1
|
Ombura FLO, Malele I, Abd-Alla AM, Akutse KS, Ajene IJ, Khamis FM. Potential of entomopathogenic fungi for Glossina austeni control: insights into microbiome alterations and implications on sustainable management of the pest. INSECT SCIENCE 2025. [PMID: 40287897 DOI: 10.1111/1744-7917.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/29/2025]
Abstract
Glossina austeni Newstead (Diptera: Glossinidae) is a competent vector of the trypanosomes causing human African trypanosomiasis and the African animal trypanosomosis. Management of this pest has primarily involved trapping methods, Sterile Insect Technique, and research into vector competence-symbiotic interactions. Nevertheless, the use of entomopathogenic fungi (EPF) in integrated pest management programs for G. austeni control remains limited. Moreover, different tsetse fly species exhibit varying susceptibility to different EPF strains, indicating that no single strain is universally effective. Therefore, our study aimed to identify candidate EPF isolates for G. austeni management, evaluate the effects of temperature on the radial growth of these potent isolates, and assess the impact of the candidate EPF on the gut microbiome of G. austeni. Consequently, 16 Metarhizium anisopliae (Metschn.) Sorokin isolates were screened against G. austeni using dry conidia in an infection chamber, with the most virulent isolates having LT50 values of 3.95-9.37 d. Temperature significantly influenced the radial growth, conidia germination, and yield of these strains. There were also significant differences in conidia acquisition, retention and transmission between male and female G. austeni flies. Furthermore, all conidia receivers carried sufficient conidia, 5 d post-interaction with EPF-challenged conidia donors. Microbiome analysis revealed Wigglesworthia, Serratia, Klebsiella, and Escherichia as the most abundant taxa. Among the M. anisopliae isolates, ICIPE 82 exhibited the fastest radial growth and highest thermostability, hence selected as a potential biopesticide candidate for managing G. austeni. This study demonstrates the efficacy and potential of M. anisopliae ICIPE 82 as a biopesticide for controlling G. austeni.
Collapse
Affiliation(s)
| | - Imna Malele
- Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Adly Mm Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Inusa Jacob Ajene
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Fathiya Mbarak Khamis
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
2
|
Kwak Y, Argandona JA, Miao S, Son TJ, Hansen AK. A dual insect symbiont and plant pathogen improves insect host fitness under arginine limitation. mBio 2025; 16:e0358824. [PMID: 39998220 PMCID: PMC11980576 DOI: 10.1128/mbio.03588-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Some facultative bacterial symbionts are known to benefit insects, but nutritional advantages are rare among these non-obligate symbionts. Here, we demonstrate that the facultative symbiont Candidatus Liberibacter psyllaurous enhances the fitness of its psyllid insect host, Bactericera cockerelli, by providing nutritional benefits. L. psyllaurous, an unculturable pathogen of solanaceous crops, also establishes a close relationship with its insect vector, B. cockerelli, increasing in titer during insect development, vertically transmitting through eggs, and colonizing various tissues, including the bacteriome, which houses the obligate nutritional symbiont, Carsonella. Carsonella supplies essential amino acids to its insect host but has gaps in some of its essential amino acid pathways that the psyllid complements with its own genes, many of which have been acquired through horizontal gene transfer (HGT) from bacteria. Our findings reveal that L. psyllaurous increases psyllid fitness on plants by reducing developmental time and increasing adult weight. In addition, through metagenomic sequencing, we reveal that L. psyllaurous maintains complete pathways for synthesizing the essential amino acids arginine, lysine, and threonine, unlike the psyllid's other resident microbiota, Carsonella, and two co-occurring Wolbachia strains. RNA sequencing reveals the downregulation of a HGT collaborative psyllid gene (ASL), which indicates a reduced demand for arginine supplied by Carsonella when the psyllid is infected with L. psyllaurous. Notably, artificial diet assays show that L. psyllaurous enhances psyllid fitness on an arginine-deplete diet. These results corroborate the role of L. psyllaurous as a beneficial insect symbiont, contributing to the nutrition of its insect host.IMPORTANCEUnlike obligate symbionts that are permanently associated with their hosts, facultative symbionts rarely show direct nutritional contributions, especially under nutrient-limited conditions. This study demonstrates, for the first time, that Candidatus Liberibacter psyllaurous, a facultative symbiont and a plant pathogen, enhances the fitness of its Bactericera cockerelli host by supplying an essential nutrient arginine that is lacking in the plant sap diet. Our findings reveal how facultative symbionts can play a vital role in helping their insect hosts adapt to nutrient-limited environments. This work provides new insights into the dynamic interactions between insect hosts, their symbiotic microbes, and their shared ecological niches, broadening our understanding of symbiosis and its role in shaping adaptation and survival.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| | - Jacob A. Argandona
- Department of Entomology, University of California, Riverside, California, USA
| | - Sen Miao
- Department of Entomology, University of California, Riverside, California, USA
| | - Thomas J. Son
- Department of Entomology, University of California, Riverside, California, USA
| | - Allison K. Hansen
- Department of Entomology, University of California, Riverside, California, USA
| |
Collapse
|
3
|
Awuoche EO, Smallenberger G, Bruzzese DL, Orfano A, Weiss BL, Aksoy S. Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes. PLoS Pathog 2025; 21:e1012692. [PMID: 39888974 PMCID: PMC11819587 DOI: 10.1371/journal.ppat.1012692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/12/2025] [Accepted: 01/15/2025] [Indexed: 02/02/2025] Open
Abstract
Tsetse flies (Glossina spp.) vector African trypanosomes that cause devastating diseases in humans and domestic animals. Within the Glossina genus, species in the Palpalis subgroup exhibit greater resistance to trypanosome infections compared to those in the Morsitans subgroup. Varying microbiota composition and species-specific genetic traits can significantly influence the efficiency of parasite transmission. Notably, infections with the endosymbiotic bacterium Spiroplasma have been documented in several Palpalis subgroup species, including Glossina fuscipes fuscipes (Gff). While Spiroplasma infections in Gff are known to hinder trypanosome transmission, the underlying mechanisms remain unknown. To investigate Spiroplasma-mediated factors affecting Gff vector competence, we conducted high-throughput RNA sequencing of the gut tissue along with functional assays. Our findings reveal elevated oxidative stress in the gut environment in the presence of Spiroplasma, evidenced by increased expression of nitric oxide synthase, which catalyzes the production of trypanocidal nitric oxide. Additionally, we observed impaired lipid biosynthesis leading to a reduction of this important class of nutrients essential for parasite and host physiologies. In contrast, trypanosome infections in Gff's midgut significantly upregulated various immunity-related genes, including a small peptide, Stomoxyn-like, homologous to Stomoxyn first discovered in the stable fly, Stomoxys calcitrans. We observed that the Stomoxyn-like locus is exclusive to the genomes of Palpalis subgroup tsetse species. GffStomoxyn is constitutively expressed in the cardia (proventriculus) and synthetic GffStomoxyn exhibits potent activity against Escherichia coli and bloodstream form of Trypanosoma brucei parasites, while showing no effect against insect stage procyclic forms or tsetse's commensal endosymbiont Sodalis in vitro. Reducing GffStomoxyn levels significantly increased trypanosome infection prevalence, indicating its potential trypanocidal role in vivo. Collectively, our results suggest that the enhanced resistance to trypanosomes observed in Spiroplasma-infected Gff may be due to the reduced lipid availability necessary for parasite metabolic maintenance. Furthermore, GffStomoxyn could play a crucial role in the initial immune response(s) against mammalian parasites early in the infection process in the gut and prevent gut colonization. We discuss the molecular characteristics of GffStomoxyn, its spatial and temporal expression regulation and its microbicidal activity against Trypanosome parasites. Our findings reinforce the nutritional influences of microbiota on host physiology and host-pathogen dynamics.
Collapse
Affiliation(s)
- Erick O. Awuoche
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Gretchen Smallenberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Daniel L. Bruzzese
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Alessandra Orfano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
4
|
Bouaka Tsakeng CU, Melachio Tanekou TT, Ngambia Freitas FS, Tirados I, Tsagmo Ngoune JM, Bigoga JD, Njiokou F, Wondji CS. Patterns of microbiome composition in tsetse fly Glossina palpalis palpalis during vector control using Tiny Targets in Campo, South Cameroon. Microbiol Spectr 2024; 12:e0093524. [PMID: 39297636 PMCID: PMC11540164 DOI: 10.1128/spectrum.00935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/22/2024] [Indexed: 11/08/2024] Open
Abstract
Novel vector control tools against African trypanosomiases require a deep understanding of the factors driving tsetse vector fitness or population resilience in their ecosystems. Following evidence of microbiota-mediated host fitness or traits shaping, including insecticide resistance in arthropod populations, we undertook a comparative study of the microbiota in wild-caught tsetse flies during vector control with deltamethrin-impregnated traps called Tiny Targets. The bacterial microbiome composition of tsetse flies collected before and after 6, 12, and 18 months of vector control were characterized using high-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene and compared. Overall, 48 bacterial genera and five phyla were identified. The primary symbiont Wigglesworthia dominated almost all the samples with an overall relative abundance of 71.76%. A significant increase was observed in microbiome diversities over the vector control with new taxa identified. Interestingly, few genera, like Curvibacter for instance, displayed a regularly increasing abundance, from 0.57% to 0.65%, 4.73%, and 8.57% after 6, 12, and 18 months of tsetse control, respectively. This study provided preliminary for further investigation into the role and mechanism of action of microbiota in tsetse fly fitness under selective pressure like insecticides.IMPORTANCEThe interest in vector control in the fight against African trypanosomiases has been reinforced in recent years, with the development of small insecticide-impregnated screens, known as "Tiny Targets". As some tsetse biotopes are difficult to access for their installation, other tools are under consideration that involve using bacteria harbored by the tsetse vector to block the development of trypanosomes or impair the tsetse's fitness in its natural environment. Several bacterial symbionts were previously described as important for tsetse fly development, and some like Burkholderia and Citrobacter also found in tsetse flies were found associated with insecticide tolerance in other arthropods. In this research, we found the bacterial genera, Curvibacter and Acinetobacter, increased in abundance in tsetse flies during vector control. These bacteria deserve further attention to determine if they can interfere with insecticides used to control tsetse fly populations.
Collapse
Affiliation(s)
- Calmes Ursain Bouaka Tsakeng
- Centre for Research in
Infectious Diseases (CRID),
Yaoundé, Cameroon
- Department of
Biochemistry, Faculty of Science, University of Yaoundé
I, Yaoundé,
Cameroon
| | - Tito Tresor Melachio Tanekou
- Centre for Research in
Infectious Diseases (CRID),
Yaoundé, Cameroon
- Department of
Microbiology and Parasitology, Faculty of Science, University of
Bamenda, Bamenda,
Cameroon
| | | | - Inaki Tirados
- Department of Vector
Biology, Liverpool School of Tropical Medicine (LSTM), Pembroke
Place, Liverpool,
United Kingdom
| | - Jean Marc Tsagmo Ngoune
- Department of
Parasites and Insect Vectors, Trypanosome Transmission Group,
Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur,
Université Paris Cité,
Paris, France
| | - Jude Daiga Bigoga
- Department of
Biochemistry, Faculty of Science, University of Yaoundé
I, Yaoundé,
Cameroon
| | - Flobert Njiokou
- Department of Animal
Biology and Physiology, Faculty of Science, University of Yaoundé
I, Yaoundé,
Cameroon
| | - Charles Sinclair Wondji
- Centre for Research in
Infectious Diseases (CRID),
Yaoundé, Cameroon
- Department of Vector
Biology, Liverpool School of Tropical Medicine (LSTM), Pembroke
Place, Liverpool,
United Kingdom
| |
Collapse
|
5
|
Awuoche E, Smallenberger G, Bruzzese D, Orfano A, Weiss BL, Aksoy S. Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620045. [PMID: 39484388 PMCID: PMC11527105 DOI: 10.1101/2024.10.24.620045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tsetse flies (Glossina spp.) vector African trypanosomes that cause devastating diseases in humans and domestic animals. Within the Glossina genus, species in the Palpalis subgroup exhibit greater resistance to trypanosome infections compared to those in the Morsitans subgroup. Varying microbiota composition and species-specific genetic traits can significantly influence the efficiency of parasite transmission. Notably, infections with the endosymbiotic bacterium Spiroplasma have been documented in several Palpalis subgroup species, including Glossina fuscipes fuscipes (Gff). While Spiroplasma infections in Gff are known to hinder trypanosome transmission, the underlying mechanisms remain unknown. To investigate Spiroplasma-mediated factors affecting Gff vector competence, we conducted high-throughput RNA sequencing of the midgut tissue along with functional assays. Our findings reveal elevated oxidative stress in the midgut environment in the presence of Spiroplasma, evidenced by increased expression of nitric oxide synthase, which catalyzes the production of trypanocidal nitric oxide. Additionally, we observed impaired lipid biosynthesis leading to a reduction of this important class of nutrients essential for parasite and host physiologies. In contrast, trypanosome infections in Gff's midgut significantly upregulated various immunity-related genes, including a small peptide, Stomoxyn-like, homologous to Stomoxyns first discovered in the stable fly Stomoxys calcitrans. We observed that the Stomoxyn-like locus is exclusive to the genomes of Palpalis subgroup tsetse species. GffStomoxyn is constitutively expressed in the cardia (proventriculus) and synthetic GffStomoxyn exhibits potent activity against Escherichia coli and bloodstream form of Trypanosoma brucei parasites, while showing no effect against insect stage procyclic forms or tsetse's commensal endosymbiont Sodalis in vitro. Reducing GffStomoxyn levels significantly increased trypanosome infection prevalence, indicating its potential trypanocidal role in vivo. Collectively, our results suggest that the enhanced resistance to trypanosomes observed in Spiroplasma-infected Gff may be due to the reduced lipid availability necessary for parasite metabolic maintenance. Furthermore, GffStomoxyn could play a crucial role in the initial immune response(s) against mammalian parasites early in the infection process in the midgut and prevent gut colonization. We discuss the molecular characteristics of GffStomoxyn, its spatial and temporal expression regulation and its microbicidal activity against Trypanosome parasites. Our findings reinforce the nutritional influences of microbiota on host physiology and host-pathogen dynamics.
Collapse
Affiliation(s)
- Erick Awuoche
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Gretchen Smallenberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Daniel Bruzzese
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Alessandra Orfano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
6
|
Han S, Akhtar MR, Xia X. Functions and regulations of insect gut bacteria. PEST MANAGEMENT SCIENCE 2024; 80:4828-4840. [PMID: 38884497 DOI: 10.1002/ps.8261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The insect gut is a complicated ecosystem that inhabits a large number of symbiotic bacteria. As an important organ of the host insect, the symbiotic bacteria of the insect gut play very important roles in regulating physiological and metabolic processes. Recently, much progress has been made in the study of symbiotic bacteria in insect guts with the development of high-throughput sequencing technology and molecular biology. This review summarizes the primary functions of symbiotic bacteria in insect guts, such as enhancing insecticide resistance, facilitating food digestion, promoting detoxification, and regulating mating behavior and egg hatching. It also addresses some possible pathways of gut bacteria symbiont regulation governed by external habitats, physiological conditions and immunity of the host insect. This review provides solid foundations for further studies on novel theories, new technologies and practical applications of symbiotic bacteria in insect guts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| |
Collapse
|
7
|
Omondi ZN, Caner A, Arserim SK. Trypanosomes and gut microbiota interactions in triatomine bugs and tsetse flies: A vectorial perspective. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:253-268. [PMID: 38651684 DOI: 10.1111/mve.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Triatomines (kissing bugs) and tsetse flies (genus: Glossina) are natural vectors of Trypanosoma cruzi and Trypanosoma brucei, respectively. T. cruzi is the causative agent of Chagas disease, endemic in Latin America, while T. brucei causes African sleeping sickness disease in sub-Saharan Africa. Both triatomines and tsetse flies are host to a diverse community of gut microbiota that co-exist with the parasites in the gut. Evidence has shown that the gut microbiota of both vectors plays a key role in parasite development and transmission. However, knowledge on the mechanism involved in parasite-microbiota interaction remains limited and scanty. Here, we attempt to analyse Trypanosoma spp. and gut microbiota interactions in tsetse flies and triatomines, with a focus on understanding the possible mechanisms involved by reviewing published articles on the subject. We report that interactions between Trypanosoma spp. and gut microbiota can be both direct and indirect. In direct interactions, the gut microbiota directly affects the parasite via the formation of biofilms and the production of anti-parasitic molecules, while on the other hand, Trypanosoma spp. produces antimicrobial proteins to regulate gut microbiota of the vector. In indirect interactions, the parasite and gut bacteria affect each other through host vector-activated processes such as immunity and metabolism. Although we are beginning to understand how gut microbiota interacts with the Trypanosoma parasites, there is still a need for further studies on functional role of gut microbiota in parasite development to maximize the use of symbiotic bacteria in vector and parasite control.
Collapse
Affiliation(s)
- Zeph Nelson Omondi
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ayşe Caner
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Suha Kenan Arserim
- Vocational School of Health Sciences, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
8
|
Shamjana U, Vasu DA, Hembrom PS, Nayak K, Grace T. The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation. Antonie Van Leeuwenhoek 2024; 117:71. [PMID: 38668783 DOI: 10.1007/s10482-024-01970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Insects are incredibly diverse, ubiquitous and have successfully flourished out of the dynamic and often unpredictable nature of evolutionary processes. The resident microbiome has accompanied the physical and biological adaptations that enable their continued survival and proliferation in a wide array of environments. The host insect and microbiome's bidirectional relationship exhibits their capability to influence each other's physiology, behavior and characteristics. Insects are reported to rely directly on the microbial community to break down complex food, adapt to nutrient-deficit environments, protect themselves from natural adversaries and control the expression of social behavior. High-throughput metagenomic approaches have enhanced the potential for determining the abundance, composition, diversity and functional activities of microbial fauna associated with insect hosts, enabling in-depth investigation into insect-microbe interactions. We undertook a review of some of the major advances in the field of metagenomics, focusing on insect-microbe interaction, diversity and composition of resident microbiota, the functional capability of endosymbionts and discussions on different symbiotic relationships. The review aims to be a valuable resource on insect gut symbiotic microbiota by providing a comprehensive understanding of how insect gut symbionts systematically perform a range of functions, viz., insecticide degradation, nutritional support and immune fitness. A thorough understanding of manipulating specific gut symbionts may aid in developing advanced insect-associated research to attain health and design strategies for pest management.
Collapse
Affiliation(s)
- U Shamjana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Karunakar Nayak
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
9
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
10
|
Luan JB. Insect Bacteriocytes: Adaptation, Development, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:81-98. [PMID: 38270981 DOI: 10.1146/annurev-ento-010323-124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Bacteriocytes are host cells specialized to harbor symbionts in certain insect taxa. The adaptation, development, and evolution of bacteriocytes underlie insect symbiosis maintenance. Bacteriocytes carry enriched host genes of insect and bacterial origin whose transcription can be regulated by microRNAs, which are involved in host-symbiont metabolic interactions. Recognition proteins of peptidoglycan, the bacterial cell wall component, and autophagy regulate symbiont abundance in bacteriocytes. Horizontally transferred genes expressed in bacteriocytes influence the metabolism of symbiont peptidoglycan, which may affect the bacteriocyte immune response against symbionts. Bacteriocytes release or transport symbionts into ovaries for symbiont vertical transmission. Bacteriocyte development and death, regulated by transcriptional factors, are variable in different insect species. The evolutionary origin of insect bacteriocytes remains unclear. Future research should elucidate bacteriocyte cell biology, the molecular interplay between bacteriocyte metabolic and immune functions, the genetic basis of bacteriocyte origin, and the coordination between bacteriocyte function and host biology in diverse symbioses.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China;
| |
Collapse
|
11
|
Tom A, Kumar NP, Kumar A, Saini P. Interactions between Leishmania parasite and sandfly: a review. Parasitol Res 2023; 123:6. [PMID: 38052752 DOI: 10.1007/s00436-023-08043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Leishmaniasis transmission cycles are maintained and sustained in nature by the complex crosstalk of the Leishmania parasite, sandfly vector, and the mammalian hosts (human, as well as zoonotic reservoirs). Regardless of the vast research on human host-parasite interaction, there persists a substantial knowledge gap on the parasite's development and modulation in the vector component. This review focuses on some of the intriguing aspects of the Leishmania-sandfly interface, beginning with the uptake of the intracellular amastigotes from an infected host to the development of the parasite within the sandfly's alimentary canal, followed by the transmission of infective metacyclic stages to another potential host. Upon ingestion of the parasite, the sandfly hosts an intricate repertoire of immune barriers, either to evade the parasite or to ensure its homeostatic coexistence with the vector gut microbiome. Sandfly salivary polypeptides and Leishmania exosomes are co-egested with the parasite inoculum during the infected vector bite. This has been attributed to the modulation of the parasite infection and subsequent clinical manifestation in the host. While human host-based studies strive to develop effective therapeutics, a greater understanding of the vector-parasite-microbiome and human host interactions could help us to identify the targets and to develop strategies for effectively preventing the transmission of leishmaniasis.
Collapse
Affiliation(s)
- Anns Tom
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - N Pradeep Kumar
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - Ashwani Kumar
- ICMR- Vector Control Research Centre, Puducherry, India
| | - Prasanta Saini
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India.
| |
Collapse
|
12
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Wang Z, Yong H, Zhang S, Liu Z, Zhao Y. Colonization Resistance of Symbionts in Their Insect Hosts. INSECTS 2023; 14:594. [PMID: 37504600 PMCID: PMC10380809 DOI: 10.3390/insects14070594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The symbiotic microbiome is critical in promoting insect resistance against colonization by exogenous microorganisms. The mechanisms by which symbionts contribute to the host's immune capacity is referred to as colonization resistance. Symbionts can protect insects from exogenous pathogens through a variety of mechanisms, including upregulating the expression of host immune-related genes, producing antimicrobial substances, and competitively excluding pathogens. Concordantly, insects have evolved fine-tuned regulatory mechanisms to avoid overactive immune responses against symbionts or specialized cells to harbor symbionts. Alternatively, some symbionts have evolved special adaptations, such as the formation of biofilms to increase their tolerance to host immune responses. Here, we provide a review of the mechanisms about colonization resistance of symbionts in their insect hosts. Adaptations of symbionts and their insect hosts that may maintain such symbiotic relationships, and the significance of such relationships in the coevolution of symbiotic systems are also discussed to provide insights into the in-depth study of the contribution of symbionts to host physiology and behavior.
Collapse
Affiliation(s)
- Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Hanzi Yong
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyuan Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yaru Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
14
|
Li J, Li J, Jing Z, Yu Q, Zheng G, Zhang B, Xing L, Zhang H, Wan F, Li C. Antiviral function of peptidoglycan recognition protein in Spodoptera exigua (Lepidoptera: Noctuidae). INSECT SCIENCE 2022. [PMID: 36464632 DOI: 10.1111/1744-7917.13158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a class of molecules that play a critical role in insect immunity. Understanding the function of PGRPs is important to improve the efficiency of microbial insecticides. In this study, we investigated the role of PGRP-LB (a long type PGRP) in insect immunity against viruses using Spodoptera exigua and Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as an insect-virus model. We cloned and identified a PGRP-LB gene from S. exigua; the gene consisted of 7 exons that encoded a polypeptide of 234 amino acids with a signal peptide and a typical amidase domain. Expression analysis revealed that the abundance of SePGRP-LB transcripts in the fat body was greater than in other tissues. Overexpression of SePGRP-LB resulted in a significant decrease of 49% in the rate of SeMNPV-infected cells. In addition, the multiplication of SeMNPV was significantly decreased: a decrease of 79% in the production of occlusion-derived virion (ODV), and a maximum decrease of 50% in the production of budded virion (BV). In contrast, silencing of SePGRP-LB expression by RNA interference resulted in a significant 1.65-fold increase in the rate of SeMNPV-infected cells, a significant 0.54-fold increase in ODV production, a maximum 1.57-fold increase in BV production, and the larval survival dropped to 21%. Our findings show that SePGRP-LB has an antiviral function against SeMNPV, and therefore this gene may provide a target for lepidopteran pest control using virus insecticides.
Collapse
Affiliation(s)
- Jie Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhaohao Jing
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianlong Yu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Guiling Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Bin Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Longsheng Xing
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huan Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fanghao Wan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Changyou Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Djoukzoumka S, Mahamat Hassane H, Khan Payne V, Ibrahim MAM, Tagueu Kanté S, Mouliom Mfopit Y, Berger P, Kelm S, Simo G. Sodalis glossinidius and Wolbachia infections in wild population of Glossina morsitans submorsitans caught in the area of Lake Iro in the south of Chad. J Invertebr Pathol 2022; 195:107835. [DOI: 10.1016/j.jip.2022.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
16
|
Polenogova OV, Noskov YA, Artemchenko AS, Zhangissina S, Klementeva TN, Yaroslavtseva ON, Khodyrev VP, Kruykova NA, Glupov VV. Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis. PEST MANAGEMENT SCIENCE 2022; 78:3823-3835. [PMID: 35238478 DOI: 10.1002/ps.6856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND We assume that certain representatives of gut microflora mediate immune changes during dysbiosis, accelerating septicemia caused by Bacillus thuringiensis. RESULTS Co-introduction of Citrobacter freundii with Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt) led to an increase in Colorado potato beetle (CPB) larval mortality to 69.0% (1.3-5×) and a synergistic effect was observed from day 1 to day 6. Ultrathin sections of the CPB midgut showed autophagosome formation and partial destruction of gut microvilli under the influence of Bt, which was accompanied by pronounced hypersecretion of the endoplasmic reticulum with apocrine vesicle formation and oncotic changes in cells under the action of C. freundii. The destruction of gut tissues was accompanied by suppression of detoxification processes under the action of the bacteria and a decrease (2.8-3.5×) in the concentration of lipid oxidation products during Bt infection. In the first hours post combined treatment, we registered a slight increase in the total hemocyte count (THC) especially a predomination (1.4×) of immune-competent plasmatocytes. Oral administration of symbiotic and entomopathogenic bacteria to the CPB larvae significantly decreased the THC (1.4×) after 24 h and increased (1.1-1.5×) the detoxifying enzymes level in the lymph. These changes are likely to be associated with the destruction of hemocytes and the need to remove the toxic products of reactive oxygen species. CONCLUSION The obtained results indicate that feeding of C. freundii and B. thuringiensis to the CPB larvae is accompanied by tissue changes that significantly affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bt. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Olga V Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yury A Noskov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - Anna S Artemchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Saule Zhangissina
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana N Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor P Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A Kruykova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Lee MH, Medina Munoz M, Rio RVM. The Tsetse Metabolic Gambit: Living on Blood by Relying on Symbionts Demands Synchronization. Front Microbiol 2022; 13:905826. [PMID: 35756042 PMCID: PMC9218860 DOI: 10.3389/fmicb.2022.905826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies have socioeconomic significance as the obligate vector of multiple Trypanosoma parasites, the causative agents of Human and Animal African Trypanosomiases. Like many animals subsisting on a limited diet, microbial symbiosis is key to supplementing nutrient deficiencies necessary for metabolic, reproductive, and immune functions. Extensive studies on the microbiota in parallel to tsetse biology have unraveled the many dependencies partners have for one another. But far less is known mechanistically on how products are swapped between partners and how these metabolic exchanges are regulated, especially to address changing physiological needs. More specifically, how do metabolites contributed by one partner get to the right place at the right time and in the right amounts to the other partner? Epigenetics is the study of molecules and mechanisms that regulate the inheritance, gene activity and expression of traits that are not due to DNA sequence alone. The roles that epigenetics provide as a mechanistic link between host phenotype, metabolism and microbiota (both in composition and activity) is relatively unknown and represents a frontier of exploration. Here, we take a closer look at blood feeding insects with emphasis on the tsetse fly, to specifically propose roles for microRNAs (miRNA) and DNA methylation, in maintaining insect-microbiota functional homeostasis. We provide empirical details to addressing these hypotheses and advancing these studies. Deciphering how microbiota and host activity are harmonized may foster multiple applications toward manipulating host health, including identifying novel targets for innovative vector control strategies to counter insidious pests such as tsetse.
Collapse
Affiliation(s)
- Mason H Lee
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States
| | - Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States.,Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
18
|
Prevalence of trypanosomes and selected symbionts in tsetse species of eastern Zambia. Parasitology 2022; 149:1406-1410. [PMID: 35699129 PMCID: PMC10090762 DOI: 10.1017/s0031182022000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Insect symbionts have attracted attention for their potential use as anti-parasitic gene products in arthropod disease vectors. While tsetse species of the Luangwa valley have been extensively studied, less is known about the prevalence of symbionts and their interactions with the trypanosome parasite. Polymerase chain reaction was used to investigate the presence of Wolbachia and Sodalis bacteria, in tsetse flies infected with trypanosomes (Trypanosoma vivax, Trypanosoma congolense and Trypanosoma brucei). Out of 278 captured tsetse flies in eastern Zambia, 95.3% (n = 265, 95% CI = 92.8–97.8) carried endosymbionts: Wolbachia (79.1%, 95% CI 73.9–83.8) and Sodalis (86.3%, 95% CI 81.7–90.1). Overall, trypanosome prevalence was 25.5% (n = 71, 95% CI = 20.4–30.7), 10.8% (n = 30, 95% CI 7.1–14.4) for T. brucei, 1.4% (n = 4, 95% CI = 0.4–3.6) for both T. congolense and T. vivax, and 0.7% (n = 2, 95% CI 0.1–2.6) for T. b. rhodesiense. Out of 240 tsetse flies that were infected with Sodalis, trypanosome infection was reported in 40 tsetse flies (16.7%, 95% CI = 12.0–21.4) while 37 (16.8%, 95% CI 11.9–21.8) of the 220 Wolbachia infected tsetse flies were infected with trypanosomes. There was 1.3 times likelihood of T. brucei infection to be present when Wolbachia was present and 1.7 likelihood of T. brucei infection when Sodalis was present. Overall findings suggest absence of correlation between the presence of tsetse endosymbionts and tsetse with trypanosome infection. Lastly, the presence of pathogenic trypanosomes in tsetse species examined provided insights into the risk communities face, and the importance of African trypanosomiasis in the area.
Collapse
|
19
|
Prigot-Maurice C, Beltran-Bech S, Braquart-Varnier C. Why and how do protective symbionts impact immune priming with pathogens in invertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104245. [PMID: 34453995 DOI: 10.1016/j.dci.2021.104245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence demonstrates that invertebrates display adaptive-like immune abilities, commonly known as "immune priming". Immune priming is a process by which a host improves its immune defences following an initial pathogenic exposure, leading to better protection after a subsequent infection with the same - or different - pathogens. Nevertheless, beneficial symbionts can enhance similar immune priming processes in hosts, such as when they face repeated infections with pathogens. This "symbiotic immune priming" protects the host against pathogenic viruses, bacteria, fungi, or eukaryotic parasites. In this review, we explore the extent to which protective symbionts interfere and impact immune priming against pathogens from both a mechanical (proximal) and an evolutionary (ultimate) point of view. We highlight that the immune priming of invertebrates is the cornerstone of the tripartite interaction of hosts/symbionts/pathogens. The main shared mechanism of immune priming (induced by symbionts or pathogens) is the sustained immune response at the beginning of host-microbial interactions. However, the evolutionary outcome of immune priming leads to a specific discrimination, which provides enhanced tolerance or resistance depending on the type of microbe. Based on several studies testing immune priming against pathogens in the presence or absence of protective symbionts, we observed that both types of immune priming could overlap and affect each other inside the same hosts. As protective symbionts could be an evolutionary force that influences immune priming, they may help us to better understand the heterogeneity of pathogenic immune priming across invertebrate populations and species.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France.
| | - Sophie Beltran-Bech
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| | - Christine Braquart-Varnier
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| |
Collapse
|
20
|
Meki IK, Huditz HI, Strunov A, van der Vlugt RAA, Kariithi HM, Rezapanah M, Miller WJ, Vlak JM, van Oers MM, Abd-Alla AMM. Characterization and Tissue Tropism of Newly Identified Iflavirus and Negeviruses in Glossina morsitans morsitans Tsetse Flies. Viruses 2021; 13:v13122472. [PMID: 34960741 PMCID: PMC8704047 DOI: 10.3390/v13122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022] Open
Abstract
Tsetse flies cause major health and economic problems as they transmit trypanosomes causing sleeping sickness in humans (Human African Trypanosomosis, HAT) and nagana in animals (African Animal Trypanosomosis, AAT). A solution to control the spread of these flies and their associated diseases is the implementation of the Sterile Insect Technique (SIT). For successful application of SIT, it is important to establish and maintain healthy insect colonies and produce flies with competitive fitness. However, mass production of tsetse is threatened by covert virus infections, such as the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). This virus infection can switch from a covert asymptomatic to an overt symptomatic state and cause the collapse of an entire fly colony. Although the effects of GpSGHV infections can be mitigated, the presence of other covert viruses threaten tsetse mass production. Here we demonstrated the presence of two single-stranded RNA viruses isolated from Glossina morsitans morsitans originating from a colony at the Seibersdorf rearing facility. The genome organization and the phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) revealed that the two viruses belong to the genera Iflavirus and Negevirus, respectively. The names proposed for the two viruses are Glossina morsitans morsitans iflavirus (GmmIV) and Glossina morsitans morsitans negevirus (GmmNegeV). The GmmIV genome is 9685 nucleotides long with a poly(A) tail and encodes a single polyprotein processed into structural and non-structural viral proteins. The GmmNegeV genome consists of 8140 nucleotides and contains two major overlapping open reading frames (ORF1 and ORF2). ORF1 encodes the largest protein which includes a methyltransferase domain, a ribosomal RNA methyltransferase domain, a helicase domain and a RdRp domain. In this study, a selective RT-qPCR assay to detect the presence of the negative RNA strand for both GmmIV and GmmNegeV viruses proved that both viruses replicate in G. m. morsitans. We analyzed the tissue tropism of these viruses in G. m. morsitans by RNA-FISH to decipher their mode of transmission. Our results demonstrate that both viruses can be found not only in the host’s brain and fat bodies but also in their reproductive organs, and in milk and salivary glands. These findings suggest a potential horizontal viral transmission during feeding and/or a vertically viral transmission from parent to offspring. Although the impact of GmmIV and GmmNegeV in tsetse rearing facilities is still unknown, none of the currently infected tsetse species show any signs of disease from these viruses.
Collapse
Affiliation(s)
- Irene K. Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria; (I.K.M.); (H.-I.H.); (H.M.K.)
| | - Hannah-Isadora Huditz
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria; (I.K.M.); (H.-I.H.); (H.M.K.)
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (R.A.A.v.d.V.); (J.M.V.); (M.M.v.O.)
| | - Anton Strunov
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (A.S.); (W.J.M.)
| | - René A. A. van der Vlugt
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (R.A.A.v.d.V.); (J.M.V.); (M.M.v.O.)
| | - Henry M. Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria; (I.K.M.); (H.-I.H.); (H.M.K.)
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA-ARS, Athens, GA 30605, USA
- Biotechnology Research Center, Kenya Agricultural and Livestock Research Organization, Nairobi P.O. Box 57811-00200, Kenya
| | - Mohammadreza Rezapanah
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research Education and Extension Organization (AREEO), Tehran 19395, Iran;
| | - Wolfgang J. Miller
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (A.S.); (W.J.M.)
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (R.A.A.v.d.V.); (J.M.V.); (M.M.v.O.)
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (R.A.A.v.d.V.); (J.M.V.); (M.M.v.O.)
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria; (I.K.M.); (H.-I.H.); (H.M.K.)
- Correspondence: ; Tel.: +43-12-60-02-84-25
| |
Collapse
|
21
|
Whittle M, Barreaux AMG, Bonsall MB, Ponton F, English S. Insect-host control of obligate, intracellular symbiont density. Proc Biol Sci 2021; 288:20211993. [PMID: 34814751 PMCID: PMC8611330 DOI: 10.1098/rspb.2021.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Many insects rely on intracellular bacterial symbionts to supplement their specialized diets with micronutrients. Using data from diverse and well-studied insect systems, we propose three lines of evidence suggesting that hosts have tight control over the density of their obligate, intracellular bacterial partners. First, empirical studies have demonstrated that the within-host symbiont density varies depending on the nutritional and developmental requirements of the host. Second, symbiont genomes are highly reduced and have limited capacity for self-replication or transcriptional regulation. Third, several mechanisms exist for hosts to tolerate, regulate and remove symbionts including physical compartmentalization and autophagy. We then consider whether such regulation is adaptive, by discussing the relationship between symbiont density and host fitness. We discuss current limitations of empirical studies for exploring fitness effects in host-symbiont relationships, and emphasize the potential for using mathematical models to formalize evolutionary hypotheses and to generate testable predictions for future work.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- St Peter's College, Oxford, OX1 2DL
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
22
|
Singh S, Singh A, Baweja V, Roy A, Chakraborty A, Singh IK. Molecular Rationale of Insect-Microbes Symbiosis-From Insect Behaviour to Mechanism. Microorganisms 2021; 9:microorganisms9122422. [PMID: 34946024 PMCID: PMC8707026 DOI: 10.3390/microorganisms9122422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/27/2022] Open
Abstract
Insects nurture a panoply of microbial populations that are often obligatory and exist mutually with their hosts. Symbionts not only impact their host fitness but also shape the trajectory of their phenotype. This co-constructed niche successfully evolved long in the past to mark advanced ecological specialization. The resident microbes regulate insect nutrition by controlling their host plant specialization and immunity. It enhances the host fitness and performance by detoxifying toxins secreted by the predators and abstains them. The profound effect of a microbial population on insect physiology and behaviour is exploited to understand the host–microbial system in diverse taxa. Emergent research of insect-associated microbes has revealed their potential to modulate insect brain functions and, ultimately, control their behaviours, including social interactions. The revelation of the gut microbiota–brain axis has now unravelled insects as a cost-effective potential model to study neurodegenerative disorders and behavioural dysfunctions in humans. This article reviewed our knowledge about the insect–microbial system, an exquisite network of interactions operating between insects and microbes, its mechanistic insight that holds intricate multi-organismal systems in harmony, and its future perspectives. The demystification of molecular networks governing insect–microbial symbiosis will reveal the perplexing behaviours of insects that could be utilized in managing insect pests.
Collapse
Affiliation(s)
- Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India;
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India;
| | - Varsha Baweja
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Amit Roy
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic;
- Excelentní Tým pro Mitigaci (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic
| | - Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic;
- Correspondence: (A.C.); (I.K.S.)
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
- Correspondence: (A.C.); (I.K.S.)
| |
Collapse
|
23
|
Kipkorir LW, John TK, Owino OB, John O, Robert S, Daniel M, Owino AV. Mouse experiments demonstrate differential pathogenicity and virulence of Trypanosoma brucei rhodesiense strains. Exp Parasitol 2021; 228:108135. [PMID: 34284027 PMCID: PMC7613321 DOI: 10.1016/j.exppara.2021.108135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
Trypanosoma brucei rhodesiense is the causative agent for Rhodesian human African trypanosomiasis. The disease is considered acute, but varying clinical outcomes including chronic infections have been observed. The basis for these different clinical manifestations is thought to be associated with a combination of parasite and host factors. In the current study, Trypanosoma brucei rhodesiense strains responsible for varying infection outcomes were sought using mouse model. Clinical rHAT parasite isolates were subjected to PCR tests to confirm presence of the serum resistance associated (SRA) gene. Thereafter, four T. b. rhodesiense isolates were subjected to a comparative pathogenicity study using female Swiss white mice; the parasite strains were compared on the basis of parasitaemia, host survival time, clinical and postmortem biomarkers of infection severity. Isolates identified to cause acute and chronic disease were compared for establishment in insect vector, tsetse fly. The mouse survival time was significantly different (Log-rankp = 0.0001). With mice infected with strain KETRI 3801 exhibiting the shortest survival time (20 days) as compared to those infected with KETRI 3928 that, as controls, survived past the 60 days study period. In addition, development of anaemia was rapid in KETRI 3801 and least in KETRI 3928 infections, and followed the magnitude of survival time. Notably, hepatosplenomegaly was pronounced with longer survival. Mouse weight and feed intake reduced (KETRI 3801 > KETRI 2636 > EATRO 1762) except in KETRI 3928 infections which remained similar to controls. Comparatively, acute to chronic infection outcomes is in the order of KETRI 3801 > KETRI 2636 > EATRO 1762 > KETRI 3928, indicative of predominant role of strain dependent factors. Further, KETRI 3928 strain established better in tsetse as compared to KETRI 3801, suggesting that transmission of strains causing chronic infections could be common. In sum, we have identified Trypanosoma brucei rhodesiense strains that cause acute and chronic infections in mice, that will be valuable in investigating pathogen - host interactions responsible for varying disease outcomes and transmission in African trypanosomiasis.
Collapse
Affiliation(s)
- Limo William Kipkorir
- Department of Biological Sciences, Egerton University, P. O Box, 536-20115, Egerton, Kenya
| | - Thuita Kibuthu John
- Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organisation, Chemotherapy Division, Primate Section, P.O Box, 362-00902, Kikuyu, Kenya; Department of Animal Sciences, Meru University of Science and Technology, P.O Box, 972-60200, Meru, Kenya
| | - Orindi Benedict Owino
- KEMRI-Wellcome Trust Research Programme, CGMRC, P. O Box, 230-80108, Kilifi, Kenya; Department of Public Health and Primary Care, Leuven Biostatistics and Statistical Bioinformatics Centre, Kapucijnenvoer 35, Blok D, Bus 7001, B-3000, Leuven, Belgium
| | - Oidho John
- Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organisation, Chemotherapy Division, Primate Section, P.O Box, 362-00902, Kikuyu, Kenya
| | - Shivairo Robert
- Department of Veterinary and Clinical Studies, Egerton University, P. O Box, 536-20115, Egerton, Kenya
| | - Masiga Daniel
- International Centre of Insect Physiology and Ecology, P. O Box, 30772-000100, Nairobi, Kenya
| | - Adung'a Vincent Owino
- Department of Biochemistry and Molecular Biology, Egerton University, P. O Box, 536-20115, Egerton, Kenya; International Centre of Insect Physiology and Ecology, P. O Box, 30772-000100, Nairobi, Kenya.
| |
Collapse
|
24
|
Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021; 22:400. [PMID: 34058984 PMCID: PMC8166097 DOI: 10.1186/s12864-021-07729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. Results An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, ‘translation, ribosomal structure and biogenesis’ followed by ‘coenzyme transport and metabolism’ were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. Conclusions These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07729-5.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Caitlyn Brenner
- Department of Biology, Washington and Jefferson College, Washington, PA, 15301, USA
| | - Dylan Richmond
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
25
|
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM. Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Front Microbiol 2021; 12:653880. [PMID: 34122367 PMCID: PMC8194091 DOI: 10.3389/fmicb.2021.653880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Vangelis Doudoumis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
26
|
Orlans J, Vincent-Monegat C, Rahioui I, Sivignon C, Butryn A, Soulère L, Zaidman-Remy A, Orville AM, Heddi A, Aller P, Da Silva P. PGRP-LB: An Inside View into the Mechanism of the Amidase Reaction. Int J Mol Sci 2021; 22:4957. [PMID: 34066955 PMCID: PMC8124813 DOI: 10.3390/ijms22094957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/23/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are ubiquitous among animals and play pivotal functions in insect immunity. Non-catalytic PGRPs are involved in the activation of immune pathways by binding to the peptidoglycan (PGN), whereas amidase PGRPs are capable of cleaving the PGN into non-immunogenic compounds. Drosophila PGRP-LB belongs to the amidase PGRPs and downregulates the immune deficiency (IMD) pathway by cleaving meso-2,6-diaminopimelic (meso-DAP or DAP)-type PGN. While the recognition process is well analyzed for the non-catalytic PGRPs, little is known about the enzymatic mechanism for the amidase PGRPs, despite their essential function in immune homeostasis. Here, we analyzed the specific activity of different isoforms of Drosophila PGRP-LB towards various PGN substrates to understand their specificity and role in Drosophila immunity. We show that these isoforms have similar activity towards the different compounds. To analyze the mechanism of the amidase activity, we performed site directed mutagenesis and solved the X-ray structures of wild-type Drosophila PGRP-LB and its mutants, with one of these structures presenting a protein complexed with the tracheal cytotoxin (TCT), a muropeptide derived from the PGN. Only the Y78F mutation abolished the PGN cleavage while other mutations reduced the activity solely. Together, our findings suggest the dynamic role of the residue Y78 in the amidase mechanism by nucleophilic attack through a water molecule to the carbonyl group of the amide function destabilized by Zn2+.
Collapse
Affiliation(s)
- Julien Orlans
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (A.B.); (A.M.O.)
| | - Carole Vincent-Monegat
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| | - Isabelle Rahioui
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| | - Catherine Sivignon
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| | - Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (A.B.); (A.M.O.)
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Laurent Soulère
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 rue Victor Grignard, 69622 Villeurbanne, France;
| | - Anna Zaidman-Remy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (A.B.); (A.M.O.)
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (A.B.); (A.M.O.)
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Pedro Da Silva
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| |
Collapse
|
27
|
Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S. Mosquito Trilogy: Microbiota, Immunity and Pathogens, and Their Implications for the Control of Disease Transmission. Front Microbiol 2021; 12:630438. [PMID: 33889137 PMCID: PMC8056039 DOI: 10.3389/fmicb.2021.630438] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
In mosquitoes, the interaction between the gut microbiota, the immune system, and the pathogens that these insects transmit to humans and animals is regarded as a key component toward the development of control strategies, aimed at reducing the burden of severe diseases, such as malaria and dengue fever. Indeed, different microorganisms from the mosquito microbiota have been investigated for their ability to affect important traits of the biology of the host insect, related with its survival, development and reproduction. Furthermore, some microorganisms have been shown to modulate the immune response of mosquito females, significantly shaping their vector competence. Here, we will review current knowledge in this field, focusing on i) the complex interaction between the intestinal microbiota and mosquito females defenses, both in the gut and at humoral level; ii) how knowledge on these issues contributes to the development of novel and targeted strategies for the control of mosquito-borne diseases such as the use of paratransgenesis or taking advantage of the relationship between Wolbachia and mosquito hosts. We conclude by providing a brief overview of available knowledge on microbiota-immune system interplay in major insect vectors.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Irene Arnoldi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesco Comandatore
- "L. Sacco" Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
28
|
Higareda Alvear VM, Mateos M, Cortez D, Tamborindeguy C, Martinez-Romero E. Differential gene expression in a tripartite interaction: Drosophila, Spiroplasma and parasitic wasps. PeerJ 2021; 9:e11020. [PMID: 33717711 PMCID: PMC7937342 DOI: 10.7717/peerj.11020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several facultative bacterial symbionts of insects protect their hosts against natural enemies. Spiroplasma poulsonii strain sMel (hereafter Spiroplasma), a male-killing heritable symbiont of Drosophila melanogaster, confers protection against some species of parasitic wasps. Several lines of evidence suggest that Spiroplasma-encoded ribosome inactivating proteins (RIPs) are involved in the protection mechanism, but the potential contribution of the fly-encoded functions (e.g., immune response), has not been deeply explored. METHODS Here we used RNA-seq to evaluate the response of D. melanogaster to infection by Spiroplasma and parasitism by the Spiroplasma-susceptible wasp Leptopilina heterotoma, and the Spiroplasma-resistant wasp Ganaspis sp. In addition, we used quantitative (q)PCR to evaluate the transcript levels of the Spiroplasma-encoded Ribosomal inactivation protein (RIP) genes. RESULTS In the absence of Spiroplasma infection, we found evidence of Drosophila immune activation by Ganaspis sp., but not by L. heterotoma, which in turn negatively influenced functions associated with male gonad development. As expected for a symbiont that kills males, we detected extensive downregulation in the Spiroplasma-infected treatments of genes known to have male-biased expression. We detected very few genes whose expression patterns appeared to be influenced by the Spiroplasma-L. heterotoma interaction, and these genes are not known to be associated with immune response. For most of these genes, parasitism by L. heterotoma (in the absence of Spiroplasma) caused an expression change that was at least partly reversed when both L. heterotoma and Spiroplasma were present. It is unclear whether such genes are involved in the Spiroplasma-mediated mechanism that leads to wasp death and/or fly rescue. Nonetheless, the expression pattern of some of these genes, which reportedly undergo expression shifts during the larva-to-pupa transition, is suggestive of an influence of Spiroplasma on the development time of L. heterotoma-parasitized flies. One of the five RIP genes (RIP2) was consistently highly expressed independently of wasp parasitism, in two substrains of sMel. Finally, the RNAseq data revealed evidence consistent with RIP-induced damage in the ribosomal (r)RNA of the Spiroplasma-susceptible, but not the Spiroplasma-resistant, wasp. Acknowledging the caveat that we lacked adequate power to detect the majority of DE genes with fold-changes lower than 3, we conclude that immune priming is unlikely to contribute to the Spiroplasma-mediated protection against wasps, and that the mechanism by which Ganaspis sp. resists/tolerates Spiroplasma does not involve inhibition of RIP transcription.
Collapse
Affiliation(s)
| | - Mariana Mateos
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Diego Cortez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | |
Collapse
|
29
|
Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results Probl Cell Differ 2021; 69:497-536. [PMID: 33263885 DOI: 10.1007/978-3-030-51849-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.
Collapse
|
30
|
Hinzke T, Kleiner M, Meister M, Schlüter R, Hentschker C, Pané-Farré J, Hildebrandt P, Felbeck H, Sievert SM, Bonn F, Völker U, Becher D, Schweder T, Markert S. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. eLife 2021; 10:58371. [PMID: 33404502 PMCID: PMC7787665 DOI: 10.7554/elife.58371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
Collapse
Affiliation(s)
- Tjorven Hinzke
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany.,Energy Bioengineering Group, University of Calgary, Calgary, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Mareike Meister
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Horst Felbeck
- Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, United States
| | - Florian Bonn
- Institute of Biochemistry, University Hospital, Goethe University School of Medicine Frankfurt, Frankfurt, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
31
|
Salcedo-Porras N, Umaña-Diaz C, de Oliveira Barbosa Bitencourt R, Lowenberger C. The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms 2020; 8:E1438. [PMID: 32961808 PMCID: PMC7565714 DOI: 10.3390/microorganisms8091438] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Insects have established mutualistic symbiotic interactions with microorganisms that are beneficial to both host and symbiont. Many insects have exploited these symbioses to diversify and expand their ecological ranges. In the Hemiptera (i.e., aphids, cicadas, and true bugs), symbioses have established and evolved with obligatory essential microorganisms (primary symbionts) and with facultative beneficial symbionts (secondary symbionts). Primary symbionts are usually intracellular microorganisms found in insects with specialized diets such as obligate hematophagy or phytophagy. Most Heteroptera (true bugs), however, have gastrointestinal (GI) tract extracellular symbionts with functions analogous to primary endosymbionts. The triatomines, are vectors of the human parasite, Trypanosoma cruzi. A description of their small GI tract microbiota richness was based on a few culturable microorganisms first described almost a century ago. A growing literature describes more complex interactions between triatomines and bacteria with properties characteristic of both primary and secondary symbionts. In this review, we provide an evolutionary perspective of beneficial symbioses in the Hemiptera, illustrating the context that may drive the evolution of symbioses in triatomines. We highlight the diversity of the triatomine microbiota, bacterial taxa with potential to be beneficial symbionts, the unique characteristics of triatomine-bacteria symbioses, and the interactions among trypanosomes, microbiota, and triatomines.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Claudia Umaña-Diaz
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Ricardo de Oliveira Barbosa Bitencourt
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
- Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, 23890-000 Seropédica, Brasil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| |
Collapse
|
32
|
Hou HX, Guo MY, Geng J, Wei XQ, Huang DW, Xiao JH. Genome-Wide Analysis of Peptidoglycan Recognition Protein Genes in Fig Wasps (Hymenoptera, Chalcidoidea). INSECTS 2020; 11:insects11090597. [PMID: 32899607 PMCID: PMC7565001 DOI: 10.3390/insects11090597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary Insects live in a complex and diverse environment, threatened by a variety of microorganisms, and the innate immunity of which plays an important role in defending the invasion of pathogens. From an evolutionary perspective, different living environments and lifestyles drive the different evolutionary patterns of immune systems of insects. Fig wasps are closely associated with the fig syconia, divided into pollinators and non-pollinators according to whether they pollinate the figs. The pollinators are all herbivorous, and fulfil their development within the fig syconia, presenting different lifestyles and diets to non-pollinators, which lead to the chances of exposure to the pathogens varying greatly. The recognition of pathogens is the first step in innate immunity. Therefore, we focused on the different evolutionary patterns of peptidoglycan recognition protein genes between pollinators and non-pollinators, and found that the number of peptidoglycan recognition protein genes was significantly smaller than that of non-pollinators, and the initiation of Toll pathway of pollinators was simpler than that of non-pollinators. All the results suggested a streamlined innate immune recognition system of pollinators, and this information will provide more insights into the adaptive evolution of innate immunity in insects of host specificity. Abstract The innate immunity is the most important defense against pathogen of insects, and the peptidoglycan recognition proteins (PGRPs) play an important role in the processes of immune recognition and initiation of Toll, IMD and other signal pathways. In fig wasps, pollinators and non-pollinators present different evolutionary histories and lifestyles, even though both are closely associated with fig syconia, which may indicate their different patterns in the evolution of PGRPs. By manual annotation, we got all the PGRP genes of 12 fig wasp species, containing seven pollinators and five non-pollinators, and investigated their putative different evolutionary patterns. We found that the number of PGRP genes in pollinators was significantly lower than in non-pollinators, and the number of catalytic PGRP presented a declining trend in pollinators. More importantly, PGRP-SA is associated with initiating the Toll pathway, as well as gram-negative bacteria-binding proteins (GNBPs), which were completely lost in pollinators, which led us to speculate that the initiation of Toll pathway was simpler in pollinators than in non-pollinators. We concluded that fig pollinators owned a more streamlined innate immune recognition system than non-pollinators. Our results provide molecular evidence for the adaptive evolution of innate immunity in insects of host specificity.
Collapse
Affiliation(s)
- Hong-Xia Hou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Meng-Yuan Guo
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Jin Geng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Xian-Qin Wei
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Da-Wei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (D.-W.H.); (J.-H.X.); Tel.: +86-139-1025-6670 (D.-W.H.); +86-185-2245-2108 (J.-H.X.)
| | - Jin-Hua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
- Correspondence: (D.-W.H.); (J.-H.X.); Tel.: +86-139-1025-6670 (D.-W.H.); +86-185-2245-2108 (J.-H.X.)
| |
Collapse
|
33
|
Gerardo NM, Hoang KL, Stoy KS. Evolution of animal immunity in the light of beneficial symbioses. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190601. [PMID: 32772666 DOI: 10.1098/rstb.2019.0601] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immune system processes serve as the backbone of animal defences against pathogens and thus have evolved under strong selection and coevolutionary dynamics. Most microorganisms that animals encounter, however, are not harmful, and many are actually beneficial. Selection should act on hosts to maintain these associations while preventing exploitation of within-host resources. Here, we consider how several key aspects of beneficial symbiotic associations may shape host immune system evolution. When host immunity is used to regulate symbiont populations, there should be selection to evolve and maintain targeted immune responses that recognize symbionts and suppress but not eliminate symbiont populations. Associating with protective symbionts could relax selection on the maintenance of redundant host-derived immune responses. Alternatively, symbionts could facilitate the evolution of host immune responses if symbiont-conferred protection allows for persistence of host populations that can then adapt. The trajectory of immune system evolution will likely differ based on the type of immunity involved, the symbiont transmission mode and the costs and benefits of immune system function. Overall, the expected influence of beneficial symbiosis on immunity evolution depends on how the host immune system interacts with symbionts, with some interactions leading to constraints while others possibly relax selection on immune system maintenance. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Nicole M Gerardo
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Kim L Hoang
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Kayla S Stoy
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Husnik F, Hypsa V, Darby A. Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite. Genome Biol Evol 2020; 12:429-442. [PMID: 32068830 PMCID: PMC7197495 DOI: 10.1093/gbe/evaa032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Animals interact with a diverse array of both beneficial and detrimental microorganisms. In insects, these symbioses in many cases allow feeding on nutritionally unbalanced diets. It is, however, still not clear how are obligate symbioses maintained at the cellular level for up to several hundred million years. Exact mechanisms driving host-symbiont interactions are only understood for a handful of model species and data on blood-feeding hosts with intracellular bacteria are particularly scarce. Here, we analyzed interactions between an obligately blood-sucking parasite of sheep, the louse fly Melophagus ovinus, and its obligate endosymbiont, Arsenophonus melophagi. We assembled a reference transcriptome for the insect host and used dual RNA-Seq with five biological replicates to compare expression in the midgut cells specialized for housing symbiotic bacteria (bacteriocytes) to the rest of the gut (foregut-hindgut). We found strong evidence for the importance of zinc in the system likely caused by symbionts using zinc-dependent proteases when acquiring amino acids, and for different immunity mechanisms controlling the symbionts than in closely related tsetse flies. Our results show that cellular and nutritional interactions between this blood-sucking insect and its symbionts are less intimate than what was previously found in most plant-sap sucking insects. This finding is likely interconnected to several features observed in symbionts in blood-sucking arthropods, particularly their midgut intracellular localization, intracytoplasmic presence, less severe genome reduction, and relatively recent associations caused by frequent evolutionary losses and replacements.
Collapse
Affiliation(s)
- Filip Husnik
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Vaclav Hypsa
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alistair Darby
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
35
|
Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies. Sci Rep 2020; 10:5005. [PMID: 32193415 PMCID: PMC7081217 DOI: 10.1038/s41598-020-61817-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/28/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse flies are the vectors of African trypanosomiasis affecting 36 sub-Saharan countries. Both wild and domestic animals play a crucial role in maintaining the disease-causing parasites (trypanosomes). Thus, the identification of animal reservoirs of trypanosomes is vital for the effective control of African trypanosomiasis. Additionally, the biotic and abiotic factors that drive gut microbiome diversity in tsetse flies are primarily unresolved, especially under natural, field conditions. In this study, we present a comprehensive DNA metabarcoding approach for individual tsetse fly analysis in the identification of mammalian blood meal sources and fly bacterial microbiome composition. We analyzed samples from two endemic foci, Kafue, Zambia collected in June 2017, and Hurungwe, Zimbabwe sampled in April 2014 (pilot study) and detected DNA of various mammals including humans, wild animals, domestic animals and small mammals (rat and bat). The bacterial diversity was relatively similar in flies with different mammalian species DNA, trypanosome infected and uninfected flies, and female and male flies. This study is the first report on bat DNA detection in wild tsetse flies. This study reveals that small mammals such as bats and rats are among the opportunistic blood meal sources for tsetse flies in the wild, and the implication on tsetse biology and ecology needs to be studied.
Collapse
|
36
|
Swei A, Couper LI, Coffey LL, Kapan D, Bennett S. Patterns, Drivers, and Challenges of Vector-Borne Disease Emergence. Vector Borne Zoonotic Dis 2020; 20:159-170. [PMID: 31800374 PMCID: PMC7640753 DOI: 10.1089/vbz.2018.2432] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vector-borne diseases are emerging at an increasing rate and comprise a disproportionate share of all emerging infectious diseases. Yet, the key ecological and evolutionary dimensions of vector-borne disease that facilitate their emergence have not been thoroughly explored. This study reviews and synthesizes the existing literature to explore global patterns of emerging vector-borne zoonotic diseases (VBZDs) under changing global conditions. We find that the vast majority of emerging VBZDs are transmitted by ticks (Ixodidae) and mosquitoes (Culicidae) and the pathogens transmitted are dominated by Rickettsiaceae bacteria and RNA viruses (Flaviviridae, Bunyaviridae, and Togaviridae). The most common potential driver of these emerging zoonoses is land use change, but for many diseases, the driver is unknown, revealing a critical research gap. While most reported VBZDs are emerging in the northern latitudes, after correcting for sampling bias, Africa is clearly a region with the greatest share of emerging VBZD. We highlight critical gaps in our understanding of VBZD emergence and emphasize the importance of interdisciplinary research and consideration of deeper evolutionary processes to improve our capacity for anticipating where and how such diseases have and will continue to emerge.
Collapse
Affiliation(s)
- Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, California
| | - Lisa I. Couper
- Department of Biology, Stanford University, Palo Alto, California
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Durrell Kapan
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Shannon Bennett
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| |
Collapse
|
37
|
Gao L, Song X, Wang J. Gut microbiota is essential in PGRP-LA regulated immune protection against Plasmodium berghei infection. Parasit Vectors 2020; 13:3. [PMID: 31907025 PMCID: PMC6945779 DOI: 10.1186/s13071-019-3876-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains to be one of the deadliest infectious diseases and imposes substantial financial and social costs in the world. Mosquitoes rely on the immune system to control parasite infection. Peptidoglycan recognition proteins (PGRPs), a family of pattern-recognition receptors (PRR), are responsible for initiating and regulating immune signaling pathways. PGRP-LA is involved in the regulation of immune defense against the Plasmodium parasite, however, the underlying mechanism needs to be further elucidated. METHODS The spatial and temporal expression patterns of pgrp-la in Anopheles stephensi were analyzed by qPCR. The function of PGRP-LA was examined using a dsRNA-based RNA interference strategy. Western blot and periodic acid schiff (PAS) staining were used to assess the structural integrity of peritrophic matrix (PM). RESULTS The expression of pgrp-la in An. stephensi was induced in the midgut in response to the rapid proliferating gut microbiota post-blood meal. Knocking down of pgrp-la led to the downregulation of immune effectors that control gut microbiota growth. The decreased expression of these immune genes also facilitated P. berghei infection. However, such dsLA treatment did not influence the structural integrity of PM. When gut microbiota was removed by antibiotic treatment, the regulation of PGRP-LA on immune effectors was abolished and the knock down of pgrp-la failed to increase susceptibility of mosquitoes to parasite infection. CONCLUSIONS PGRP-LA regulates the immune responses by sensing the dynamics of gut microbiota. A mutual interaction between gut microbiota and PGRP-LA contributes to the immune defense against Plasmodium parasites in An. stephensi.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiumei Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China. .,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
38
|
Wang Y, Ma Y, Wang D, Liu W, Chen J, Jiang Y, Yang R, Qin L. Polar tube structure and three polar tube proteins identified from Nosema pernyi. J Invertebr Pathol 2019; 168:107272. [DOI: 10.1016/j.jip.2019.107272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
|
39
|
Aksoy S. Tsetse peritrophic matrix influences for trypanosome transmission. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103919. [PMID: 31425686 PMCID: PMC6853167 DOI: 10.1016/j.jinsphys.2019.103919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Tsetse flies are important vectors of parasitic African trypanosomes, agents of human and animal trypanosomiasis. Easily administrable and effective tools for disease control in the mammalian host are still lacking but reduction of the tsetse vector populations can reduce disease. An alternative approach is to reduce the transmission of trypanosomes in the tsetse vector. The gut peritrophic matrix (PM) has emerged as an important regulator of parasite transmission success in tsetse. Tsetse has a Type II PM that is constitutively produced by cells in the cardia organ. Tsetse PM lines the entire gut and functions as an immunological barrier to prevent the gut epithelia from responding to commensal environmental microbes present in the gut lumen. Tsetse PM also functions as a physical barrier to trypanosome infections that enter into the gut lumen in an infective blood meal. For persistence in the gut, African trypanosomes have developed an adaptive manipulative process to transiently reduce PM efficacy. The process is mediated by mammalian trypanosome surface coat proteins, Variant Surface Glycoproteins (VSGs) which are shed in the gut lumen and taken up by cardia cells. The mechanism of PM reduction involves a tsetse microRNA (miR-275) which acts thru the Wnt signaling pathway. The PM efficacy is once again reduced later in the infection process to enable the gut established parasites to reenter into the gut lumen to colonize the salivary glands, an essential process for transmission. The ability to modulate PM integrity can lead to innovative approaches to reduce disease transmission.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, LEPH 624, New Haven, CT 06520, United States.
| |
Collapse
|
40
|
Garcia JR, Larsen TJ, Queller DC, Strassmann JE. Fitness costs and benefits vary for two facultative Burkholderia symbionts of the social amoeba, Dictyostelium discoideum. Ecol Evol 2019; 9:9878-9890. [PMID: 31534701 PMCID: PMC6745654 DOI: 10.1002/ece3.5529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Hosts and their associated microbes can enter into different relationships, which can range from mutualism, where both partners benefit, to exploitation, where one partner benefits at the expense of the other. Many host-microbe relationships have been presumed to be mutualistic, but frequently only benefits to the host, and not the microbial symbiont, have been considered. Here, we address this issue by looking at the effect of host association on the fitness of two facultative members of the Dictyostelium discoideum microbiome (Burkholderia agricolaris and Burkholderia hayleyella). Using two indicators of bacterial fitness, growth rate and abundance, we determined the effect of D. discoideum on Burkholderia fitness. In liquid culture, we found that D. discoideum amoebas lowered the growth rate of both Burkholderia species. In soil microcosms, we tracked the abundance of Burkholderia grown with and without D. discoideum over a month and found that B. hayleyella had larger populations when associating with D. discoideum while B. agricolaris was not significantly affected. Overall, we find that both B. agricolaris and B. hayleyella pay a cost to associate with D. discoideum, but B. hayleyella can also benefit under some conditions. Understanding how fitness varies in facultative symbionts will help us understand the persistence of host-symbiont relationships. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://openscholarship.wustl.edu/data/15/.
Collapse
Affiliation(s)
- Justine R. Garcia
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
- Present address:
Department of BiologyNew Mexico Highlands UniversityLas VegasNMUSA
| | - Tyler J. Larsen
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | - David C. Queller
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | | |
Collapse
|
41
|
Matetovici I, De Vooght L, Van Den Abbeele J. Innate immunity in the tsetse fly (Glossina), vector of African trypanosomes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:181-188. [PMID: 31075296 DOI: 10.1016/j.dci.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Tsetse flies (Glossina sp.) are medically and veterinary important vectors of African trypanosomes, protozoan parasites that cause devastating diseases in humans and livestock in sub-Saharan Africa. These flies feed exclusively on vertebrate blood and harbor a limited diversity of obligate and facultative bacterial commensals. They have a well-developed innate immune system that plays a key role in protecting the fly against invading pathogens and in modulating the fly's ability to transmit African trypanosomes. In this review, we briefly summarize our current knowledge on the tsetse fly innate immune system and its interaction with the bacterial commensals and the trypanosome parasite.
Collapse
Affiliation(s)
- Irina Matetovici
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000, Antwerp, Belgium.
| |
Collapse
|
42
|
Microbial Communities in Different Developmental Stages of the Oriental Fruit Fly, Bactrocera dorsalis, Are Associated with Differentially Expressed Peptidoglycan Recognition Protein-Encoding Genes. Appl Environ Microbiol 2019; 85:AEM.00803-19. [PMID: 31028032 DOI: 10.1128/aem.00803-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 01/03/2023] Open
Abstract
The insect microbiota can change dramatically to enable adaptation of the host in different developmental stages and environments; however, little is known about how the host maintains its microbiota to achieve such adaptations. In this study, 16S rRNA sequencing revealed that the microorganisms in larvae and adults of the Oriental fruit fly, Bactrocera dorsalis, are primarily Gram-negative bacteria but that the major components in pupae are Gram-positive bacteria. Using suppression subtractive hybridization (SSH) and transcriptome analysis, we screened two specifically expressed genes encoding peptidoglycan recognition proteins (PGRP-LB and PGRP-SB1) and analyzed their relationship to B. dorsalis microbial communities. Knockdown of the PGRP-LB gene in larvae and adults led to increased ratios of Gram-positive bacteria; knockdown of the PGRP-SB1 gene in pupae led to increased ratios of Gram-negative bacteria. Our results suggest that maintenance of the microbiota in different developmental stages of B. dorsalis may be associated with the PGRP-LB and PGRP-SB1 genes.IMPORTANCE Microorganisms are ubiquitous in insects and have widespread impacts on multiple aspects of insect biology. However, the microorganisms present in insects can change dramatically in different developmental stages, and it is critical to maintain the appropriate microorganisms in specific host developmental stages. Therefore, analysis of the factors associated with the microbiota in specific development stages of the host is needed. In this study, we applied suppression subtractive hybridization (SSH) combined with transcriptome analysis to investigate whether the microbiota in development stages of the Oriental fruit fly, Bactrocera dorsalis, is associated with expression of PGRP genes. We found that two different PGRP genes were specifically expressed during development and that these genes may be associated with changes in microbial communities in different developmental stages of B. dorsalis.
Collapse
|
43
|
Salcedo-Porras N, Guarneri A, Oliveira PL, Lowenberger C. Rhodnius prolixus: Identification of missing components of the IMD immune signaling pathway and functional characterization of its role in eliminating bacteria. PLoS One 2019; 14:e0214794. [PMID: 30943246 PMCID: PMC6447187 DOI: 10.1371/journal.pone.0214794] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
The innate immune system in insects is regulated by specific signalling pathways. Most immune related pathways were identified and characterized in holometabolous insects such as Drosophila melanogaster, and it was assumed they would be highly conserved in all insects. The hemimetabolous insect, Rhodnius prolixus, has served as a model to study basic insect physiology, but also is a major vector of the human parasite, Trypanosoma cruzi, that causes 10,000 deaths annually. The publication of the R. prolixus genome revealed that one of the main immune pathways, the Immune-deficiency pathway (IMD), was incomplete and probably non-functional, an observation shared with other hemimetabolous insects including the pea aphid (Acyrthosiphon pisum) and the bedbug (Cimex lectularius). It was proposed that the IMD pathway is inactive in R. prolixus as an adaptation to prevent eliminating beneficial symbiont gut bacteria. We used bioinformatic analyses based on reciprocal BLAST and HMM-profile searches to find orthologs for most of the "missing" elements of the IMD pathway and provide data that these are regulated in response to infection with Gram-negative bacteria. We used RNAi strategies to demonstrate the role of the IMD pathway in regulating the expression of specific antimicrobial peptides (AMPs) in the fat body of R. prolixus. The data indicate that the IMD pathway is present and active in R. prolixus, which opens up new avenues of research on R. prolixus-T. cruzi interactions.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alessandra Guarneri
- Instituto René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
44
|
Maire J, Vincent-Monégat C, Balmand S, Vallier A, Hervé M, Masson F, Parisot N, Vigneron A, Anselme C, Perrin J, Orlans J, Rahioui I, Da Silva P, Fauvarque MO, Mengin-Lecreulx D, Zaidman-Rémy A, Heddi A. Weevil pgrp-lb prevents endosymbiont TCT dissemination and chronic host systemic immune activation. Proc Natl Acad Sci U S A 2019; 116:5623-5632. [PMID: 30819893 PMCID: PMC6431197 DOI: 10.1073/pnas.1821806116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-term intracellular symbiosis (or endosymbiosis) is widely distributed across invertebrates and is recognized as a major driving force in evolution. However, the maintenance of immune homeostasis in organisms chronically infected with mutualistic bacteria is a challenging task, and little is known about the molecular processes that limit endosymbiont immunogenicity and host inflammation. Here, we investigated peptidoglycan recognition protein (PGRP)-encoding genes in the cereal weevil Sitophilus zeamais's association with Sodalis pierantonius endosymbiont. We discovered that weevil pgrp-lb generates three transcripts via alternative splicing and differential regulation. A secreted isoform is expressed in insect tissues under pathogenic conditions through activation of the PGRP-LC receptor of the immune deficiency pathway. In addition, cytosolic and transmembrane isoforms are permanently produced within endosymbiont-bearing organ, the bacteriome, in a PGRP-LC-independent manner. Bacteriome isoforms specifically cleave the tracheal cytotoxin (TCT), a peptidoglycan monomer released by endosymbionts. pgrp-lb silencing by RNAi results in TCT escape from the bacteriome to other insect tissues, where it chronically activates the host systemic immunity through PGRP-LC. While such immune deregulations did not impact endosymbiont load, they did negatively affect host physiology, as attested by a diminished sexual maturation of adult weevils. Whereas pgrp-lb was first described in pathogenic interactions, this work shows that, in an endosymbiosis context, specific bacteriome isoforms have evolved, allowing endosymbiont TCT scavenging and preventing chronic endosymbiont-induced immune responses, thus promoting host homeostasis.
Collapse
Affiliation(s)
- Justin Maire
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Carole Vincent-Monégat
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Séverine Balmand
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Agnès Vallier
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Mireille Hervé
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Florent Masson
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Nicolas Parisot
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Aurélien Vigneron
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Caroline Anselme
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Jackie Perrin
- Institut de Biosciences et Biotechnologies de Grenoble, Université Grenoble Alpes, INSERM U1038, Commissariat à l'Energie Atomique, 38054 Grenoble, France
| | - Julien Orlans
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Isabelle Rahioui
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Pedro Da Silva
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Marie-Odile Fauvarque
- Institut de Biosciences et Biotechnologies de Grenoble, Université Grenoble Alpes, INSERM U1038, Commissariat à l'Energie Atomique, 38054 Grenoble, France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Anna Zaidman-Rémy
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France;
| | - Abdelaziz Heddi
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France;
| |
Collapse
|
45
|
Weiss BL, Maltz MA, Vigneron A, Wu Y, Walter KS, O'Neill MB, Wang J, Aksoy S. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLoS Pathog 2019; 15:e1007470. [PMID: 30817773 PMCID: PMC6394900 DOI: 10.1371/journal.ppat.1007470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) vector pathogenic trypanosomes (Trypanosoma spp.) in sub-Saharan Africa. These parasites cause human and animal African trypanosomiases, which are debilitating diseases that inflict an enormous socio-economic burden on inhabitants of endemic regions. Current disease control strategies rely primarily on treating infected animals and reducing tsetse population densities. However, relevant programs are costly, labor intensive and difficult to sustain. As such, novel strategies aimed at reducing tsetse vector competence require development. Herein we investigated whether Kosakonia cowanii Zambiae (Kco_Z), which confers Anopheles gambiae with resistance to Plasmodium, is able to colonize tsetse and induce a trypanosome refractory phenotype in the fly. Kco_Z established stable infections in tsetse's gut and exhibited no adverse effect on the fly's survival. Flies with established Kco_Z infections in their gut were significantly more refractory to infection with two distinct trypanosome species (T. congolense, 6% infection; T. brucei, 32% infection) than were age-matched flies that did not house the exogenous bacterium (T. congolense, 36% infected; T. brucei, 70% infected). Additionally, 52% of Kco_Z colonized tsetse survived infection with entomopathogenic Serratia marcescens, compared with only 9% of their wild-type counterparts. These parasite and pathogen refractory phenotypes result from the fact that Kco_Z acidifies tsetse's midgut environment, which inhibits trypanosome and Serratia growth and thus infection establishment. Finally, we determined that Kco_Z infection does not impact the fecundity of male or female tsetse, nor the ability of male flies to compete with their wild-type counterparts for mates. We propose that Kco_Z could be used as one component of an integrated strategy aimed at reducing the ability of tsetse to transmit pathogenic trypanosomes.
Collapse
Affiliation(s)
- Brian L Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michele A Maltz
- Southern Connecticut State University, New Haven, Connecticut, United States of America
| | - Aurélien Vigneron
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Yineng Wu
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Katharine S Walter
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michelle B O'Neill
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Jingwen Wang
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| |
Collapse
|
46
|
Wang Q, Ren M, Liu X, Xia H, Chen K. Peptidoglycan recognition proteins in insect immunity. Mol Immunol 2018; 106:69-76. [PMID: 30590209 DOI: 10.1016/j.molimm.2018.12.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
Abstract
Insects lack an acquired immune system and rely solely on the innate immune system to combat microbial infection. The innate immunity of insects mainly depends on the interaction between the host's pattern recognition receptor (PRR) and pathogen-associated molecular pattern (PAMP). The peptidoglycan recognition proteins (PGRPs) family is the most important pattern recognition receptor (PRR) for insects. It can recognize the main component of the cell wall of the pathogenic microorganism, peptidoglycan (PGN), and plays an important role in the innate immunity of insects. In this paper, the structure, classification, and function of PGRPs is summarized, and the role of PGRPs in the innate immunity of insects is also discussed.
Collapse
Affiliation(s)
- Qiang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Meijia Ren
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoyong Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
47
|
Mao M, Yang X, Bennett GM. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc Natl Acad Sci U S A 2018; 115:E11691-E11700. [PMID: 30463949 PMCID: PMC6294904 DOI: 10.1073/pnas.1811932115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host-symbiont system.
Collapse
Affiliation(s)
- Meng Mao
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343;
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Xiushuai Yang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| |
Collapse
|
48
|
What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus. BMC Microbiol 2018; 18:150. [PMID: 30470176 PMCID: PMC6251153 DOI: 10.1186/s12866-018-1278-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program ‘Enhancing Vector Refractoriness to Trypanosome Infection’, in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host’s immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models.
Collapse
|
49
|
Griffith BC, Weiss BL, Aksoy E, Mireji PO, Auma JE, Wamwiri FN, Echodu R, Murilla G, Aksoy S. Analysis of the gut-specific microbiome from field-captured tsetse flies, and its potential relevance to host trypanosome vector competence. BMC Microbiol 2018; 18:146. [PMID: 30470178 PMCID: PMC6251097 DOI: 10.1186/s12866-018-1284-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The tsetse fly (Glossina sp.) midgut is colonized by maternally transmitted and environmentally acquired bacteria. Additionally, the midgut serves as a niche in which pathogenic African trypanosomes reside within infected flies. Tsetse’s bacterial microbiota impacts many aspects of the fly’s physiology. However, little is known about the structure of tsetse’s midgut-associated bacterial communities as they relate to geographically distinct fly habitats in east Africa and their contributions to parasite infection outcomes. We utilized culture dependent and independent methods to characterize the taxonomic structure and density of bacterial communities that reside within the midgut of tsetse flies collected at geographically distinct locations in Kenya and Uganda. Results Using culture dependent methods, we isolated 34 strains of bacteria from four different tsetse species (G. pallidipes, G. brevipalpis, G. fuscipes and G. fuscipleuris) captured at three distinct locations in Kenya. To increase the depth of this study, we deep sequenced midguts from individual uninfected and trypanosome infected G. pallidipes captured at two distinct locations in Kenya and one in Uganda. We found that tsetse’s obligate endosymbiont, Wigglesworthia, was the most abundant bacterium present in the midgut of G. pallidipes, and the density of this bacterium remained largely consistent regardless of whether or not its tsetse host was infected with trypanosomes. These fly populations also housed the commensal symbiont Sodalis, which was found at significantly higher densities in trypanosome infected compared to uninfected flies. Finally, midguts of field-captured G. pallidipes were colonized with distinct, low density communities of environmentally acquired microbes that differed in taxonomic structure depending on parasite infection status and the geographic location from which the flies were collected. Conclusions The results of this study will enhance our understanding of the tripartite relationship between tsetse, its microbiota and trypanosome vector competence. This information may be useful for developing novel disease control strategies or enhancing the efficacy of those already in use. Electronic supplementary material The online version of this article (10.1186/s12866-018-1284-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bridget C Griffith
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Present Address: Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Present Address: Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Paul O Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joana E Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Florence N Wamwiri
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
50
|
Geiger A, Malele I, Abd-Alla AM, Njiokou F. Blood feeding tsetse flies as hosts and vectors of mammals-pre-adapted African Trypanosoma: current and expected research directions. BMC Microbiol 2018; 18:162. [PMID: 30470183 PMCID: PMC6251083 DOI: 10.1186/s12866-018-1281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Research on the zoo-anthropophilic blood feeding tsetse flies' biology conducted, by different teams, in laboratory settings and at the level of the ecosystems- where also co-perpetuate African Trypanosoma- has allowed to unveil and characterize key features of tsetse flies' bacterial symbionts on which rely both (a) the perpetuation of the tsetse fly populations and (b) the completion of the developmental program of the African Trypanosoma. Transcriptomic analyses have already provided much information on tsetse fly genes as well as on genes of the fly symbiotic partners Sodalis glossinidius and Wigglesworthia, which account for the successful onset or not of the African Trypanosoma developmental program. In parallel, identification of the non- symbiotic bacterial communities hosted in the tsetse fly gut has recently been initiated: are briefly introduced those bacteria genera and species common to tsetse flies collected from distinct ecosystems, that could be further studied as potential biologicals preventing the onset of the African Trypanosoma developmental program. Finally, future work will need to concentrate on how to render tsetse flies refractory, and the best means to disseminate them in the field in order to establish an overall refractory fly population.
Collapse
Affiliation(s)
- Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Imna Malele
- Vector and Vector Borne Diseases Institute, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
| | - Adly M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|