1
|
Davis E, Ermi AG, Sarkar D. Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH): A Promising Molecular Marker and Therapeutic Target for Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:1375. [PMID: 40282551 PMCID: PMC12025727 DOI: 10.3390/cancers17081375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. The 5-year survival rate has been estimated to be less than 20% while its incidence rates have more than tripled since the 1980s. Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) has been demonstrated to have an influential role in HCC progression and the development of an aggressive phenotype. AEG-1 has been shown to be upregulated in many cancers, including HCC. Studies have shown that it plays a crucial role in the proliferation, invasion and metastasis, and evasion of apoptosis in HCC. Its relationship with proteins and pathways, such as MYC, SND1, PI3K/AKT, and other signaling pathways demonstrates its pertinent role in oncogenic development and relevance as a biomarker and therapeutic target. Recent studies have shown that AEG-1 is present in tumor tissues, and the anti-AEG-1 antibody is detected in the blood of cancer patients, demonstrating its viability as a diagnostic/prognostic marker. This review paper shines light on recent findings regarding the molecular implications of AEG-1, with emphasis on its role of regulating metabolic dysfunction-associated steatohepatitis (MASH), a key predisposing factor for HCC, new treatment strategies targeting AEG-1, and challenges associated with analyzing this intriguing molecule.
Collapse
Affiliation(s)
- Eva Davis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ali Gawi Ermi
- Department of Cellular, Molecular and Genetic Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Cellular, Molecular and Genetic Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Kaushik N, Jaiswal A, Bhartiya P, Choi EH, Kaushik NK. TFCP2 as a therapeutic nexus: unveiling molecular signatures in cancer. Cancer Metastasis Rev 2024; 43:959-975. [PMID: 38451384 DOI: 10.1007/s10555-024-10175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Tumor suppressor genes and proto-oncogenes comprise most of the complex genomic landscape associated with cancer, with a minimal number of genes exhibiting dual-context-dependent functions. The transcription factor cellular promoter 2 (TFCP2), a pivotal transcription factor encoded by the alpha globin transcription factor CP2 gene, is a constituent of the TFCP2/grainyhead family of transcription factors. While grainyhead members have been extensively studied for their crucial roles in developmental processes, embryogenesis, and multiple cancers, the TFCP2 subfamily has been relatively less explored. The molecular mechanisms underlying TFCP2's involvement in carcinogenesis are still unclear even though it is a desirable target for cancer treatment and a therapeutic marker. This comprehensive literature review summarizes the molecular functions of TFCP2, emphasizing its involvement in cancer pathophysiology, particularly in the epithelial-mesenchymal transition and metastasis. It highlights TFCP2's critical function as a regulatory target and explores its potential as a prognostic marker for survival and inflammation in carcinomas. Its ambiguous association with carcinomas underlines the urgent need for an in-depth understanding to facilitate the development of more efficacious targeted therapeutic modality and diagnostic tools. This study aims to elucidate the multifaceted effects of TFCP2 regulation, through a comprehensive integration of the existing knowledge in cancer therapeutics. Furthermore, the clinical relevance and the inherent challenges encountered in investigating its intricate role in cancer pathogenesis have been discussed in this review.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Pradeep Bhartiya
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|
3
|
Wang N, Xu J, Wang Y, Zhang X, Zhang H. USP7 promotes cervical cancer progression by stabilizing MTDH expression through deubiquitination. J Cancer Res Clin Oncol 2024; 150:196. [PMID: 38625581 PMCID: PMC11021233 DOI: 10.1007/s00432-024-05710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Metadherin (MTDH) and ubiquitin specific protease 7 (USP7) have been identified to involve in the tumorigenesis of cervical cancer (CC). USP7 is one of the deubiquitinating enzymes. Here, this study aimed to explore whether USP7 affected CC progression via interacting with MTDH and regulating its stability via deubiquitination. METHODS qRT-PCR and western blotting assays detected the levels of genes and proteins. Functional analysis was conducted using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and tube formation assays, respectively. Proteins between USP7 and MTDH were identified by co-immunoprecipitation assay. A mouse xenograft model was established for in vivo analysis. RESULTS MTDH was highly expressed in CC tissues and cells, silencing of MTDH suppressed CC cell proliferation, migration, invasion, angiogenesis, and macrophage M2 polarization. Mechanistically, USP7 directly bound to MTDH, and maintained its stability by removing ubiquitination on MTDH. CC tissues and cells showed high USP7 expression, and USP7 knockdown also inhibited CC cell proliferation, migration, invasion, angiogenesis and macrophage M2 polarization, and these effects mediated by USP7 knockdown were reversed by MTDH overexpression. Moreover, USP7 knockdown impeded CC growth in vivo by regulating MTDH. CONCLUSION Collectively, USP7 promoted CC cell proliferation, migration, invasion, angiogenesis, and macrophage M2 polarization in vitro, as well as tumor growth in vivo by regulating MTDH.
Collapse
Affiliation(s)
- Na Wang
- Department of Gynecology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China
| | - Jing Xu
- Department of Obstetrics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yujing Wang
- Department of Gynecology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China
| | - Xuejiao Zhang
- Department of Gynecology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China
| | - Hongzhen Zhang
- Department of Gynecology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China.
| |
Collapse
|
4
|
Yang L, Yang J, Kleppe A, Danielsen HE, Kerr DJ. Personalizing adjuvant therapy for patients with colorectal cancer. Nat Rev Clin Oncol 2024; 21:67-79. [PMID: 38001356 DOI: 10.1038/s41571-023-00834-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
The current standard-of-care adjuvant treatment for patients with colorectal cancer (CRC) comprises a fluoropyrimidine (5-fluorouracil or capecitabine) as a single agent or in combination with oxaliplatin, for either 3 or 6 months. Selection of therapy depends on conventional histopathological staging procedures, which constitute a blunt tool for patient stratification. Given the relatively marginal survival benefits that patients can derive from adjuvant treatment, improving the safety of chemotherapy regimens and identifying patients most likely to benefit from them is an area of unmet need. Patient stratification should enable distinguishing those at low risk of recurrence and a high chance of cure by surgery from those at higher risk of recurrence who would derive greater absolute benefits from chemotherapy. To this end, genetic analyses have led to the discovery of germline determinants of toxicity from fluoropyrimidines, the identification of patients at high risk of life-threatening toxicity, and enabling dose modulation to improve safety. Thus far, results from analyses of resected tissue to identify mutational or transcriptomic signatures with value as prognostic biomarkers have been rather disappointing. In the past few years, the application of artificial intelligence-driven models to digital images of resected tissue has identified potentially useful algorithms that stratify patients into distinct prognostic groups. Similarly, liquid biopsy approaches involving measurements of circulating tumour DNA after surgery are additionally useful tools to identify patients at high and low risk of tumour recurrence. In this Perspective, we provide an overview of the current landscape of adjuvant therapy for patients with CRC and discuss how new technologies will enable better personalization of therapy in this setting.
Collapse
Affiliation(s)
- Li Yang
- Department of Gastroenterology, Sichuan University, Chengdu, China
| | - Jinlin Yang
- Department of Gastroenterology, Sichuan University, Chengdu, China
| | - Andreas Kleppe
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
- Centre for Research-based Innovation Visual Intelligence, UiT The Arctic University of Norway, Tromsø, Norway
| | - Håvard E Danielsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Radcliffe Department of Medicine, Oxford University, Oxford, UK
| | - David J Kerr
- Radcliffe Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
5
|
Komaniecki G, Camarena MDC, Gelsleichter E, Mendoza R, Subler M, Windle JJ, Dozmorov MG, Lai Z, Sarkar D, Lin H. Astrocyte Elevated Gene-1 Cys75 S-Palmitoylation by ZDHHC6 Regulates Its Biological Activity. Biochemistry 2023; 62:543-553. [PMID: 36548985 PMCID: PMC9850907 DOI: 10.1021/acs.biochem.2c00583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease is a major risk factor for hepatocellular carcinoma (HCC). Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) augments lipid accumulation (steatosis), inflammation, and tumorigenesis, thereby promoting the whole spectrum of this disease process. Targeting AEG-1 is a potential interventional strategy for nonalcoholic steatohepatitis (NASH) and HCC. Thus, proper understanding of the regulation of this molecule is essential. We found that AEG-1 is palmitoylated at residue cysteine 75 (Cys75). Mutation of Cys75 to serine (Ser) completely abolished AEG-1 palmitoylation. We identified ZDHHC6 as a palmitoyltransferase catalyzing the process in HEK293T cells. To obtain insight into how palmitoylation regulates AEG-1 function, we generated knock-in mice by CRISPR/Cas9 in which Cys75 of AEG-1 was mutated to Ser (AEG-1-C75S). No developmental or anatomical abnormality was observed between AEG-1-wild type (AEG-1-WT) and AEG-1-C75S littermates. However, global gene expression analysis by RNA-sequencing unraveled that signaling pathways and upstream regulators, which contribute to cell proliferation, motility, inflammation, angiogenesis, and lipid accumulation, were activated in AEG-1-C75S hepatocytes compared to AEG-1-WT. These findings suggest that AEG-1-C75S functions as dominant positive and that palmitoylation restricts oncogenic and NASH-promoting functions of AEG-1. We thus identify a previously unknown regulatory mechanism of AEG-1, which might help design new therapeutic strategies for NASH and HCC.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- C.
Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Maria Del Carmen Camarena
- C.
Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Eric Gelsleichter
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Rachel Mendoza
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Mark Subler
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Jolene J. Windle
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- VCU
Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Mikhail G. Dozmorov
- Department
of Biostatistics, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Department
of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Zhao Lai
- Greehy
Children’s Cancer Research Institute, University of Texas Health
Science Center San Antonio, San Antonio, Texas 78229, United States
| | - Devanand Sarkar
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- VCU
Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Howard
Hughes Medical Institute, Department of Chemistry and Chemical Biology,
Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
7
|
Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem 2022; 106:235-280. [PMID: 35152973 DOI: 10.1016/bs.acc.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metadherin (AEG-1/MTDH/LYRIC) is a 582-amino acid transmembrane protein, encoded by a gene located at chromosome 8q22, and distributed throughout the cytoplasm, peri-nuclear region, nucleus, and nucleolus as well as the endoplasmic reticulum (ER). It contains several structural and interacting domains through which it interacts with transcription factors such as nuclear factor-κB (NF-κB), promyelocytic leukemia zinc finger (PLZF), staphylococcal nuclease domain containing 1 (SND1) and lung homing domain (LHD). It is regulated by miRNAs and mediates its oncogenic function via activation of cell proliferation, survival, migration and metastasis, as well as, angiogenesis and chemoresistance via phosphatidylinositol-3-kinase/AKT (PI3K/AKT), NF-κB, mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. In this chapter, metadherin is reviewed highlighting its role in mediating growth, metastasis and chemoresistance in colorectal cancer (CRC). Metadherin, as well as its variants, and antibodies are associated with CRC progression, poorer prognosis, decreased survival and advanced clinico-pathology. The potential of AEG-1/MTDH/LYRIC as a diagnostic and prognostic marker as well as a therapeutic target in CRC is explored.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Chen Y, Huang S, Guo R, Chen D. Metadherin-mediated mechanisms in human malignancies. Biomark Med 2021; 15:1769-1783. [PMID: 34783585 DOI: 10.2217/bmm-2021-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metadherin (MTDH) has been recognized as a novel protein that is critical for the progression of multiple types of human malignancies. Studies have reported that MTDH enhances the metastatic potential of cancer cells by regulating multiple signaling pathways. miRNAs and various tumor-related proteins have been shown to interact with MTDH, making it a potential therapeutic target as well as a biomarker in human malignancies. MTDH plays a critical role in inflammation, angiogenesis, hypoxia, epithelial-mesenchymal transition and autophagy. In this review, we present the function and mechanisms of MTDH for cancer initiation and progression.
Collapse
Affiliation(s)
- Yuyuan Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Sheng Huang
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Rong Guo
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Dedian Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| |
Collapse
|
10
|
Lin LW, Lai PS, Chen YY, Chen CY. Expression of astrocyte-elevated gene-1 indicates prognostic value of fluoropyrimidine-based adjuvant chemotherapy in resectable stage III colorectal cancer. Pathol Int 2021; 71:752-764. [PMID: 34528330 DOI: 10.1111/pin.13160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
It is unclear which prognostic factor such as pathological features and gene mutation are majorly relevant for stage III disease and whether they aid in determining patients who will be benefit from postoperative adjuvant chemotherapy. The expression of astrocyte-elevated gene-1 (AEG-1), thymidylate synthase (TS), excision repair cross-complementation group 1 (ERCC1), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF) was examined to investigate their role in adjuvant chemotherapy for patients with resectable stage III colorectal cancer (CRC). A significant positive correlation was observed between AEG-1, TS, ERCC1, EGFR, and VEGF gene expression levels in CRC cell lines, and low AEG-1 and TS expression were highly sensitive to 5-fluorouracil treatment. Our results showed that AEG-1 expression was high in T4 and caused CRC recurrence or metastasis. Patients with T4, high AEG-1, TS and VEGF expression had a significantly short disease-free survival and overall survival. In multivariate Cox regression analysis, high AEG-1 expression could be an independent prognostic factor indicating poor survival in patients with resectable stage III CRC treated with adjuvant chemotherapy. In conclusion, AEG-1 expression and tumor grade are potential prognostic factors for recurrence and survival in patients with stage III CRC receiving adjuvant fluoropyrimidine-based chemotherapy.
Collapse
Affiliation(s)
- Long-Wei Lin
- Department of Pathology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Peng-Sheng Lai
- Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Ying-Yin Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Banerjee I, Fisher PB, Sarkar D. Astrocyte elevated gene-1 (AEG-1): A key driver of hepatocellular carcinoma (HCC). Adv Cancer Res 2021; 152:329-381. [PMID: 34353442 DOI: 10.1016/bs.acr.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An array of human cancers, including hepatocellular carcinoma (HCC), overexpress the oncogene Astrocyte elevated gene-1 (AEG-1). It is now firmly established that AEG-1 is a key driver of carcinogenesis, and enhanced expression of AEG-1 is a marker of poor prognosis in cancer patients. In-depth studies have revealed that AEG-1 positively regulates different hallmarks of HCC progression including growth and proliferation, angiogenesis, invasion, migration, metastasis and resistance to therapeutic intervention. By interacting with a plethora of proteins as well as mRNAs, AEG-1 regulates gene expression at transcriptional, post-transcriptional, and translational levels, and modulates numerous pro-tumorigenic and tumor-suppressive signal transduction pathways. Even though extensive research over the last two decades using various in vitro and in vivo models has established the pivotal role of AEG-1 in HCC, effective targeting of AEG-1 as a therapeutic intervention for HCC is yet to be achieved in the clinic. Targeted delivery of AEG-1 small interfering ribonucleic acid (siRNA) has demonstrated desired therapeutic effects in mouse models of HCC. Peptidomimetic inhibitors based on protein-protein interaction studies has also been developed recently. Continuous unraveling of novel mechanisms in the regulation of HCC by AEG-1 will generate valuable knowledge facilitating development of specific AEG-1 inhibitory strategies. The present review describes the current status of AEG-1 in HCC gleaned from patient-focused and bench-top studies as well as transgenic and knockout mouse models. We also address the challenges that need to be overcome and discuss future perspectives on this exciting molecule to transform it from bench to bedside.
Collapse
Affiliation(s)
- Indranil Banerjee
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
12
|
Sriramulu S, Sun XF, Malayaperumal S, Ganesan H, Zhang H, Ramachandran M, Banerjee A, Pathak S. Emerging Role and Clinicopathological Significance of AEG-1 in Different Cancer Types: A Concise Review. Cells 2021; 10:1497. [PMID: 34203598 PMCID: PMC8232086 DOI: 10.3390/cells10061497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Tumor breakthrough is driven by genetic or epigenetic variations which assist in initiation, migration, invasion and metastasis of tumors. Astrocyte elevated gene-1 (AEG-1) protein has risen recently as the crucial factor in malignancies and plays a potential role in diverse complex oncogenic signaling cascades. AEG-1 has multiple roles in tumor growth and development and is found to be involved in various signaling pathways of: (i) Ha-ras and PI3K/AKT; (ii) the NF-κB; (iii) the ERK or mitogen-activated protein kinase and Wnt or β-catenin and (iv) the Aurora-A kinase. Recent studies have confirmed that in all the hallmarks of cancers, AEG-1 plays a key functionality including progression, transformation, sustained angiogenesis, evading apoptosis, and invasion and metastasis. Clinical studies have supported that AEG-1 is actively intricated in tumor growth and progression which includes esophageal squamous cell, gastric, colorectal, hepatocellular, gallbladder, breast, prostate and non-small cell lung cancers, as well as renal cell carcinomas, melanoma, glioma, neuroblastoma and osteosarcoma. Existing studies have reported that AEG-1 expression has been induced by Ha-ras through intrication of PI3K/AKT signaling. Conversely, AEG-1 also activates PI3K/AKT pathway and modulates the defined subset of downstream target proteins via crosstalk between the PI3K/AKT/mTOR and Hedgehog signaling cascade which further plays a crucial role in metastasis. Thus, AEG-1 may be employed as a biomarker to discern the patients of those who are likely to get aid from AEG-1-targeted medication. AEG-1 may play as an effective target to repress tumor development, occlude metastasis, and magnify the effectiveness of treatments. In this review, we focus on the molecular mechanism of AEG-1 in the process of carcinogenesis and its involvement in regulation of crosstalk between the PI3K/AKT/mTOR and Hedgehog signaling. We also highlight the multifaceted functions, expression, clinicopathological significance and molecular inhibitors of AEG-1 in various cancer types.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Xiao-Feng Sun
- Department of Oncology, Linköping University, SE-581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| | - Sarubala Malayaperumal
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Harsha Ganesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, SE-701 82 Orebro, Sweden;
| | - Murugesan Ramachandran
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| |
Collapse
|
13
|
Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021; 13:cancers13081792. [PMID: 33918653 PMCID: PMC8069505 DOI: 10.3390/cancers13081792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy is a major mode of treatment for cancers. However, cancer cells adapt to survive in stressful conditions and in many cases, they are inherently resistant to chemotherapy. Additionally, after initial response to chemotherapy, the surviving cancer cells acquire new alterations making them chemoresistant. Genes that help adapt the cancer cells to cope with stress often contribute to chemoresistance and one such gene is Astrocyte elevated gene-1 (AEG-1). AEG-1 levels are increased in all cancers studied to date and AEG-1 contributes to the development of highly aggressive, metastatic cancers. In this review, we provide a comprehensive description of the mechanism by which AEG-1 augments tumor development with special focus on its ability to regulate chemoresistance. We also discuss potential ways to inhibit AEG-1 to overcome chemoresistance. Abstract Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.
Collapse
|
14
|
Khan M, Sarkar D. The Scope of Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH) in Cancer Clinicopathology: A Review. Genes (Basel) 2021; 12:genes12020308. [PMID: 33671513 PMCID: PMC7927008 DOI: 10.3390/genes12020308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
Since its initial cloning in 2002, a plethora of studies in a vast number of cancer indications, has strongly established AEG-1 as a bona fide oncogene. In all types of cancer cells, overexpression and knockdown studies have demonstrated that AEG-1 performs a seminal role in regulating proliferation, invasion, angiogenesis, metastasis and chemoresistance, the defining cancer hallmarks, by a variety of mechanisms, including protein-protein interactions activating diverse oncogenic pathways, RNA-binding promoting translation and regulation of inflammation, lipid metabolism and tumor microenvironment. These findings have been strongly buttressed by demonstration of increased tumorigenesis in tissue-specific AEG-1 transgenic mouse models, and profound resistance of multiple types of cancer development and progression in total and conditional AEG-1 knockout mouse models. Additionally, clinicopathologic correlations of AEG-1 expression in a diverse array of cancers establishing AEG-1 as an independent biomarker for highly aggressive, chemoresistance metastatic disease with poor prognosis have provided a solid foundation to the mechanistic and mouse model studies. In this review a comprehensive analysis of the current and up-to-date literature is provided to delineate the clinical significance of AEG-1 in cancer highlighting the commonality of the findings and the discrepancies and discussing the implications of these observations.
Collapse
Affiliation(s)
- Maheen Khan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
15
|
Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed Pharmacother 2021; 137:111285. [PMID: 33485118 DOI: 10.1016/j.biopha.2021.111285] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil (5-FU) has been an important anti-cancer drug to date. With an increase in the knowledge of its mechanism of action, various treatment modalities have been developed over the past few decades to increase its anti-cancer activity. But drug resistance has greatly affected the clinical use of 5-FU. Overcoming this chemoresistance is a challenge due to the presence of cancer stem cells like cells, cancer recurrence, metastasis, and angiogenesis. In this review, we have systematically discussed the mechanism of 5-FU resistance and advent strategies to increase the sensitivity of 5-FU therapy including resistance reversal. Special emphasis has been given to the cancer stem cells (CSCs) mediated 5-FU chemoresistance and its reversal process by different approaches including the DNA repair inhibition process.
Collapse
Affiliation(s)
- Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
16
|
Tan X, Zhang C, Gao W, Sun B, Jiang B, Song P. Overexpression of microRNA-124-5p sensitizes non-small cell lung cancer cells to treatment with 5-fluorouracil via AEG-1 regulation. Oncol Lett 2020; 21:5. [PMID: 33240411 DOI: 10.3892/ol.2020.12266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Chemotherapeutic resistance represents a major obstacle for the treatment of patients with non-small cell lung cancer (NSCLC); however, the associated molecular mechanisms underpinning the development of resistance remain poorly characterized. In the current study, 5-fluorouracil (5-FU)-resistant A549 cells (A549/5-FU) were generated from A549 cells. Reverse transcription-quantitative PCR and western blotting were used to detect microRNA(miR)-124-5p and astrocyte elevated gene 1 (AEG-1) expression levels in cells and tumor tissues. In addition, the cytotoxic effect of 5-FU on the cells was determined using the Cell Counting Kit-8 assay, and the Dual-luciferase reporter assay was used to validate AEG-1 as a target gene of miR-124-5p. Transfection with a miR-124-5p mimic enhanced inhibition of cell viability induced by 5-FU in A549/5-FU cells, whereas miR-124-5p inhibitor transfection partially reversed 5-FU-induced cell viability inhibition in A549 and H1299 cells. A decrease in miR-124-5p expression level was observed in A549/5-FU cells compared with the parental A549 cells. Furthermore, AEG-1 was predicted as a target gene of miR-124-5p, and its expression was increased in A549/5-FU cells compared with A549 cells. Additionally, the upregulation of miR-124-5p was associated with lower expression levels of AEG-1 in A549/5-FU cells, compared with parental A549 cells. Moreover, the Dual-luciferase reporter assay confirmed the ability of miR-124-5p to bind directly to the 3'-untranslated region of AEG-1 mRNA. Notably, the overexpression of AEG-1 reversed the ability of the miR-124-5p mimic to increase the sensitivity of A549/5-FU cells to 5-FU treatment. Additionally, a significant negative correlation between miR-124-5p expression and AEG-1 mRNA levels was detected in 40 pairs of NSCLC tissues and their corresponding adjacent paracancerous tissues. The results of the present study indicated that miR-124-5p may regulate the chemotherapeutic sensitivity of NSCLC cells, and may therefore represent a promising biomarker or therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Xiaoxia Tan
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| | - Chuancui Zhang
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| | - Weidong Gao
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| | - Bei Sun
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| | - Baozhen Jiang
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| | - Peng Song
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| |
Collapse
|
17
|
Zhu K, Peng Y, Hu J, Zhan H, Yang L, Gao Q, Jia H, Luo R, Dai Z, Tang Z, Fan J, Zhou J. Metadherin-PRMT5 complex enhances the metastasis of hepatocellular carcinoma through the WNT-β-catenin signaling pathway. Carcinogenesis 2020; 41:130-138. [PMID: 31498866 PMCID: PMC7175245 DOI: 10.1093/carcin/bgz065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/03/2019] [Accepted: 05/07/2019] [Indexed: 01/12/2023] Open
Abstract
Accumulating data suggest that metadherin (MTDH) may function as an oncogene. Our previous study showed that MTDH promotes hepatocellular carcinoma (HCC) metastasis via the epithelial-mesenchymal transition. In this study, we aim to further elucidate how MTDH promotes HCC metastasis. Using Co-immunoprecipitation (co-IP) and mass spectrometry, we found that MTDH can specifically bind to protein arginine methyltransferase 5 (PRMT5). Further functional assays revealed that PRMT5 overexpression promoted the proliferation and motility of HCC cells and that knockout of PRMT5 impeded the effect of MTDH. The immunohistochemistry assay/tissue microarray results showed that when MTDH was overexpressed in HCC cells, PRMT5 translocated from the nucleus to the cytoplasm, with the subsequent translocation of β-catenin from the cytoplasm to the nucleus and upregulation of the WNT-β-catenin signaling pathway. Further in vivo experiments suggested that PRMT5 and β-catenin played a pivotal role in MTDH-mediated HCC metastasis. We therefore concluded that the MTDH-PRMT5 complex promotes HCC metastasis by regulating the WNT-β-catenin signaling pathway.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanfei Peng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jinwu Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Hao Zhan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Liuxiao Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Hao Jia
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhong Shan Hospital, Fudan University, Shanghai, China
| | - Zhi Dai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zhaoyou Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
18
|
Ramadan RA, Moghazy TF, Hafez R, Morsi H, Samir M, Shamesya M. Significance of expression of pyrimidine metabolizing genes in colon cancer. Arab J Gastroenterol 2020; 21:189-193. [PMID: 32830091 DOI: 10.1016/j.ajg.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/25/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND STUDY AIMS The reprogramming of metabolic pathways in tumour cells is a crucial step to meet the increased requirements for their own growth. This process occurs through alterations in gene expression, polymorphisms, and epigenetic dysregulation of a number of metabolic genes. Several metabolic enzymatic pathways such as pyrimidine-metabolizing enzymes have been implicated in tumorigenesis and tumor progression. PATIENTS AND METHODS We measured the relative expression levels of three pyrimidine-metabolizing genes-thymidylate synthase (TYMS), thymidine phosphorylase (TYMP), and dihydropyrimidine dehydrogenase (DPYD)-in tumor tissue and adjacent normal-appearing mucosa in 50 colon cancer (CC) patients using real-time reverse-transcription polymerase chain reaction. Gene expression was also studied in relation to demographic and pathological criteria. RESULTS The gene expression levels of both TYMS and TYMP were significantly higher in tumor tissue than normal adjacent tissue. Further, they showed an agreeable level of diagnostic performance as a means to discriminate between normal and tumor tissue; TYMS had high specificity (94%) but moderate sensitivity (60%), while TYPM showed average sensitivity (70%) and specificity (76%). Although DPYD expression was lower in tumor tissue than paracancerous tissue, this level did not reach the statistical significance. TYMS expression was significantly higher in moderately and poorly differentiated tumors than in well-differentiated ones. There was no significant association between gene expression and the remaining clinicopathological criteria (e.g., age, sex, tumor location, and metastasis). We found a positive correlation between the gene expression levels of TYMS and DPYD. CONCLUSION TYMS and TYMP messenger RNA levels seem to be plausible indicators in the diagnosis of CC, although further studies are warranted for validation.
Collapse
Affiliation(s)
- Ragaa A Ramadan
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Egypt.
| | - Thanaa F Moghazy
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Egypt
| | - Radwa Hafez
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Egypt
| | - Heba Morsi
- Human Genetics Department, Medical Research Institute, Alexandria University, Egypt
| | - Mohamed Samir
- Department of Experimental Surgery, Medical Research Institute, Alexandria University, Egypt
| | - Mohamed Shamesya
- Department of Experimental Surgery, Medical Research Institute, Alexandria University, Egypt; Department of Internal Medicine, Medical research Institute, Alexandria University, Egypt
| |
Collapse
|
19
|
Willoughby JLS, George K, Roberto MP, Chin HG, Stoiber P, Shin H, Pedamallu CS, Schaus SE, Fitzgerald K, Shah J, Hansen U. Targeting the oncogene LSF with either the small molecule inhibitor FQI1 or siRNA causes mitotic delays with unaligned chromosomes, resulting in cell death or senescence. BMC Cancer 2020; 20:552. [PMID: 32539694 PMCID: PMC7296649 DOI: 10.1186/s12885-020-07039-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The oncogene LSF (encoded by TFCP2) has been proposed as a novel therapeutic target for multiple cancers. LSF overexpression in patient tumors correlates with poor prognosis in particular for both hepatocellular carcinoma and colorectal cancer. The limited treatment outcomes for these diseases and disappointing clinical results, in particular, for hepatocellular carcinoma in molecularly targeted therapies targeting cellular receptors and kinases, underscore the need for molecularly targeting novel mechanisms. LSF small molecule inhibitors, Factor Quinolinone Inhibitors (FQIs), have exhibited robust anti-tumor activity in multiple pre-clinical models, with no observable toxicity. METHODS To understand how the LSF inhibitors impact cancer cell proliferation, we characterized the cellular phenotypes that result from loss of LSF activity. Cell proliferation and cell cycle progression were analyzed, using HeLa cells as a model cancer cell line responsive to FQI1. Cell cycle progression was studied either by time lapse microscopy or by bulk synchronization of cell populations to ensure accuracy in interpretation of the outcomes. In order to test for biological specificity of targeting LSF by FQI1, results were compared after treatment with either FQI1 or siRNA targeting LSF. RESULTS Highly similar cellular phenotypes are observed upon treatments with FQI1 and siRNA targeting LSF. Along with similar effects on two cellular biomarkers, inhibition of LSF activity by either mechanism induced a strong delay or arrest prior to metaphase as cells progressed through mitosis, with condensed, but unaligned, chromosomes. This mitotic disruption in both cases resulted in improper cellular division leading to multiple outcomes: multi-nucleation, apoptosis, and cellular senescence. CONCLUSIONS These data strongly support that cellular phenotypes observed upon FQI1 treatment are due specifically to the loss of LSF activity. Specific inhibition of LSF by either small molecules or siRNA results in severe mitotic defects, leading to cell death or senescence - consequences that are desirable in combating cancer. Taken together, these findings confirm that LSF is a promising target for cancer treatment. Furthermore, this study provides further support for developing FQIs or other LSF inhibitory strategies as treatment for LSF-related cancers with high unmet medical needs.
Collapse
Affiliation(s)
- Jennifer L S Willoughby
- Alnylam Pharmaceuticals, Inc., Cambridge, MA, 02142, USA.,Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Kelly George
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark P Roberto
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Hang Gyeong Chin
- MCBB Graduate Program, Boston University, Boston, MA, 02215, USA.,New England BioLabs, Ipswich, MA, 01938, USA
| | - Patrick Stoiber
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.,MCBB Graduate Program, Boston University, Boston, MA, 02215, USA
| | - Hyunjin Shin
- Data Science Institute, Takeda Pharmaceuticals International, Inc., Cambridge, MA, 02139, USA
| | - Chandra Sekhar Pedamallu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
| | - Scott E Schaus
- Center for Molecular Discovery, Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | | | - Jagesh Shah
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ulla Hansen
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA. .,MCBB Graduate Program, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Basbous J, Aze A, Chaloin L, Lebdy R, Hodroj D, Ribeyre C, Larroque M, Shepard C, Kim B, Pruvost A, Moreaux J, Maiorano D, Mechali M, Constantinou A. Dihydropyrimidinase protects from DNA replication stress caused by cytotoxic metabolites. Nucleic Acids Res 2020; 48:1886-1904. [PMID: 31853544 PMCID: PMC7038975 DOI: 10.1093/nar/gkz1162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/28/2023] Open
Abstract
Imbalance in the level of the pyrimidine degradation products dihydrouracil and dihydrothymine is associated with cellular transformation and cancer progression. Dihydropyrimidines are degraded by dihydropyrimidinase (DHP), a zinc metalloenzyme that is upregulated in solid tumors but not in the corresponding normal tissues. How dihydropyrimidine metabolites affect cellular phenotypes remains elusive. Here we show that the accumulation of dihydropyrimidines induces the formation of DNA-protein crosslinks (DPCs) and causes DNA replication and transcriptional stress. We used Xenopus egg extracts to recapitulate DNA replication invitro. We found that dihydropyrimidines interfere directly with the replication of both plasmid and chromosomal DNA. Furthermore, we show that the plant flavonoid dihydromyricetin inhibits human DHP activity. Cellular exposure to dihydromyricetin triggered DPCs-dependent DNA replication stress in cancer cells. This study defines dihydropyrimidines as potentially cytotoxic metabolites that may offer an opportunity for therapeutic-targeting of DHP activity in solid tumors.
Collapse
Affiliation(s)
- Jihane Basbous
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Antoine Aze
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, 34293 Montpellier Cedex 5, France
| | - Rana Lebdy
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Dana Hodroj
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France.,Cancer Research Center of Toulouse (CRCT), 31037 Toulouse Cedex 1, France
| | - Cyril Ribeyre
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Marion Larroque
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France.,Institut du Cancer de Montpellier (ICM),34298 Montpellier Cedex 5, France
| | - Caitlin Shepard
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Baek Kim
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Alain Pruvost
- Service de Pharmacologie et Immunoanalyse (SPI), Plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Jérôme Moreaux
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Domenico Maiorano
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Marcel Mechali
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| |
Collapse
|
21
|
A non-proliferative role of pyrimidine metabolism in cancer. Mol Metab 2020; 35:100962. [PMID: 32244187 PMCID: PMC7096759 DOI: 10.1016/j.molmet.2020.02.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background Nucleotide metabolism is a critical pathway that generates purine and pyrimidine molecules for DNA replication, RNA synthesis, and cellular bioenergetics. Increased nucleotide metabolism supports uncontrolled growth of tumors and is a hallmark of cancer. Agents inhibiting synthesis and incorporation of nucleotides in DNA are widely used as chemotherapeutics to reduce tumor growth, cause DNA damage, and induce cell death. Thus, the research on nucleotide metabolism in cancer is primarily focused on its role in cell proliferation. However, in addition to proliferation, the role of purine molecules is established as ligands for purinergic signals. However, so far, the role of the pyrimidines has not been discussed beyond cell growth. Scope of the review In this review we present the key evidence from recent pivotal studies supporting the notion of a non-proliferative role for pyrimidine metabolism (PyM) in cancer, with a special focus on its effect on differentiation in cancers from different origins. Major conclusion In leukemic cells, the pyrimidine catabolism induces terminal differentiation toward monocytic lineage to check the aberrant cell proliferation, whereas in some solid tumors (e.g., triple negative breast cancer and hepatocellular carcinoma), catalytic degradation of pyrimidines maintains the mesenchymal-like state driven by epithelial-to-mesenchymal transition (EMT). This review further broadens this concept to understand the effect of PyM on metastasis and, ultimately, delivers a rationale to investigate the involvement of the pyrimidine molecules as oncometabolites. Overall, understanding the non-proliferative role of PyM in cancer will lead to improvement of the existing antimetabolites and to development of new therapeutic options.
Collapse
|
22
|
Reynolds IS, O’Connell E, Fichtner M, McNamara DA, Kay EW, Prehn JHM, Furney SJ, Burke JP. Mucinous adenocarcinoma is a pharmacogenomically distinct subtype of colorectal cancer. THE PHARMACOGENOMICS JOURNAL 2019; 20:524-532. [DOI: 10.1038/s41397-019-0137-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
|
23
|
Bi J, Yang S, Li L, Dai Q, Borcherding N, Wagner BA, Buettner GR, Spitz DR, Leslie KK, Zhang J, Meng X. Metadherin enhances vulnerability of cancer cells to ferroptosis. Cell Death Dis 2019; 10:682. [PMID: 31527591 PMCID: PMC6746770 DOI: 10.1038/s41419-019-1897-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death driven by lipid hydroperoxides within biological membranes. Although therapy-resistant mesenchymal-high cancers are particularly vulnerable to ferroptosis inducers, especially phospholipid glutathione peroxidase 4 (GPx4) inhibitors, the underlying mechanism is yet to be deciphered. As such, the full application of GPx4 inhibitors in cancer therapy remains challenging. Here we demonstrate that metadherin (MTDH) confers a therapy-resistant mesenchymal-high cell state and enhanced sensitivity to inducers of ferroptosis. Mechanistically, MTDH inhibited GPx4, as well as the solute carrier family 3 member 2 (SLC3A2, a system Xc- heterodimerization partner), at both the messenger RNA and protein levels. Our metabolomic studies demonstrated that MTDH reduced intracellular cysteine, but increased glutamate levels, ultimately decreasing levels of glutathione and setting the stage for increased vulnerability to ferroptosis. Finally, we observed an enhanced antitumor effect when we combined various ferroptosis inducers both in vitro and in vivo; the level of MTDH correlated with the ferroptotic effect. We have demonstrated for the first time that MTDH enhances the vulnerability of cancer cells to ferroptosis and may serve as a therapeutic biomarker for future ferroptosis-centered cancer therapy.
Collapse
Affiliation(s)
- Jianling Bi
- Department of Obstetrics and Gynecology, Iowa City, IA, 52242, USA
| | - Shujie Yang
- Department of Pathology, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA
| | - Long Li
- Department of Obstetrics and Gynecology, Iowa City, IA, 52242, USA
| | - Qun Dai
- Department of Internal Medicine, Division of Hematology, Oncology and Blood & Marrow Transplantation, Iowa City, IA, 52242, USA.,Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 2330 Shawnee Mission Pkwy #210, Westwood, KS, 66205, USA
| | - Nicholas Borcherding
- Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA.,Medical Science Training Program (MSTP), Iowa City, IA, 52242, USA
| | - Brett A Wagner
- Free Radical Radiation Biology, and Division of the Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Garry R Buettner
- Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA.,Free Radical Radiation Biology, and Division of the Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Douglas R Spitz
- Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA.,Free Radical Radiation Biology, and Division of the Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA
| | - Jun Zhang
- Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA. .,Department of Internal Medicine, Division of Hematology, Oncology and Blood & Marrow Transplantation, Iowa City, IA, 52242, USA. .,Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 2330 Shawnee Mission Pkwy #210, Westwood, KS, 66205, USA. .,Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, 3005B Wahl Hall East, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Xiangbing Meng
- Department of Obstetrics and Gynecology, Iowa City, IA, 52242, USA. .,Department of Pathology, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA.
| |
Collapse
|
24
|
Zhang Q, Liu RX, Chan KW, Hu J, Zhang J, Wei L, Tan H, Yang X, Liu H. Exosomal transfer of p-STAT3 promotes acquired 5-FU resistance in colorectal cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:320. [PMID: 31324203 PMCID: PMC6642525 DOI: 10.1186/s13046-019-1314-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/07/2019] [Indexed: 01/01/2023]
Abstract
Background Acquired resistance remains a limitation of the clinical use of 5-fluorouracil (5-FU). Because exosomes, are important vesicles participating in intercellular communication, their contribution to the development of acquired 5-FU resistance needs to be elucidated. In this study, we aimed to examine the underlying mechanisms of exosomes from 5-FU resistant cells (RKO/R) in sustaining acquired 5-FU resistance in sensitive cells (RKO/P). Methods Exosomes from a 5-FU-resistant cell line (RKO/R) and its parental cell line RKO/P were isolated and co-cultured with 5-FU-sensitive cells. Real-time cellular analysis (RTCA) and FACS analysis were used to examine cell viability and apoptosis. Exosomal protein profiling was performed using shotgun proteomics. Inhibitors and siRNAs were applied to study the involvement of selected proteins in 5-FU resistance. The effect of exosomal p-STAT3 (Tyr705) on the caspase cascade was examined by western blotting (WB) and high content analysis. Xenograft models were established to determine whether exosomal p-STAT3 can induce 5-FU resistance in vivo. Results Our results indicated that exosomes from RKO/R cells significantly promoted cell survival during 5-FU treatment. Proteomics and WB analysis results indicated that GSTP1 and p-STAT3 (Tyr705) were enriched in exosomes from RKO/R cells. Inhibition of p-STAT3 re-sensitized RKO/P cells to 5-FU via caspase cascade. Furthermore, p-STAT3 packaged by exosomes from RKO/R cells increased resistance of tumor cells to 5-FU in vivo. Conclusions Our results reveal a novel mechanism by which p-STAT3-containing exosomes contribute to acquired 5-FU resistance in CRC. This study suggests a new option for potentiating the 5-FU response and finding biomarkers for chemotherapy resistance. Electronic supplementary material The online version of this article (10.1186/s13046-019-1314-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian Zhang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Rui-Xian Liu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Ka-Wo Chan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Jiancong Hu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Lili Wei
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Huiliu Tan
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Xiangling Yang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China. .,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Huanliang Liu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China. .,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
25
|
Ntavatzikos A, Spathis A, Patapis P, Machairas N, Vourli G, Peros G, Papadopoulos I, Panayiotides I, Koumarianou A. TYMS/KRAS/BRAF molecular profiling predicts survival following adjuvant chemotherapy in colorectal cancer. World J Gastrointest Oncol 2019; 11:551-566. [PMID: 31367274 PMCID: PMC6657223 DOI: 10.4251/wjgo.v11.i7.551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Patients with stage II-III colorectal cancer (CRC) treated with adjuvant chemotherapy, gain a 25% survival benefit. In the context of personalized medicine, there is a need to identify patients with CRC who may benefit from adjuvant chemotherapy. Molecular profiling could guide treatment decisions in these patients. Thymidylate synthase (TYMS) gene polymorphisms, KRAS and BRAF could be included in the molecular profile under consideration. AIM To investigate the association of TYMS gene polymorphisms, KRAS and BRAF mutations with survival of CRC patients treated with chemotherapy. METHODS A retrospective study studied formalin-fixed paraffin-embedded tissues (FFPEs) of consecutive patients treated with adjuvant chemotherapy during January/2005-January/2007. FFPEs were analysed with PCR for the detection of TYMS polymorphisms, mutated KRAS (mKRAS) and BRAF (mBRAF). Patients were classified into three groups (high, medium and low risk) according to 5'UTR TYMS polymorphisms Similarly, based on 3'UTR polymorphism ins/loss of heterozygosity (LOH) patients were allocated into two groups (high and low risk of relapse, respectively). Cox regression models examined the associated 5-year survival outcomes. RESULTS One hundred and thirty patients with early stage CRC (stage I-II: 55 patients; stage III 75 patients; colon: 70 patients; rectal: 60 patients) were treated with surgery and chemotherapy. The 5-year disease free survival and overall survival rate was 61.6% and 73.9% respectively. 5'UTR polymorphisms of intermediate TYMS polymorphisms (2RG/3RG, 2RG/LOH, 3RC/LOH) were associated with lower risk for relapse [hazard ratio (HR) 0.320, P = 0.02 and HR 0.343, P = 0.013 respectively] and death (HR 0.368, P = 0.031 and HR 0.394, P = 0.029 respectively). The 3'UTR polymorphism ins/LOH was independently associated with increased risk for disease recurrence (P = 0.001) and death (P = 0.005). mBRAF (3.8% of patients) was associated with increased risk of death (HR 4.500, P = 0.022) whereas mKRAS (39% of patients) not. CONCLUSION Prospective validating studies are required to confirm whether 2RG/3RG, 2RG/LOH, 3RC/LOH, absence of ins/LOH and wild type BRAF may indicate patients at lower risk of relapse following adjuvant chemotherapy.
Collapse
Affiliation(s)
- Anastasios Ntavatzikos
- Hematology-Oncology Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Athens 12462, Greece
| | - Aris Spathis
- Department of Cytopathology, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, Athens 12462, Greece
| | - Paul Patapis
- 3rd Department of Surgery, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Athens 12462, Greece
| | - Nikolaos Machairas
- 3rd Department of Surgery, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Athens 12462, Greece
| | - Georgia Vourli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Peros
- Department of Surgery, Medical School, National and Kapodistrian University of Athens, Evgenideio Therapeutirio S.A., “I AGIA TRIAS”, Athens 11528, Greece
| | - Iordanis Papadopoulos
- Department of Surgery, Medical School, National and Kapodistrian University of Athens, Evgenideio Therapeutirio S.A., “I AGIA TRIAS”, Athens 11528, Greece
| | - Ioannis Panayiotides
- 2nd Department of Pathology, University of Athens, Medical School, “ATTIKON” University Hospital, Athens 12462, Greece
| | - Anna Koumarianou
- Hematology-Oncology Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Athens 12462, Greece
| |
Collapse
|
26
|
Identification of a 3,3-difluorinated tetrahydropyridinol compound as a novel antitumor agent for hepatocellular carcinoma acting via cell cycle arrest through disturbing CDK7-mediated phosphorylation of Cdc2. Invest New Drugs 2019; 38:287-298. [PMID: 31076964 DOI: 10.1007/s10637-019-00792-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/06/2019] [Indexed: 01/28/2023]
Abstract
Tetrahydropyridinol derivatives were recently reported to exhibit good biological activities, and the incorporation of fluorine into organic molecules may have profound effects on their physical and biological properties. Therefore, we investigated the anticancer activities of six fluorinated tetrahydropyridinol derivatives that we synthesized previously. We found that only one compound, 3,3-difluoro-2,2-dimethyl-1,6-diphenyl-5-tosyl-1,2,3,6-tetrahydropyridin-4-ol, showed significant antiproliferative activity on human hepatocellular carcinoma HepG2 and HMCCLM3 cells (the IC50 values were 21.25 and 29.07 μM, respectively). We also found that this compound mediated cell cycle arrest in the G0/G1 phase at 30-40 μM. Western blot analysis demonstrated that the cell cycle arrest induced by this compound in HepG2 and HMCCLM3 cells was associated with a significant decrease in Cdc2 and cyclin B1, which led to the accumulation of the phosphorylated-Tyr15 (inactive) form of Cdc2 and low expression of M phase-promoting factor (cyclin B1/Cdc2). Moreover, cells treated with this compound exhibited decreased expression of cyclin-dependent kinase (CDK)-activating kinase (CDK7/cyclin H). This compound also induced cell apoptosis via activation of caspase-3. A xenograft model in nude mice demonstrated anti-liver cancer activity and the mechanism of action of this compound. These findings indicated that the anticancer effect of this compound was partially due to G0/G1 cell cycle arrest via inhibition of CDK7-mediated expression of Cdc2, and this compound may be a promising anticancer candidate for further investigation.
Collapse
|
27
|
Dual-Targeting Nanoparticles: Codelivery of Curcumin and 5-Fluorouracil for Synergistic Treatment of Hepatocarcinoma. J Pharm Sci 2019; 108:1284-1295. [DOI: 10.1016/j.xphs.2018.10.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
|
28
|
Robertson CL, Mendoza RG, Jariwala N, Dozmorov M, Mukhopadhyay ND, Subler MA, Windle JJ, Lai Z, Fisher PB, Ghosh S, Sarkar D. Astrocyte Elevated Gene-1 Regulates Macrophage Activation in Hepatocellular Carcinogenesis. Cancer Res 2018; 78:6436-6446. [PMID: 30181179 PMCID: PMC6239947 DOI: 10.1158/0008-5472.can-18-0659] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023]
Abstract
Chronic inflammation is a known hallmark of cancer and is central to the onset and progression of hepatocellular carcinoma (HCC). Hepatic macrophages play a critical role in the inflammatory process leading to HCC. The oncogene Astrocyte elevated gene-1 (AEG-1) regulates NFκB activation, and germline knockout of AEG-1 in mice (AEG-1-/-) results in resistance to inflammation and experimental HCC. In this study, we developed conditional hepatocyte- and myeloid cell-specific AEG-1-/- mice (AEG-1ΔHEP and AEG-1ΔMAC, respectively) and induced HCC by treatment with N-nitrosodiethylamine (DEN) and phenobarbital (PB). AEG-1ΔHEP mice exhibited a significant reduction in disease severity compared with control littermates, while AEG-1ΔMAC mice were profoundly resistant. In vitro, AEG-1-/- hepatocytes exhibited increased sensitivity to stress and senescence. Notably, AEG-1-/- macrophages were resistant to either M1 or M2 differentiation with significant inhibition in migration, endothelial adhesion, and efferocytosis activity, indicating that AEG-1 ablation renders macrophages functionally anergic. These results unravel a central role of AEG-1 in regulating macrophage activation and indicate that AEG-1 is required in both tumor cells and tumor microenvironment to stimulate hepatocarcinogenesis.Significance: These findings distinguish a novel role of macrophage-derived oncogene AEG-1 from hepatocellular AEG-1 in promoting inflammation and driving tumorigenesis. Cancer Res; 78(22); 6436-46. ©2018 AACR.
Collapse
Affiliation(s)
- Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
29
|
Yang X, Song S. Silencing of Astrocyte elevated gene-1 (AEG-1) inhibits proliferation, migration, and invasiveness, and promotes apoptosis in pancreatic cancer cells. Biochem Cell Biol 2018; 97:165-175. [PMID: 30359541 DOI: 10.1139/bcb-2018-0181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To investigate the role of Astrocyte elevated gene-1 (AEG-1) in the development and progress of pancreatic cancer, short hairpin RNA (shRNA) was inserted into the RNA interference vector to knock-down the endogenous AEG-1 in two pancreatic cancer cell lines: AsPC-1 and PANC-1. Our results showed that silencing of AEG-1 suppressed the proliferation, colony formation ability, and cell stemness of AsPC-1 and PANC-1 cells, and inhibited their G1-to-S phase transition. Results from apoptosis assay showed that knock-down of AEG-1 led to cell apoptosis. The expression of anti-apoptotic Bcl-2 was downregulated and that of the pro-apoptotic Bax and cleaved caspase-3 was upregulated in AEG-1-silenced pancreatic cancer cells. Further, the capability of AEG-1-silenced cells to migrate and to invade through the Matrigel-coated membrane was weaker, and the expression of matrix metallopeptidase 2 (MMP-2) and MMP-9 were decreased. Moreover, the AKT-β-catenin signaling pathway was inhibited in the cells with knock-down of AEG-1. In addition, the growth of xenograft tumors formed by AsPC-1 and PANC-1 cells was suppressed by AEG-1 shRNA. In conclusion, our study demonstrates that pancreatic cancer cells require AEG-1 to maintain their survival and metastasis, suggesting AEG-1 as a potential target for the treatment of pancreatic cancers.
Collapse
Affiliation(s)
- Xing Yang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Department of Pancreatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Shaowei Song
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Department of Pancreatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
30
|
Al-sheikh NM, El-Hefnway SM, Abuamer AM, Dala AG. Metadherin mRNA expression in hepatocellular carcinoma. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Wang D, Chen Y, Fang H, Zheng L, Li Y, Yang F, Xu Y, Du L, Zhou BBS, Li H. Increase of PRPP enhances chemosensitivity of PRPS1 mutant acute lymphoblastic leukemia cells to 5-Fluorouracil. J Cell Mol Med 2018; 22:6202-6212. [PMID: 30255549 PMCID: PMC6237573 DOI: 10.1111/jcmm.13907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Relapse‐specific mutations in phosphoribosyl pyrophosphate synthetase 1 (PRPS1), a rate‐limiting purine biosynthesis enzyme, confer significant drug resistances to combination chemotherapy in acute lymphoblastic leukemia (ALL). It is of particular interest to identify drugs to overcome these resistances. In this study, we found that PRPS1 mutant ALL cells specifically showed more chemosensitivity to 5‐Fluorouracil (5‐FU) than control cells, attributed to increased apoptosis of PRPS1 mutant cells by 5‐FU. Mechanistically, PRPS1 mutants increase the level of intracellular phosphoribosyl pyrophosphate (PRPP), which causes the apt conversion of 5‐FU to FUMP and FUTP in Reh cells, to promote 5‐FU‐induced DNA damage and apoptosis. Our study not only provides mechanistic rationale for re‐targeting drug resistant cells in ALL, but also implicates that ALL patients who harbor relapse‐specific mutations of PRPS1 might benefit from 5‐FU‐based chemotherapy in clinical settings.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yao Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Department of Emergency, Qingdao Municipal Hospital, Shandong, China
| | - Fan Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Du
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin-Bing S Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Marjaneh RM, Khazaei M, Ferns GA, Avan A, Aghaee-Bakhtiari SH. The role of microRNAs in 5-FU resistance of colorectal cancer: Possible mechanisms. J Cell Physiol 2018; 234:2306-2316. [PMID: 30191973 DOI: 10.1002/jcp.27221] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally. Despite recent advances in therapeutic approaches, this cancer continues to have a poor prognosis, particularly when diagnosed late. 5-Fluorouracil (5-FU) has been commonly prescribed for patients with CRC, but resistance to 5-FU is one of the main reasons for failure in the treatment of this condition. Recently, microRNAs (miRNAs) have been established as a means of modifying the signaling pathways involved in initiation and progression of CRC and their role as oncogene or tumor suppressor have been investigated in various studies. Moreover, miRNAs through various mechanisms play an important role in inducing tumor resistance or sensitivity to anticancer drugs. Detecting and targeting these mechanisms may be a new therapeutic approach. This review summarizes the current knowledge about the potential roles of miRNAs in 5-FU resistance, with particular emphasis on molecular mechanism involved.
Collapse
Affiliation(s)
- Reyhaneh Moradi Marjaneh
- Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton and Sussex Medical School, Perso Falmer, Brighton, UK
| | - Amir Avan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Marin JJG, Briz O, Herraez E, Lozano E, Asensio M, Di Giacomo S, Romero MR, Osorio-Padilla LM, Santos-Llamas AI, Serrano MA, Armengol C, Efferth T, Macias RIR. Molecular bases of the poor response of liver cancer to chemotherapy. Clin Res Hepatol Gastroenterol 2018; 42:182-192. [PMID: 29544679 DOI: 10.1016/j.clinre.2017.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/19/2017] [Indexed: 02/08/2023]
Abstract
A characteristic shared by most frequent types of primary liver cancer, i.e., hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) in adults, and in a lesser extent hepatoblastoma (HB) mainly in children, is their high refractoriness to chemotherapy. This is the result of synergic interactions among complex and diverse mechanisms of chemoresistance (MOC) in which more than 100 genes are involved. Pharmacological treatment, although it can be initially effective, frequently stimulates the expression of MOC genes, which results in the relapse of the tumor, usually with a more aggressive and less chemosensitive phenotype. Identification of the MOC genetic signature accounting for the "resistome" present at each moment of tumor life would prevent the administration of chemotherapeutic regimens without chance of success but still with noxious side effects for the patient. Moreover, a better description of cancer cells strength is required to develop novel strategies based on pharmacological, cellular or gene therapy to overcome liver cancer chemoresistance.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Luis M Osorio-Padilla
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Ana I Santos-Llamas
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria A Serrano
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Carolina Armengol
- Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Thomas Efferth
- Department Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
34
|
Kotarba G, Krzywinska E, Grabowska AI, Taracha A, Wilanowski T. TFCP2/TFCP2L1/UBP1 transcription factors in cancer. Cancer Lett 2018; 420:72-79. [PMID: 29410248 DOI: 10.1016/j.canlet.2018.01.078] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
Abstract
The TFCP2/Grainyhead family of transcription factors is divided into two distinct subfamilies, one of which includes the Grainyhead-like 1-3 (GRHL1-3) proteins and the other consists of TFCP2 (synonyms: CP2, LSF, LBP-1c), TFCP2L1 (synonyms: CRTR-1, LBP-9) and UBP1 (synonyms: LBP-1a, NF2d9). Transcription factors from the TFCP2/TFCP2L1/UBP1 subfamily are involved in various aspects of cancer development. TFCP2 is a pro-oncogenic factor in hepatocellular carcinoma, pancreatic cancer and breast cancer, may be important in cervical carcinogenesis and in colorectal cancer. TFCP2 can also act as a tumor suppressor, for example, it inhibits melanoma growth. Furthermore, TFCP2 is involved in epithelial-mesenchymal transition and enhances angiogenesis. TFCP2L1 maintains pluripotency and self-renewal of embryonic stem cells and was implicated in a wide variety of cancers, including clear cell renal cell carcinoma, breast cancer and thyroid cancer. Here we present a systematic review of current knowledge of this protein subfamily in the context of cancer. We also discuss potential challenges in investigating this family of transcription factors. These challenges include redundancies between these factors as well as their interactions with each other and their ability to modulate each other's activity.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Ewa Krzywinska
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna I Grabowska
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Agnieszka Taracha
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
35
|
Yu C, Liu Y, Qin Z. Metadherin contributes to epithelial-mesenchymal transition and paclitaxel resistance induced by acidic extracellular pH in nasopharyngeal carcinoma. Oncol Lett 2018; 15:3858-3863. [PMID: 29456735 DOI: 10.3892/ol.2018.7760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Paclitaxel resistance is a challenge to the treatment of nasopharyngeal carcinoma (NPC). An acidic extracellular pH (pHe), a hallmark of solid tumors, is demonstrated to decrease the efficacy of chemotherapy. However, the precise function of acidic pHe in mediating chemotherapy in NPC remains unknown. In the present study, acidic pHe significantly decreased the cytotoxicity of paclitaxel in NPC cells. In addition, epithelial-mesenchymal transition (EMT)-like changes were observed in NPC cells cultured at acidic pHe. Metadherin (MTDH), a novel oncogene, is expressed in multiple types of solid tumor, and is associated with several malignant cell characteristics, including malignant cell transformation, proliferation, angiogenesis, chemoresistance, invasion and metastasis. In the present study, MTDH expression was increased in NPC cells that had been cultured at an acidic pHe. Furthermore, the silencing of MTDH expression reversed EMT molecular marker expression and sensitized NPC cells to paclitaxel. Taken together, the results of the present study provide evidence to support an association between acidic pHe-induced paclitaxel resistance and MTDH-mediated EMT in NPC cells. Thus, targeting MTDH may provide a novel strategy for overcoming chemoresistance in NPC therapy.
Collapse
Affiliation(s)
- Changyun Yu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhaobing Qin
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
36
|
Ntavatzikos A, Spathis A, Patapis P, Machairas N, Peros G, Konstantoudakis S, Leventakou D, Panayiotides IG, Karakitsos P, Koumarianou A. Integrating TYMS, KRAS and BRAF testing in patients with metastatic colorectal cancer. World J Gastroenterol 2017; 23:5913-5924. [PMID: 28932083 PMCID: PMC5583576 DOI: 10.3748/wjg.v23.i32.5913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the impact of thymidylate synthase (TYMS), KRAS and BRAF in the survival of metastatic colorectal cancer (mCRC) patients treated with chemotherapy. METHODS Clinical data were collected retrospectively from records of consecutive patients with mCRC treated with fluoropyrimidine-based chemotherapy from 1/2005 to 1/2007. Formalin-fixed paraffin-embedded tissues were retrieved for analysis. TYMS genotypes were identified with restriction fragment analysis PCR, while KRAS and BRAF mutation status was evaluated using real-time PCR assays. TYMS gene polymorphisms of each of the 3' untranslated region (UTR) and 5'UTR were classified into three groups according to the probability they have for high, medium and low TYMS expression (and similar levels of risk) based on evidence from previous studies. Univariate and multivariate survival analyses were performed. RESULTS The analysis recovered 89 patients with mCRC (46.1% de novo metastatic disease and 53.9% relapsed). Of these, 46 patients (51.7%) had colon cancer and 43 (48.3%) rectal cancer as primary. All patients were treated with fluoropyrimidine-based chemotherapy (5FU or capecitabine) as single-agent or in combination with irinotecan or/and oxaliplatin or/and bevacizumab. With a median follow-up time of 14.8 mo (range 0-119.8), 85 patients (95.5%) experienced disease progression, and 63 deaths (70.8%) were recorded. The 3-year and 5-year OS rate was 25.4% and 7.7% while the 3-year progression-free survival rate was 7.1%. Multivariate analysis of TYMS polymorphisms, KRAS and BRAF with clinicopathological parameters indicated that TYMS 3'UTR polymorphisms are associated with risk for disease progression and death (P < 0.05 and P < 0.03 respectively). When compared to tumors without any del allele (genotypes ins/ins and ins/loss of heterozygosity (LOH) linked with high TYMS expression) tumors with del/del genotype (low expression group) and tumors with ins/del or del/LOH (intermediate expression group) have lower risk for disease progression (HR = 0.432, 95%CI: 0.198-0.946, P < 0.04 and HR = 0.513, 95%CI: 0.287-0.919, P < 0.03 respectively) and death (HR = 0.366, 95%CI: 0.162-0.827, P < 0.02 and HR = 0.559, 95%CI: 0.309-1.113, P < 0.06 respectively). Additionally, KRAS mutation was associated independently with the risk of disease progression (HR = 1.600, 95%CI: 1.011-2.531, P < 0.05). The addition of irinotecan in 1st line chemotherapy was associated independently with lower risk for disease progression and death (HR = 0.600, 95%CI: 0.372-0.969, P < 0.04 and HR = 0.352, 95%CI: 0.164-0.757, P < 0.01 respectively). CONCLUSION The TYMS genotypes ins/ins and ins/LOH associate with worst prognosis in mCRC patients under fluoropyrimidine-based chemotherapy. Large prospective studies are needed for validation of our findings.
Collapse
Affiliation(s)
- Anastasios Ntavatzikos
- Hematology-Oncology Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Aris Spathis
- Department of Cytopathology, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Paul Patapis
- 3rd Department of Surgery, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Nikolaos Machairas
- 3rd Department of Surgery, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - George Peros
- Department of Surgery, Medical School, National and Kapodistrian University of Athens, Evgenideio Therapeutirio S.A., “I AGIA TRIAS”, 11528 Athens, Greece
| | - Stefanos Konstantoudakis
- 2nd Department of Pathology, University of Athens, Medical School, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Danai Leventakou
- Department of Cytopathology, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Ioannis G Panayiotides
- 2nd Department of Pathology, University of Athens, Medical School, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Petros Karakitsos
- Department of Cytopathology, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Anna Koumarianou
- Hematology-Oncology Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Athens, Greece
| |
Collapse
|
37
|
Narayan S, Jaiswal AS, Sharma R, Nawab A, Duckworth LV, Law BK, Zajac-Kaye M, George TJ, Sharma J, Sharma AK, Hromas RA. NSC30049 inhibits Chk1 pathway in 5-FU-resistant CRC bulk and stem cell populations. Oncotarget 2017; 8:57246-57264. [PMID: 28915668 PMCID: PMC5593639 DOI: 10.18632/oncotarget.19778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/20/2017] [Indexed: 01/20/2023] Open
Abstract
The 5-fluorouracil (5-FU) treatment induces DNA damage and stalling of DNA replication forks. These stalled replication forks then collapse to form one sided double-strand breaks, leading to apoptosis. However, colorectal cancer (CRC) stem cells rapidly repair the stalled/collapsed replication forks and overcome treatment effects. Recent evidence suggests a critical role of checkpoint kinase 1 (Chk1) in preventing the replicative stress. Therefore, Chk1 kinase has been a target for developing mono or combination therapeutic agents. In the present study, we have identified a novel orphan molecule NSC30049 (NSC49L) that is effective alone, and in combination potentiates 5-FU-mediated growth inhibition of CRC heterogeneous bulk and FOLFOX-resistant cell lines in culture with minimal effect on normal colonic epithelial cells. It also inhibits the sphere forming activity of CRC stem cells, and decreases the expression levels of mRNAs of CRC stem cell marker genes. Results showed that NSC49L induces 5-FU-mediated S-phase cell cycle arrest due to increased load of DNA damage and increased γ-H2AX staining as a mechanism of cytotoxicity. The pharmacokinetic analysis showed a higher bioavailability of this compound, however, with a short plasma half-life. The drug is highly tolerated by animals with no pathological aberrations. Furthermore, NSC49L showed very potent activity in a HDTX model of CRC stem cell tumors either alone or in combination with 5-FU. Thus, NSC49L as a single agent or combined with 5-FU can be developed as a therapeutic agent by targeting the Chk1 pathway in 5-FU-resistant CRC heterogeneous bulk and CRC stem cell populations.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Aruna S. Jaiswal
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ritika Sharma
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Akbar Nawab
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Lizette Vila Duckworth
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brian K. Law
- Department of Pharmacology and Experimental Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Thomas J. George
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jay Sharma
- Celprogen, Inc., Torrance, CA 90503, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Robert A. Hromas
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
38
|
Astrocyte-elevated gene-1 confers resistance to pemetrexed in non-small cell lung cancer by upregulating thymidylate synthase expression. Oncotarget 2017; 8:61901-61916. [PMID: 28977913 PMCID: PMC5617473 DOI: 10.18632/oncotarget.18717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022] Open
Abstract
Previous studies have suggested that astrocyte-elevated gene-1 (AEG-1) contributes to the mechanisms of resistance to various chemotherapeutics. In this study, we investigated whether AEG-1 expression level correlated with that of thymidylate synthase (TS), as higher TS expression is known to be associated with the resistance to pemetrexed chemotherapy in patients with advanced lung adenocarcinoma. Using pemetrexed-resistant lung adenocarcinoma PC-9 cell line, we demonstrated that transfection of AEG-1 siRNA lowered TS expression and decreased pemetrexed IC50 value. In contrast, overexpression of AEG-1 was associated with increased expression of TS and higher pemetrexed IC50 value. Immunohistochemical staining of clinical biopsy samples showed that patients with lower AEG-1 expression had longer overall survival time. Moreover, analysis of repeated biopsy samples revealed that an increase in the TS level from baseline to disease progression was significantly associated with the elevation of AEG-1 expression. In conclusion, our data demonstrated that TS expression might be regulated by AEG-1 and that increased expression of these proteins contributes to lung cancer disease progression and may be associated with the development of resistance to pemetrexed.
Collapse
|
39
|
Kim JS, Son SH, Kim MY, Choi D, Jang IS, Paik SS, Chae JH, Uversky VN, Kim CG. Diagnostic and prognostic relevance of CP2c and YY1 expression in hepatocellular carcinoma. Oncotarget 2017; 8:24389-24400. [PMID: 28412749 PMCID: PMC5421856 DOI: 10.18632/oncotarget.15462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/02/2017] [Indexed: 12/23/2022] Open
Abstract
Recent studies have demonstrated an oncogenic role of the transcription factor (TF) CP2c in hepatocellular carcinoma (HCC) based on a strong correlation between CP2c expression, tumor grade, and aggressiveness. We recently found that CP2c directly interacts with another TF, YY1, which is also overexpressed in multiple cancers, including HCC. To evaluate if these proteins are co-regulated in carcinogenesis, we analyzed the expression of CP2c and YY1 in HCC (n = 136) tissues and examined the correlation between their expression and clinicopathological characteristics of HCC. Receiver operating characteristic analysis exhibited the validity of CP2c and nuclear YY1 expression as a diagnostic factor in HCC tissues. High expression of CP2c was significantly correlated with patient age, and higher histological grade, American Joint Committee on Cancer (AJCC) stage, and small and large vessel invasion in HCC tissues, whereas high expression of nuclear YY1 was significantly associated with higher AJCC stage and small vessel invasion. In univariate and multivariate analyses, high expression of CP2c was significantly correlated with disease free survival (DFS), indicating that CP2c expression is an independent prognostic factor for DFS in HCC patients. Patients with high expression of both CP2c and nuclear YY1 usually had a shorter median survival time and worse DFS prognosis than other patients, suggesting that combined detection of CP2c and nuclear YY1 is a useful prognostic marker in HCC patients.
Collapse
Affiliation(s)
- Ji Sook Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - DongHo Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Ik-Soon Jang
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Seung Sam Paik
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
40
|
TFCP2 Genetic Polymorphism Is Associated with Predisposition to and Transplant Prognosis of Hepatocellular Carcinoma. Gastroenterol Res Pract 2017; 2017:6353248. [PMID: 28348581 PMCID: PMC5350294 DOI: 10.1155/2017/6353248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
TFCP2 is an oncogene and plays crucial roles in the incidence and progression of hepatocellular carcinoma (HCC). However, no reports are available on the impact of TFCP2 genetic polymorphism on the susceptibility to and the transplant prognosis of HCC. Here, we genotyped 7 SNPs of TFCP2 in a case-control study of 119 patients with HCC and 200 patients with chronic liver disease. Of the 7 SNPs in TFCP2, rs7959378 distributed differentially between patients with versus patients without HCC. The patients with the CA (OR = 0.58, 95% CI = 0.35–0.96), the CC (OR = 0.39, 95% CI = 0.20–0.76), and the CA/CC (OR = 0.52, 95% CI = 0.32–0.83) genotypes had significantly decreased risk for HCC compared with those carrying the rs7959378 AA genotype. After adjusting for confounding factors, rs7959378 still conferred significant risk for HCC. Furthermore, the patients who carried rs7959378 AC/CC had a higher overall survival and lower relapse-free survival than those with the rs7959378 AA genotype. Similar results were found in the multivariate analysis adjusted by AFP, tumor size and tumor number, and differentiation. These findings indicate that rs7959378 is associated with the risk of HCC in patient with chronic liver disease and prognosis of HCC patients after liver transplantation.
Collapse
|
41
|
Wu N, Huang Y, Zou Z, Gimenez-Capitan A, Yu L, Hu W, Zhu L, Sun X, Sanchez JJ, Guan W, Liu B, Rosell R, Wei J. High BIM mRNA levels are associated with longer survival in advanced gastric cancer. Oncol Lett 2017; 13:1826-1834. [PMID: 28454330 DOI: 10.3892/ol.2017.5660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy drugs, including 5-fluorouracil (5-FU), oxaliplatin and docetaxel, are commonly used in the treatment of gastric cancer (GC). Apoptosis-relevant genes may be associated with drug resistance. In the present study, the messenger RNA (mRNA) expression levels of B-cell lymphoma 2 interacting mediator of cell death (BIM), astrocyte elevated gene-1 (AEG-1) and AXL receptor tyrosine kinase (AXL) were investigated in 131 advanced GC samples, and the expression levels of these genes were correlated with patients' overall survival (OS). All 131 patients received first-line FOLFOX combination chemotherapy with folinic acid and 5-FU, in which 56 patients were further treated with second-line docetaxel-based chemotherapy. A correlation between the mRNA expression levels of BIM and AEG-1 was observed (rs=0.30; P=0.002). There was no association between the mRNA expression levels of any of the individual genes analyzed and OS in patients only receiving first-line FOLFOX chemotherapy. In a subgroup of patients receiving docetaxel-based second-line chemotherapy, those with high or intermediate levels of BIM exhibited a median OS of 18.2 months [95% confidence interval (CI), 12.8-23.6], compared with 9.6 months (95% CI, 8.9-10.3) in patients with low BIM levels (P=0.008). However, there was no correlation between the mRNA expression levels of AEG-1 or AXL and OS. The risk of mortality was higher in patients with low BIM mRNA levels than in those with high or intermediate BIM mRNA levels (hazard ratio, 2.61; 95% CI, 1.21-5.62; P=0.010). Therefore, BIM may be considered as a biomarker to identify whether patients could benefit from docetaxel-based second-line chemotherapy in GC.
Collapse
Affiliation(s)
- Nandie Wu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Ying Huang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengyun Zou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Ana Gimenez-Capitan
- Pangaea Biotech, Department of Oncology, USP Dexeus University Institute, Barcelona 08001, Spain
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Wenjing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lijing Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xia Sun
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jose Javier Sanchez
- Department of Preventive Medicine and Public Health, Autonomous University of Madrid, Madrid 28001, Spain
| | - Wenxian Guan
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Rafael Rosell
- Pangaea Biotech, Department of Oncology, USP Dexeus University Institute, Barcelona 08001, Spain.,Department of Medical Oncology, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona 08916, Spain
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
42
|
Luo Z, Hu X, Xiong H, Qiu H, Yuan X, Zhu F, Wang Y, Zou Y. A polysaccharide from Huaier induced apoptosis in MCF-7 breast cancer cells via down-regulation of MTDH protein. Carbohydr Polym 2016; 151:1027-1033. [DOI: 10.1016/j.carbpol.2016.06.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 01/02/2023]
|
43
|
Gu YJ, Li HD, Zhao L, Zhao S, He WB, Rui L, Su C, Zheng HC, Su RJ. GRP78 confers the resistance to 5-FU by activating the c-Src/LSF/TS axis in hepatocellular carcinoma. Oncotarget 2016; 6:33658-74. [PMID: 26378040 PMCID: PMC4741793 DOI: 10.18632/oncotarget.5603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
5-FU is a common first-line chemotherapeutic drug for the treatment of hepatocellular carcinoma. However the development of acquired resistance to 5-FU confines its clinical usages. Although this phenomenon has been the subject of intense investigation, the exact mechanism of acquired resistance to 5-FU remains elusive. Here, we report that over-expression of GRP78 contributes to acquired resistance to 5-FU in HCC by up-regulating the c-Src/LSF/TS axis. Moreover, we found that the resistance to 5-FU conferred by GRP78 is mediated by its ATPase domain. The ATPase domain differentially increased the expression of LSF, TS and promoted the phosphorylation of ERK and Akt. We further identified that GRP78 interacts physically with c-Src through its ATPase domain and promotes the phosphorylation of c-Src, which in turn increases the expression of LSF in the nucleus. Together, GRP78 confers the resistance to 5-FU by up-regulating the c-Src/LSF/TS axis via its ATPase domain.
Collapse
Affiliation(s)
- Yan-jiao Gu
- Pathology Department, The First Affiliated Hospital of Liaoning Medical College, Jinzhou, China
| | - Hong-dan Li
- Central Laboratory, Liaoning Medical College, Jinzhou, China
| | - Liang Zhao
- Central Laboratory, Liaoning Medical College, Jinzhou, China
| | - Song Zhao
- Pharmacy Department, Liaoning Medical College, Jinzhou, China
| | - Wu-bin He
- Pathology Department, The First Affiliated Hospital of Liaoning Medical College, Jinzhou, China
| | - Li Rui
- Pathology Department, The First Affiliated Hospital of Liaoning Medical College, Jinzhou, China
| | - Chang Su
- Veterinary Medicine Department, Liaoning Medical College, Jinzhou, China
| | - Hua-chuan Zheng
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical College, Jinzhou, China
| | - Rong-jian Su
- Central Laboratory, Liaoning Medical College, Jinzhou, China
| |
Collapse
|
44
|
Antosiewicz A, Jarmuła A, Przybylska D, Mosieniak G, Szczepanowska J, Kowalkowska A, Rode W, Cieśla J. Human dihydrofolate reductase and thymidylate synthase form a complex in vitro and co-localize in normal and cancer cells. J Biomol Struct Dyn 2016; 35:1474-1490. [PMID: 27187663 DOI: 10.1080/07391102.2016.1186560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells. However, 5-FU, but not MTX, lowered the presence of DHFR-TS complex in the nucleus by 2.5-fold. The results may suggest the sequestering of TS by FdUMP in the cytoplasm and thereby affecting the translocation of DHFR-TS complex to the nucleus. Providing a strong likelihood of DHFR-TS complex formation in vivo, the latter complex is a potential new drug target in cancer therapy. In this paper, known 3D structures of human TS and human DHFR, and some protozoan bifunctional DHFR-TS structures as templates, are used to build an in silico model of human DHFR-TS complex structure, consisting of one TS dimer and two DHFR monomers. This complex structure may serve as an initial 3D drug target model for prospective inhibitors targeting interfaces between the DHFR and TS enzymes.
Collapse
Affiliation(s)
- Anna Antosiewicz
- a Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw , Poland
| | - Adam Jarmuła
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Dorota Przybylska
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Grażyna Mosieniak
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Joanna Szczepanowska
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Anna Kowalkowska
- a Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw , Poland
| | - Wojciech Rode
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Joanna Cieśla
- a Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw , Poland
| |
Collapse
|
45
|
Rajasekaran D, Siddiq A, Willoughby JLS, Biagi JM, Christadore LM, Yunes SA, Gredler R, Jariwala N, Robertson CL, Akiel MA, Shen XN, Subler MA, Windle JJ, Schaus SE, Fisher PB, Hansen U, Sarkar D. Small molecule inhibitors of Late SV40 Factor (LSF) abrogate hepatocellular carcinoma (HCC): Evaluation using an endogenous HCC model. Oncotarget 2016; 6:26266-77. [PMID: 26313006 PMCID: PMC4694900 DOI: 10.18632/oncotarget.4656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/06/2015] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.
Collapse
Affiliation(s)
- Devaraja Rajasekaran
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ayesha Siddiq
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer L S Willoughby
- Department of Biology, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA.,Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Jessica M Biagi
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA
| | - Lisa M Christadore
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA
| | - Sarah A Yunes
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Rachel Gredler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Maaged A Akiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Scott E Schaus
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ulla Hansen
- Department of Biology, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
46
|
Vartak-Sharma N, Nooka S, Ghorpade A. Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 2016; 157:133-157. [PMID: 27090750 DOI: 10.1016/j.pneurobio.2016.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
Abstract
Recent attempts to analyze human immunodeficiency virus (HIV)-1-induced gene expression changes in astrocytes uncovered a multifunctional oncogene, astrocyte elevated gene-1 (AEG-1). Our previous studies revealed that AEG-1 regulates reactive astrocytes proliferation, migration and inflammation, hallmarks of aging and CNS injury. Moreover, the involvement of AEG-1 in neurodegenerative disorders, such as Huntington's disease and migraine, and its induction in the aged brain suggest a plausible role in regulating overall CNS homeostasis and aging. Therefore, it is important to investigate AEG-1 specifically in aging-associated cognitive decline. In this study, we decipher the common mechanistic links in cancer, aging and HIV-1-associated neurocognitive disorders that likely contribute to AEG-1-based regulation of astrocyte responses and function. Despite AEG-1 incorporation into HIV-1 virions and its induction by HIV-1, tumor necrosis factor-α and interleukin-1β, the specific role(s) of AEG-1 in astrocyte-driven HIV-1 neuropathogenesis are incompletely defined. We propose that AEG-1 plays a central role in a multitude of cellular stress responses involving mitochondria, endoplasmic reticulum and the nucleolus. It is thus important to further investigate AEG-1-based cellular and molecular regulation in order to successfully develop better therapeutic approaches that target AEG-1 to combat cancer, HIV-1 and aging.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan; Institute for Stem Cell Research and Regenerative Medicine, National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shruthi Nooka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
47
|
Pharmacogenetic Predictors of Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 882:191-215. [DOI: 10.1007/978-3-319-22909-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
MicroRNA-302b Enhances the Sensitivity of Hepatocellular Carcinoma Cell Lines to 5-FU via Targeting Mcl-1 and DPYD. Int J Mol Sci 2015; 16:23668-82. [PMID: 26457704 PMCID: PMC4632720 DOI: 10.3390/ijms161023668] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/24/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023] Open
Abstract
MiR-302b is a member of miR-302-367 cluster. The miR-302-367 cluster played important roles in maintaining pluripotency in human embryonic stem cells (hESCs) and has been proved to be capable of suppressing cell growth in several types of cancer cell lines including Hepatocellular Carcinoma (HCC) Cell lines. However, the role that miR-302b plays in the 5-Fluorouracil (5-FU) sensitivity of HCC has not been known. This study showed that miR-302b could enhance the sensitivity to 5-FU in HCC cell lines and verified its two putative targeted genes responsible for its 5-FU sensitivity.
Collapse
|
49
|
Abstract
Cancer was recognized as a genetic disease at least four decades ago, with the realization that the spontaneous mutation rate must increase early in tumorigenesis to account for the many mutations in tumour cells compared with their progenitor pre-malignant cells. Abnormalities in the deoxyribonucleotide pool have long been recognized as determinants of DNA replication fidelity, and hence may contribute to mutagenic processes that are involved in carcinogenesis. In addition, many anticancer agents antagonize deoxyribonucleotide metabolism. Here, we consider the extent to which aspects of deoxyribonucleotide metabolism contribute to our understanding of both carcinogenesis and to the effective use of anticancer agents.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| |
Collapse
|
50
|
WEI YONGBAO, GUO QIONG, GAO YUNLIANG, YAN BIN, WANG ZHAO, YANG JINRUI, LIU WEI. Repression of metadherin inhibits biological behavior of prostate cancer cells and enhances their sensitivity to cisplatin. Mol Med Rep 2015; 12:226-232. [PMID: 25684730 PMCID: PMC4438956 DOI: 10.3892/mmr.2015.3357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 01/29/2015] [Indexed: 01/01/2023] Open
Abstract
Metadherin (MTDH), also known as astrocyte-elevated gene-1, was first cloned in 2002 and has been confirmed as an oncogene in numerous types of cancer by previous studies. Overexpression of MTDH has been observed in multiple types of cancer, including breast, esophageal, prostate, cervical and non-small-cell lung cancer, as well as neuroblastoma and hepatocellular carcinoma. However, at present, few investigations into MTDH‑associated prostate cancer have been performed. A previous study suggested that MTDH was expressed at higher levels in prostate cancer samples, compared with those of benign prostatic hyperplasia. The present study aimed to elucidate the effects of MTDH as an oncogene associated with the biological behavior of prostate cancer cells and chemotherapy-sensitivity to cisplatin in vitro. It was demonstrated that the inhibition of MTDH expression promoted cell apoptosis, reduced cell viability and weakened the invasive ability of prostate cancer cells. In addition, the suppression of MTDH expression increased cell sensitivity to cisplatin. Furthermore, it was demonstrated that MTDH‑associated phosphoinositide 3-kinase/Akt signaling pathways may be involved in mediating the biological behavior of prostate cancer.
Collapse
Affiliation(s)
- YONG-BAO WEI
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Department of Urology, Fujian Provincial Hospital, The Teaching Hospital of Fujian Medical University, Fuzhou 350001, P.R. China
| | - QIONG GUO
- Department of Urology, Changsha Central Hospital, Changsha, Hunan 410004, P.R. China
| | - YUN-LIANG GAO
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - BIN YAN
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - ZHAO WANG
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - JIN-RUI YANG
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - WEI LIU
- Department of Respiratory Medicine, The Third Hospital of Changsha, Changsha, Hunan 410015, P.R. China
| |
Collapse
|