly N-glycosylated peptides (FNGPs). LDA was initially developed and the experimental conditions optimized using bovine RNase B and fetuin. The method was then applied to glycoprotein extracts from LLC-MK2 epithelial cells upon treatment with dithiothreitol to induce endoplasmic reticulum stress and promote protein misfolding. Data from the LDA and 3D structure analysis showed that glycoproteins predominantly undergo structural changes in loops/turns upon ER stress as exemplified with detailed analysis of ephrin-A5, GALNT10, PVR and BCAM. These results show that LDA accurately reports on systems-wide conformational changes of glycoproteins induced under controlled treatment regimes. Thus, LDA opens avenues to study glycoprotein structural changes in a range of other physiological and pathophysiological conditions relevant to acute and chronic diseases. SIGNIFICANCE: We describe a novel method termed limited deglycosylation assay (LDA), to probe conformational changes of glycoproteins on a systems-wide scale. This method improves the current toolbox of structural proteomics by combining site and conformational-specific PNGase F enzymatic activity with large scale quantitative proteomics. X-ray crystallography, nuclear magnetic resonance spectroscopy and cryoEM techniques are the major techniques applied to elucidate macromolecule structures. However, the size and heterogeneity of the oligosaccharide chains poses several challenges to the applications of these techniques to glycoproteins. The LDA method presented here, can be applied to a range of pathophysiological conditions and expanded to investigate PTMs-mediated structural changes in complex proteomes.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - João V P Coutinho
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinícius De Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Verônica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel Quina
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK, Denmark
| | - Letícia Labriola
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
28
|
Shotgun scanning glycomutagenesis: A simple and efficient strategy for constructing and characterizing neoglycoproteins. Proc Natl Acad Sci U S A 2021; 118:2107440118. [PMID: 34551980 PMCID: PMC8488656 DOI: 10.1073/pnas.2107440118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Asparagine-linked (N-linked) protein glycosylation—the covalent attachment of complex sugars to the nitrogen atom in asparagine side chains—is the most widespread posttranslational modification to proteins and also the most complex. N-glycosylation affects a significant number of cellular proteins and can have profound effects on their most important attributes such as biological activity, chemical solubility, folding and stability, immunogenicity, and serum half-life. Accordingly, the strategic installation of glycans at naïve sites has become an attractive means for endowing proteins with advantageous biological and/or biophysical properties. Here, we describe a glycoprotein engineering strategy that enables systematic investigation of the structural and functional consequences of glycan installation at every position along a protein backbone and provides a new route to bespoke glycoproteins. As a common protein modification, asparagine-linked (N-linked) glycosylation has the capacity to greatly influence the biological and biophysical properties of proteins. However, the routine use of glycosylation as a strategy for engineering proteins with advantageous properties is limited by our inability to construct and screen large collections of glycoproteins for cataloguing the consequences of glycan installation. To address this challenge, we describe a combinatorial strategy termed shotgun scanning glycomutagenesis in which DNA libraries encoding all possible glycosylation site variants of a given protein are constructed and subsequently expressed in glycosylation-competent bacteria, thereby enabling rapid determination of glycosylatable sites in the protein. The resulting neoglycoproteins can be readily subjected to available high-throughput assays, making it possible to systematically investigate the structural and functional consequences of glycan conjugation along a protein backbone. The utility of this approach was demonstrated with three different acceptor proteins, namely bacterial immunity protein Im7, bovine pancreatic ribonuclease A, and human anti-HER2 single-chain Fv antibody, all of which were found to tolerate N-glycan attachment at a large number of positions and with relatively high efficiency. The stability and activity of many glycovariants was measurably altered by N-linked glycans in a manner that critically depended on the precise location of the modification. Structural models suggested that affinity was improved by creating novel interfacial contacts with a glycan at the periphery of a protein–protein interface. Importantly, we anticipate that our glycomutagenesis workflow should provide access to unexplored regions of glycoprotein structural space and to custom-made neoglycoproteins with desirable properties.
Collapse
|
29
|
Collagen's enigmatic, highly conserved N-glycan has an essential proteostatic function. Proc Natl Acad Sci U S A 2021; 118:2026608118. [PMID: 33674390 DOI: 10.1073/pnas.2026608118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular procollagen folding begins at the protein's C-terminal propeptide (C-Pro) domain, which initiates triple-helix assembly and defines the composition and chain register of fibrillar collagen trimers. The C-Pro domain is later proteolytically cleaved and excreted from the body, while the mature triple helix is incorporated into the extracellular matrix. The procollagen C-Pro domain possesses a single N-glycosylation site that is widely conserved in all the fibrillar procollagens across humans and diverse other species. Given that the C-Pro domain is removed once procollagen folding is complete, the N-glycan might be presumed to be important for folding. Surprisingly, however, there is no difference in the folding and secretion of N-glycosylated versus non-N-glycosylated collagen type-I, leaving the function of the N-glycan unclear. We hypothesized that the collagen N-glycan might have a context-dependent function, specifically, that it could be required to promote procollagen folding only when proteostasis is challenged. We show that removal of the N-glycan from misfolding-prone C-Pro domain variants does indeed cause serious procollagen and ER proteostasis defects. The N-glycan promotes folding and secretion of destabilized C-Pro variants by providing access to the ER's lectin-based chaperone machinery. Finally, we show that the C-Pro N-glycan is actually critical for the folding and secretion of even wild-type procollagen under ER stress conditions. Such stress is commonly incurred during development, wound healing, and other processes in which collagen production plays a key role. Collectively, these results establish an essential, context-dependent function for procollagen's previously enigmatic N-glycan, wherein the carbohydrate moiety buffers procollagen folding against proteostatic challenge.
Collapse
|
30
|
Kato T, Shiono Y, Koseki T. Identification and characterization of an acetyl xylan esterase from Aspergillus oryzae. J Biosci Bioeng 2021; 132:337-342. [PMID: 34376338 DOI: 10.1016/j.jbiosc.2021.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
In this study, we report the identification and characterization of an acetyl xylan esterase, designated as AoAXEC, which was previously annotated as a hypothetical protein encoded by AO090023000158 in the Aspergillus oryzae genomic database. Based on its amino acid sequence, a low sequence identity to known acetyl xylan esterases was observed in the sequence of characterized acetyl xylan esterase. The gene fused with α-factor signal sequence of Saccharomyces cerevisiae instead of the native signal sequence was cloned into a vector, pPICZαC, and expressed successfully in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 7.0 and 50 °C, respectively, and was stable up to 50 °C. The optimal substrate for hydrolysis by the purified recombinant AoAXEC, among a panel of α-naphthyl esters (C2-C16), was α-naphthyl propionate (C3), with an activity of 0.35 ± 0.006 units/mg protein. No significant difference of the Km value was observed between C3 (2.3 ± 0.7 mM) and C2 (1.9 ± 0.4 mM). In contrast, kcat value for C3 (18 ± 3.9 s-1) was higher compared to C2 (4.5 ± 0.7 s-1). The purified recombinant enzyme displayed a low activity toward acyl chain substrates containing eight or more carbon atoms. Recombinant AoAXEC catalyzed the release of acetic acid from wheat arabinoxylan. However, no activity was detected on methyl esters of ferulic, p-coumaric, caffeic, or sinapic acids. Additionally, the liberation of phenolic acids, such as ferulic acid, from wheat arabinoxylan was not exhibited by the recombinant protein.
Collapse
Affiliation(s)
- Tomoe Kato
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Yoshihito Shiono
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Takuya Koseki
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan.
| |
Collapse
|
31
|
Chemical (neo)glycosylation of biological drugs. Adv Drug Deliv Rev 2021; 171:62-76. [PMID: 33548302 DOI: 10.1016/j.addr.2021.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023]
Abstract
Biological drugs, specifically proteins and peptides, are a privileged class of medicinal agents and are characterized with high specificity and high potency of therapeutic activity. However, biologics are fragile and require special care during storage, and are often modified to optimize their pharmacokinetics in terms of proteolytic stability and blood residence half-life. In this review, we showcase glycosylation as a method to optimize biologics for storage and application. Specifically, we focus on chemical glycosylation as an approach to modify biological drugs. We present case studies that illustrate the success of this methodology and specifically address the highly important question: does connectivity within the glycoconjugate have to be native or not? We then present the innovative methods of chemical glycosylation of biologics and specifically highlight the emerging and established protecting group-free methodologies of glycosylation. We discuss thermodynamic origins of protein stabilization via glycosylation, and analyze in detail stabilization in terms of proteolytic stability, aggregation upon storage and/or heat treatment. Finally, we present a case study of protein modification using sialic acid-containing glycans to avoid hepatic clearance of biological drugs. This review aims to spur interest in chemical glycosylation as a facile, powerful tool to optimize proteins and peptides as medicinal agents.
Collapse
|
32
|
Zhang C, Cai M, Chen S, Zhang F, Cui T, Xue Z, Wang W, Zhang B, Liu X. The consensus N glyco -X-S/T motif and a previously unknown N glyco -N-linked glycosylation are necessary for growth and pathogenicity of Phytophthora. Environ Microbiol 2021; 23:5147-5163. [PMID: 33728790 DOI: 10.1111/1462-2920.15468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Asparagine (Asn, N)-linked glycosylation within Nglyco -X-S/T; X ≠ P motif is a ubiquitously distributed post-translational modification that participates in diverse cellular processes. In this work, N-glycosylation inhibitor was shown to prevent Phytophthora sojae growth, suggesting that N-glycosylation is necessary for oomycete development. We conducted a glycoproteomic analysis of P. sojae to identify and map N-glycosylated proteins and to quantify differentially expressed glycoproteins associated with mycelia, asexual cyst, and sexual oospore developmental stages. A total of 355 N-glycosylated proteins was found, containing 496 glycosites, potentially involved in glycan degradation, carbon metabolism, glycolysis, or other metabolic pathways. Through PNGase F deglycosylation assays and site-directed mutagenesis of a GPI transamidase protein (GPI16) upregulated in cysts and a heat shock protein 70 (HSP70) upregulated in oospores, we demonstrated that both proteins were N-glycosylated and that the Nglyco -N motif is a target site for asparagine - oligosaccharide linkage. Glycosite mutations of Asn 94 Nglyco -X-S/T in the GPI16 led to impaired cyst germination and pathogenicity, while mutation of the previously unknown Asn 270 Nglyco -N motif in HSP70 led to decreased oospore production. In addition to providing a map of the oomycete N-glycoproteome, this work confirms that P. sojae has evolved multiple N-glycosylation motifs essential for growth.
Collapse
Affiliation(s)
- Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Meng Cai
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Shanshan Chen
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Tongshan Cui
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zhaolin Xue
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Weizhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Borui Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
33
|
Nakić N, Tran TH, Novokmet M, Andreoletti O, Lauc G, Legname G. Site-specific analysis of N-glycans from different sheep prion strains. PLoS Pathog 2021; 17:e1009232. [PMID: 33600485 PMCID: PMC7891774 DOI: 10.1371/journal.ppat.1009232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 01/23/2023] Open
Abstract
Prion diseases are a group of neurodegenerative diseases affecting a wide range of mammalian species, including humans. During the course of the disease, the abnormally folded scrapie prion protein (PrPSc) accumulates in the central nervous system where it causes neurodegeneration. In prion disorders, the diverse spectrum of illnesses exists because of the presence of different isoforms of PrPSc where they occupy distinct conformational states called strains. Strains are biochemically distinguished by a characteristic three-band immunoblot pattern, defined by differences in the occupancy of two glycosylation sites on the prion protein (PrP). Characterization of the exact N-glycan structures attached on either PrPC or PrPSc is lacking. Here we report the characterization and comparison of N-glycans from two different sheep prion strains. PrPSc from both strains was isolated from brain tissue and enzymatically digested with trypsin. By using liquid chromatography coupled to electrospray mass spectrometry, a site-specific analysis was performed. A total of 100 structures were detected on both glycosylation sites. The N-glycan profile was shown to be similar to the one on mouse PrP, however, with additional 40 structures reported. The results presented here show no major differences in glycan composition, suggesting that glycans may not be responsible for the differences in the two analyzed prion strains. To date, prion diseases remain a controversy amongst scientists. Although we know now it is the abnormal form of the prion protein (PrPSc) that causes the disease, many questions are still left unanswered. To understand the cellular mechanism of these diseases, we should first and foremost try to fully understand the prion protein itself. Even though many findings have been made regarding the structure of the protein, a large part of it is still unknown. Since the prion protein is actually a glycoprotein, to resolve its structure we need to put our focus not only on the protein part of the glycoprotein but also on the glycan structures as well. Here we compared two different sheep prion strains and although no major differences have been found between the glycan structures, this analysis may help the understanding of the role glycans have in prion diseases.
Collapse
Affiliation(s)
- Natali Nakić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Thanh Hoa Tran
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,VNUK Institute for Research and Executive Education, The University of Danang, Da Nang, Vietnam
| | | | - Olivier Andreoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,ELETTRA Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| |
Collapse
|
34
|
Li H, Zhang J, An C, Dong S. Probing N-Glycan Functions in Human Interleukin-17A Based on Chemically Synthesized Homogeneous Glycoforms. J Am Chem Soc 2021; 143:2846-2856. [DOI: 10.1021/jacs.0c12448] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hongxing Li
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
35
|
Aspergillus oryzae Rutinosidase: Biochemical and Structural Investigation. Appl Environ Microbiol 2021; 87:AEM.02438-20. [PMID: 33218993 DOI: 10.1128/aem.02438-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 11/20/2022] Open
Abstract
The rutinosidase (Rut)-encoding gene Aorut has been expressed in Pichia pastoris with its native signal sequence from Aspergillus oryzae Biochemical and structural investigation of the purified recombinant mature A. oryzae Rut (AoRut), designated rAoRutM, was performed in this study. A 1.7-Å resolution crystal structure of rAoRutM was determined, which is an essential step forward in the utilization of AoRut as a potential catalyst. The crystal structure of rAoRutM was represented by a (β/α)8 TIM barrel fold with structural similarity to that of rutinosidase from Aspergillus niger (AnRut) and an exo-β-(1,3)-glucanase from Candida albicans The crystal structure revealed that the catalytic site was located in a deep cleft, similarly to AnRut, and that internal cavities and water molecules were also present. Purified rAoRutM hydrolyzed not only 7-O-linked and 3-O-linked flavonoid rutinosides but also 7-O-linked and 3-O-linked flavonoid glucosides. rAoRutM displayed high catalytic activity toward quercetin 3-O-linked substrates such as rutin and isoquercitrin, rather than to the 7-O-linked substrate, quercetin-7-O-glucoside. Unexpectedly, purified rAoRutM exhibited increased thermostability after treatment with endo-β-N-acetylglucosaminidase H. Circular dichroism (CD) spectra of purified intact rAoRutM and of the enzyme after N-deglycosylation showed a typical α-helical CD profile; however, the molar ellipticity values of the peaks at 208 nm and 212 nm differed. The Km and k cat values for the substrates modified by rutinose were higher than those for the substrates modified by β-d-glucose.IMPORTANCE Flavonoid glycosides constitute a class of secondary metabolites widely distributed in nature. These compounds are involved in bitter taste or clouding in plant-based foods or beverages, respectively. Flavonoid glycoside degradation can proceed through two alternative enzymatic pathways: one that is mediated by monoglycosidases and another that is catalyzed by a diglycosidase. The present report on the biochemical and structural investigation of A. oryzae rutinosidase provides a potential biocatalyst for industrial applications of flavonoids.
Collapse
|
36
|
Yamaguchi Y, Barb AW. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology 2020; 30:214-225. [PMID: 31822882 DOI: 10.1093/glycob/cwz068] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/26/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are the fastest growing group of drugs with 11 new antibodies or antibody-drug conjugates approved by the Food and Drug Administration in 2018. Many mAbs require effector function for efficacy, including antibody-dependent cell-mediated cytotoxicity triggered following contact of an immunoglobulin G (IgG)-coated particle with activating crystallizable fragment (Fc) γ receptors (FcγRs) expressed by leukocytes. Interactions between IgG1 and the FcγRs require post-translational modification of the Fc with an asparagine-linked carbohydrate (N-glycan). Though the structure of IgG1 Fc and the role of Fc N-glycan composition on disease were known for decades, the underlying mechanism of how the N-glycan affected FcγR binding was not defined until recently. This review will describe the current understanding of how N-glycosylation impacts the structure and function of the IgG1 Fc and describe new techniques that are poised to provide the next critical breakthroughs.
Collapse
Affiliation(s)
| | - Adam W Barb
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
37
|
Lee S. Asn-linked N-acetylglucosamine of the amylin receptor 2 extracellular domain enhances peptide ligand affinity. FEBS Open Bio 2020; 11:195-206. [PMID: 33227824 PMCID: PMC7780097 DOI: 10.1002/2211-5463.13042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 11/07/2022] Open
Abstract
The calcitonin receptor (CTR) has a large extracellular domain (ECD) with multiple N‐glycosylation sites. An asparagine (Asn)‐linked N‐acetylglucosamine (GlcNAc) of CTR ECD N130 was previously reported to enhance peptide hormone binding affinity for CTR ECD. CTR forms a complex with an accessory protein RAMP, and the RAMP:CTR complex gains affinity for peptide hormone amylin as the amylin receptor (AMY). Although N‐glycosylation of AMY ECD was reported to enhance peptide hormone affinity, it remains underexplored which N‐glycosites of AMY ECD are responsible for peptide affinity enhancement and it is unclear whether an Asn‐linked GlcNAc of the N‐glycosites plays a critical role. Here, I investigated the role of the Asn‐linked GlcNAc of CTR N130 in the affinity of an antagonistic amylin analog (AC413) for AMY2 ECD (the RAMP2 ECD:CTR ECD complex). I used Endo H‐treated CTR ECD in which N‐glycans were trimmed to an Asn‐linked GlcNAc on each of the N‐glycosites. I incubated Endo H‐treated CTR ECD with excess of glycan‐free RAMP2 ECD to produce the RAMP2 ECD:CTR ECD complex. Using this coincubation system, I found that the RAMP2 ECD complex with Endo H‐treated CTR ECD with N130D mutation showed a fourfold decrease in AC413 affinity compared with the RAMP2 ECD complex with Endo H‐treated CTR ECD WT. In contrast, RAMP2 ECD N‐glycosylation did not affect peptide binding affinity. These results indicate that the Asn‐linked GlcNAc of CTR N130 is an important peptide affinity enhancer for AMY2 ECD and reveals a significant role of the Asn‐linked GlcNAc in AMY2 function.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Basic Pharmaceutical SciencesFred Wilson School of PharmacyHigh Point UniversityHigh PointNCUSA
| |
Collapse
|
38
|
Liu Y, Ribeiro ODC, Robinson J, Goldman A. Expression and purification of the extracellular domain of wild-type humanRET and the dimeric oncogenic mutant C634R. Int J Biol Macromol 2020; 164:1621-1630. [PMID: 32777409 DOI: 10.1016/j.ijbiomac.2020.07.290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/01/2022]
Abstract
The receptor tyrosine kinase RET is essential in a variety of cellular processes. RET gain-of-function is strongly associated with several cancers, notably multiple endocrine neoplasia type 2A (MEN 2A), while RET loss-of-function causes Hirschsprung's disease and Parkinson's disease. To investigate the activation mechanism of RET as well as to enable drug development, over-expressed recombinant protein is needed for in vitro functional and structural studies. By comparing insect and mammalian cells expression of the RET extracellular domain (RETECD), we showed that the expression yields of RETECD using both systems were comparable, but mammalian cells produced monomeric functional RETECD, whereas RETECD expressed in insect cells was non-functional and multimeric. This was most likely due to incorrect disulfide formation. By fusing an Fc tag to the C-terminus of RETECD, we were able to produce, in HEK293T cells, dimeric oncogenic RETECD (C634R) for the first time. The protein remained dimeric even after cleavage of the tag via the cysteine disulfide, as in full-length RET in the context of MEN 2A and related pathologies. Our work thus provides valuable tools for functional and structural studies of the RET signaling system and its oncogenic activation mechanisms.
Collapse
Affiliation(s)
- Yixin Liu
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Orquidea De Castro Ribeiro
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - James Robinson
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Goldman
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland; Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
39
|
Characterization of Posttranslationally Modified Multidrug Efflux Pumps Reveals an Unexpected Link between Glycosylation and Antimicrobial Resistance. mBio 2020; 11:mBio.02604-20. [PMID: 33203757 PMCID: PMC7683400 DOI: 10.1128/mbio.02604-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The substantial rise in multidrug-resistant bacterial infections is a current global imperative. Cumulative efforts to characterize antimicrobial resistance in bacteria has demonstrated the spread of six families of multidrug efflux pumps, of which resistance-nodulation-cell division (RND) is the major mechanism of multidrug resistance in Gram-negative bacteria. RND is composed of a tripartite protein assembly and confers resistance to a range of unrelated compounds. In the major enteric pathogen Campylobacter jejuni, the three protein components of RND are posttranslationally modified with N-linked glycans. The direct role of N-linked glycans in C. jejuni and other bacteria has long been elusive. Here, we present the first detailed account of the role of N-linked glycans and the link between N-glycosylation and antimicrobial resistance in C. jejuni We demonstrate the multifunctional role of N-linked glycans in enhancing protein thermostability, stabilizing protein complexes and the promotion of protein-protein interaction, thus mediating antimicrobial resistance via enhancing multidrug efflux pump activity. This affirms that glycosylation is critical for multidrug efflux pump assembly. We present a generalized strategy that could be used to investigate general glycosylation system in Campylobacter genus and a potential target to develop antimicrobials against multidrug-resistant pathogens.IMPORTANCE Nearly all bacterial species have at least a single glycosylation system, but the direct effects of these posttranslational protein modifications are unresolved. Glycoproteome-wide analysis of several bacterial pathogens has revealed general glycan modifications of virulence factors and protein assemblies. Using Campylobacter jejuni as a model organism, we have studied the role of general N-linked glycans in the multidrug efflux pump commonly found in Gram-negative bacteria. We show, for the first time, the direct link between N-linked glycans and multidrug efflux pump activity. At the protein level, we demonstrate that N-linked glycans play a role in enhancing protein thermostability and mediating the assembly of the multidrug efflux pump to promote antimicrobial resistance, highlighting the importance of this posttranslational modification in bacterial physiology. Similar roles for glycans are expected to be found in other Gram-negative pathogens that possess general protein glycosylation systems.
Collapse
|
40
|
Berndsen ZT, Chakraborty S, Wang X, Cottrell CA, Torres JL, Diedrich JK, López CA, Yates JR, van Gils MJ, Paulson JC, Gnanakaran S, Ward AB. Visualization of the HIV-1 Env glycan shield across scales. Proc Natl Acad Sci U S A 2020; 117:28014-28025. [PMID: 33093196 PMCID: PMC7668054 DOI: 10.1073/pnas.2000260117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The dense array of N-linked glycans on the HIV-1 envelope glycoprotein (Env), known as the "glycan shield," is a key determinant of immunogenicity, yet intrinsic heterogeneity confounds typical structure-function analysis. Here, we present an integrated approach of single-particle electron cryomicroscopy (cryo-EM), computational modeling, and site-specific mass spectrometry (MS) to probe glycan shield structure and behavior at multiple levels. We found that dynamics lead to an extensive network of interglycan interactions that drive the formation of higher-order structure within the glycan shield. This structure defines diffuse boundaries between buried and exposed protein surface and creates a mapping of potentially immunogenic sites on Env. Analysis of Env expressed in different cell lines revealed how cryo-EM can detect subtle changes in glycan occupancy, composition, and dynamics that impact glycan shield structure and epitope accessibility. Importantly, this identified unforeseen changes in the glycan shield of Env obtained from expression in the same cell line used for vaccine production. Finally, by capturing the enzymatic deglycosylation of Env in a time-resolved manner, we found that highly connected glycan clusters are resistant to digestion and help stabilize the prefusion trimer, suggesting the glycan shield may function beyond immune evasion.
Collapse
Affiliation(s)
- Zachary T Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
- The International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Scripps Consortium For HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Xiaoning Wang
- The International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Scripps Consortium For HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
- The International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Scripps Consortium For HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - James C Paulson
- The International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Scripps Consortium For HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037;
- The International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Scripps Consortium For HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
41
|
Exploiting the activity-stability trade-off of glucose oxidase from Aspergillus niger using a simple approach to calculate thermostability of mutants. Food Chem 2020; 342:128270. [PMID: 33069526 DOI: 10.1016/j.foodchem.2020.128270] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Glucose oxidase (Gox) is a biocatalyst that is widely applied in the food industry, as well as other biotechnological industries. However, the industrial application of Gox is hampered by its low thermostability and activity. Here, we aimed to improve the thermostability of GoxM4 from Aspergillus niger without reducing its activity due to the activity-stability trade-off. A simple and effective approach combining enzyme activity and structure stability was adopted to evaluate the thermostability of GoxM4 and its mutants. After four rounds of computer-aided rational design, the best mutant, GoxM8, was obtained. The melting temperature (Tm) of GoxM8 was increased by 9 °C compared with GoxM4. The catalytic efficiency of GoxM8 was similar to GoxM4, suggesting that the enzyme activity-stability trade-off was counteracted. To explore its mechanism, we performed molecular dynamics simulations of GoxM4 and its mutants. Our findings provided a typical example for researching the enzyme activity-stability trade-off.
Collapse
|
42
|
N-Linked Glycan Sites on the Influenza A Virus Neuraminidase Head Domain Are Required for Efficient Viral Incorporation and Replication. J Virol 2020; 94:JVI.00874-20. [PMID: 32699088 DOI: 10.1128/jvi.00874-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
N-linked glycans commonly contribute to secretory protein folding, sorting, and signaling. For enveloped viruses, such as the influenza A virus (IAV), large N-linked glycans can also be added to prevent access to epitopes on the surface antigens hemagglutinin (HA or H) and neuraminidase (NA or N). Sequence analysis showed that in the NA head domain of H1N1 IAVs, three N-linked glycosylation sites are conserved and that a fourth site is conserved in H3N2 IAVs. Variable sites are almost exclusive to H1N1 IAVs of human origin, where the number of head glycosylation sites first increased over time and then decreased with and after the introduction of the 2009 pandemic H1N1 IAV of Eurasian swine origin. In contrast, variable sites exist in H3N2 IAVs of human and swine origin, where the number of head glycosylation sites has mainly increased over time. Analysis of IAVs carrying N1 and N2 mutants demonstrated that the N-linked glycosylation sites on the NA head domain are required for efficient virion incorporation and replication in cells and eggs. It also revealed that N1 stability is more affected by the head domain glycans, suggesting N2 is more amenable to glycan additions. Together, these results indicate that in addition to antigenicity, N-linked glycosylation sites can alter NA enzymatic stability and the NA amount in virions.IMPORTANCE N-linked glycans are transferred to secretory proteins upon entry into the endoplasmic reticulum lumen. In addition to promoting secretory protein maturation, enveloped viruses also utilize these large oligosaccharide structures to prevent access to surface antigen epitopes. Sequence analyses of the influenza A virus (IAV) surface antigen neuraminidase (NA or N) showed that the conservation of N-linked glycosylation sites on the NA enzymatic head domain differs by IAV subtype (H1N1 versus H3N2) and species of origin, with human-derived IAVs possessing the most variability. Experimental analyses verified that the N-linked glycosylation sites on the NA head domain contribute to virion incorporation and replication. It also revealed that the head domain glycans affect N1 stability more than N2, suggesting N2 is more accommodating to glycan additions. These results demonstrate that in addition to antigenicity, changes in N-linked glycosylation sites can alter other properties of viral surface antigens and virions.
Collapse
|
43
|
Morgan GJ, Wall JS. The Process of Amyloid Formation due to Monoclonal Immunoglobulins. Hematol Oncol Clin North Am 2020; 34:1041-1054. [PMID: 33099422 DOI: 10.1016/j.hoc.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Monoclonal antibodies secreted by clonally expanded plasma cells can form a range of pathologic aggregates including amyloid fibrils. The enormous diversity in the sequences of the involved light chains may be responsible for complexity of the disease. Nevertheless, important common features have been recognized. Two recent high-resolution structures of light chain fibrils show related but distinct conformations. The native structure of the light chains is lost when they are incorporated into the amyloid fibrils. The authors discuss the processes that lead to aggregation and describe how existing and emerging therapies aim to prevent aggregation or remove amyloid fibrils from tissues.
Collapse
Affiliation(s)
- Gareth J Morgan
- Amyloidosis Center and Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | - Jonathan S Wall
- Amyloidosis and Cancer Theranostics Program, Preclinical and Diagnostic Molecular Imaging Laboratory, The University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| |
Collapse
|
44
|
Kang HE, Bian J, Kane SJ, Kim S, Selwyn V, Crowell J, Bartz JC, Telling GC. Incomplete glycosylation during prion infection unmasks a prion protein epitope that facilitates prion detection and strain discrimination. J Biol Chem 2020; 295:10420-10433. [PMID: 32513872 PMCID: PMC7383396 DOI: 10.1074/jbc.ra120.012796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/31/2020] [Indexed: 11/06/2022] Open
Abstract
The causative factors underlying conformational conversion of cellular prion protein (PrPC) into its infectious counterpart (PrPSc) during prion infection remain undetermined, in part because of a lack of monoclonal antibodies (mAbs) that can distinguish these conformational isoforms. Here we show that the anti-PrP mAb PRC7 recognizes an epitope that is shielded from detection when glycans are attached to Asn-196. We observed that whereas PrPC is predisposed to full glycosylation and is therefore refractory to PRC7 detection, prion infection leads to diminished PrPSc glycosylation at Asn-196, resulting in an unshielded PRC7 epitope that is amenable to mAb recognition upon renaturation. Detection of PRC7-reactive PrPSc in experimental and natural infections with various mouse-adapted scrapie strains and with prions causing deer and elk chronic wasting disease and transmissible mink encephalopathy uncovered that incomplete PrPSc glycosylation is a consistent feature of prion pathogenesis. We also show that interrogating the conformational properties of the PRC7 epitope affords a direct means of distinguishing different prion strains. Because the specificity of our approach for prion detection and strain discrimination relies on the extent to which N-linked glycosylation shields or unshields PrP epitopes from antibody recognition, it dispenses with the requirement for additional standard manipulations to distinguish PrPSc from PrPC, including evaluation of protease resistance. Our findings not only highlight an innovative and facile strategy for prion detection and strain differentiation, but are also consistent with a mechanism of prion replication in which structural instability of incompletely glycosylated PrP contributes to the conformational conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
- Hae-Eun Kang
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jifeng Bian
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Sarah J. Kane
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Sehun Kim
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Vanessa Selwyn
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado,Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado
| | - Jenna Crowell
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska
| | - Glenn C. Telling
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado,Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado,For correspondence: Glenn C. Telling,
| |
Collapse
|
45
|
Donald LJ, Spearman M, Mishra N, Komatsu E, Butler M, Perreault H. Mass spectrometric analysis of core fucosylation and sequence variation in a human-camelid monoclonal antibody. Mol Omics 2020; 16:221-230. [PMID: 32163054 DOI: 10.1039/c9mo00168a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospray mass spectrometry (ESI-MS) was used to measure the masses of an intact dimeric monoclonal antibody (Mab) and assess the fucosylation level. The Mab under study was EG2-hFc, a chimeric human-camelid antibody of about 80 kDa (A. Bell et al., Cancer Lett., 2010, 289(1), 81-90). It was obtained from cell culture with and without a fucosylation inhibitor, and treated with EndoS which cleaves between the two core N-acetyl glucosamine (GlcNAc) residues. It is the first time that this combined approach with a unique mass spectrometer was used to measure 146 Da differences as part of a large intact dimeric antibody. Results showed that in the dimer, both heavy chains were fucosylated on the core GlcNAc of the Fc Asn site equivalent to Asn297. In the presence of the fucosylation inhibitor, fucosylation was lost on both subunits. Following reduction, monomers were analyzed and the masses obtained corroborated the dimer results. Dimeric EG2-hFc Mab treated with PNGase F, to deglycosylate the protein, was also measured by MS for mass comparison. In spite of the success of fucosylation level measurements, the experimental masses of deglycosylated dimers and GlcNAc-Fuc bearing dimers did not correspond to masses of our sequence of reference (A. Bell et al., Cancer Lett., 2010, 289(1), 81-90; ; ), which prompted experiments to determine the protein backbone sequence. Digest mixtures from trypsin, GluC, as well as trypsin + GluC proteolysis were analyzed by matrix-assisted laser desorption/ionization (MALDI) MS and MS/MS. A few variations were found relative to the reference sequence, which are discussed in detail herein. These measurements allowed us to build a new "experimental" sequence for the EG2-hFc samples investigated in this work, although there are still ambiguities to be resolved in this new sequence. MALDI-MS/MS also confirmed the fucosylation pattern in the Fc tryptic peptide EEQYNSTYR.
Collapse
Affiliation(s)
- Lynda J Donald
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Goutham S, Kumari I, Pally D, Singh A, Ghosh S, Akhter Y, Bhat R. Mutually exclusive locales for N-linked glycans and disorder in human glycoproteins. Sci Rep 2020; 10:6040. [PMID: 32269229 PMCID: PMC7142085 DOI: 10.1038/s41598-020-61427-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/30/2020] [Indexed: 11/08/2022] Open
Abstract
Several post-translational protein modifications lie predominantly within regions of disorder: the biased localization has been proposed to expand the binding versatility of disordered regions. However, investigating a representative dataset of 500 human N-glycoproteins, we observed the sites of N-linked glycosylations or N-glycosites, to be predominantly present in the regions of predicted order. When compared with disordered stretches, ordered regions were not found to be enriched for asparagines, serines and threonines, residues that constitute the sequon signature for conjugation of N-glycans. We then investigated the basis of mutual exclusivity between disorder and N-glycosites on the basis of amino acid distribution: when compared with control ordered residue stretches without any N-glycosites, residue neighborhoods surrounding N-glycosites showed a depletion of bulky, hydrophobic and disorder-promoting amino acids and an enrichment for flexible and accessible residues that are frequently found in coiled structures. When compared with control disordered residue stretches without any N-glycosites, N-glycosite neighborhoods were depleted of charged, polar, hydrophobic and flexible residues and enriched for aromatic, accessible and order-promoting residues with a tendency to be part of coiled and β structures. N-glycosite neighborhoods also showed greater phylogenetic conservation among amniotes, compared with control ordered regions, which in turn were more conserved than disordered control regions. Our results lead us to propose that unique primary structural compositions and differential propensities for evolvability allowed for the mutual spatial exclusion of N-glycosite neighborhoods and disordered stretches.
Collapse
Affiliation(s)
- Shyamili Goutham
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Indu Kumari
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Dharma Pally
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Alvina Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Sujasha Ghosh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India.
| |
Collapse
|
47
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
48
|
Rubio MV, Terrasan CRF, Contesini FJ, Zubieta MP, Gerhardt JA, Oliveira LC, de Souza Schmidt Gonçalves AE, Almeida F, Smith BJ, de Souza GHMF, Dias AHS, Skaf M, Damasio A. Redesigning N-glycosylation sites in a GH3 β-xylosidase improves the enzymatic efficiency. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:269. [PMID: 31754374 PMCID: PMC6854716 DOI: 10.1186/s13068-019-1609-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/04/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND β-Xylosidases are glycoside hydrolases (GHs) that cleave xylooligosaccharides and/or xylobiose into shorter oligosaccharides and xylose. Aspergillus nidulans is an established genetic model and good source of carbohydrate-active enzymes (CAZymes). Most fungal enzymes are N-glycosylated, which influences their secretion, stability, activity, signalization, and protease protection. A greater understanding of the N-glycosylation process would contribute to better address the current bottlenecks in obtaining high secretion yields of fungal proteins for industrial applications. RESULTS In this study, BxlB-a highly secreted GH3 β-xylosidase from A. nidulans, presenting high activity and several N-glycosylation sites-was selected for N-glycosylation engineering. Several glycomutants were designed to investigate the influence of N-glycans on BxlB secretion and function. The non-glycosylated mutant (BxlBnon-glyc) showed similar levels of enzyme secretion and activity compared to the wild-type (BxlBwt), while a partially glycosylated mutant (BxlBN1;5;7) exhibited increased activity. Additionally, there was no enzyme secretion in the mutant in which the N-glycosylation context was changed by the introduction of four new N-glycosylation sites (BxlBCC), despite the high transcript levels. BxlBwt, BxlBnon-glyc, and BxlBN1;5;7 formed similar secondary structures, though the mutants had lower melting temperatures compared to the wild type. Six additional glycomutants were designed based on BxlBN1;5;7, to better understand its increased activity. Among them, the two glycomutants which maintained only two N-glycosylation sites each (BxlBN1;5 and BxlBN5;7) showed improved catalytic efficiency, whereas the other four mutants' catalytic efficiencies were reduced. The N-glycosylation site N5 is important for improved BxlB catalytic efficiency, but needs to be complemented by N1 and/or N7. Molecular dynamics simulations of BxlBnon-glyc and BxlBN1;5 reveals that the mobility pattern of structural elements in the vicinity of the catalytic pocket changes upon N1 and N5 N-glycosylation sites, enhancing substrate binding properties which may underlie the observed differences in catalytic efficiency between BxlBnon-glyc and BxlBN1;5. CONCLUSIONS This study demonstrates the influence of N-glycosylation on A. nidulans BxlB production and function, reinforcing that protein glycoengineering is a promising tool for enhancing thermal stability, secretion, and enzymatic activity. Our report may also support biotechnological applications for N-glycosylation modification of other CAZymes.
Collapse
Affiliation(s)
- Marcelo Ventura Rubio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - César Rafael Fanchini Terrasan
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Fabiano Jares Contesini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Mariane Paludetti Zubieta
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Leandro Cristante Oliveira
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, SP 15054-000 Brazil
| | | | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP 14049-900 Brazil
| | - Bradley Joseph Smith
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Gustavo Henrique Martins Ferreira de Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Artur Hermano Sampaio Dias
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas, SP 13084-862 Brazil
| | - Munir Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas, SP 13084-862 Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| |
Collapse
|
49
|
Ma J, Li Q, Tan H, Jiang H, Li K, Zhang L, Shi Q, Yin H. Unique N-glycosylation of a recombinant exo-inulinase from Kluyveromyces cicerisporus and its effect on enzymatic activity and thermostability. J Biol Eng 2019; 13:81. [PMID: 31737090 PMCID: PMC6844067 DOI: 10.1186/s13036-019-0215-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
Background Inulinase can hydrolyze polyfructan into high-fructose syrups and fructoligosaccharides, which are widely used in food, the medical industry and the biorefinery of Jerusalem artichoke. In the present study, a recombinant exo-inulinase (rKcINU1), derived from Kluyveromyces cicerisporus CBS4857, was proven as an N-linked glycoprotein, and the removal of N-linked glycan chains led to reduced activity. Results Five N-glycosylation sites with variable high mannose-type oligosaccharides (Man3–9GlcNAc2) were confirmed in the rKcINU1. The structural modeling showed that all five glycosylation sites (Asn-362, Asn-370, Asn-399, Asn-467 and Asn-526) were located at the C-terminus β-sandwich domain, which has been proven to be more conducive to the occurrence of glycosylation modification than the N-terminus domain. Single-site N-glycosylation mutants with Asn substituted by Gln were obtained, and the Mut with all five N-glycosylation sites removed was constructed, which resulted in the loss of all enzyme activity. Interestingly, the N362Q led to an 18% increase in the specific activity against inulin, while a significant decrease in thermostability (2.91 °C decrease in Tm) occurred, and other single mutations resulted in the decrease in the specific activity to various extents, among which N467Q demonstrated the lowest enzyme activity. Conclusion The increased enzyme activity in N362Q, combined with thermostability testing, 3D modeling, kinetics data and secondary structure analysis, implied that the N-linked glycan chains at the Asn-362 position functioned negatively, mainly as a type of steric hindrance toward its adjacent N-glycans to bring rigidity. Meanwhile, the N-glycosylation at the other four sites positively regulated enzyme activity caused by altered substrate affinity by means of fine-tuning the β-sandwich domain configuration. This may have facilitated the capture and transfer of substrates to the enzyme active cavity, in a manner quite similar to that of carbohydrate binding modules (CBMs), i.e. the chains endowed the β-sandwich domain with the functions of CBM. This study discovered a unique C-terminal sequence which is more favorable to glycosylation, thereby casting a novel view for glycoengineering of enzymes from fungi via redesigning the amino acid sequence at the C-terminal domain, so as to optimize the enzymatic properties.
Collapse
Affiliation(s)
- Junyan Ma
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China.,2Liaoning Province Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian, 116622 China
| | - Qian Li
- 2Liaoning Province Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian, 116622 China
| | - Haidong Tan
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Hao Jiang
- 3Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Kuikui Li
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Lihua Zhang
- 3Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Quan Shi
- 3Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Heng Yin
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| |
Collapse
|
50
|
Bonzom C, Hüttner S, Mirgorodskaya E, Chong SL, Uthoff S, Steinbüchel A, Verhaert RMD, Olsson L. Glycosylation influences activity, stability and immobilization of the feruloyl esterase 1a from Myceliophthora thermophila. AMB Express 2019; 9:126. [PMID: 31407106 PMCID: PMC6691016 DOI: 10.1186/s13568-019-0852-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 11/26/2022] Open
Abstract
Heterologous protein production is widely used in industrial biotechnology. However, using non-native production hosts can lead to enzymes with altered post-translational modifications, such as glycosylation. We have investigated how production in a non-native host affects the physicochemical properties and enzymatic activity of a feruloyl esterase from Myceliophthora thermophila, MtFae1a. The enzyme was produced in two microorganisms that introduce glycosylation (M. thermophila and Pichia pastoris) and in Escherichia coli (non-glycosylated). Mass spectrometric analysis confirmed the presence of glycosylation and revealed differences in the lengths of glycan chains between the enzymes produced in M. thermophila and P. pastoris. The melting temperature and the optimal temperature for activity of the non-glycosylated enzyme were considerably lower than those of the glycosylated enzymes. The three MtFae1a versions also exhibited differences in specific activity and specificity. The catalytic efficiency of the glycosylated enzymes were more than 10 times higher than that of the non-glycosylated one. In biotechnology, immobilization is often used to allow reusing enzyme and was investigated on mesoporous silica particles. We found the binding kinetics and immobilization yield differed between the enzyme versions. The largest differences were observed when comparing enzymes with and without glycosylation, but significant variations were also observed between the two differently glycosylated enzymes. We conclude that the biotechnological value of an enzyme can be optimized for a specific application by carefully selecting the production host.
Collapse
|