1
|
Hanics J, Tretiakov EO, Romanov RA, Gáspárdy A, Hevesi Z, Schnell R, Harkany T, Alpár A. Neuronal activity modulates the expression of secretagogin, a Ca 2+ sensor protein, during mammalian forebrain development. Acta Physiol (Oxf) 2025; 241:e70031. [PMID: 40165367 PMCID: PMC11959173 DOI: 10.1111/apha.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
AIM Because of their stable expression, some EF-hand Ca2+-binding proteins are broadly used as histochemical markers of neurons in the nervous system. Secretagogin is a member of "neuron-specific" Ca2+-sensor proteins, yet variations in its expression due, chiefly, to neuronal activity remain ambiguous. We aimed to fill this gap of knowledge both in its use as a cell identity marker and for mechanistic analysis. METHODS We mapped secretagogin distribution in human foetal forebrains. Then, Scgn-iCre::Ai9 mice in conjunction with single-cell RNA-seq were used to molecularly characterize cortical secretagogin-expressing neurons. Besides the in vitro manipulation of both SH-SY5Y neuroblastoma cells and primary cortical cultures from foetal mice, the activity dependence of secretagogin expression was also studied upon systemic kainate administration and dark rearing. RESULTS In the mammalian brain, including humans, both transient and stable secretagogin expression sites exist. In the cerebral cortex, we identified deep-layer pyramidal neurons with lifelong expression of secretagogin. Secretagogin expression was affected by neuronal activity: it was delayed in a cohort of human foetuses with Down's syndrome relative to age-matched controls. In mice, dark rearing reduced secretagogin expression in the superior colliculus, a midbrain structure whose development is dependent on topographic visual inputs. In contrast, excitation by both KCl exposure of SH-SY5Y cells and primary cortical neurons in vitro and through systemic kainate administration in mice increased secretagogin expression. CONCLUSION We suggest that secretagogin expression in neurons is developmentally regulated and activity dependent.
Collapse
Affiliation(s)
- János Hanics
- Department of AnatomySemmelweis UniversityBudapestHungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental BiologySemmelweis UniversityBudapestHungary
| | - Evgenii O. Tretiakov
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Roman A. Romanov
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Anna Gáspárdy
- Department of AnatomySemmelweis UniversityBudapestHungary
| | - Zsófia Hevesi
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Robert Schnell
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
- Department of NeuroscienceBiomedicum 7D, Karolinska InstitutetSolnaSweden
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
- Department of NeuroscienceBiomedicum 7D, Karolinska InstitutetSolnaSweden
| | - Alán Alpár
- Department of AnatomySemmelweis UniversityBudapestHungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental BiologySemmelweis UniversityBudapestHungary
| |
Collapse
|
2
|
Tu Y, Qin J, Zhang QM, Tang TS, Wang L, Yao J. Secretagogin regulates asynchronous and spontaneous glutamate release in hippocampal neurons through interaction with Doc2α. LIFE MEDICINE 2023; 2:lnad041. [PMID: 39872889 PMCID: PMC11749858 DOI: 10.1093/lifemedi/lnad041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2025]
Abstract
Synaptic vesicle (SV) exocytosis is orchestrated by protein machineries consisting of the SNARE complex, Ca2+ sensors, and their partners. Secretagogin (SCGN) is a Ca2+-binding protein involved in multiple forms of vesicle secretion. Although SCGN is implicated in multiple neurological disorders, its role in SV exocytosis in neurons remains unknown. Here, using knockout and knockdown techniques, we report that SCGN could regulate the asynchronous and spontaneous forms of excitatory but not inhibitory SV exocytosis in mouse hippocampal neurons. Furthermore, SCGN functioned in glutamate release via directly interacting with Doc2α, a high-affinity Ca2+ sensor specific for asynchronous and spontaneous SV exocytosis. Conversely, the interaction with SCGN is also required for Doc2α to execute its Ca2+ sensor function in SV release. Together, our study revealed that SCGN plays an important role in asynchronous and spontaneous glutamate release through its interaction with Doc2α.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiao Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiao-Ming Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing Institute for Stem Cell and Regenerative Medicine, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifang Wang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Téllez de Meneses PG, Pérez-Revuelta L, Canal-Alonso Á, Hernández-Pérez C, Cocho T, Valero J, Weruaga E, Díaz D, Alonso JR. Immunohistochemical distribution of secretagogin in the mouse brain. Front Neuroanat 2023; 17:1224342. [PMID: 37711587 PMCID: PMC10498459 DOI: 10.3389/fnana.2023.1224342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Calcium is essential for the correct functioning of the central nervous system, and calcium-binding proteins help to finely regulate its concentration. Whereas some calcium-binding proteins such as calmodulin are ubiquitous and are present in many cell types, others such as calbindin, calretinin, and parvalbumin are expressed in specific neuronal populations. Secretagogin belongs to this latter group and its distribution throughout the brain is only partially known. In the present work, the distribution of secretagogin-immunopositive cells was studied in the entire brain of healthy adult mice. Methods Adult male C57BL/DBA mice aged between 5 and 7 months were used. Their whole brain was sectioned and used for immunohistochemistry. Specific neural populations were observed in different zones and nuclei identified according to Paxinos mouse brain atlas. Results Labelled cells were found with a Golgi-like staining, allowing an excellent characterization of their dendritic and axonal arborizations. Many secretagogin-positive cells were observed along different encephalic regions, especially in the olfactory bulb, basal ganglia, and hypothalamus. Immunostained populations were very heterogenous in both size and distribution, as some nuclei presented labelling in their entire extension, but in others, only scattered cells were present. Discussion Secretagogin can provide a more complete vision of calcium-buffering mechanisms in the brain, and can be a useful neuronal marker in different brain areas for specific populations.
Collapse
Affiliation(s)
- Pablo G. Téllez de Meneses
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Laura Pérez-Revuelta
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ángel Canal-Alonso
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Bioinformatics, Intelligent Systems and Educational Technology (BISITE) Research Group, Universidad de Salamanca, Salamanca, Spain
| | - Carlos Hernández-Pérez
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Teresa Cocho
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jorge Valero
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Eduardo Weruaga
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - David Díaz
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José R. Alonso
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
4
|
Wang QW, Qin J, Chen YF, Tu Y, Xing YY, Wang Y, Yang LY, Lu SY, Geng L, Shi W, Yang Y, Yao J. 16p11.2 CNV gene Doc2α functions in neurodevelopment and social behaviors through interaction with Secretagogin. Cell Rep 2023; 42:112691. [PMID: 37354460 DOI: 10.1016/j.celrep.2023.112691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
Copy-number variations (CNVs) of the human 16p11.2 genetic locus are associated with neurodevelopmental disorders, including autism spectrum disorders (ASDs) and schizophrenia. However, it remains largely unclear how this locus is involved in the disease pathogenesis. Doc2α is localized within this locus. Here, using in vivo and ex vivo electrophysiological and morphological approaches, we show that Doc2α-deficient mice have neuronal morphological abnormalities and defects in neural activity. Moreover, the Doc2α-deficient mice exhibit social and repetitive behavioral deficits. Furthermore, we demonstrate that Doc2α functions in behavioral and neural phenotypes through interaction with Secretagogin (SCGN). Finally, we demonstrate that SCGN functions in social/repetitive behaviors, glutamate release, and neuronal morphology of the mice through its Doc2α-interacting activity. Therefore, Doc2α likely contributes to neurodevelopmental disorders through its interaction with SCGN.
Collapse
Affiliation(s)
- Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junhong Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan-Fen Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun-Yun Xing
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Yuchen Wang
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lv-Yu Yang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Si-Yao Lu
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Libo Geng
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Wei Shi
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yiming Yang
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China.
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Mol P, Gopalakrishnan L, Chatterjee O, Mangalaparthi KK, Kumar M, Durgad SS, Nair B, Shankar SK, Mahadevan A, Prasad TSK. Proteomic Analysis of Adult Human Hippocampal Subfields Demonstrates Regional Heterogeneity in the Protein Expression. J Proteome Res 2022; 21:2293-2310. [PMID: 36039803 DOI: 10.1021/acs.jproteome.2c00143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background: Distinct hippocampal subfields are known to get affected during aging, psychiatric disorders, and various neurological and neurodegenerative conditions. To understand the biological processes associated with each subfield, it is important to understand its heterogeneity at the molecular level. To address this lacuna, we investigated the proteomic analysis of hippocampal subfields─the cornu ammonis sectors (CA1, CA2, CA3, CA4) and dentate gyrus (DG) from healthy adult human cohorts. Findings: Microdissection of hippocampal subfields from archived formalin-fixed paraffin-embedded tissue sections followed by TMT-based multiplexed proteomic analysis resulted in the identification of 5,593 proteins. Out of these, 890 proteins were found to be differentially abundant among the subfields. Further bioinformatics analysis suggested proteins related to gene splicing, transportation, myelination, structural activity, and learning processes to be differentially abundant in DG, CA4, CA3, CA2, and CA1, respectively. A subset of proteins was selected for immunohistochemistry-based validation in an independent set of hippocampal samples. Conclusions: We believe that our findings will effectively pave the way for further analysis of the hippocampal subdivisions and provide awareness of its subfield-specific association to various neurofunctional anomalies in the future. The current mass spectrometry data is deposited and publicly made available through ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029697.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India.,Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Shwetha S Durgad
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Susarla K Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | | |
Collapse
|
6
|
Basu S, Mitra S, Singh O, Chandramohan B, Singru PS. Secretagogin in the brain and pituitary of the catfish, Clarias batrachus: Molecular characterization and regulation by insulin. J Comp Neurol 2022; 530:1743-1772. [PMID: 35322425 DOI: 10.1002/cne.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Secretagogin (scgn), is a novel hexa EF-hand, phylogenetically conserved calcium-binding protein. It serves as Ca2+ sensor and participates in Ca2+ -signaling and neuroendocrine regulation in mammals. However, its relevance in the brain of non-mammalian vertebrates has largely remained unexplored. To address this issue, we studied the cDNA encoding scgn, scgn mRNA expression, and distribution of scgn-equipped elements in the brain and pituitary of a teleost, Clarias batrachus (cb). The cbscgn cDNA consists of three transcripts (T) variants: T1 (2185 bp), T2 (2151 bp) and T3 (2060 bp). While 816 bp ORF in T1 and T2 encodes highly conserved six EF-hand 272 aa protein fully capable of Ca2+ -binding, 726-bp ORF in T3 encodes 242 aa protein. The T1 showed >90% and >70% identity with scgn of catfishes, and other teleosts and mammals, respectively. The T1-mRNA was widely expressed in the brain and pituitary, while the expression of T3 was restricted to the telencephalon. Application of the anti-scgn antiserum revealed a ∼32 kDa scgn-immunoreactive (scgn-i) band (known molecular weight of scgn) in the forebrain tissue, and immunohistochemically labeled neurons in the olfactory epithelium and bulb, telencephalon, preoptic area, hypothalamus, thalamus, and hindbrain. In the pituitary, scgn-i cells were seen in the pars distalis and intermedia. Insulin is reported to regulate scgn mRNA in the mammalian hippocampus, and feeding-related neuropeptides in the telencephalon of teleost. Intracranial injection of insulin significantly increased T1-mRNA expression and scgn-immunoreactivity in the telencephalon. We suggest that scgn may be an important player in the regulation of olfactory, neuroendocrine system, and energy balance functions in C. batrachus.
Collapse
Affiliation(s)
- Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Bathrachalam Chandramohan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
7
|
Kanu B, Kia GSN, Aimola IA, Korie GC, Tekki IS. Rabies virus infection is associated with alterations in the expression of parvalbumin and secretagogin in mice brain. Metab Brain Dis 2021; 36:1267-1275. [PMID: 33783673 PMCID: PMC8008021 DOI: 10.1007/s11011-021-00717-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Infection with the deadly rabies virus (RABV) leads to alteration of cellular gene expression. The RABV, similar to other neurodegenerative diseases may be implicated in neuronal death due to an imbalance in Ca2+ homeostasis. Parvalbumin (PV) and Secretagogin (Scgn), two members of the Calcium-Binding Proteins (CBPs) are useful neuronal markers responsible for calcium regulation and buffering with possible protective roles against infections. This study investigated whether infection with rabies virus causes variance in expression levels of PV and Scgn using the Challenge virus standard (CVS) and Nigerian Street Rabies virus (SRV) strains. Forty-eight, 4-week-old BALB/c mice strains were divided into two test groups and challenged with Rabies virus (RABV) infection and one control group. The presence of RABV antigen was verified by direct fluorescent antibody test (DFAT) and real-time quantitative PCR (qRT-PCR) was used to assess PV and Scgn gene expression. Infection with both virus strains resulted in significant (p < 0.05) increases in expression during early infection. Mid-infection phase caused reduced expression for both genes. However, as infection progressed to the terminal phase, a lower increase in expression was measured. Gene expression and viral load correlation indicated no positive relationship. Neurons with these CBPs may have a greater capacity to buffer calcium and be more resistant to degenerative changes caused by RABV. This implies that, when PV and Scgn expression levels are kept adequately high, the integrity of neurons may be maintained and degeneration caused by RABV infection may be prevented or stopped, hence, these are possible constituents of effective rabies therapy.
Collapse
Affiliation(s)
- Brenda Kanu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria.
| | - Grace S N Kia
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
- Department of Veterinary Public Health, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Idowu A Aimola
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
| | - George C Korie
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
| | - Ishaya S Tekki
- Central Diagnostics Laboratory, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| |
Collapse
|
8
|
Kelemen K, Szilágyi T. New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System. Brain Sci 2021. [PMID: 34069107 DOI: 10.3390/brainsci11050634ht] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Although Ca2+ ion plays an essential role in cellular physiology, calcium-binding proteins (CaBPs) were long used for mainly as immunohistochemical markers of specific cell types in different regions of the central nervous system. They are a heterogeneous and wide-ranging group of proteins. Their function was studied intensively in the last two decades and a tremendous amount of information was gathered about them. Girard et al. compiled a comprehensive list of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. We selected from this database those CaBPs which are related to information processing and/or neuronal signalling, have a Ca2+-buffer activity, Ca2+-sensor activity, modulator of Ca2+-channel activity, or a yet unknown function. In this way we created a gene function-based selection of the CaBPs. We cross-referenced these findings with publicly available, high-quality RNA-sequencing and in situ hybridization databases (Human Protein Atlas (HPA), Brain RNA-seq database and Allen Brain Atlas integrated into the HPA) and created gene expression heat maps of the regional and cell type-specific expression levels of the selected CaBPs. This represents a useful tool to predict and investigate different expression patterns and functions of the less-known CaBPs of the central nervous system.
Collapse
Affiliation(s)
- Krisztina Kelemen
- Department of Physiology, Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania
| | - Tibor Szilágyi
- Department of Physiology, Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania
| |
Collapse
|
9
|
Kelemen K, Szilágyi T. New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System. Brain Sci 2021; 11:brainsci11050634. [PMID: 34069107 PMCID: PMC8156796 DOI: 10.3390/brainsci11050634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Although Ca2+ ion plays an essential role in cellular physiology, calcium-binding proteins (CaBPs) were long used for mainly as immunohistochemical markers of specific cell types in different regions of the central nervous system. They are a heterogeneous and wide-ranging group of proteins. Their function was studied intensively in the last two decades and a tremendous amount of information was gathered about them. Girard et al. compiled a comprehensive list of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. We selected from this database those CaBPs which are related to information processing and/or neuronal signalling, have a Ca2+-buffer activity, Ca2+-sensor activity, modulator of Ca2+-channel activity, or a yet unknown function. In this way we created a gene function-based selection of the CaBPs. We cross-referenced these findings with publicly available, high-quality RNA-sequencing and in situ hybridization databases (Human Protein Atlas (HPA), Brain RNA-seq database and Allen Brain Atlas integrated into the HPA) and created gene expression heat maps of the regional and cell type-specific expression levels of the selected CaBPs. This represents a useful tool to predict and investigate different expression patterns and functions of the less-known CaBPs of the central nervous system.
Collapse
|
10
|
Sanders M, Petrasch-Parwez E, Habbes HW, Düring MV, Förster E. Postnatal Developmental Expression Profile Classifies the Indusium Griseum as a Distinct Subfield of the Hippocampal Formation. Front Cell Dev Biol 2021; 8:615571. [PMID: 33511122 PMCID: PMC7835525 DOI: 10.3389/fcell.2020.615571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The indusium griseum (IG) is a cortical structure overlying the corpus callosum along its anterior–posterior extent. It has been classified either as a vestige of the hippocampus or as an extension of the dentate gyrus via the fasciola cinerea, but its attribution to a specific hippocampal subregion is still under debate. To specify the identity of IG neurons more precisely, we investigated the spatiotemporal expression of calbindin, secretagogin, Necab2, PCP4, and Prox1 in the postnatal mouse IG, fasciola cinerea, and hippocampus. We identified the calcium-binding protein Necab2 as a first reliable marker for the IG and fasciola cinerea throughout postnatal development into adulthood. In contrast, calbindin, secretagogin, and PCP4 were expressed each with a different individual time course during maturation, and at no time point, IG or fasciola cinerea principal neurons expressed Prox1, a transcription factor known to define dentate granule cell fate. Concordantly, in a transgenic mouse line expressing enhanced green fluorescent protein (eGFP) in dentate granule cells, neurons of IG and fasciola cinerea were eGFP-negative. Our findings preclude that IG neurons represent dentate granule cells, as earlier hypothesized, and strongly support the view that the IG is an own hippocampal subfield composed of a distinct neuronal population.
Collapse
Affiliation(s)
- Marie Sanders
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | | | - Hans-Werner Habbes
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | - Monika V Düring
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Pérez-Revuelta L, Téllez de Meneses PG, López M, Briñón JG, Weruaga E, Díaz D, Alonso JR. Secretagogin expression in the mouse olfactory bulb under sensory impairments. Sci Rep 2020; 10:21533. [PMID: 33299042 PMCID: PMC7726155 DOI: 10.1038/s41598-020-78499-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 12/04/2022] Open
Abstract
The interneurons of the olfactory bulb (OB) are characterized by the expression of different calcium-binding proteins, whose specific functions are not fully understood. This is the case of one of the most recently discovered, the secretagogin (SCGN), which is expressed in interneurons of the glomerular and the granule cell layers, but whose function in the olfactory pathway is still unknown. To address this question, we examined the distribution, generation and activity of SCGN-positive interneurons in the OB of two complementary models of olfactory impairments: Purkinje Cell Degeneration (PCD) and olfactory-deprived mice. Our results showed a significant increase in the density of SCGN-positive cells in the inframitral layers of olfactory-deprived mice as compared to control animals. Moreover, BrdU analyses revealed that these additional SCGN-positive cells are not newly formed. Finally, the neuronal activity, estimated by c-Fos expression, increased in preexisting SCGN-positive interneurons of both deprived and PCD mice -being higher in the later- in comparison with control animals. Altogether, our results suggest that the OB possesses different compensatory mechanisms depending on the type of alteration. Particularly, the SCGN expression is dependent of olfactory stimuli and its function may be related to a compensation against a reduction in sensory inputs.
Collapse
Affiliation(s)
- L Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - P G Téllez de Meneses
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - M López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - J G Briñón
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - E Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - D Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain.
| | - J R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| |
Collapse
|
12
|
Variations in GABA immunoreactivity among granule cells of the mouse olfactory bulb, as revealed by high-voltage electron microscopy. Neurosci Lett 2020; 738:135386. [PMID: 32947006 DOI: 10.1016/j.neulet.2020.135386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/21/2022]
Abstract
Odor information is processed in the olfactory bulb (OB), which is organized into olfactory inputs, interneurons, projection neurons, and centrifugal inputs, and these various structures regulate olfactory information processing. Similar to other brain regions, the OB structures include many types of interneurons, including γ-aminobutyric acid (GABA)ergic interneurons. Many interneurons are granule cells that are found in the granule cell layer (GCL), which is a deep layer of the OB. Interestingly, these interneurons exhibit variations in GABA immunoreactivity, and previous studies have observed differing intensities among morphologically and chemically similar neuronal populations. However, the numbers and distribution patterns of cells that show variations in GABA immunoreactivity are unknown. Therefore, we observed and quantitatively analyzed this diversity in the GCL of the mouse OB using immunogold, high-voltage electron microscopy, combined with light microscopy. Consequently, our results clearly show variations in the GABA immunoreactivity among GCL interneurons, which suggested heterogeneity in the amount of GABA present in each interneuron and reflected the possibility that different amounts of neuroactive substances may be associated with different functions for the various GABAergic interneuron groups. Variations in GABA immunoreactivity could be a novel criterion for classifying interneuron subpopulations.
Collapse
|
13
|
Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, Oksvold P, Edfors F, Limiszewska A, Hikmet F, Huang J, Du Y, Lin L, Dong Z, Yang L, Liu X, Jiang H, Xu X, Wang J, Yang H, Bolund L, Mardinoglu A, Zhang C, von Feilitzen K, Lindskog C, Pontén F, Luo Y, Hökfelt T, Uhlén M, Mulder J. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020; 367:367/6482/eaay5947. [PMID: 32139519 DOI: 10.1126/science.aay5947] [Citation(s) in RCA: 620] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
The brain, with its diverse physiology and intricate cellular organization, is the most complex organ of the mammalian body. To expand our basic understanding of the neurobiology of the brain and its diseases, we performed a comprehensive molecular dissection of 10 major brain regions and multiple subregions using a variety of transcriptomics methods and antibody-based mapping. This analysis was carried out in the human, pig, and mouse brain to allow the identification of regional expression profiles, as well as to study similarities and differences in expression levels between the three species. The resulting data have been made available in an open-access Brain Atlas resource, part of the Human Protein Atlas, to allow exploration and comparison of the expression of individual protein-coding genes in various parts of the mammalian brain.
Collapse
Affiliation(s)
- Evelina Sjöstedt
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.,Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Wen Zhong
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Linn Fagerberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Max Karlsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Nicholas Mitsios
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Per Oksvold
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Fredrik Edfors
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | | | - Feria Hikmet
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Jinrong Huang
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,Department of Biomedicine, Aarhus University, 80000 Aarhus, Denmark.,Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Yutao Du
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Lin Lin
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China.,Department of Biomedicine, Aarhus University, 80000 Aarhus, Denmark
| | - Zhanying Dong
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,Department of Biomedicine, Aarhus University, 80000 Aarhus, Denmark
| | - Ling Yang
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,Department of Biomedicine, Aarhus University, 80000 Aarhus, Denmark
| | - Xin Liu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Hui Jiang
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,Department of Biomedicine, Aarhus University, 80000 Aarhus, Denmark
| | - Adil Mardinoglu
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Cheng Zhang
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Kalle von Feilitzen
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,Department of Biomedicine, Aarhus University, 80000 Aarhus, Denmark
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden. .,Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
14
|
Brain-wide genetic mapping identifies the indusium griseum as a prenatal target of pharmacologically unrelated psychostimulants. Proc Natl Acad Sci U S A 2019; 116:25958-25967. [PMID: 31796600 DOI: 10.1073/pnas.1904006116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Psychostimulant use is an ever-increasing socioeconomic burden, including a dramatic rise during pregnancy. Nevertheless, brain-wide effects of psychostimulant exposure are incompletely understood. Here, we performed Fos-CreERT2-based activity mapping, correlated for pregnant mouse dams and their fetuses with amphetamine, nicotine, and caffeine applied acutely during midgestation. While light-sheet microscopy-assisted intact tissue imaging revealed drug- and age-specific neuronal activation, the indusium griseum (IG) appeared indiscriminately affected. By using GAD67gfp/+ mice we subdivided the IG into a dorsolateral domain populated by γ-aminobutyric acidergic interneurons and a ventromedial segment containing glutamatergic neurons, many showing drug-induced activation and sequentially expressing Pou3f3/Brn1 and secretagogin (Scgn) during differentiation. We then combined Patch-seq and circuit mapping to show that the ventromedial IG is a quasi-continuum of glutamatergic neurons (IG-Vglut1 +) reminiscent of dentate granule cells in both rodents and humans, whose dendrites emanate perpendicularly toward while their axons course parallel with the superior longitudinal fissure. IG-Vglut1 + neurons receive VGLUT1+ and VGLUT2+ excitatory afferents that topologically segregate along their somatodendritic axis. In turn, their efferents terminate in the olfactory bulb, thus being integral to a multisynaptic circuit that could feed information antiparallel to the olfactory-cortical pathway. In IG-Vglut1 + neurons, prenatal psychostimulant exposure delayed the onset of Scgn expression. Genetic ablation of Scgn was then found to sensitize adult mice toward methamphetamine-induced epilepsy. Overall, our study identifies brain-wide targets of the most common psychostimulants, among which Scgn +/Vglut1 + neurons of the IG link limbic and olfactory circuits.
Collapse
|
15
|
Tapia-González S, Insausti R, DeFelipe J. Differential expression of secretagogin immunostaining in the hippocampal formation and the entorhinal and perirhinal cortices of humans, rats, and mice. J Comp Neurol 2019; 528:523-541. [PMID: 31512254 PMCID: PMC6972606 DOI: 10.1002/cne.24773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/21/2023]
Abstract
Secretagogin (SCGN) is a recently discovered calcium-binding protein belonging to the group of EF-hand calcium-binding proteins. SCGN immunostaining has been described in various regions of the human, rat and mouse brain. In these studies, it has been reported that, in general, the patterns of SCGN staining differ between rodents and human brains. These differences have been interpreted as uncovering phylogenetic differences in SCGN expression. Nevertheless, an important aspect that is not usually taken into account is that different methods are used for obtaining and processing brain tissue coming from humans and experimental animals. This is a critical issue since it has been shown that post-mortem time delay and the method of fixation (i.e., perfused vs. nonperfused brains) may influence the results of the immunostaining. Thus, it is not clear whether differences found in comparative studies with the human brain are simply due to technical factors or species-specific differences. In the present study, we analyzed the pattern of SCGN immunostaining in the adult human hippocampal formation (DG, CA1, CA2, CA3, subiculum, presubiculum, and parasubiculum) as well as in the entorhinal and perirhinal cortices. This pattern of immunostaining was compared with rat and mouse that were fixed either by perfusion or immersion and with different post-mortem time delays (up to 5 hr) to mimic the way the human brain tissue is usually processed. We found a number of clear similarities and differences in the pattern of labeling among the human, rat, and mouse in these brain regions as well as between the different brain regions examined within each species. These differences were not due to the fixation.
Collapse
Affiliation(s)
- Silvia Tapia-González
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ricardo Insausti
- Laboratorio de Neuroanatomía Humana, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| |
Collapse
|
16
|
Zahola P, Hanics J, Pintér A, Máté Z, Gáspárdy A, Hevesi Z, Echevarria D, Adori C, Barde S, Törőcsik B, Erdélyi F, Szabó G, Wagner L, Kovacs GG, Hökfelt T, Harkany T, Alpár A. Secretagogin expression in the vertebrate brainstem with focus on the noradrenergic system and implications for Alzheimer's disease. Brain Struct Funct 2019; 224:2061-2078. [PMID: 31144035 PMCID: PMC6591208 DOI: 10.1007/s00429-019-01886-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/03/2019] [Indexed: 12/04/2022]
Abstract
Calcium-binding proteins are widely used to distinguish neuronal subsets in the brain. This study focuses on secretagogin, an EF-hand calcium sensor, to identify distinct neuronal populations in the brainstem of several vertebrate species. By using neural tube whole mounts of mouse embryos, we show that secretagogin is already expressed during the early ontogeny of brainstem noradrenaline cells. In adults, secretagogin-expressing neurons typically populate relay centres of special senses and vegetative regulatory centres of the medulla oblongata, pons and midbrain. Notably, secretagogin expression overlapped with the brainstem column of noradrenergic cell bodies, including the locus coeruleus (A6) and the A1, A5 and A7 fields. Secretagogin expression in avian, mouse, rat and human samples showed quasi-equivalent patterns, suggesting conservation throughout vertebrate phylogeny. We found reduced secretagogin expression in locus coeruleus from subjects with Alzheimer’s disease, and this reduction paralleled the loss of tyrosine hydroxylase, the enzyme rate limiting noradrenaline synthesis. Residual secretagogin immunoreactivity was confined to small submembrane domains associated with initial aberrant tau phosphorylation. In conclusion, we provide evidence that secretagogin is a useful marker to distinguish neuronal subsets in the brainstem, conserved throughout several species, and its altered expression may reflect cellular dysfunction of locus coeruleus neurons in Alzheimer’s disease.
Collapse
Affiliation(s)
- Péter Zahola
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - János Hanics
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Gáspárdy
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Zsófia Hevesi
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Diego Echevarria
- Institute of Neuroscience, University of Miguel Hernandez de Elche, Alicante, Spain
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Beáta Törőcsik
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Alán Alpár
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary. .,Department of Anatomy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
17
|
Ellis JK, Sorrells SF, Mikhailova S, Chavali M, Chang S, Sabeur K, Mcquillen P, Rowitch DH. Ferret brain possesses young interneuron collections equivalent to human postnatal migratory streams. J Comp Neurol 2019; 527:2843-2859. [PMID: 31050805 PMCID: PMC6773523 DOI: 10.1002/cne.24711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/27/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
The human early postnatal brain contains late migratory streams of immature interneurons that are directed to cortex and other focal brain regions. However, such migration is not observed in rodent brain, and whether other small animal models capture this aspect of human brain development is unclear. Here, we investigated whether the gyrencephalic ferret cortex possesses human‐equivalent postnatal streams of doublecortin positive (DCX+) young neurons. We mapped DCX+ cells in the brains of ferrets at P20 (analogous to human term gestation), P40, P65, and P90. In addition to the rostral migratory stream, we identified three populations of young neurons with migratory morphology at P20 oriented toward: (a) prefrontal cortex, (b) dorsal posterior sigmoid gyrus, and (c) occipital lobe. These three neuronal collections were all present at P20 and became extinguished by P90 (equivalent to human postnatal age 2 years). DCX+ cells in such collections all expressed GAD67, identifying them as interneurons, and they variously expressed the subtype markers SP8 and secretagogin (SCGN). SCGN+ interneurons appeared in thick sections to be oriented from white matter toward multiple cortical regions, and persistent SCGN‐expressing cells were observed in cortex. These findings indicate that ferret is a suitable animal model to study the human‐relevant process of late postnatal cortical interneuron integration into multiple regions of cortex.
Collapse
Affiliation(s)
- Justin K Ellis
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Shawn F Sorrells
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Sasha Mikhailova
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Manideep Chavali
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Sandra Chang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Khalida Sabeur
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Patrick Mcquillen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California.,Department of Paediatrics and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Fairless R, Williams SK, Diem R. Calcium-Binding Proteins as Determinants of Central Nervous System Neuronal Vulnerability to Disease. Int J Mol Sci 2019; 20:ijms20092146. [PMID: 31052285 PMCID: PMC6539299 DOI: 10.3390/ijms20092146] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022] Open
Abstract
Neuronal subpopulations display differential vulnerabilities to disease, but the factors that determine their susceptibility are poorly understood. Toxic increases in intracellular calcium are a key factor in several neurodegenerative processes, with calcium-binding proteins providing an important first line of defense through their ability to buffer incoming calcium, allowing the neuron to quickly achieve homeostasis. Since neurons expressing different calcium-binding proteins have been reported to be differentially susceptible to degeneration, it can be hypothesized that rather than just serving as markers of different neuronal subpopulations, they might actually be a key determinant of survival. In this review, we will summarize some of the evidence that expression of the EF-hand calcium-binding proteins, calbindin, calretinin and parvalbumin, may influence the susceptibility of distinct neuronal subpopulations to disease processes.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
GABAergic Medial Septal Neurons with Low-Rhythmic Firing Innervating the Dentate Gyrus and Hippocampal Area CA3. J Neurosci 2019; 39:4527-4549. [PMID: 30926750 PMCID: PMC6554630 DOI: 10.1523/jneurosci.3024-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
The medial septum implements cortical theta oscillations, a 5–12 Hz rhythm associated with locomotion and paradoxical sleep reflecting synchronization of neuronal assemblies such as place cell sequence coding. Highly rhythmic burst-firing parvalbumin-positive GABAergic medial septal neurons are strongly coupled to theta oscillations and target cortical GABAergic interneurons, contributing to coordination within one or several cortical regions. However, a large population of medial septal neurons of unidentified neurotransmitter phenotype and with unknown axonal target areas fire with a low degree of rhythmicity. We investigated whether low-rhythmic-firing neurons (LRNs) innervated similar or different cortical regions to high-rhythmic-firing neurons (HRNs) and assessed their temporal dynamics in awake male mice. The majority of LRNs were GABAergic and parvalbumin-immunonegative, some expressing calbindin; they innervated interneurons mostly in the dentate gyrus (DG) and CA3. Individual LRNs showed several distinct firing patterns during immobility and locomotion, forming a parallel inhibitory stream for the modulation of cortical interneurons. Despite their fluctuating firing rates, the preferred firing phase of LRNs during theta oscillations matched the highest firing probability phase of principal cells in the DG and CA3. In addition, as a population, LRNs were markedly suppressed during hippocampal sharp-wave ripples, had a low burst incidence, and several of them did not fire on all theta cycles. Therefore, CA3 receives GABAergic input from both HRNs and LRNs, but the DG receives mainly LRN input. We propose that distinct GABAergic LRNs contribute to changing the excitability of the DG and CA3 during memory discrimination via transient disinhibition of principal cells. SIGNIFICANCE STATEMENT For the encoding and recall of episodic memories, nerve cells in the cerebral cortex are activated in precisely timed sequences. Rhythmicity facilitates the coordination of neuronal activity and these rhythms are detected as oscillations of different frequencies such as 5–12 Hz theta oscillations. Degradation of these rhythms, such as through neurodegeneration, causes memory deficits. The medial septum, a part of the basal forebrain that innervates the hippocampal formation, contains high- and low-rhythmic-firing neurons (HRNs and LRNs, respectively), which may contribute differentially to cortical neuronal coordination. We discovered that GABAergic LRNs preferentially innervate the dentate gyrus and the CA3 area of the hippocampus, regions important for episodic memory. These neurons act in parallel with the HRNs mostly via transient inhibition of inhibitory neurons.
Collapse
|
20
|
Maj M, Wagner L, Tretter V. 20 Years of Secretagogin: Exocytosis and Beyond. Front Mol Neurosci 2019; 12:29. [PMID: 30853888 PMCID: PMC6396707 DOI: 10.3389/fnmol.2019.00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/23/2019] [Indexed: 01/04/2023] Open
Abstract
Calcium is one of the most important signaling factors in mammalian cells. Specific temporal and spatial calcium signals underlie fundamental processes such as cell growth, development, circadian rhythms, neurotransmission, hormonal actions and apoptosis. In order to translate calcium signals into cellular processes a vast number of proteins bind this ion with affinities from the nanomolar to millimolar range. Using classical biochemical methods an impressing number of calcium binding proteins (CBPs) have been discovered since the late 1960s, some of which are expressed ubiquitously, others are more restricted to specific cell types. In the nervous system expression patterns of different CBPs have been used to discern different neuronal cell populations, especially before advanced methods like single-cell transcriptomics and activity recording were available to define neuronal identity. However, understanding CBPs and their interacting proteins is still of central interest. The post-genomic era has coined the term “calciomics,” to describe a whole new research field, that engages in the identification and characterization of CBPs and their interactome. Secretagogin is a CBP, that was discovered 20 years ago in the pancreas. Consecutively it was found also in other organs including the nervous system, with characteristic expression patterns mostly forming cell clusters. Its regional expression and subcellular location together with the identification of protein interaction partners implicated, that secretagogin has a central role in hormone secretion. Meanwhile, with the help of modern proteomics a large number of actual and putative interacting proteins has been identified, that allow to anticipate a much more complex role of secretagogin in developing and adult neuronal cells. Here, we review recent findings that appear like puzzle stones of a greater picture.
Collapse
Affiliation(s)
- Magdalena Maj
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Ludwig Wagner
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medizinische Universität Wien, Vienna, Austria
| | - Verena Tretter
- Department of Anesthesia and General Intensive Care, Clinical Department of Anesthesia, Medizinische Universität Wien, Vienna, Austria
| |
Collapse
|
21
|
Alpár A, Zahola P, Hanics J, Hevesi Z, Korchynska S, Benevento M, Pifl C, Zachar G, Perugini J, Severi I, Leitgeb P, Bakker J, Miklosi AG, Tretiakov E, Keimpema E, Arque G, Tasan RO, Sperk G, Malenczyk K, Máté Z, Erdélyi F, Szabó G, Lubec G, Palkovits M, Giordano A, Hökfelt TG, Romanov RA, Horvath TL, Harkany T. Hypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO J 2018; 37:e100087. [PMID: 30209240 PMCID: PMC6213283 DOI: 10.15252/embj.2018100087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.
Collapse
Affiliation(s)
- Alán Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Péter Zahola
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - János Hanics
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsófia Hevesi
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Solomiia Korchynska
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gergely Zachar
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Jessica Perugini
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Patrick Leitgeb
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Joanne Bakker
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andras G Miklosi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gloria Arque
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gert Lubec
- Paracelsus Medical University, Salzburg, Austria
| | - Miklós Palkovits
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| | - Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Tomas Gm Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Departments of Comparative Medicine and Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
22
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
23
|
Raju CS, Spatazza J, Stanco A, Larimer P, Sorrells SF, Kelley KW, Nicholas CR, Paredes MF, Lui JH, Hasenstaub AR, Kriegstein AR, Alvarez-Buylla A, Rubenstein JL, Oldham MC. Secretagogin is Expressed by Developing Neocortical GABAergic Neurons in Humans but not Mice and Increases Neurite Arbor Size and Complexity. Cereb Cortex 2018; 28:1946-1958. [PMID: 28449024 PMCID: PMC6019052 DOI: 10.1093/cercor/bhx101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/10/2017] [Indexed: 11/14/2022] Open
Abstract
The neocortex of primates, including humans, contains more abundant and diverse inhibitory neurons compared with rodents, but the molecular foundations of these observations are unknown. Through integrative gene coexpression analysis, we determined a consensus transcriptional profile of GABAergic neurons in mid-gestation human neocortex. By comparing this profile to genes expressed in GABAergic neurons purified from neonatal mouse neocortex, we identified conserved and distinct aspects of gene expression in these cells between the species. We show here that the calcium-binding protein secretagogin (SCGN) is robustly expressed by neocortical GABAergic neurons derived from caudal ganglionic eminences (CGE) and lateral ganglionic eminences during human but not mouse brain development. Through electrophysiological and morphometric analyses, we examined the effects of SCGN expression on GABAergic neuron function and form. Forced expression of SCGN in CGE-derived mouse GABAergic neurons significantly increased total neurite length and arbor complexity following transplantation into mouse neocortex, revealing a molecular pathway that contributes to morphological differences in these cells between rodents and primates.
Collapse
Affiliation(s)
- Chandrasekhar S Raju
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - Julien Spatazza
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Neurona Therapeutics, South San Francisco, CA, USA
| | - Amelia Stanco
- Department of Psychiatry, University of California, San Francisco, USA
- EntroGen, Woodland Hills, CA, USA
| | - Phillip Larimer
- Center for Integrative Neuroscience, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
| | - Shawn F Sorrells
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - Kevin W Kelley
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - Cory R Nicholas
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
- Neurona Therapeutics, South San Francisco, CA, USA
| | - Mercedes F Paredes
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
| | - Jan H Lui
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA, USA
| | - Andrea R Hasenstaub
- Center for Integrative Neuroscience, University of California, San Francisco, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, USA
| | - Arnold R Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - John L Rubenstein
- Department of Psychiatry, University of California, San Francisco, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| |
Collapse
|
24
|
Kosaka T, Kosaka K. Calcium-binding protein, secretagogin, specifies the microcellular tegmental nucleus and intermediate and ventral parts of the cuneiform nucleus of the mouse and rat. Neurosci Res 2018; 134:30-38. [PMID: 29366872 DOI: 10.1016/j.neures.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/30/2022]
Abstract
Secretagogin (SCGN) is a recently discovered calcium binding protein of the EF hand family, cloned from β cells of pancreatic island of Langerhans and endocrine cells of the gastrointestinal gland. SCGN characterizes some particular neuron groups in various regions of the nervous system and is considered as one of the useful neuron subpopulation markers. In the present study we reported that SCGN specifically labelled a particular neuronal cluster in the brainstem of the mice and rats. The comparison of the SCGN immunostaining with the choline acetyltransferase immunostaining and acetylcholinesterase staining clearly indicated that the particular cluster of SCGN positive neurons corresponded to the microcellular tegmental nucleus (MiTg) and the ventral portion of the cuneiform nucleus (CnF), both of which are components of the isthmus. The analyses in mice indicated that SCGN positive neurons in the MiTg and CnF were homogeneous in size and shape, appearing to compose a single complex: their somata were small comparing with the adjacent cholinergic neurons in the pedunculotegmantal nucleus, 10.5 vs 16.0 μm in diameter, and extended 2-3 slender smooth processes. SCGN might be one of significant markers to reconsider the delineations of the structures of the mouse, and presumably rat, brainstem.
Collapse
Affiliation(s)
- Toshio Kosaka
- Department of Medical Science Technology, Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa City, Fukuoka 831-8501, Japan.
| | - Katsuko Kosaka
- Department of Medical Science Technology, Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa City, Fukuoka 831-8501, Japan
| |
Collapse
|
25
|
Garas FN, Kormann E, Shah RS, Vinciati F, Smith Y, Magill PJ, Sharott A. Structural and molecular heterogeneity of calretinin-expressing interneurons in the rodent and primate striatum. J Comp Neurol 2017; 526:877-898. [PMID: 29218729 PMCID: PMC5814860 DOI: 10.1002/cne.24373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
Calretinin‐expressing (CR+) interneurons are the most common type of striatal interneuron in primates. However, because CR+ interneurons are relatively scarce in rodent striatum, little is known about their molecular and other properties, and they are typically excluded from models of striatal circuitry. Moreover, CR+ interneurons are often treated in models as a single homogenous population, despite previous descriptions of their heterogeneous structures and spatial distributions in rodents and primates. Here, we demonstrate that, in rodents, the combinatorial expression of secretagogin (Scgn), specificity protein 8 (SP8) and/or LIM homeobox protein 7 (Lhx7) separates striatal CR+ interneurons into three structurally and topographically distinct cell populations. The CR+/Scgn+/SP8+/Lhx7− interneurons are small‐sized (typically 7–11 µm in somatic diameter), possess tortuous, partially spiny dendrites, and are rostrally biased in their positioning within striatum. The CR+/Scgn−/SP8−/Lhx7− interneurons are medium‐sized (typically 12–15 µm), have bipolar dendrites, and are homogenously distributed throughout striatum. The CR+/Scgn−/SP8−/Lhx7+ interneurons are relatively large‐sized (typically 12–20 µm), and have thick, infrequently branching dendrites. Furthermore, we provide the first in vivo electrophysiological recordings of identified CR+ interneurons, all of which were the CR+/Scgn−/SP8−/Lhx7− cell type. In the primate striatum, Scgn co‐expression also identified a topographically distinct CR+ interneuron population with a rostral bias similar to that seen in both rats and mice. Taken together, these results suggest that striatal CR+ interneurons comprise at least three molecularly, structurally, and topographically distinct cell populations in rodents. These properties are partially conserved in primates, in which the relative abundance of CR+ interneurons suggests that they play a critical role in striatal microcircuits.
Collapse
Affiliation(s)
- Farid N Garas
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Eszter Kormann
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rahul S Shah
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Federica Vinciati
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Dudczig S, Currie PD, Jusuf PR. Developmental and adult characterization of secretagogin expressing amacrine cells in zebrafish retina. PLoS One 2017; 12:e0185107. [PMID: 28949993 PMCID: PMC5614429 DOI: 10.1371/journal.pone.0185107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Calcium binding proteins show stereotypical expression patterns within diverse neuron types across the central nervous system. Here, we provide a characterization of developmental and adult secretagogin-immunolabelled neurons in the zebrafish retina with an emphasis on co-expression of multiple calcium binding proteins. Secretagogin is a recently identified and cloned member of the F-hand family of calcium binding proteins, which labels distinct neuron populations in the retinas of mammalian vertebrates. Both the adult distribution of secretagogin labeled retinal neurons as well as the developmental expression indicative of the stage of neurogenesis during which this calcium binding protein is expressed was quantified. Secretagogin expression was confined to an amacrine interneuron population in the inner nuclear layer, with monostratified neurites in the center of the inner plexiform layer and a relatively regular soma distribution (regularity index > 2.5 across central–peripheral areas). However, only a subpopulation (~60%) co-labeled with gamma-aminobutyric acid as their neurotransmitter, suggesting that possibly two amacrine subtypes are secretagogin immunoreactive. Quantitative co-labeling analysis with other known amacrine subtype markers including the three main calcium binding proteins parvalbumin, calbindin and calretinin identifies secretagogin immunoreactive neurons as a distinct neuron population. The highest density of secretagogin cells of ~1800 cells / mm2 remained relatively evenly along the horizontal meridian, whilst the density dropped of to 125 cells / mm2 towards the dorsal and ventral periphery. Thus, secretagogin represents a new amacrine label within the zebrafish retina. The developmental expression suggests a possible role in late stage differentiation. This characterization forms the basis of functional studies assessing how the expression of distinct calcium binding proteins might be regulated to compensate for the loss of one of the others.
Collapse
Affiliation(s)
- Stefanie Dudczig
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter David Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Patricia Regina Jusuf
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
- * E-mail:
| |
Collapse
|
27
|
Lee JJ, Yang SY, Park J, Ferrell JE, Shin DH, Lee KJ. Calcium Ion Induced Structural Changes Promote Dimerization of Secretagogin, Which Is Required for Its Insulin Secretory Function. Sci Rep 2017; 7:6976. [PMID: 28765527 PMCID: PMC5539292 DOI: 10.1038/s41598-017-07072-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/16/2017] [Indexed: 11/29/2022] Open
Abstract
Secretagogin (SCGN), a hexa EF-hand calcium binding protein, plays key roles in insulin secretion in pancreatic β-cells. It is not yet understood how the binding of Ca2+ to human SCGN (hSCGN) promotes secretion. Here we have addressed this question, using mass spectrometry combined with a disulfide searching algorithm DBond. We found that the binding of Ca2+ to hSCGN promotes the dimerization of hSCGN via the formation of a Cys193-Cys193 disulfide bond. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics studies revealed that Ca2+ binding to the EF-hands of hSCGN induces significant structural changes that affect the solvent exposure of N-terminal region, and hence the redox sensitivity of the Cys193 residue. These redox sensitivity changes were confirmed using biotinylated methyl-3-nitro-4-(piperidin-1-ylsulfonyl) benzoate (NPSB-B), a chemical probe that specifically labels reactive cysteine sulfhydryls. Furthermore, we found that wild type hSCGN overexpression promotes insulin secretion in pancreatic β cells, while C193S-hSCGN inhibits it. These findings suggest that insulin secretion in pancreatic cells is regulated by Ca2+ and ROS signaling through Ca2+-induced structural changes promoting dimerization of hSCGN.
Collapse
Affiliation(s)
- Jae-Jin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - Seo-Yun Yang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - Jimin Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Dong-Hae Shin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea.
| |
Collapse
|
28
|
Romanov RA, Alpár A, Hökfelt T, Harkany T. Molecular diversity of corticotropin-releasing hormone mRNA-containing neurons in the hypothalamus. J Endocrinol 2017; 232:R161-R172. [PMID: 28057867 DOI: 10.1530/joe-16-0256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
Hormonal responses to acute stress rely on the rapid induction of corticotropin-releasing hormone (CRH) production in the mammalian hypothalamus, with subsequent instructive steps culminating in corticosterone release at the periphery. Hypothalamic CRH neurons in the paraventricular nucleus of the hypothalamus are therefore considered as 'stress neurons'. However, significant morphological and functional diversity among neurons that can transiently produce CRH in other hypothalamic nuclei has been proposed, particularly as histochemical and molecular biology evidence associates CRH to both GABA and glutamate neurotransmission. Here, we review recent advances through single-cell RNA sequencing and circuit mapping to suggest that CRH production reflects a state switch in hypothalamic neurons and thus confers functional competence rather than being an identity mark of phenotypically segregated neurons. We show that CRH mRNA transcripts can therefore be seen in GABAergic, glutamatergic and dopaminergic neuronal contingents in the hypothalamus. We then distinguish 'stress neurons' of the paraventricular nucleus that constitutively express secretagogin, a Ca2+ sensor critical for the stimulus-driven assembly of the molecular machinery underpinning the fast regulated exocytosis of CRH at the median eminence. Cumulatively, we infer that CRH neurons are functionally and molecularly more diverse than previously thought.
Collapse
Affiliation(s)
- Roman A Romanov
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Alán Alpár
- MTA-SE NAP Research Group of Experimental Neuroanatomy and Developmental BiologyHungarian Academy of Sciences, Budapest, Hungary
- Department of AnatomySemmelweis University, Budapest, Hungary
| | - Tomas Hökfelt
- Department of NeuroscienceKarolinska Institutet, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of NeuroscienceKarolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Secretagogin-dependent matrix metalloprotease-2 release from neurons regulates neuroblast migration. Proc Natl Acad Sci U S A 2017; 114:E2006-E2015. [PMID: 28223495 DOI: 10.1073/pnas.1700662114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The rostral migratory stream (RMS) is viewed as a glia-enriched conduit of forward-migrating neuroblasts in which chemorepulsive signals control the pace of forward migration. Here we demonstrate the existence of a scaffold of neurons that receive synaptic inputs within the rat, mouse, and human fetal RMS equivalents. These neurons express secretagogin, a Ca2+-sensor protein, to execute an annexin V-dependent externalization of matrix metalloprotease-2 (MMP-2) for reconfiguring the extracellular matrix locally. Mouse genetics combined with pharmacological probing in vivo and in vitro demonstrate that MMP-2 externalization occurs on demand and that its loss slows neuroblast migration. Loss of function is particularly remarkable upon injury to the olfactory bulb. Cumulatively, we identify a signaling cascade that provokes structural remodeling of the RMS through recruitment of MMP-2 by a previously unrecognized neuronal constituent. Given the life-long presence of secretagogin-containing neurons in human, this mechanism might be exploited for therapeutic benefit in rescue strategies.
Collapse
|
30
|
Kosaka T, Yasuda S, Kosaka K. Calcium-binding protein, secretagogin, characterizes novel groups of interneurons in the rat striatum. Neurosci Res 2017; 119:53-60. [PMID: 28193530 DOI: 10.1016/j.neures.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/28/2016] [Accepted: 01/18/2017] [Indexed: 11/25/2022]
Abstract
In the rat striatum numerous secretagogin (SCGN) positive neurons were scattered. They were heterogeneous in their morphological and chemical properties. We examined the colocalization of SCGN with known four interneuron markers, parvalbumin (PV), calretinin (CR), nitric oxide synthase (NOS) and choline acetyl transferase (ChAT). 60-70% of SCGN positive striatal neurons contained either PV or CR or ChAT, but none contained NOS. On the other hand the remaining 30-40% expressed none of these markers, most of which were GAD positive. The present study indicates that there are hitherto unknown groups of striatal interneurons in the rat striatum.
Collapse
Affiliation(s)
- Toshio Kosaka
- Department of Medical Science Technology, Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa City, Fukuoka 831-8501, Japan.
| | - Seiko Yasuda
- Department of Medical Science Technology, Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa City, Fukuoka 831-8501, Japan
| | - Katsuko Kosaka
- Department of Medical Science Technology, Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa City, Fukuoka 831-8501, Japan
| |
Collapse
|
31
|
Khandelwal R, Sharma AK, Chadalawada S, Sharma Y. Secretagogin Is a Redox-Responsive Ca2+ Sensor. Biochemistry 2017; 56:411-420. [DOI: 10.1021/acs.biochem.6b00761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anand Kumar Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Swathi Chadalawada
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
32
|
Sanagavarapu K, Weiffert T, Ní Mhurchú N, O'Connell D, Linse S. Calcium Binding and Disulfide Bonds Regulate the Stability of Secretagogin towards Thermal and Urea Denaturation. PLoS One 2016; 11:e0165709. [PMID: 27812162 PMCID: PMC5094748 DOI: 10.1371/journal.pone.0165709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Secretagogin is a calcium-sensor protein with six EF-hands. It is widely expressed in neurons and neuro-endocrine cells of a broad range of vertebrates including mammals, fishes and amphibia. The protein plays a role in secretion and interacts with several vesicle-associated proteins. In this work, we have studied the contribution of calcium binding and disulfide-bond formation to the stability of the secretagogin structure towards thermal and urea denaturation. SDS-PAGE analysis of secretagogin in reducing and non-reducing conditions identified a tendency of the protein to form dimers in a redox-dependent manner. The denaturation of apo and Calcium-loaded secretagogin was studied by circular dichroism and fluorescence spectroscopy under conditions favoring monomer or dimer or a 1:1 monomer: dimer ratio. This analysis reveals significantly higher stability towards urea denaturation of Calcium-loaded secretagogin compared to the apo protein. The secondary and tertiary structure of the Calcium-loaded form is not completely denatured in the presence of 10 M urea. Reduced and Calcium-loaded secretagogin is found to refold reversibly after heating to 95°C, while both oxidized and reduced apo secretagogin is irreversibly denatured at this temperature. Thus, calcium binding greatly stabilizes the structure of secretagogin towards chemical and heat denaturation.
Collapse
Affiliation(s)
- Kalyani Sanagavarapu
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Tanja Weiffert
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Niamh Ní Mhurchú
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David O'Connell
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Garas FN, Shah RS, Kormann E, Doig NM, Vinciati F, Nakamura KC, Dorst MC, Smith Y, Magill PJ, Sharott A. Secretagogin expression delineates functionally-specialized populations of striatal parvalbumin-containing interneurons. eLife 2016; 5. [PMID: 27669410 PMCID: PMC5036963 DOI: 10.7554/elife.16088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Corticostriatal afferents can engage parvalbumin-expressing (PV+) interneurons to rapidly curtail the activity of striatal projection neurons (SPNs), thus shaping striatal output. Schemes of basal ganglia circuit dynamics generally consider striatal PV+ interneurons to be homogenous, despite considerable heterogeneity in both form and function. We demonstrate that the selective co-expression of another calcium-binding protein, secretagogin (Scgn), separates PV+ interneurons in rat and primate striatum into two topographically-, physiologically- and structurally-distinct cell populations. In rats, these two interneuron populations differed in their firing rates, patterns and relationships with cortical oscillations in vivo. Moreover, the axons of identified PV+/Scgn+ interneurons preferentially targeted the somata of SPNs of the so-called 'direct pathway', whereas PV+/Scgn- interneurons preferentially targeted 'indirect pathway' SPNs. These two populations of interneurons could therefore provide a substrate through which either of the striatal output pathways can be rapidly and selectively inhibited to subsequently mediate the expression of behavioral routines.
Collapse
Affiliation(s)
- Farid N Garas
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rahul S Shah
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Eszter Kormann
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Natalie M Doig
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Federica Vinciati
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Kouichi C Nakamura
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Matthijs C Dorst
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology, Emory University, Atlanta, United States.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, United States
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Calcium buffer proteins are specific markers of human retinal neurons. Cell Tissue Res 2016; 365:29-50. [PMID: 26899253 DOI: 10.1007/s00441-016-2376-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Ca(2+)-buffer proteins (CaBPs) modulate the temporal and spatial characteristics of transient intracellular Ca(2+)-concentration changes in neurons in order to fine-tune the strength and duration of the output signal. CaBPs have been used as neurochemical markers to identify and trace neurons of several brain loci including the mammalian retina. The CaBP content of retinal neurons, however, varies between species and, thus, the results inferred from animal models cannot be utilised directly by clinical ophthalmologists. Moreover, the shortage of well-preserved human samples greatly impedes human retina studies at the cellular and network level. Our purpose has therefore been to examine the distribution of major CaBPs, including calretinin, calbindin-D28, parvalbumin and the recently discovered secretagogin in exceptionally well-preserved human retinal samples. Based on a combination of immunohistochemistry, Neurolucida tracing and Lucifer yellow injections, we have established a database in which the CaBP marker composition can be defined for morphologically identified cell types of the human retina. Hence, we describe the full CaBP make-up for a number of human retinal neurons, including HII horizontal cells, AII amacrine cells, type-1 tyrosine-hydroxylase-expressing amacrine cells and other lesser known neurons. We have also found a number of unidentified cells whose morphology remains to be characterised. We present several examples of the colocalisation of two or three CaBPs with slightly different subcellular distributions in the same cell strongly suggesting a compartment-specific division of labour of Ca(2+)-buffering by CaBPs. Our work thus provides a neurochemical framework for future ophthalmological studies and renders new information concerning the cellular and subcellular distribution of CaBPs for experimental neuroscience.
Collapse
|
35
|
Neuronal organization of the main olfactory bulb revisited. Anat Sci Int 2015; 91:115-27. [PMID: 26514846 DOI: 10.1007/s12565-015-0309-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
The main olfactory bulb is now one of the most interesting parts of the brain; firstly as an excellent model for understanding the neural mechanisms of sensory information processing, and secondly as one of the most prominent sites whose interneurons are generated continuously in the postnatal and adult periods. The neuronal organization of the main olfactory bulb is fundamentally important as the basis of ongoing and future studies. In this review we focus on four issues, some of which appear not to have been recognized previously: (1) axons of periglomerular cells, (2) the heterogeneity and peculiarity of dopamine-GABAergic juxtaglomerular cells, (3) neurons participating in the interglomerular connections, and (4) newly found transglomerular cells.
Collapse
|
36
|
Bai Y, Sun Y, Peng J, Liao H, Gao H, Guo Y, Guo L. Overexpression of secretagogin inhibits cell apoptosis and induces chemoresistance in small cell lung cancer under the regulation of miR-494. Oncotarget 2015; 5:7760-75. [PMID: 25226615 PMCID: PMC4202159 DOI: 10.18632/oncotarget.2305] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Secretagogin (SCGN) has recently been identified to play a crucial role in cell apoptosis, receptor signaling and differentiation. However, its clinical significance and functional roles in SCLC chemoresistance remain unknown. Here we examined the expression of SCGN in clinical samples from SCLC patients and evaluated its relation with clinical prognosis. Then up and down-regulation of SCGN were carried out in SCLC cell lines to assess its influence on chemoresistance. Furthermore, luciferase reporter assay was used to evaluate whether SCGN is a novel direct target of miR-494. Our results revealed that elevated expression of SCGN was correlated with the poorer prognosis of SCLC patients and the more significant correlation with chemosensitivity. We also found that knockdown of SCGN expression in H69AR and H446AR cells increased chemosensitivity via increasing cell apoptosis and cell cycle arrest of G0/G1 phase, while over-expression of SCGN reduced chemosensitivity in sensitive H69 and H446 cells. SCGN as a novel target of miR-494 by luciferase reporter assay, up-regulation of miR-494 can sensitize H69AR cells to chemotherapeutic drugs. These results suggest SCGN is involved in the chemoresistance of SCLC under the regulation of miR-494 and may be a potential biomarker for predicting therapeutic response in treatment SCLC.
Collapse
Affiliation(s)
- Yifeng Bai
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China. Contributed equally to this work
| | - Yanqin Sun
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, School of Basic Medicine Science, Guangdong Medical College, Dongguan, China. Contributed equally to this work
| | - Juan Peng
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, the Third Affiliated Hospital Of Guangzhou Medical University, Guangzhou, China
| | - Hongzhan Liao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyi Gao
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ying Guo
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Romanov RA, Alpár A, Zhang MD, Zeisel A, Calas A, Landry M, Fuszard M, Shirran SL, Schnell R, Dobolyi Á, Oláh M, Spence L, Mulder J, Martens H, Palkovits M, Uhlen M, Sitte HH, Botting CH, Wagner L, Linnarsson S, Hökfelt T, Harkany T. A secretagogin locus of the mammalian hypothalamus controls stress hormone release. EMBO J 2015; 34:36-54. [PMID: 25430741 PMCID: PMC4291479 DOI: 10.15252/embj.201488977] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/07/2014] [Accepted: 10/21/2014] [Indexed: 11/09/2022] Open
Abstract
A hierarchical hormonal cascade along the hypothalamic-pituitary-adrenal axis orchestrates bodily responses to stress. Although corticotropin-releasing hormone (CRH), produced by parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) and released into the portal circulation at the median eminence, is known to prime downstream hormone release, the molecular mechanism regulating phasic CRH release remains poorly understood. Here, we find a cohort of parvocellular cells interspersed with magnocellular PVN neurons expressing secretagogin. Single-cell transcriptome analysis combined with protein interactome profiling identifies secretagogin neurons as a distinct CRH-releasing neuron population reliant on secretagogin's Ca(2+) sensor properties and protein interactions with the vesicular traffic and exocytosis release machineries to liberate this key hypothalamic releasing hormone. Pharmacological tools combined with RNA interference demonstrate that secretagogin's loss of function occludes adrenocorticotropic hormone release from the pituitary and lowers peripheral corticosterone levels in response to acute stress. Cumulatively, these data define a novel secretagogin neuronal locus and molecular axis underpinning stress responsiveness.
Collapse
Affiliation(s)
- Roman A Romanov
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Alán Alpár
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Amit Zeisel
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - André Calas
- Laboratory for Central Mechanisms of Pain Sensitization, Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 Université Bordeaux 2, Bordeaux, France
| | - Marc Landry
- Laboratory for Central Mechanisms of Pain Sensitization, Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 Université Bordeaux 2, Bordeaux, France
| | - Matthew Fuszard
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Sally L Shirran
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Robert Schnell
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Árpád Dobolyi
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Márk Oláh
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Lauren Spence
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| | - Mathias Uhlen
- Science for Life Laboratory, Albanova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology Medical University of Vienna, Vienna, Austria
| | | | - Ludwig Wagner
- University Clinic for Internal Medicine III General Hospital Vienna, Vienna, Austria
| | - Sten Linnarsson
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tibor Harkany
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Gáti G, Lendvai D, Hökfelt T, Harkany T, Alpár A. Revival of Calcium-Binding Proteins for Neuromorphology: Secretagogin Typifies Distinct Cell Populations in the Avian Brain. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:82-92. [DOI: 10.1159/000357834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022]
|
39
|
Weltzien F, Dimarco S, Protti DA, Daraio T, Martin PR, Grünert U. Characterization of secretagogin-immunoreactive amacrine cells in marmoset retina. J Comp Neurol 2013; 522:435-55. [DOI: 10.1002/cne.23420] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Felix Weltzien
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
| | | | | | - Teresa Daraio
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
| | - Paul R. Martin
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
- School of Medical Sciences; University of Sydney; Australia
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
| |
Collapse
|
40
|
Kosaka K, Kosaka T. Secretagogin-containing neurons in the mouse main olfactory bulb. Neurosci Res 2013; 77:16-32. [PMID: 24008127 DOI: 10.1016/j.neures.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 11/24/2022]
Abstract
Secretagogin (SCGN) is a recently discovered calcium binding protein of the EF hand family. We studied the structural features of SCGN-positive neurons in the mouse main olfactory bulb (MOB). SCGN-positive neurons were localized throughout layers but clustered in the glomerular layer (GL), mitral cell layer (MCL) and granule cell layer (GCL). They were heterogeneous, including numerous juxtaglomerular neurons, granule cells, small to medium-sized neurons in the external plexiform layer (EPL), and a few small cells in the ependymal/subependymal layer. Calretinin and/or tyrosine hydroxylase occasionally colocalized in SCGN-positive juxtaglomerular neurons. Calretinin also frequently colocalized in SCGN-positive EPL and GCL neurons. Morphologically some of juxtaglomerular SCGN-positive neurons were classical periglomerular cells, whereas others were apparently different from those periglomerular cells, although they were further heterogeneous. Some extended one slender process into a glomerulus which passed the glomerulus and further penetrated into another nearby glomeruli, and thus their dendritic processes spanned two or three or more glomeruli. We named this type of juxtaglomerular neurons "transglomerular cells." With the stereological analysis we estimated total number of juxtaglomerular SCGN-positive neurons at about 80,000/single MOB. The present study revealed the diversity of SCGN-positive neurons in the mouse MOB and their particular structural properties hitherto unknown.
Collapse
Affiliation(s)
- Katsuko Kosaka
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
41
|
Zimmermann B, Girard F, Mészàr Z, Celio MR. Expression of the calcium binding proteins Necab-1,-2 and -3 in the adult mouse hippocampus and dentate gyrus. Brain Res 2013; 1528:1-7. [PMID: 23850650 DOI: 10.1016/j.brainres.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/24/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
The family of EF-hand calcium binding proteins is composed of more than 250 members. In search for other neuronal markers, we studied the expression pattern of Necab-1, -2 and -3 in the Ammons horn of adult mice at the gene- and protein levels using in-situ hybridization and immunohistochemistry. The genes for the three Necab's were expressed in specific, non-overlapping areas of the hippocampus. A minority of the Necab-positive interneurons were GABA-ergic, and they virtually never coexpressed one of the classical calcium binding proteins (calretinin, calbindin D-28k and parvalbumin). Necab's are promising new neuronal markers in the brain.
Collapse
Affiliation(s)
- B Zimmermann
- Division of Anatomy and Program in Neuroscience, University of Fribourg, Rte. A.Gockel 1, CH-1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
42
|
Gyengesi E, Paxinos G, Andrews ZB. Oxidative Stress in the Hypothalamus: the Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation. Curr Neuropharmacol 2013; 10:344-53. [PMID: 23730258 PMCID: PMC3520044 DOI: 10.2174/157015912804143496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/12/2012] [Accepted: 08/02/2012] [Indexed: 12/25/2022] Open
Abstract
A considerable amount of evidence shows that reactive oxygen species (ROS) in the mammalian brain are directly responsible for cell and tissue function and dysfunction. Excessive reactive oxygen species contribute to various conditions including inflammation, diabetes mellitus, neurodegenerative diseases, tumor formation, and mental disorders such as depression. Increased intracellular calcium levels have toxic roles leading to cell death. However, the exact connection between reactive oxygen production and high calcium stress is not yet fully understood. In this review, we focus on the role of reactive oxygen species and calcium stress in hypothalamic arcuate neurons controlling feeding. We revisit the role of NPY and POMC neurons in the regulation of appetite and energy homeostasis, and consider how ROS and intracellular calcium levels affect these neurons. These novel insights give a new direction to research on hypothalamic mechanisms regulating energy homeostasis and may offer novel treatment strategies for obesity and type-2 diabetes.
Collapse
Affiliation(s)
- Erika Gyengesi
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, Australia
| | | | | |
Collapse
|
43
|
Gyengesi E, Andrews ZB, Paxinos G, Zaborszky L. Distribution of secretagogin-containing neurons in the basal forebrain of mice, with special reference to the cholinergic corticopetal system. Brain Res Bull 2013; 94:1-8. [PMID: 23376788 DOI: 10.1016/j.brainresbull.2013.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/09/2013] [Accepted: 01/22/2013] [Indexed: 01/21/2023]
Abstract
Cholinergic and GABAergic corticopetal neurons in the basal forebrain play important roles in cortical activation, sensory processing, and attention. Cholinergic neurons are intermingled with peptidergic, and various calcium binding protein-containing cells, however, the functional role of these neurons is not well understood. In this study we examined the expression pattern of secretagogin (Scgn), a newly described calcium-binding protein, in neurons of the basal forebrain. We also assessed some of the corticopetal projections of Scgn neurons and their co-localization with choline acetyltransferase (ChAT), neuropeptide-Y, and other calcium-binding proteins (i.e., calbindin, calretinin, and parvalbumin). Scgn is expressed in cell bodies of the medial and lateral septum, vertical and horizontal diagonal band nuclei, and of the extension of the amygdala but it is almost absent in the ventral pallidum. Scgn is co-localized with ChAT in neurons of the bed nucleus of the stria terminalis, extension of the amygdala, and interstitial nucleus of the posterior limb of the anterior commissure. Scgn was co-localized with calretinin in the accumbens nucleus, medial division of the bed nucleus of stria terminalis, the extension of the amygdala, and interstitial nucleus of the posterior limb of the anterior commissure. We have not found co-expression of Scgn with parvalbumin, calbindin, or neuropeptide-Y. Retrograde tracing studies using Fluoro Gold in combination with Scgn-specific immunohistochemistry revealed that Scgn neurons situated in the nucleus of the horizontal limb of the diagonal band project to retrosplenial and cingulate cortical areas.
Collapse
Affiliation(s)
- Erika Gyengesi
- Neuroscience Research Australia, Randwick, NSW 2031, Australia.
| | | | | | | |
Collapse
|
44
|
Light AC, Zhu Y, Shi J, Saszik S, Lindstrom S, Davidson L, Li X, Chiodo VA, Hauswirth WW, Li W, DeVries SH. Organizational motifs for ground squirrel cone bipolar cells. J Comp Neurol 2012; 520:2864-87. [PMID: 22778006 DOI: 10.1002/cne.23068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In daylight vision, parallel processing starts at the cone synapse. Cone signals flow to On and Off bipolar cells, which are further divided into types according to morphology, immunocytochemistry, and function. The axons of the bipolar cell types stratify at different levels in the inner plexiform layer (IPL) and can interact with costratifying amacrine and ganglion cells. These interactions endow the ganglion cell types with unique functional properties. The wiring that underlies the interactions among bipolar, amacrine, and ganglion cells is poorly understood. It may be easier to elucidate this wiring if organizational rules can be established. We identify 13 types of cone bipolar cells in the ground squirrel, 11 of which contact contiguous cones, with the possible exception of short-wavelength-sensitive cones. Cells were identified by antibody labeling, tracer filling, and Golgi-like filling following transduction with an adeno-associated virus encoding for green fluorescent protein. The 11 bipolar cell types displayed two organizational patterns. In the first pattern, eight to 10 of the 11 types came in pairs with partially overlapping axonal stratification. Pairs shared morphological, immunocytochemical, and functional properties. The existence of similar pairs is a new motif that might have implications for how signals first diverge from a cone to bipolar cells and then reconverge onto a costratifying ganglion cell. The second pattern is a mirror symmetric organization about the middle of the IPL involving at least seven bipolar cell types. This anatomical symmetry may be associated with a functional symmetry in On and Off ganglion cell responses.
Collapse
Affiliation(s)
- Adam C Light
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shi TJS, Xiang Q, Zhang MD, Tortoriello G, Hammarberg H, Mulder J, Fried K, Wagner L, Josephson A, Uhlén M, Harkany T, Hökfelt T. Secretagogin is expressed in sensory CGRP neurons and in spinal cord of mouse and complements other calcium-binding proteins, with a note on rat and human. Mol Pain 2012; 8:80. [PMID: 23102406 PMCID: PMC3560279 DOI: 10.1186/1744-8069-8-80] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/10/2012] [Indexed: 11/18/2022] Open
Abstract
Background Secretagogin (Scgn), a member of the EF-hand calcium-binding protein (CaBP) superfamily, has recently been found in subsets of developing and adult neurons. Here, we have analyzed the expression of Scgn in dorsal root ganglia (DRGs) and trigeminal ganglia (TGs), and in spinal cord of mouse at the mRNA and protein levels, and in comparison to the well-known CaBPs, calbindin D-28k, parvalbumin and calretinin. Rat DRGs, TGs and spinal cord, as well as human DRGs and spinal cord were used to reveal phylogenetic variations. Results We found Scgn mRNA expressed in mouse and human DRGs and in mouse ventral spinal cord. Our immunohistochemical data showed a complementary distribution of Scgn and the three CaBPs in mouse DRG neurons and spinal cord. Scgn was expressed in ~7% of all mouse DRG neuron profiles, mainly small ones and almost exclusively co-localized with calcitonin gene-related peptide (CGRP). This co-localization was also seen in human, but not in rat DRGs. Scgn could be detected in the mouse sciatic nerve and accumulated proximal to its constriction. In mouse spinal cord, Scgn-positive neuronal cell bodies and fibers were found in gray matter, especially in the dorsal horn, with particularly high concentrations of fibers in the superficial laminae, as well as in cell bodies in inner lamina II and in some other laminae. A dense Scgn-positive fiber network and some small cell bodies were also found in the superficial dorsal horn of humans. In the ventral horn, a small number of neurons were Scgn-positive in mouse but not rat, confirming mRNA distribution. Both in mouse and rat, a subset of TG neurons contained Scgn. Dorsal rhizotomy strongly reduced Scgn fiber staining in the dorsal horn. Peripheral axotomy did not clearly affect Scgn expression in DRGs, dorsal horn or ventral horn neurons in mouse. Conclusions Scgn is a CaBP expressed in a subpopulation of nociceptive DRG neurons and their processes in the dorsal horn of mouse, human and rat, the former two co-expressing CGRP, as well as in dorsal horn neurons in all three species. Functional implications of these findings include the cellular refinement of sensory information, in particular during the processing of pain.
Collapse
Affiliation(s)
- Tie-Jun Sten Shi
- School of Life Science and Technology, Harbin Institute of Technology, 150001 Harbin, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Patterns of heterogeneous expression of pannexin 1 and pannexin 2 transcripts in the olfactory epithelium and olfactory bulb. J Mol Histol 2012; 43:651-60. [PMID: 22945868 DOI: 10.1007/s10735-012-9443-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Pannexins form membrane channels that release biological signals to communicate with neighboring cells. Here, we report expression patterns of pannexin 1 (Panx1) and pannexin 2 (Panx2) in the olfactory epithelium and olfactory bulb of adult mice. In situ hybridization revealed that mRNAs for Panx1 and Panx2 were both expressed in the olfactory epithelium and olfactory bulb. Expression of Panx1 and Panx2 was mainly found in cell bodies below the sustentacular cell layer in the olfactory epithelium, indicating that Panx1 and Panx2 are expressed in mature and immature olfactory neurons, and basal cells. Expression of Panx2 was observed in sustentacular cells in a few locations of the olfactory epithelium. In the olfactory bulb, Panx1 and Panx2 were expressed in spatial patterns. Many mitral cells, tufted cells, periglomerular cells and granule cells were Panx1 and Panx2 positive. Mitral cells located at the dorsal and lateral portions of the olfactory bulb showed weak Panx1 expression compared with those in the medial side. However, the opposite was true for the distribution of Panx2 positive mitral cells. There were more Panx2 mRNA positive mitral cells and granule cells compared to those expressing Panx1. Our findings on pannexin expression in the olfactory system of adult mice raise the novel possibility that pannexins play a role in information processing in the olfactory system. Demonstration of expression patterns of pannexins in the olfactory system provides an anatomical basis for future functional studies.
Collapse
|
47
|
Uhlen M. A Human Protein Atlas to study human biology and disease. N Biotechnol 2012. [DOI: 10.1016/j.nbt.2012.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Tan WSD, Lee JJ, Satish RL, Ang ET. Detectability of secretagogin in human erythrocytes. Neurosci Lett 2012; 526:59-62. [PMID: 22921511 DOI: 10.1016/j.neulet.2012.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/16/2012] [Accepted: 08/05/2012] [Indexed: 11/29/2022]
Abstract
Secretagogin is a six EF-hand calcium-binding protein that can identify granule cells in the dentate gyrus of hippocampus. The aim of this study was to determine if secretagogin can be detected in human blood cells. Eight adult males were recruited for blood analysis. Whole blood was separated into plasma, peripheral mononuclear cells and erythrocytes with Ficoll-Paque and probed for secretagogin using reverse-transcription polymerase chain reaction and Western blot. While secretagogin mRNA was detected in both peripheral mononuclear cells and erythrocytes using reverse-transcription polymerase chain reaction, SCGN protein was only detected in erythrocytes. Interestingly, peripheral mononuclear cells secretagogin mRNA expression levels showed significant negative correlation with age. This begets the question on the function of secretagogin in blood cells and if it is correlated to neurodegeneration associated with ageing. This remains our impetus for further research.
Collapse
Affiliation(s)
- Wan Shun Daniel Tan
- Department of Anatomy, Yong Loon Lin School of Medicine, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
49
|
Maj M, Milenkovic I, Bauer J, Berggård T, Veit M, Ilhan-Mutlu A, Wagner L, Tretter V. Novel insights into the distribution and functional aspects of the calcium binding protein secretagogin from studies on rat brain and primary neuronal cell culture. Front Mol Neurosci 2012; 5:84. [PMID: 22888312 PMCID: PMC3412267 DOI: 10.3389/fnmol.2012.00084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/17/2012] [Indexed: 11/13/2022] Open
Abstract
Secretagogin is a calcium binding protein (CBP) highly expressed in neuroendocrine cells. It has been shown to be involved in insulin secretion from pancreatic beta cells and is a strong candidate as a biomarker for endocrine tumors, stroke, and eventually psychiatric conditions. Secretagogin has been hypothesized to exert a neuroprotective role in neurodegenerative diseases like Alzheimer's disease. The expression pattern of Secretagogin is not conserved from rodents to humans. We used brain tissue and primary neuronal cell cultures from rat to further characterize this CBP in rodents and to perform a few functional assays in vitro. Immunohistochemistry on rat brain slices revealed a high density of Secretagogin-positive cells in distinct brain regions. Secretagogin was found in the cytosol or associated with subcellular compartments. We tested primary neuronal cultures for their suitability as model systems to further investigate functional properties of Secretagogin. These cultures can easily be manipulated by treatment with drugs or by transfection with test constructs interfering with signaling cascades that might be linked to the cellular function of Secretagogin. We show that, like in pancreatic beta cells and insulinoma cell lines, also in neurons the expression level of Secretagogin is dependent on extracellular insulin and glucose. Further, we show also for rat brain neuronal tissue that Secretagogin interacts with the microtubule-associated protein Tau and that this interaction is dependent on Ca(2+). Future studies should aim to study in further detail the molecular properties and function of Secretagogin in individual neuronal cell types, in particular the subcellular localization and trafficking of this protein and a possible active secretion by neurons.
Collapse
Affiliation(s)
- Magdalena Maj
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medizinische Universität Wien Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Exploring the Human Protein Atlas in the field of toxicology. Toxicol Lett 2012. [DOI: 10.1016/j.toxlet.2012.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|