1
|
Zhou Q, Wang R, Su Y, Wang B, Zhang Y, Qin X. The molecular circadian rhythms regulating the cell cycle. J Cell Biochem 2024; 125:e30539. [PMID: 38372014 DOI: 10.1002/jcb.30539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The circadian clock controls the expression of a large proportion of protein-coding genes in mammals and can modulate a wide range of physiological processes. Recent studies have demonstrated that disruption or dysregulation of the circadian clock is involved in the development and progression of several diseases, including cancer. The cell cycle is considered to be the fundamental process related to cancer. Accumulating evidence suggests that the circadian clock can control the expression of a large number of genes related to the cell cycle. This article reviews the mechanism of cell cycle-related genes whose chromatin regulatory elements are rhythmically occupied by core circadian clock transcription factors, while their RNAs are rhythmically expressed. This article further reviews the identified oscillatory cell cycle-related genes in higher organisms such as baboons and humans. The potential functions of these identified genes in regulating cell cycle progression are also discussed. Understanding how the molecular clock controls the expression of cell cycle genes will be beneficial for combating and treating cancer.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ruohan Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunxia Su
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Bowen Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Fortin BM, Mahieu AL, Fellows RC, Pannunzio NR, Masri S. Circadian clocks in health and disease: Dissecting the roles of the biological pacemaker in cancer. F1000Res 2023; 12:116. [PMID: 39282509 PMCID: PMC11399774 DOI: 10.12688/f1000research.128716.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/19/2024] Open
Abstract
In modern society, there is a growing population affected by circadian clock disruption through night shift work, artificial light-at-night exposure, and erratic eating patterns. Concurrently, the rate of cancer incidence in individuals under the age of 50 is increasing at an alarming rate, and though the precise risk factors remain undefined, the potential links between circadian clock deregulation and young-onset cancers is compelling. To explore the complex biological functions of the clock, this review will first provide a framework for the mammalian circadian clock in regulating critical cellular processes including cell cycle control, DNA damage response, DNA repair, and immunity under conditions of physiological homeostasis. Additionally, this review will deconvolute the role of the circadian clock in cancer, citing divergent evidence suggesting tissue-specific roles of the biological pacemaker in cancer types such as breast, lung, colorectal, and hepatocellular carcinoma. Recent evidence has emerged regarding the role of the clock in the intestinal epithelium, as well as new insights into how genetic and environmental disruption of the clock is linked with colorectal cancer, and the molecular underpinnings of these findings will be discussed. To place these findings within a context and framework that can be applied towards human health, a focus on how the circadian clock can be leveraged for cancer prevention and chronomedicine-based therapies will be outlined.
Collapse
Affiliation(s)
- Bridget M. Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Rachel C. Fellows
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
- Department of Medicine, University of California, Irvine, Irvine, California, 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| |
Collapse
|
3
|
Mawatari K, Koike N, Nohara K, Wirianto M, Uebanso T, Shimohata T, Shikishima Y, Miura H, Nii Y, Burish MJ, Yagita K, Takahashi A, Yoo SH, Chen Z. The Polymethoxyflavone Sudachitin Modulates the Circadian Clock and Improves Liver Physiology. Mol Nutr Food Res 2023; 67:e2200270. [PMID: 36829302 DOI: 10.1002/mnfr.202200270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/13/2022] [Indexed: 02/26/2023]
Abstract
SCOPE Polymethoxylated flavones (PMFs) are a group of natural compounds known to display a wide array of beneficial effects to promote physiological fitness. Recent studies reveal circadian clocks as an important cellular mechanism mediating preventive efficacy of the major PMF Nobiletin against metabolic disorders. Sudachitin is a PMF enriched in Citrus sudachi, and its functions and mechanism of action are poorly understood. METHODS AND RESULTS Using circadian reporter cells, it shows that Sudachitin modulates circadian amplitude and period of Bmal1 promoter-driven reporter rhythms, and real-time qPCR analysis shows that Sudachitin alters expression of core clock genes, notably Bmal1, at both transcript and protein levels. Mass-spec analysis reveals systemic exposure in vivo. In mice fed with high-fat diet with or without Sudachitin, it observes increased nighttime activity and daytime sleep, accompanied by significant metabolic improvements in a circadian time-dependent manner, including respiratory quotient, blood lipid and glucose profiles, and liver physiology. Focusing on liver, RNA-sequencing and metabolomic analyses reveal prevalent diurnal alteration in both gene expression and metabolite accumulation. CONCLUSION This study elucidates Sudachitin as a new clock-modulating PMF with beneficial effects to improve diurnal metabolic homeostasis and liver physiology, suggesting the circadian clock as a fundamental mechanism to safeguard physiological well-being.
Collapse
Affiliation(s)
- Kazuaki Mawatari
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, 465 Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Yasuhiro Shikishima
- Ikeda Yakusou Corporation, 1808-1 Shuzunakatsu, Ikeda-cho, Miyoshi-city, Tokushima, 778-0020, Japan
| | - Hiroyuki Miura
- Ikeda Yakusou Corporation, 1808-1 Shuzunakatsu, Ikeda-cho, Miyoshi-city, Tokushima, 778-0020, Japan
| | - Yoshitaka Nii
- Food and Biotechnology Division, Tokushima Prefectural Industrial Technology Center, 11-2 Nishibari, Saika-cho, Tokushima, 770-8021, Japan
| | - Mark J Burish
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, 465 Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| |
Collapse
|
4
|
Villanueva-Carmona T, Cedó L, Madeira A, Ceperuelo-Mallafré V, Rodríguez-Peña MM, Núñez-Roa C, Maymó-Masip E, Repollés-de-Dalmau M, Badia J, Keiran N, Mirasierra M, Pimenta-Lopes C, Sabadell-Basallote J, Bosch R, Caubet L, Escolà-Gil JC, Fernández-Real JM, Vilarrasa N, Ventura F, Vallejo M, Vendrell J, Fernández-Veledo S. SUCNR1 signaling in adipocytes controls energy metabolism by modulating circadian clock and leptin expression. Cell Metab 2023; 35:601-619.e10. [PMID: 36977414 DOI: 10.1016/j.cmet.2023.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status. Adipocyte Sucnr1 deficiency impairs leptin response to feeding, whereas oral succinate mimics nutrient-related leptin dynamics via SUCNR1. SUCNR1 activation controls leptin expression via the circadian clock in an AMPK/JNK-C/EBPα-dependent manner. Although the anti-lipolytic role of SUCNR1 prevails in obesity, its function as a regulator of leptin signaling contributes to the metabolically favorable phenotype in adipocyte-specific Sucnr1 knockout mice under standard dietary conditions. Obesity-associated hyperleptinemia in humans is linked to SUCNR1 overexpression in adipocytes, which emerges as the major predictor of adipose tissue leptin expression. Our study establishes the succinate/SUCNR1 axis as a metabolite-sensing pathway mediating nutrient-related leptin dynamics to control whole-body homeostasis.
Collapse
Affiliation(s)
- Teresa Villanueva-Carmona
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Lídia Cedó
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Madeira
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Victòria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - M-Mar Rodríguez-Peña
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Catalina Núñez-Roa
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Elsa Maymó-Masip
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria Repollés-de-Dalmau
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Joan Badia
- Institut d'Oncologia de la Catalunya Sud, Hospital Universitari Sant Joan de Reus, IISPV, Reus 43204, Spain
| | - Noelia Keiran
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mercedes Mirasierra
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Joan Sabadell-Basallote
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ramón Bosch
- Department of Pathology, Oncological Pathology and Bioinformatics Research Group, Hospital de Tortosa Verge de la Cinta, IISPV, Tortosa 43500, Spain
| | - Laura Caubet
- General and Digestive Surgery Service, Hospital Sant Pau i Santa Tecla, Institut d'Investigació Sanitària Pere Virgili, Tarragona 43003, Spain
| | - Joan Carles Escolà-Gil
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona 08041, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Salt 17190, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona 17004, Spain
| | - Nuria Vilarrasa
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Endocrinology and Nutrition, Hospital Universitari Bellvitge - IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Mario Vallejo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Joan Vendrell
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
5
|
Taleb Z, Karpowicz P. Circadian regulation of digestive and metabolic tissues. Am J Physiol Cell Physiol 2022; 323:C306-C321. [PMID: 35675638 DOI: 10.1152/ajpcell.00166.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian clock is a self-sustained molecular timekeeper that drives 24-h (circadian) rhythms in animals. The clock governs important aspects of behavior and physiology including wake/sleep activity cycles that regulate the activity of metabolic and digestive systems. Light/dark cycles (photoperiod) and cycles in the time of feeding synchronize the circadian clock to the surrounding environment, providing an anticipatory benefit that promotes digestive health. The availability of animal models targeting the genetic components of the circadian clock has made it possible to investigate the circadian clock's role in cellular functions. Circadian clock genes have been shown to regulate the physiological function of hepatocytes, gastrointestinal cells, and adipocytes; disruption of the circadian clock leads to the exacerbation of liver diseases and liver cancer, inflammatory bowel disease and colorectal cancer, and obesity. Previous findings provide strong evidence that the circadian clock plays an integral role in digestive/metabolic disease pathogenesis, hence, the circadian clock is a necessary component in metabolic and digestive health and homeostasis. Circadian rhythms and circadian clock function provide an opportunity to improve the prevention and treatment of digestive and metabolic diseases by aligning digestive system tissue with the 24-h day.
Collapse
Affiliation(s)
- Zainab Taleb
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
6
|
Wu Y, Tian T, Wu Y, Yang Y, Zhang Y, Qin X. Systematic Studies of the Circadian Clock Genes Impact on Temperature Compensation and Cell Proliferation Using CRISPR Tools. BIOLOGY 2021; 10:biology10111204. [PMID: 34827197 PMCID: PMC8614980 DOI: 10.3390/biology10111204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary One of the major characteristics of the circadian clock is temperature compensation, and previous studies suggested a single clock gene may determine the temperature compensation. In this study, we report the first full collection of clock gene knockout cell lines using CRISPR/Cas9 tools. Our full collections indicate that the temperature compensation is a complex gene regulation system instead of being regulated by any single gene. Besides, we systematically compared the proliferation rates and circadian periods using our full collections, and we found that the cell growth rate is not dependent on the circadian period. Therefore, complex interaction between clock genes and their protein products may underlie the mechanism of temperature compensation, which needs further investigations. Abstract Mammalian circadian genes are capable of producing a self-sustained, autonomous oscillation whose period is around 24 h. One of the major characteristics of the circadian clock is temperature compensation. However, the mechanism underlying temperature compensation remains elusive. Previous studies indicate that a single clock gene may determine the temperature compensation in several model organisms. In order to understand the influence of each individual clock gene on the temperature compensation, twenty-three well-known mammalian clock genes plus Timeless and Myc genes were knocked out individually, using a powerful gene-editing tool, CRISPR/Cas9. First, Bmal1, Cry1, and Cry2 were knocked out as examples to verify that deleting genes by CRISPR is effective and precise. Cell lines targeting twenty-two genes were successfully edited in mouse fibroblast NIH3T3 cells, and off-target analysis indicated these genes were correctly knocked out. Through measuring the luciferase reporters, the circadian periods of each cell line were recorded under two different temperatures, 32.5 °C and 37 °C. The temperature compensation coefficient Q10 was subsequently calculated for each cell line. Estimations of the Q10 of these cell lines showed that none of the individual cell lines can adversely affect the temperature compensation. Cells with a longer period at lower temperature tend to have a shorter period at higher temperature, while cells with a shorter period at lower temperature tend to be longer at higher temperature. Thus, the temperature compensation is a fundamental property to keep cellular homeostasis. We further conclude that the temperature compensation is a complex gene regulation system instead of being regulated by any single gene. We also estimated the proliferation rates of these cell lines. After systematically comparing the proliferation rates and circadian periods, we found that the cell growth rate is not dependent on the circadian period.
Collapse
Affiliation(s)
- Yue Wu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Tian Tian
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yin Wu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yu Yang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yunfei Zhang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
- Moeden Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Correspondence: (Y.Z.); (X.Q.)
| | - Ximing Qin
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
- Correspondence: (Y.Z.); (X.Q.)
| |
Collapse
|
7
|
Effects of aging and tumorigenesis on coupling between the circadian clock and cell cycle in colonic mucosa. Mech Ageing Dev 2020; 190:111317. [PMID: 32745473 DOI: 10.1016/j.mad.2020.111317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/21/2020] [Accepted: 07/14/2020] [Indexed: 01/20/2023]
Abstract
Aging and tumorigenesis are associated with decline and disruption of circadian rhythms in many tissues and accumulating evidence indicates molecular link between circadian clock and cell cycle. The aim of this study was to investigate the effect of aging and tumorigenesis on coupling between cell cycle and circadian clock oscillators in colon, which undergoes regular rhythmicity of cell cycle and expresses peripheral circadian clock. Using healthy 14-week-old mice and 33-week-old mice with and without colorectal tumors, we showed that the 24-h expression profiles of clock genes and clock-controlled genes were mostly unaffected by aging, whereas the genes of cell cycle and cell proliferation were rhythmic in the young colons but were silenced during aging. On the other hand, tumorigenesis completely silenced or dampened the circadian rhythmicity of the clock genes but only a few genes associated with cell cycle progression and cell proliferation. These results suggest that aging impacts the colonic circadian clock moderately but markedly suppresses the rhythms of cell cycle genes and appears to uncouple the cell cycle machinery from circadian clock control. Conversely, tumorigenesis predominantly affects the rhythms of colonic circadian clocks but is not associated with uncoupling of circadian clock and cell cycle.
Collapse
|
8
|
Nikhil KL, Korge S, Kramer A. Heritable gene expression variability and stochasticity govern clonal heterogeneity in circadian period. PLoS Biol 2020; 18:e3000792. [PMID: 32745129 PMCID: PMC7425987 DOI: 10.1371/journal.pbio.3000792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 08/13/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022] Open
Abstract
A ubiquitous feature of the circadian clock across life forms is its organization as a network of cellular oscillators, with individual cellular oscillators within the network often exhibiting considerable heterogeneity in their intrinsic periods. The interaction of coupling and heterogeneity in circadian clock networks is hypothesized to influence clock’s entrainability, but our knowledge of mechanisms governing period heterogeneity within circadian clock networks remains largely elusive. In this study, we aimed to explore the principles that underlie intercellular period variation in circadian clock networks (clonal period heterogeneity). To this end, we employed a laboratory selection approach and derived a panel of 25 clonal cell populations exhibiting circadian periods ranging from 22 to 28 h. We report that a single parent clone can produce progeny clones with a wide distribution of circadian periods, and this heterogeneity, in addition to being stochastically driven, has a heritable component. By quantifying the expression of 20 circadian clock and clock-associated genes across our clone panel, we found that inheritance of expression patterns in at least three clock genes might govern clonal period heterogeneity in circadian clock networks. Furthermore, we provide evidence suggesting that heritable epigenetic variation in gene expression regulation might underlie period heterogeneity. How do genetically identical cells exhibit a different circadian phenotype? This study reveals that a single parent clone can produce progeny with a wide distribution of circadian periods and that this heterogeneity, in addition to being stochastically driven, has a heritable component, likely via heritable epigenetic variation in gene expression regulation.
Collapse
Affiliation(s)
- K. L. Nikhil
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sandra Korge
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- * E-mail:
| |
Collapse
|
9
|
Parasram K, Karpowicz P. Time after time: circadian clock regulation of intestinal stem cells. Cell Mol Life Sci 2020; 77:1267-1288. [PMID: 31586240 PMCID: PMC11105114 DOI: 10.1007/s00018-019-03323-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Daily fluctuations in animal physiology, known as circadian rhythms, are orchestrated by a conserved molecular timekeeper, known as the circadian clock. The circadian clock forms a transcription-translation feedback loop that has emerged as a central biological regulator of many 24-h processes. Early studies of the intestine discovered that many digestive functions have a daily rhythm and that intestinal cell production was similarly time-dependent. As genetic methods in model organisms have become available, it has become apparent that the circadian clock regulates many basic cellular functions, including growth, proliferation, and differentiation, as well as cell signalling and stem cell self-renewal. Recent connections between circadian rhythms and immune system function, and between circadian rhythms and microbiome dynamics, have also been revealed in the intestine. These processes are highly relevant in understanding intestinal stem cell biology. Here we describe the circadian clock regulation of intestinal stem cells primarily in two model organisms: Drosophila melanogaster and mice. Like all cells in the body, intestinal stem cells are subject to circadian timing, and both cell-intrinsic and cell-extrinsic circadian processes contribute to their function.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Phillip Karpowicz
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
10
|
Droin C, Paquet ER, Naef F. Low-dimensional Dynamics of Two Coupled Biological Oscillators. NATURE PHYSICS 2019; 15:1086-1094. [PMID: 32528550 PMCID: PMC7289635 DOI: 10.1038/s41567-019-0598-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/18/2019] [Indexed: 06/11/2023]
Abstract
The circadian clock and the cell cycle are two biological oscillatory processes that coexist within individual cells. These two oscillators were found to interact, which can lead to their synchronization. Here, we develop a method to identify a low-dimensional stochastic model of the coupled system directly from time-lapse imaging in single cells. In particular, we infer the coupling and non-linear dynamics of the two oscillators from thousands of mouse and human single-cell fluorescence microscopy traces. This coupling predicts multiple phase-locked states showing different degrees of robustness against molecular fluctuations inherent to cellular-scale biological oscillators. For the 1:1 state, the predicted phase-shifts upon period perturbations were validated experimentally. Moreover, the phase-locked states are temperature-independent and evolutionarily conserved from mouse to human, hinting at a common underlying dynamical mechanism. Finally, we detect a signature of the coupled dynamics in a physiological context, explaining why tissues with different proliferation states exhibited shifted circadian clock phases.
Collapse
|
11
|
Intestinal Stem Cells Exhibit Conditional Circadian Clock Function. Stem Cell Reports 2019; 11:1287-1301. [PMID: 30428387 PMCID: PMC6235668 DOI: 10.1016/j.stemcr.2018.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
The circadian clock is a molecular pacemaker that produces 24-hr physiological cycles known as circadian rhythms. How the clock regulates stem cells is an emerging area of research with many outstanding questions. We tested clock function in vivo at the single cell resolution in the Drosophila intestine, a tissue that is exquisitely sensitive to environmental cues and has circadian rhythms in regeneration. Our results indicate that circadian clocks function in intestinal stem cells and enterocytes but are downregulated during enteroendocrine cell differentiation. Drosophila intestinal cells are principally synchronized by the photoperiod, but intestinal stem cell clocks are highly responsive to signaling pathways that comprise their niche, and we find that the Wnt and Hippo signaling pathways positively regulate stem cell circadian clock function. These data reveal that intestinal stem cell circadian rhythms are regulated by cellular signaling and provide insight as to how clocks may be altered during physiological changes such as regeneration and aging. Intestinal epithelial cells have circadian clock function but enteroendocrine cells do not Restricted feeding can entrain circadian clocks in the absence of photoperiod Circadian clock communication exists between intestinal stem cells and enterocytes Notch, Wnt, and Hippo signaling regulate stem cell clock function
Collapse
|
12
|
The Cancer Clock Is (Not) Ticking: Links between Circadian Rhythms and Cancer. Clocks Sleep 2019; 1:435-458. [PMID: 33089179 PMCID: PMC7445810 DOI: 10.3390/clockssleep1040034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythms regulate many physiological and behavioral processes, including sleep, metabolism and cell division, which have a 24-h oscillation pattern. Rhythmicity is generated by a transcriptional–translational feedback loop in individual cells, which are synchronized by the central pacemaker in the brain and external cues. Epidemiological and clinical studies indicate that disruption of these rhythms can increase both tumorigenesis and cancer progression. Environmental changes (shift work, jet lag, exposure to light at night), mutations in circadian regulating genes, and changes to clock gene expression are recognized forms of disruption and are associated with cancer risk and/or cancer progression. Experimental data in animals and cell cultures further supports the role of the cellular circadian clock in coordinating cell division and DNA repair, and disrupted cellular clocks accelerate cancer cell growth. This review will summarize studies linking circadian disruption to cancer biology and explore how such disruptions may be further altered by common characteristics of tumors including hypoxia and acidosis. We will highlight how circadian rhythms might be exploited for cancer drug development, including how delivery of current chemotherapies may be enhanced using chronotherapy. Understanding the role of circadian rhythms in carcinogenesis and tumor progression will enable us to better understand causes of cancer and how to treat them.
Collapse
|
13
|
Yan J, Goldbeter A. Robust synchronization of the cell cycle and the circadian clock through bidirectional coupling. J R Soc Interface 2019; 16:20190376. [PMID: 31506042 PMCID: PMC6769306 DOI: 10.1098/rsif.2019.0376] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cell cycle and the circadian clock represent major cellular rhythms, which appear to be coupled. Thus the circadian factor BMAL1 controls the level of cell cycle proteins such as Cyclin E and WEE1, the latter of which inhibits the kinase CDK1 that governs the G2/M transition. In reverse the cell cycle impinges on the circadian clock through direct control by CDK1 of REV-ERBα, which negatively regulates BMAL1. These observations provide evidence for bidirectional coupling of the cell cycle and the circadian clock. By merging detailed models for the two networks in mammalian cells, we previously showed that unidirectional coupling to the circadian clock can entrain the cell cycle to 24 or 48 h, depending on the cell cycle autonomous period, while complex oscillations occur when entrainment fails. Here we show that the reverse unidirectional coupling via phosphorylation of REV-ERBα or via mitotic inhibition of transcription, both controlled by CDK1, can elicit entrainment of the circadian clock by the cell cycle. We then determine the effect of bidirectional coupling of the cell cycle and circadian clock as a function of their relative coupling strengths. In contrast to unidirectional coupling, bidirectional coupling markedly reduces the likelihood of complex oscillations. While the two rhythms oscillate independently as long as both couplings are weak, one rhythm entrains the other if one of the couplings dominates. If the couplings in both directions become stronger and of comparable magnitude, the two rhythms synchronize, generally at an intermediate period within the range defined by the two autonomous periods prior to coupling. More surprisingly, synchronization may also occur at a period slightly below or above this range, while in some conditions the synchronization period can even be much longer. Two or even three modes of synchronization may sometimes coexist, yielding examples of birhythmicity or trirhythmicity. Because synchronization readily occurs in the form of simple periodic oscillations over a wide range of coupling strengths and in the presence of multiple connections between the two oscillatory networks, the results indicate that bidirectional coupling favours the robust synchronization of the cell cycle and the circadian clock.
Collapse
Affiliation(s)
- Jie Yan
- Center for Systems Biology, School of Mathematical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Albert Goldbeter
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
14
|
Guo G, Wang K, Hu SS, Tian T, Liu P, Mori T, Chen P, Johnson CH, Qin X. Autokinase Activity of Casein Kinase 1 δ/ε Governs the Period of Mammalian Circadian Rhythms. J Biol Rhythms 2019; 34:482-496. [PMID: 31392916 DOI: 10.1177/0748730419865406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian rhythms exist in nearly all organisms. In mammals, transcriptional and translational feedback loops (TTFLs) are believed to underlie the mechanism of the circadian clock. Casein kinase 1δ/ε (CK1δ/ε) are key kinases that phosphorylate clock components such as PER proteins, determining the pace of the clock. Most previous studies of the biochemical properties of the key kinases CK1ε and CK1δ in vitro have focused on the properties of the catalytic domains from which the autoinhibitory C-terminus has been deleted (ΔC); those studies ignored the significance of self-inhibition by autophosphorylation. By comparing the properties of the catalytic domain of CK1δ/ε with the full-length kinase that can undergo autoinhibition, we found that recombinant full-length CK1 showed a sequential autophosphorylation process that induces conformational changes to affect the overall kinase activity. Furthermore, a direct relationship between the period change and the autokinase activity among CK1δ, CK1ε, and CK1ε-R178C was observed. These data implicate the autophosphorylation activity of CK1δ and CK1ε kinases in setting the pace of mammalian circadian rhythms and indicate that the circadian period can be modulated by tuning the autophosphorylation rates of CK1δ/ε.
Collapse
Affiliation(s)
- Gaili Guo
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Kankan Wang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Shan-Shan Hu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Tian Tian
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Peng Liu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Peng Chen
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | | | - Ximing Qin
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
15
|
Xie Y, Tang Q, Chen G, Xie M, Yu S, Zhao J, Chen L. New Insights Into the Circadian Rhythm and Its Related Diseases. Front Physiol 2019; 10:682. [PMID: 31293431 PMCID: PMC6603140 DOI: 10.3389/fphys.2019.00682] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian rhythms (CR) are a series of endogenous autonomous oscillators generated by the molecular circadian clock which acting on coordinating internal time with the external environment in a 24-h daily cycle. The circadian clock system is a major regulatory factor for nearly all physiological activities and its disorder has severe consequences on human health. CR disruption is a common issue in modern society, and researches about people with jet lag or shift works have revealed that CR disruption can cause cognitive impairment, psychiatric illness, metabolic syndrome, dysplasia, and cancer. In this review, we summarized the synchronizers and the synchronization methods used in experimental research, and introduced CR monitoring and detection methods. Moreover, we evaluated conventional CR databases, and analyzed experiments that characterized the underlying causes of CR disorder. Finally, we further discussed the latest developments in understanding of CR disruption, and how it may be relevant to health and disease. Briefly, this review aimed to synthesize previous studies to aid in future studies of CR and CR-related diseases.
Collapse
Affiliation(s)
- Yanling Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Wang H, van Spyk E, Liu Q, Geyfman M, Salmans ML, Kumar V, Ihler A, Li N, Takahashi JS, Andersen B. Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. Cell Rep 2018; 20:1061-1072. [PMID: 28768192 DOI: 10.1016/j.celrep.2017.07.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 01/25/2023] Open
Abstract
The epidermis is a highly regenerative barrier protecting organisms from environmental insults, including UV radiation, the main cause of skin cancer and skin aging. Here, we show that time-restricted feeding (RF) shifts the phase and alters the amplitude of the skin circadian clock and affects the expression of approximately 10% of the skin transcriptome. Furthermore, a large number of skin-expressed genes are acutely regulated by food intake. Although the circadian clock is required for daily rhythms in DNA synthesis in epidermal progenitor cells, RF-induced shifts in clock phase do not alter the phase of DNA synthesis. However, RF alters both diurnal sensitivity to UVB-induced DNA damage and expression of the key DNA repair gene, Xpa. Together, our findings indicate regulation of skin function by time of feeding and emphasize a link between circadian rhythm, food intake, and skin health.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Elyse van Spyk
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Qiang Liu
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Mikhail Geyfman
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael L Salmans
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Alexander Ihler
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bogi Andersen
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Medicine, Division of Endocrinology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
The Circadian Clock Sets the Time of DNA Replication Licensing to Regulate Growth in Arabidopsis. Dev Cell 2018; 45:101-113.e4. [DOI: 10.1016/j.devcel.2018.02.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/28/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
|
18
|
Hida A, Ohsawa Y, Kitamura S, Nakazaki K, Ayabe N, Motomura Y, Matsui K, Kobayashi M, Usui A, Inoue Y, Kusanagi H, Kamei Y, Mishima K. Evaluation of circadian phenotypes utilizing fibroblasts from patients with circadian rhythm sleep disorders. Transl Psychiatry 2017; 7:e1106. [PMID: 28440811 PMCID: PMC5416712 DOI: 10.1038/tp.2017.75] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/12/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
We evaluated the circadian phenotypes of patients with delayed sleep-wake phase disorder (DSWPD) and non-24-hour sleep-wake rhythm disorder (N24SWD), two different circadian rhythm sleep disorders (CRSDs) by measuring clock gene expression rhythms in fibroblast cells derived from individual patients. Bmal1-luciferase (Bmal1-luc) expression rhythms were measured in the primary fibroblast cells derived from skin biopsy samples of patients with DSWPD and N24SWD, as well as control subjects. The period length of the Bmal1-luc rhythm (in vitro period) was distributed normally and was 22.80±0.47 (mean±s.d.) h in control-derived fibroblasts. The in vitro periods in DSWPD-derived fibroblasts and N24SWD-derived fibroblasts were 22.67±0.67 h and 23.18±0.70 h, respectively. The N24SWD group showed a significantly longer in vitro period than did the control or DSWPD group. Furthermore, in vitro period was associated with response to chronotherapy in the N24SWD group. Longer in vitro periods were observed in the non-responders (mean±s.d.: 23.59±0.89 h) compared with the responders (mean±s.d.: 22.97±0.47 h) in the N24SWD group. Our results indicate that prolonged circadian periods contribute to the onset and poor treatment outcome of N24SWD. In vitro rhythm assays could be useful for predicting circadian phenotypes and clinical prognosis in patients with CRSDs.
Collapse
Affiliation(s)
- A Hida
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Y Ohsawa
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - S Kitamura
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - K Nakazaki
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - N Ayabe
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Y Motomura
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - K Matsui
- Yoyogi Sleep Disorder Center, Tokyo, Japan
| | - M Kobayashi
- Yoyogi Sleep Disorder Center, Tokyo, Japan
- Department of Somnology, Tokyo Medical University, Tokyo, Japan
| | - A Usui
- Yoyogi Sleep Disorder Center, Tokyo, Japan
| | - Y Inoue
- Yoyogi Sleep Disorder Center, Tokyo, Japan
- Department of Somnology, Tokyo Medical University, Tokyo, Japan
| | - H Kusanagi
- Department of Neuropsychiatry, Bioregulatory Medicine, Akita University, Graduate School of Medicine, Akita, Japan
| | - Y Kamei
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - K Mishima
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
19
|
Shostak A. Circadian Clock, Cell Division, and Cancer: From Molecules to Organism. Int J Mol Sci 2017; 18:E873. [PMID: 28425940 PMCID: PMC5412454 DOI: 10.3390/ijms18040873] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022] Open
Abstract
As a response to environmental changes driven by the Earth's axial rotation, most organisms evolved an internal biological timer-the so called circadian clock-which regulates physiology and behavior in a rhythmic fashion. Emerging evidence suggests an intimate interplay between the circadian clock and another fundamental rhythmic process, the cell cycle. However, the precise mechanisms of this connection are not fully understood. Disruption of circadian rhythms has a profound impact on cell division and cancer development and, vice versa, malignant transformation causes disturbances of the circadian clock. Conventional knowledge attributes tumor suppressor properties to the circadian clock. However, this implication might be context-dependent, since, under certain conditions, the clock can also promote tumorigenesis. Therefore, a better understanding of the molecular links regulating the physiological balance between the two cycles will have potential significance for the treatment of cancer and associated disorders.
Collapse
Affiliation(s)
- Anton Shostak
- Circadian Rhythms and Molecular Clocks Group, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Matsu-Ura T, Dovzhenok A, Aihara E, Rood J, Le H, Ren Y, Rosselot AE, Zhang T, Lee C, Obrietan K, Montrose MH, Lim S, Moore SR, Hong CI. Intercellular Coupling of the Cell Cycle and Circadian Clock in Adult Stem Cell Culture. Mol Cell 2016; 64:900-912. [PMID: 27867006 PMCID: PMC5423461 DOI: 10.1016/j.molcel.2016.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/01/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
Circadian clock-gated cell division cycles are observed from cyanobacteria to mammals via intracellular molecular connections between these two oscillators. Here we demonstrate WNT-mediated intercellular coupling between the cell cycle and circadian clock in 3D murine intestinal organoids (enteroids). The circadian clock gates a population of cells with heterogeneous cell-cycle times that emerge as 12-hr synchronized cell division cycles. Remarkably, we observe reduced-amplitude oscillations of circadian rhythms in intestinal stem cells and progenitor cells, indicating an intercellular signal arising from differentiated cells governing circadian clock-dependent synchronized cell division cycles. Stochastic simulations and experimental validations reveal Paneth cell-secreted WNT as the key intercellular coupling component linking the circadian clock and cell cycle in enteroids.
Collapse
Affiliation(s)
- Toru Matsu-Ura
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Andrey Dovzhenok
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Jill Rood
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, USA
| | - Hung Le
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Yan Ren
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA
| | - Andrew E Rosselot
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Tongli Zhang
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Choogon Lee
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Karl Obrietan
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA
| | - Sean R Moore
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, USA.
| | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
21
|
Sarma A, Sharma VP, Sarkar AB, Sekar MC, Samuel K, Geusz ME. The circadian clock modulates anti-cancer properties of curcumin. BMC Cancer 2016; 16:759. [PMID: 27680947 PMCID: PMC5041585 DOI: 10.1186/s12885-016-2789-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/15/2016] [Indexed: 02/01/2023] Open
Abstract
Background Curcuminoids of the spice turmeric and their enhanced derivatives have much potential as cancer treatments. They act on a wide variety of biological pathways, including those regulating cell division and circadian rhythms. It is known that circadian clocks can modify cancer therapy effectiveness, according to studies aimed at optimizing treatments based on the circadian cycle. It is therefore important to determine whether treatments with curcumin or similar chemotherapeutic agents are regulated by circadian timing. Similarly, it is important to characterize any effects of curcumin on timing abilities of the circadian clocks within cancer cells. Methods We examined the circadian clock’s impact on the timing of cell death and cell division in curcumin-treated C6 rat glioma cells through continuous video microscopy for several days. To evaluate its persistence and distribution in cancer cells, curcumin was localized within cell compartments by imaging its autofluorescence. Finally, HPLC and spectroscopy were used to determine the relative stabilities of the curcumin congeners demethoxycurcumin and bisdemethoxycurcumin that are present in turmeric. Results Circadian rhythms in cell death were observed in response to low (5 μM) curcumin, reaching a peak several hours before the peak in rhythmic expression of mPER2 protein, a major circadian clock component. These results revealed a sensitive phase of the circadian cycle that could be effectively targeted in patient therapies based on curcumin or its analogs. Curcumin fluorescence was observed in cell compartments at least 24 h after treatment, and the two congeners displayed greater stability than curcumin in cell culture medium. Conclusions We propose a mechanism whereby curcuminoids act in a sustained manner, over several days, despite their tendency to degrade rapidly in blood and other aqueous media. During cancer therapy, curcumin or its analogs should be delivered to tumor cells at the optimal phase for highest efficacy after identifying the circadian phase of the cancer cells. We confirmed the greater stability of the curcumin congeners, suggesting that they may produce sustained toxicity in cancer cells and should be considered for use in patient care. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2789-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashapurna Sarma
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Building, Bowling Green, OH, 43403, USA
| | - Vishal P Sharma
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Building, Bowling Green, OH, 43403, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arindam B Sarkar
- Department of Pharmaceutical Sciences, University of Findlay, Findlay, OH, 45840, USA
| | - M Chandra Sekar
- Department of Pharmaceutical Sciences, University of Findlay, Findlay, OH, 45840, USA
| | - Karunakar Samuel
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Building, Bowling Green, OH, 43403, USA
| | - Michael E Geusz
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Building, Bowling Green, OH, 43403, USA.
| |
Collapse
|
22
|
Altman BJ. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer. Front Cell Dev Biol 2016; 4:62. [PMID: 27500134 PMCID: PMC4971383 DOI: 10.3389/fcell.2016.00062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight.
Collapse
Affiliation(s)
- Brian J Altman
- Abramson Family Cancer Research InstitutePhiladelphia, PA, USA; Abramson Cancer CenterPhiladelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA
| |
Collapse
|
23
|
Repouskou A, Prombona A. c-MYC targets the central oscillator gene Per1 and is regulated by the circadian clock at the post-transcriptional level. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:541-52. [PMID: 26850841 DOI: 10.1016/j.bbagrm.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 12/27/2022]
Abstract
Cell proliferation in mammals follows a circadian rhythm while disruption of clock gene expression has been linked to tumorigenesis. Expression of the c-Myc oncogene is frequently deregulated in tumors, facilitating aberrant cell proliferation. c-MYC protein levels display circadian rhythmicity, which is compatible with an in vitro repressive role of the clock-activating complex BMAL1/CLOCK on its promoter. In this report, we provide evidence for the in vivo binding of the core circadian factor BMAL1 on the human c-Myc promoter. In addition, analysis of protein synthesis and degradation rates, as well as post-translational acetylation, demonstrate that the clock tightly controls cellular MYC levels. The oncoprotein itself is a transcription factor that by responding to mitogenic signals regulates the expression of several hundred genes. c-MYC-driven transcription is generally exerted upon dimerization with MAX and binding to E-box elements, a sequence that is also recognized by the circadian heterodimer. Our reporter assays reveal that the MYC/MAX dimer cannot affect transcription of the circadian gene Per1. However, when overexpressed, c-MYC is able to repress Per1 transactivation by BMAL1/CLOCK via targeting selective E-box sequences. Importantly, upon serum stimulation, MYC was detected in BMAL1 protein complexes. Together, these data demonstrate a novel interaction between MYC and circadian transactivators resulting in reduced clock-driven transcription. Perturbation of Per1 expression by MYC constitutes a plausible alternative explanation for the deregulated expression of clock genes observed in many types of cancer.
Collapse
Affiliation(s)
- Anastasia Repouskou
- Institute of Biosciences and Applications, Laboratory of Chronobiology, NCSR 'Demokritos', 15310 Aghia Paraskevi, Attiki, Greece.
| | - Anastasia Prombona
- Institute of Biosciences and Applications, Laboratory of Chronobiology, NCSR 'Demokritos', 15310 Aghia Paraskevi, Attiki, Greece.
| |
Collapse
|
24
|
Bratsun DA, Merkuriev DV, Zakharov AP, Pismen LM. Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue. J Biol Phys 2016; 42:107-32. [PMID: 26293211 PMCID: PMC4713406 DOI: 10.1007/s10867-015-9395-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/17/2015] [Indexed: 12/17/2022] Open
Abstract
We propose a multiscale chemo-mechanical model of cancer tumor development in epithelial tissue. The model is based on the transformation of normal cells into a cancerous state triggered by a local failure of spatial synchronization of the circadian rhythm. The model includes mechanical interactions and a chemical signal exchange between neighboring cells, as well as a division of cells and intercalation that allows for modification of the respective parameters following transformation into the cancerous state. The numerical simulations reproduce different dephasing patterns--spiral waves and quasistationary clustering, with the latter being conducive to cancer formation. Modification of mechanical properties reproduces a distinct behavior of invasive and localized carcinoma.
Collapse
Affiliation(s)
- D A Bratsun
- Theoretical Physics Department, Perm State Humanitarian Pedagogical University, 614990, Perm, Russia
| | - D V Merkuriev
- Department of Hospital Pediatrics, Perm State Medical Academy, 614990, Perm, Russia
| | - A P Zakharov
- Department of Chemical Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - L M Pismen
- Department of Chemical Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
25
|
Jang C, Lahens NF, Hogenesch JB, Sehgal A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res 2015; 25:1836-47. [PMID: 26338483 PMCID: PMC4665005 DOI: 10.1101/gr.191296.115] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 09/02/2015] [Indexed: 01/30/2023]
Abstract
Physiological and behavioral circadian rhythms are driven by a conserved transcriptional/translational negative feedback loop in mammals. Although most core clock factors are transcription factors, post-transcriptional control introduces delays that are critical for circadian oscillations. Little work has been done on circadian regulation of translation, so to address this deficit we conducted ribosome profiling experiments in a human cell model for an autonomous clock. We found that most rhythmic gene expression occurs with little delay between transcription and translation, suggesting that the lag in the accumulation of some clock proteins relative to their mRNAs does not arise from regulated translation. Nevertheless, we found that translation occurs in a circadian fashion for many genes, sometimes imposing an additional level of control on rhythmically expressed mRNAs and, in other cases, conferring rhythms on noncycling mRNAs. Most cyclically transcribed RNAs are translated at one of two major times in a 24-h day, while rhythmic translation of most noncyclic RNAs is phased to a single time of day. Unexpectedly, we found that the clock also regulates the formation of cytoplasmic processing (P) bodies, which control the fate of mRNAs, suggesting circadian coordination of mRNA metabolism and translation.
Collapse
Affiliation(s)
- Christopher Jang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas F Lahens
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - John B Hogenesch
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Amita Sehgal
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA; Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
26
|
Feillet C, van der Horst GTJ, Levi F, Rand DA, Delaunay F. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth. Front Neurol 2015; 6:96. [PMID: 26029155 PMCID: PMC4426821 DOI: 10.3389/fneur.2015.00096] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022] Open
Abstract
Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.
Collapse
Affiliation(s)
- Celine Feillet
- Circadian Systems Biology, CNRS, INSERM, Institut de Biologie Valrose, Université Nice Sophia Antipolis , Nice , France
| | | | - Francis Levi
- Cancer Chronotherapy Unit, University of Warwick , Coventry , UK
| | - David A Rand
- Systems Biology Centre, University of Warwick , Coventry , UK
| | - Franck Delaunay
- Circadian Systems Biology, CNRS, INSERM, Institut de Biologie Valrose, Université Nice Sophia Antipolis , Nice , France
| |
Collapse
|
27
|
Abstract
For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value.
Collapse
|
28
|
|
29
|
Liang W, Zhang K, Yang X, Liu L, Yu H, Zhang W. Distinctive translational and self-rotational motion of lymphoma cells in an optically induced non-rotational alternating current electric field. BIOMICROFLUIDICS 2015; 9:014121. [PMID: 25759754 PMCID: PMC4336248 DOI: 10.1063/1.4913365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/10/2015] [Indexed: 05/16/2023]
Abstract
In this paper, the translational motion and self-rotational behaviors of the Raji cells, a type of B-cell lymphoma cell, in an optically induced, non-rotational, electric field have been characterized by utilizing a digitally programmable and optically activated microfluidics chip with the assistance of an externally applied AC bias potential. The crossover frequency spectrum of the Raji cells was studied by observing the different linear translation responses of these cells to the positive and negative optically induced dielectrophoresis force generated by a projected light pattern. This digitally projected spot served as the virtual electrode to generate an axisymmetric and non-uniform electric field. Then, the membrane capacitance of the Raji cells could be directly measured. Furthermore, Raji cells under this condition also exhibited a self-rotation behavior. The repeatable and controlled self-rotation speeds of the Raji cells to the externally applied frequency and voltage were systematically investigated and characterized via computer-vision algorithms. The self-rotational speed of the Raji cells reached a maximum value at 60 kHz and demonstrated a quadratic relationship with respect to the applied voltage. Furthermore, optically projected patterns of four orthogonal electrodes were also employed as the virtual electrodes to manipulate the Raji cells. These results demonstrated that Raji cells located at the center of the four electrode pattern could not be self-rotated. Instead any Raji cells that deviated from this center area would also self-rotate. Most importantly, the Raji cells did not exhibit the self-rotational behavior after translating and rotating with respect to the center of any two adjacent electrodes. The spatial distributions of the electric field generated by the optically projected spot and the pattern of four electrodes were also modeled using a finite element numerical simulation. These simulations validated that the electric field distributions were non-uniform and non-rotational. Hence, the non-uniform electric field must play a key role in the self-rotation of the Raji cells. As a whole, this study elucidates an optoelectric-coupled microfluidics-based mechanism for cellular translation and self-rotation that can be used to extract the dielectric properties of the cells without using conventional metal-based microelectrodes. This technique may provide a simpler method for label-free identification of cancerous cells with many associated clinical applications.
Collapse
Affiliation(s)
| | - Ke Zhang
- School of Mechanical Engineering, Shenyang Jianzhu University , Shenyang, China
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University , Shenyang, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation , Chinese Academy of Sciences, Shenyang, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation , Chinese Academy of Sciences, Shenyang, China
| | - Weijing Zhang
- Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences , Beijing, China
| |
Collapse
|
30
|
Sancar A, Lindsey-Boltz LA, Gaddameedhi S, Selby CP, Ye R, Chiou YY, Kemp MG, Hu J, Lee JH, Ozturk N. Circadian clock, cancer, and chemotherapy. Biochemistry 2014; 54:110-23. [PMID: 25302769 PMCID: PMC4303322 DOI: 10.1021/bi5007354] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
circadian clock is a global regulatory system that interfaces
with most other regulatory systems and pathways in mammalian organisms.
Investigations of the circadian clock–DNA damage response connections
have revealed that nucleotide excision repair, DNA damage checkpoints,
and apoptosis are appreciably influenced by the clock. Although several
epidemiological studies in humans and a limited number of genetic
studies in mouse model systems have indicated that clock disruption
may predispose mammals to cancer, well-controlled genetic studies
in mice have not supported the commonly held view that circadian clock
disruption is a cancer risk factor. In fact, in the appropriate genetic
background, clock disruption may instead aid in cancer regression
by promoting intrinsic and extrinsic apoptosis. Finally, the clock
may affect the efficacy of cancer treatment (chronochemotherapy) by
modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic
drugs as well as the activity of the DNA repair enzymes that repair
the DNA damage caused by anticancer drugs.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brown SA. Circadian clock-mediated control of stem cell division and differentiation: beyond night and day. Development 2014; 141:3105-11. [DOI: 10.1242/dev.104851] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A biological ‘circadian’ clock conveys diurnal regulation upon nearly all aspects of behavior and physiology to optimize them within the framework of the solar day. From digestion to cardiac function and sleep, both cellular and systemic processes show circadian variations that coincide with diurnal need. However, recent research has shown that this same timekeeping mechanism might have been co-opted to optimize other aspects of development and physiology that have no obvious link to the 24 h day. For example, clocks have been suggested to underlie heterogeneity in stem cell populations, to optimize cycles of cell division during wound healing, and to alter immune progenitor differentiation and migration. Here, I review these circadian mechanisms and propose that they could serve as metronomes for a surprising variety of physiologically and medically important functions that far exceed the daily timekeeping roles for which they probably evolved.
Collapse
Affiliation(s)
- Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zürich, 190 Winterthurerstrasse, Zürich 8057, Switzerland
| |
Collapse
|
32
|
Bieler J, Cannavo R, Gustafson K, Gobet C, Gatfield D, Naef F. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol 2014; 10:739. [PMID: 25028488 PMCID: PMC4299496 DOI: 10.15252/msb.20145218] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the
range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we
estimated the mutual interactions between the two oscillators by time-lapse imaging of single
mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in
dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell
divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP
reporter expression. In principle, such synchrony may be caused by either unidirectional or
bidirectional coupling. While gating of cell division by the circadian cycle has been most studied,
our data combined with stochastic modeling unambiguously show that the reverse coupling is
predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations
showed that the two interacting cellular oscillators adopt a synchronized state that is highly
robust over a wide range of parameters. These findings have implications for circadian function in
proliferative tissues, including epidermis, immune cells, and cancer.
Collapse
Affiliation(s)
- Jonathan Bieler
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rosamaria Cannavo
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kyle Gustafson
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cedric Gobet
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
33
|
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci U S A 2014; 111:9828-33. [PMID: 24958884 DOI: 10.1073/pnas.1320474111] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.
Collapse
|
34
|
Abstract
The cell cycle and the circadian clock communicate with each other, resulting in circadian-gated cell division cycles. Alterations in this network may lead to diseases such as cancer. Therefore, it is critical to identify molecular components that connect these two oscillators. However, molecular mechanisms between the clock and the cell cycle remain largely unknown. A model filamentous fungus, Neurospora crassa, is a multinucleate system used to elucidate molecular mechanisms of circadian rhythms, but not used to investigate the molecular coupling between these two oscillators. In this report, we show that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1 kinase. Based on this finding, we established a mathematical model that predicts circadian oscillations of cell cycle components and circadian clock-dependent synchronized nuclear divisions. We experimentally demonstrate that G1 and G2 cyclins, CLN-1 and CLB-1, respectively, oscillate in a circadian manner with bioluminescence reporters. The oscillations of clb-1 and stk-29 gene expression are abolished in a circadian arrhythmic frq(ko) mutant. Additionally, we show the light-induced phase shifts of a core circadian component, frq, as well as the gene expression of the cell cycle components clb-1 and stk-29, which may alter the timing of divisions. We then used a histone hH1-GFP reporter to observe nuclear divisions over time, and show that a large number of nuclear divisions occur in the evening. Our findings demonstrate the circadian clock-dependent molecular dynamics of cell cycle components that result in synchronized nuclear divisions in Neurospora.
Collapse
|
35
|
Bouchard-Cannon P, Mendoza-Viveros L, Yuen A, Kærn M, Cheng HYM. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit. Cell Rep 2013; 5:961-73. [PMID: 24268780 DOI: 10.1016/j.celrep.2013.10.037] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/05/2013] [Accepted: 10/21/2013] [Indexed: 12/22/2022] Open
Abstract
The subgranular zone (SGZ) of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs) that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body.
Collapse
Affiliation(s)
- Pascale Bouchard-Cannon
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Andrew Yuen
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Mads Kærn
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, and Department of Physics, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Hai-Ying M Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
36
|
Distinguishing between genotoxic and non-genotoxic hepatocarcinogens by gene expression profiling and bioinformatic pathway analysis. Sci Rep 2013; 3:2783. [PMID: 24089152 PMCID: PMC6505678 DOI: 10.1038/srep02783] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/06/2013] [Indexed: 01/09/2023] Open
Abstract
A rapid and sensitive method to determine the characteristics of carcinogens is needed. In this study, we used a microarray-based genomics approach, with a short-term in vivo model, in combination with insights from statistical and mechanistic analyses to determine the characteristics of carcinogens. Carcinogens were evaluated based on the different mechanisms involved in the responses to genotoxic carcinogens and non-genotoxic carcinogens. Gene profiling was performed at two time points after treatment with six training and four test carcinogens. We mapped the DEG (differentially expressed gene)-related pathways to analyze cellular processes, and we discovered significant mechanisms that involve critical cellular components. Classification results were further supported by Comet and Micronucleus assays. Mechanistic studies based on gene expression profiling enhanced our understanding of the characteristics of different carcinogens. Moreover, the efficiency of this study was demonstrated by the short-term nature of the animal experiments that were conducted.
Collapse
|
37
|
Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. Proc Natl Acad Sci U S A 2013; 110:E2106-15. [PMID: 23690597 DOI: 10.1073/pnas.1215935110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Regenerative cycling of hair follicles offers an unique opportunity to explore the role of circadian clock in physiological tissue regeneration. We focused on the role of circadian clock in actively proliferating transient amplifying cells, as opposed to quiescent stem cells. We identified two key sites of peripheral circadian clock activity specific to regenerating anagen hair follicles, namely epithelial matrix and mesenchymal dermal papilla. We showed that peripheral circadian clock in epithelial matrix cells generates prominent daily mitotic rhythm. As a consequence of this mitotic rhythmicity, hairs grow faster in the morning than in the evening. Because cells are the most susceptible to DNA damage during mitosis, this cycle leads to a remarkable time-of-day-dependent sensitivity of growing hair follicles to genotoxic stress. Same doses of γ-radiation caused dramatic hair loss in wild-type mice when administered in the morning, during mitotic peak, compared with the evening, when hair loss is minimal. This diurnal radioprotective effect becomes lost in circadian mutants, consistent with asynchronous mitoses in their hair follicles. Clock coordinates cell cycle progression with genotoxic stress responses by synchronizing Cdc2/Cyclin B-mediated G2/M checkpoint. Our results uncover diurnal mitotic gating as the essential protective mechanism in highly proliferative hair follicles and offer strategies for minimizing or maximizing cytotoxicity of radiation therapies.
Collapse
|
38
|
Egli M, Johnson CH. A circadian clock nanomachine that runs without transcription or translation. Curr Opin Neurobiol 2013; 23:732-40. [PMID: 23571120 DOI: 10.1016/j.conb.2013.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 11/15/2022]
Abstract
The biochemical basis of circadian timekeeping is best characterized in cyanobacteria. The structures of its key molecular players, KaiA, KaiB, and KaiC are known and these proteins can reconstitute a remarkable circadian oscillation in a test tube. KaiC is rhythmically phosphorylated and its phospho-status is a marker of circadian phase that regulates ATPase activity and the oscillating assembly of a nanomachine. Analyses of the nanomachines have revealed how their timing circuit is ratcheted to be unidirectional and how they stay in synch to ensure a robust oscillator. These insights are likely to elucidate circadian timekeeping in higher organisms, including how transcription and translation could appear to be a core circadian timer when the true pacemaker is an embedded biochemical oscillator.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
39
|
Kowalska E, Ripperger JA, Hoegger DC, Bruegger P, Buch T, Birchler T, Mueller A, Albrecht U, Contaldo C, Brown SA. NONO couples the circadian clock to the cell cycle. Proc Natl Acad Sci U S A 2013; 110:1592-9. [PMID: 23267082 PMCID: PMC3562797 DOI: 10.1073/pnas.1213317110] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.
Collapse
Affiliation(s)
| | - Juergen A. Ripperger
- Division of Biochemistry, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Dominik C. Hoegger
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University Hospital Zurich, 8006 Zurich, Switzerland; and
| | | | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas Birchler
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Anke Mueller
- Laboratory of Chronobiology, Institute of Medical Immunology, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Urs Albrecht
- Division of Biochemistry, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Claudio Contaldo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University Hospital Zurich, 8006 Zurich, Switzerland; and
| | | |
Collapse
|
40
|
Tamai TK, Young LC, Cox CA, Whitmore D. Light acts on the zebrafish circadian clock to suppress rhythmic mitosis and cell proliferation. J Biol Rhythms 2012; 27:226-36. [PMID: 22653891 DOI: 10.1177/0748730412440861] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A fundamental role of the circadian clock is to control biochemical and physiological processes such that they occur an optimal time of day. One of the most significant clock outputs from a clinical as well as basic biological standpoint is the timing of the cell cycle. Here we show that the circadian clock regulates the timing of mitosis in a light-responsive, clock-containing zebrafish cell line. Disrupting clock function, using a CLOCK1 dominant-negative construct or constant light, blocks the gating of cell division, demonstrating that this mitotic rhythm is cell autonomous and under control of the circadian pacemaker. Quantitative PCR reveals that several key mitotic genes, including Cyclin B1, Cyclin B2, and cdc2, are rhythmically expressed and clock-controlled. Peak expression of these genes occurs at a critical phase required to gate mitosis to the late night/early morning. Using clock and cell cycle luminescent reporter zebrafish cell lines, we show that light strongly represses not only circadian clock function, but also mitotic gene expression, and consequently slows cell proliferation.
Collapse
Affiliation(s)
- T Katherine Tamai
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, UK.
| | | | | | | |
Collapse
|
41
|
Grant GD, Gamsby J, Martyanov V, Brooks L, George LK, Mahoney JM, Loros JJ, Dunlap JC, Whitfield ML. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control. Mol Biol Cell 2012; 23:3079-93. [PMID: 22740631 PMCID: PMC3418304 DOI: 10.1091/mbc.e11-02-0170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A periodic luciferase reporter system from cell cycle–regulated promoters in synchronous U2OS cells measures periodic, cell cycle–regulated gene expression in live cells. This assay is used to identify Forkhead transcription factors that control periodic gene expression, and it identifies FOXK1 as an activator of key cell cycle genes. We developed a system to monitor periodic luciferase activity from cell cycle–regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle–regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle–dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant.
Collapse
Affiliation(s)
- Gavin D Grant
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Takakura H, Kojima R, Ozawa T, Nagano T, Urano Y. Development of 5'- and 7'-substituted luciferin analogues as acid-tolerant substrates of firefly luciferase. Chembiochem 2012; 13:1424-7. [PMID: 22678981 DOI: 10.1002/cbic.201200142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Hideo Takakura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
43
|
Gérard C, Goldbeter A. Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms. PLoS Comput Biol 2012; 8:e1002516. [PMID: 22693436 PMCID: PMC3364934 DOI: 10.1371/journal.pcbi.1002516] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/29/2012] [Indexed: 12/11/2022] Open
Abstract
The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values. The cell cycle and the circadian clock are two major cellular rhythms. These two periodic processes are tightly coupled through multiple regulatory interactions; several components of the cell cycle machinery are indeed controlled by the circadian network. By using detailed computational models for the cell cycle and circadian networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that entrainment to a circadian period can occur when the period of the cell cycle prior to coupling is either smaller or larger than 24 h. Entrainment to 48 h can also be observed. The presence of multiple modes of coupling does not enlarge the domain of entrainment. Coupling to the circadian clock may also lead to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations, or chaotic oscillations. The model predicts that entrainment of the cell cycle could also result from the circadian variation of a growth factor gating entry into G1, and that the transition from an entrained period of 24 h to 48 h might result from a decrease in coupling strength or in the level of growth factor.
Collapse
Affiliation(s)
| | - Albert Goldbeter
- Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Brussels, Belgium
- * E-mail:
| |
Collapse
|
44
|
Li C, Yu S, Zhong X, Wu J, Li X. Transcriptome comparison between fetal and adult mouse livers: implications for circadian clock mechanisms. PLoS One 2012; 7:e31292. [PMID: 22363607 PMCID: PMC3283632 DOI: 10.1371/journal.pone.0031292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/18/2022] Open
Abstract
Microarray transcriptome analyses of fetal mouse liver did not detect circadian expression rhythms of clock genes or clock-controlled genes, although some rhythmic transcripts that were likely not driven by endogenous cellular clocks were identified. This finding reveals a key distinction between the circadian oscillators in fetal and adult mouse livers. Thus, in this study, the transcriptomes of fetal and adult livers were systematically compared to identify differences in the gene expression profiles between these two developmental stages. Approximately 1000 transcripts were differentially enriched between the fetal and adult livers. These transcripts represent genes with cellular functions characteristic of distinct developmental stages. Clock genes were also differentially expressed between the fetal and adult livers. Developmental differences in liver gene expression might have contributed to the differences in oscillation status and functional states of the cellular circadian clock between fetal and adult livers.
Collapse
Affiliation(s)
| | | | | | | | - Xiaodong Li
- National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei Province, People's Republic of China
- * E-mail:
| |
Collapse
|
45
|
Vítová M, Bišová K, Hlavová M, Kawano S, Zachleder V, Cížková M. Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by temperature. PLANTA 2011; 234:599-608. [PMID: 21573815 DOI: 10.1007/s00425-011-1427-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/28/2011] [Indexed: 05/30/2023]
Abstract
Synchronized cultures of the green alga Chlamydomonas reinhardtii were grown photoautotrophically under a wide range of environmental conditions including temperature (15-37 °C), different mean light intensities (132, 150, 264 μmol m⁻² s⁻¹), different illumination regimes (continuous illumination or alternation of light/dark periods of different durations), and culture methods (batch or continuous culture regimes). These variable experimental approaches were chosen in order to assess the role of temperature in the timing of cell division, the length of the cell cycle and its pre- and post-commitment phases. Analysis of the effect of temperature, from 15 to 37 °C, on synchronized cultures showed that the length of the cell cycle varied markedly from times as short as 14 h to as long as 36 h. We have shown that the length of the cell cycle was proportional to growth rate under any given combination of growth conditions. These findings were supported by the determination of the temperature coefficient (Q₁₀), whose values were above the level expected for temperature-compensated processes. The data presented here show that cell cycle duration in C. reinhardtii is a function of growth rate and is not controlled by a temperature independent endogenous timer or oscillator, including a circadian one.
Collapse
Affiliation(s)
- Milada Vítová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, Academy of Sciences of the Czech Republic (ASCR), Opatovický Mlýn, 37981 Třeboň, Czech Republic
| | | | | | | | | | | |
Collapse
|
46
|
Pendergast JS, Yeom M, Reyes BA, Ohmiya Y, Yamazaki S. Disconnected circadian and cell cycles in a tumor-driven cell line. Commun Integr Biol 2010; 3:536-9. [PMID: 21331233 DOI: 10.4161/cib.3.6.12841] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 01/06/2023] Open
Abstract
Cell division occurs at a specific time of day in numerous species, suggesting that the circadian and cell cycles are coupled in vivo. By measuring the cell cycle rhythm in real-time, we recently showed that the circadian and cell cycles are not coupled in immortalized fibroblasts, resulting in a rapid rate of cell division even though the circadian rhythm is normal in these cells. Here we report that tumor-driven Lewis lung carcinoma (LLC) cells have perfectly temperature compensated circadian clocks, but the periods of their cell cycle gene expression rhythms are temperature-dependent, suggesting that their circadian and cell cycles are not connected. These data support our hypothesis that decoupling of the circadian and cell cycles may underlie aberrant cell division in tumor cells.
Collapse
Affiliation(s)
- Julie S Pendergast
- Department of Biological Sciences; Vanderbilt University; Nashville, TN USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Evolution has selected a system of two intertwined cell cycles: the cell division cycle (CDC) and the daily (circadian) biological clock. The circadian clock keeps track of solar time and programs biological processes to occur at environmentally appropriate times. One of these processes is the CDC, which is often gated by the circadian clock. The intermeshing of these two cell cycles is probably responsible for the observation that disruption of the circadian system enhances susceptibility to some kinds of cancer. The core mechanism underlying the circadian clockwork has been thought to be a transcription & translation feedback loop (TTFL), but recent evidence from studies with cyanobacteria, synthetic oscillators and immortalized cell lines suggests that the core circadian pacemaking mechanism that gates cell division in mammalian cells could be a post-translational oscillator (PTO).
Collapse
|