1
|
Jacinto C, Javed Y, Lavorato G, Tarraga WA, Conde BIC, Orozco JM, Picco AS, Garcia J, Dias CSB, Malik S, Sharma SK. Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications. NANOSCALE ADVANCES 2025; 7:2818-2886. [PMID: 40255989 PMCID: PMC12004083 DOI: 10.1039/d5na00195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 04/22/2025]
Abstract
Safe implementation of nanotechnology-based products in biomedical applications necessitates an extensive understanding of the (bio)transformations that nanoparticles undergo in living organisms. The long-term fate in the body is a crucial consideration because it governs potential risks for human health. To accurately predict the life cycle of nanoparticles, their fate after administration into the body-including their (bio)transformations, persistence, and biodegradation-needs to be thoroughly evaluated. Magnetic iron oxide nanoparticles (MIONPs) can enter the body through various routes, including inhalation, ingestion, dermal absorption, and injection. Microscale and nanoscale studies are performed to observe nanomaterial biotransformations and their effect on clinically relevant properties. Researchers are utilizing high-resolution TEM for nanoscale monitoring of the nanoparticles while microscale follow-up approaches comprise quantification tools at the whole organism level and the molecular level. Nanoparticle-cell interactions, including cellular uptake and intracellular trafficking, are key to understanding nanoparticle accumulation in cells and organs. Prolonged accumulation may induce cell stress and nanoparticle toxicity, often mediated through oxidative stress and inflammation. In this review article, the journey of nanoparticles in the body is depicted and their biotransformations and final fate are discussed. Immunohistochemical techniques are particularly valuable in tracking nanoparticle distribution within tissues and assessing their impact at the cellular level. A thorough description of a wide range of characterization techniques is provided to unveil the fate and biotransformations of clinically relevant nanoparticles and to assist in their design for successful biomedical applications.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas 57072-900 Maceió AL Brazil
| | - Yasir Javed
- Department of Physics, University of Agriculture Faisalabad Pakistan
| | - Gabriel Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Wilson A Tarraga
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | | | - Juan Manuel Orozco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Joel Garcia
- Department of Chemistry, De La Salle University Manila Philippines
| | - Carlos Sato Baraldi Dias
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen 76344 Germany
| | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans 45067 France
- Department of Biotechnology, Baba Farid College Bathinda 151001 India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab Bathinda 151401 India
- Department of Physics, Federal University of Maranhão São Luís 65080-805 Brazil
| |
Collapse
|
2
|
Willans M, Hollings A, Boseley RE, Munyard T, Ellison GC, Hackett MJ. The application of X-ray fluorescence microscopy and micro-XANES spectroscopy to study neuro-metallomics. J Inorg Biochem 2025; 262:112744. [PMID: 39341704 DOI: 10.1016/j.jinorgbio.2024.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
This early career research highlight provides a review of my own research program over the last decade, a time frame that encompasses my transition from postdoctoral fellowships to independent researcher. As an analytical chemist and applied spectroscopist, the central theme of my research program over this time has been protocol development at synchrotron facilities, with the main objective to investigate brain metal homeostasis during both brain health and brain disease. I will begin my review with an overview of brain metal homeostasis, before introducing analytical challenges associated with its study. I will then provide a brief summary of the two main X-ray techniques I have used to study brain metal homeostasis, X-ray fluorescence microscopy (XFM) and X-ray absorption near edge structure spectroscopy (XANES). The review then finishes with a summary of my main research contributions using these two techniques, put in the context of the results from others in the field.
Collapse
Affiliation(s)
- Meg Willans
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Ashley Hollings
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Rhiannon E Boseley
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Thomas Munyard
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Gaewyn C Ellison
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
3
|
Grünewald TA, Liebi M, Birkedal H. Crossing length scales: X-ray approaches to studying the structure of biological materials. IUCRJ 2024; 11:708-722. [PMID: 39194257 PMCID: PMC11364038 DOI: 10.1107/s2052252524007838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Biological materials have outstanding properties. With ease, challenging mechanical, optical or electrical properties are realised from comparatively `humble' building blocks. The key strategy to realise these properties is through extensive hierarchical structuring of the material from the millimetre to the nanometre scale in 3D. Though hierarchical structuring in biological materials has long been recognized, the 3D characterization of such structures remains a challenge. To understand the behaviour of materials, multimodal and multi-scale characterization approaches are needed. In this review, we outline current X-ray analysis approaches using the structures of bone and shells as examples. We show how recent advances have aided our understanding of hierarchical structures and their functions, and how these could be exploited for future research directions. We also discuss current roadblocks including radiation damage, data quantity and sample preparation, as well as strategies to address them.
Collapse
Affiliation(s)
| | - Marianne Liebi
- Photon Science DivisionPaul Scherrer InstituteVilligenPSI5232Switzerland
- Institute of MaterialsÉcole Polytechnique Fédérale de Lausanne1015 LausanneSwitzerland
| | - Henrik Birkedal
- Department of Chemistry & iNANOAarhus UniversityGustav Wieds Vej 14Aarhus8000Denmark
| |
Collapse
|
4
|
Wang C, Li X, Wan R, Chen J, Ye J, Li K, Li A, Tai R, Sepe A. Accelerating imaging research at large-scale scientific facilities through scientific computing. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1317-1326. [PMID: 39190504 PMCID: PMC11371030 DOI: 10.1107/s1600577524007239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
To date, computed tomography experiments, carried-out at synchrotron radiation facilities worldwide, pose a tremendous challenge in terms of the breadth and complexity of the experimental datasets produced. Furthermore, near real-time three-dimensional reconstruction capabilities are becoming a crucial requirement in order to perform high-quality and result-informed synchrotron imaging experiments, where a large amount of data is collected and processed within a short time window. To address these challenges, we have developed and deployed a synchrotron computed tomography framework designed to automatically process online the experimental data from the synchrotron imaging beamlines, while leveraging the high-performance computing cluster capabilities to accelerate the real-time feedback to the users on their experimental results. We have, further, integrated it within a modern unified national authentication and data management framework, which we have developed and deployed, spanning the entire data lifecycle of a large-scale scientific facility. In this study, the overall architecture, functional modules and workflow design of our synchrotron computed tomography framework are presented in detail. Moreover, the successful integration of the imaging beamlines at the Shanghai Synchrotron Radiation Facility into our scientific computing framework is also detailed, which, ultimately, resulted in accelerating and fully automating their entire data processing pipelines. In fact, when compared with the original three-dimensional tomography reconstruction approaches, the implementation of our synchrotron computed tomography framework led to an acceleration in the experimental data processing capabilities, while maintaining a high level of integration with all the beamline processing software and systems.
Collapse
Affiliation(s)
- Chunpeng Wang
- Big Data Science CenterShanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesNo. 239 Zhangheng RoadShanghai201210People’s Republic of China
| | - Xiaoyun Li
- Big Data Science CenterShanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesNo. 239 Zhangheng RoadShanghai201210People’s Republic of China
| | - Rongzheng Wan
- Big Data Science CenterShanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesNo. 239 Zhangheng RoadShanghai201210People’s Republic of China
| | - Jige Chen
- Big Data Science CenterShanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesNo. 239 Zhangheng RoadShanghai201210People’s Republic of China
| | - Jing Ye
- Big Data Science CenterShanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesNo. 239 Zhangheng RoadShanghai201210People’s Republic of China
| | - Ke Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesNo. 239 Zhangheng RoadShanghai201210People’s Republic of China
| | - Aiguo Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesNo. 239 Zhangheng RoadShanghai201210People’s Republic of China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesNo. 239 Zhangheng RoadShanghai201210People’s Republic of China
| | - Alessandro Sepe
- Big Data Science CenterShanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesNo. 239 Zhangheng RoadShanghai201210People’s Republic of China
| |
Collapse
|
5
|
Shimamura T, Takeo Y, Moriya F, Kimura T, Shimura M, Senba Y, Kishimoto H, Ohashi H, Shimba K, Jimbo Y, Mimura H. Ultracompact mirror device for forming 20-nm achromatic soft-X-ray focus toward multimodal and multicolor nanoanalyses. Nat Commun 2024; 15:665. [PMID: 38326328 PMCID: PMC10850520 DOI: 10.1038/s41467-023-44269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nanoscale soft-X-ray microscopy is a powerful analysis tool in biological, chemical, and physical sciences. To enhance its probe sensitivity and leverage multimodal soft-X-ray microscopy, precise achromatic focusing devices, which are challenging to fabricate, are essential. Here, we develop an ultracompact Kirkpatrick-Baez (ucKB) mirror, which is ideal for the high-performance nanofocusing of broadband-energy X-rays. We apply our advanced fabrication techniques and short-focal-length strategy to realize diffraction-limited focusing over the entire soft-X-ray range. We achieve a focus size of 20.4 nm at 2 keV, which represents a significant improvement in achromatic soft-X-ray focusing. The ucKB mirror extends soft-X-ray fluorescence microscopy by producing a bicolor nanoprobe with a 1- or 2-keV photon energy. We propose a subcellular chemical mapping method that allows a comprehensive analysis of specimen morphology and the distribution of light elements and metal elements. ucKB mirrors will improve soft-X-ray nanoanalyses by facilitating photon-hungry, multimodal, and polychromatic methods, even with table-top X-ray sources.
Collapse
Affiliation(s)
- Takenori Shimamura
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan.
- Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo, Sayo District, Hyogo, 679-5198, Japan.
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.
| | - Yoko Takeo
- Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo, Sayo District, Hyogo, 679-5198, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Fumika Moriya
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Takashi Kimura
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Mari Shimura
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo, Sayo District, Hyogo, 679-5148, Japan
- Department of Refractory Viral Infection, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Yasunori Senba
- Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo, Sayo District, Hyogo, 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo, Sayo District, Hyogo, 679-5148, Japan
| | - Hikaru Kishimoto
- Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo, Sayo District, Hyogo, 679-5198, Japan
| | - Haruhiko Ohashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo, Sayo District, Hyogo, 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo, Sayo District, Hyogo, 679-5148, Japan
| | - Kenta Shimba
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Yasuhiko Jimbo
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Hidekazu Mimura
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo, Sayo District, Hyogo, 679-5148, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan.
| |
Collapse
|
6
|
Cao M, Wang Y, Wang L, Zhang K, Guan Y, Guo Y, Chen C. In situ label-free X-ray imaging for visualizing the localization of nanomedicines and subcellular architecture in intact single cells. Nat Protoc 2024; 19:30-59. [PMID: 37957402 DOI: 10.1038/s41596-023-00902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/10/2023] [Indexed: 11/15/2023]
Abstract
Understanding the intracellular behaviors of nanomedicines and morphology variation of subcellular architecture impacted by nanomaterial-biology (nano-bio) interactions could help guide the safe-by-design, manufacturing and evaluation of nanomedicines for clinical translation. The in situ and label-free analysis of nano-bio interactions in intact single cells at nanoscale remains challenging. We developed an approach based on X-ray microscopy to directly visualize the 2D or 3D intracellular distribution without labeling at nanometer resolution and analyze the chemical transformation of nanomedicines in situ. Here, we describe an optimized workflow for cell sample preparation, beamline selection, data acquisition and analysis. With several model bionanomaterials as examples, we analyze the localization of nanomedicines in various primary blood cells, macrophages, dendritic cells, monocytes and cancer cells, as well as the morphology of some organelles with soft and hard X-rays. Our protocol has been successfully implemented at three beamline facilities: 4W1A of Beijing Synchrotron Radiation Facility, BL08U1A of Shanghai Synchrotron Radiation Facility and BL07W of the National Synchrotron Radiation Laboratory. This protocol can be completed in ~2-5 d, depending on the cell types, their incubation times with nanomaterials and the selected X-ray beamline. The protocol enables the in situ analysis of the varieties of metal-containing nanomaterials, visualization of intracellular endocytosis, distribution and excretion and corresponding subcellular morphological variation influenced by nanomedicines in cell lines or primary cells by using this universal and robust platform. The results facilitate the understanding of the true principle and mechanism underlying the nano-bio interaction.
Collapse
Affiliation(s)
- Mingjing Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Yuecong Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
- GBA National Institute for Nanotechnology Innovation, Guangzhou, China.
| |
Collapse
|
7
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Gunawan R, Yang M, Lau C. X-RAY MEASUREMENT OF INTRACELLULAR CHLORIDE AND OTHER IONS IN MAMMALIAN CELLS. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
9
|
Luo Y, Paunesku T, Antipova O, Liu Y, Zaluzec NJ, Di Z, Woloschak G, Chen S. A reliable workflow for improving nanoscale X-ray fluorescence tomographic analysis on nanoparticle-treated HeLa cells. Metallomics 2022; 14:mfac025. [PMID: 35751648 PMCID: PMC9434635 DOI: 10.1093/mtomcs/mfac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/13/2022] [Indexed: 11/19/2022]
Abstract
Scanning X-ray fluorescence (XRF) tomography provides powerful characterization capabilities in evaluating elemental distribution and differentiating their inter- and intra-cellular interactions in a three-dimensional (3D) space. Scanning XRF tomography encounters practical challenges from the sample itself, where the range of rotation angles is limited by geometric constraints, involving sample substrates or nearby features either blocking or converging into the field of view. This study aims to develop a reliable and efficient workflow that can (1) expand the experimental window for nanoscale tomographic analysis of local areas of interest within a laterally extended specimen, and (2) bridge 3D analysis at micrometer and nanoscales on the same specimen. We demonstrate the workflow using a specimen of HeLa cells exposed to iron oxide core and titanium dioxide shell (Fe3O4/TiO2) nanocomposites. The workflow utilizes iterative and multiscale XRF data collection with intermediate sample processing by focused ion beam (FIB) sample preparation between measurements at different length scales. Initial assessment combined with precise sample manipulation via FIB allows direct removal of sample regions that are obstacles to both incident X-ray beam and outgoing XRF signals, which considerably improves the subsequent nanoscale tomography analysis. This multiscale analysis workflow has advanced bio-nanotechnology studies by providing deep insights into the interaction between nanocomposites and single cells at a subcellular level as well as statistical assessments from measuring a population of cells.
Collapse
Affiliation(s)
- Yanqi Luo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Tatjana Paunesku
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nestor J Zaluzec
- Photon Sciences Directorate, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Zichao Di
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Gayle Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
10
|
Cao M, Zhang K, Zhang S, Wang Y, Chen C. Advanced Light Source Analytical Techniques for Exploring the Biological Behavior and Fate of Nanomedicines. ACS CENTRAL SCIENCE 2022; 8:1063-1080. [PMID: 36032763 PMCID: PMC9413437 DOI: 10.1021/acscentsci.2c00680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 05/09/2023]
Abstract
Exploration of the biological behavior and fate of nanoparticles, as affected by the nanomaterial-biology (nano-bio) interaction, has become progressively critical for guiding the rational design and optimization of nanomedicines to minimize adverse effects, support clinical translation, and aid in evaluation by regulatory agencies. Because of the complexity of the biological environment and the dynamic variations in the bioactivity of nanomedicines, in-situ, label-free analysis of the transport and transformation of nanomedicines has remained a challenge. Recent improvements in optics, detectors, and light sources have allowed the expansion of advanced light source (ALS) analytical technologies to dig into the underexplored behavior and fate of nanomedicines in vivo. It is increasingly important to further develop ALS-based analytical technologies with higher spatial and temporal resolution, multimodal data fusion, and intelligent prediction abilities to fully unlock the potential of nanomedicines. In this Outlook, we focus on several selected ALS analytical technologies, including imaging and spectroscopy, and provide an overview of the emerging opportunities for their applications in the exploration of the biological behavior and fate of nanomedicines. We also discuss the challenges and limitations faced by current approaches and tools and the expectations for the future development of advanced light sources and technologies. Improved ALS imaging and spectroscopy techniques will accelerate a profound understanding of the biological behavior of new nanomedicines. Such advancements are expected to inspire new insights into nanomedicine research and promote the development of ALS capabilities and methods more suitable for nanomedicine evaluation with the goal of clinical translation.
Collapse
Affiliation(s)
- Mingjing Cao
- CAS
Key Laboratory for Biomedical Effects of Nanomedicines and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Kai Zhang
- Beijing
Synchrotron Radiation Facility, Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhan Zhang
- CAS
Key Laboratory for Biomedical Effects of Nanomedicines and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yaling Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomedicines and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomedicines and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
11
|
Chen S, Lastra RO, Paunesku T, Antipova O, Li L, Deng J, Luo Y, Wanzer MB, Popovic J, Li Y, Glasco AD, Jacobsen C, Vogt S, Woloschak GE. Development of Multi-Scale X-ray Fluorescence Tomography for Examination of Nanocomposite-Treated Biological Samples. Cancers (Basel) 2021; 13:cancers13174497. [PMID: 34503306 PMCID: PMC8430782 DOI: 10.3390/cancers13174497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metal-oxide nanomaterials enter cancer and normal cells even when not specifically targeted, and often interact with specific cellular structures and biological molecules solely due to their innate physical-chemical properties. This raises concerns for the use of nanoparticles, which can be alleviated only with rigorous studies of nanoparticle–cell interactions, studies independent of post-interaction labeling of nanomaterials. X-ray fluorescence microscopy is an imaging technique that quantifies and maps all chemical elements from the periodic table solely based on their native fluorescence excited by the incoming X-ray. We used two different instruments to interrogate the same sample in 3D at two different resolutions and determine heterogeneity of cell-to-cell interactions with nanomaterials, as well as subcellular nanoparticle distribution. This is the first example of multi-scale 3D X-ray fluorescence imaging. This work begins a new era of study on how nanoparticle-based therapies can be developed to be more predictable and safer for use. Abstract Research in cancer nanotechnology is entering its third decade, and the need to study interactions between nanomaterials and cells remains urgent. Heterogeneity of nanoparticle uptake by different cells and subcellular compartments represent the greatest obstacles to a full understanding of the entire spectrum of nanomaterials’ effects. In this work, we used flow cytometry to evaluate changes in cell cycle associated with non-targeted nanocomposite uptake by individual cells and cell populations. Analogous single cell and cell population changes in nanocomposite uptake were explored by X-ray fluorescence microscopy (XFM). Very few nanoparticles are visible by optical imaging without labeling, but labeling increases nanoparticle complexity and the risk of modified cellular uptake. XFM can be used to evaluate heterogeneity of nanocomposite uptake by directly imaging the metal atoms present in the metal-oxide nanocomposites under investigation. While XFM mapping has been performed iteratively in 2D with the same sample at different resolutions, this study is the first example of serial tomographic imaging at two different resolutions. A cluster of cells exposed to non-targeted nanocomposites was imaged with a micron-sized beam in 3D. Next, the sample was sectioned for immunohistochemistry as well as a high resolution “zoomed in” X-ray fluorescence (XRF) tomography with 80 nm beam spot size. Multiscale XRF tomography will revolutionize our ability to explore cell-to-cell differences in nanomaterial uptake.
Collapse
Affiliation(s)
- Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; (S.C.); (O.A.); (L.L.); (J.D.); (Y.L.); (C.J.); (S.V.)
| | - Ruben Omar Lastra
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.O.L.); (T.P.); (M.B.W.); (J.P.); (Y.L.); (A.D.G.)
| | - Tatjana Paunesku
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.O.L.); (T.P.); (M.B.W.); (J.P.); (Y.L.); (A.D.G.)
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; (S.C.); (O.A.); (L.L.); (J.D.); (Y.L.); (C.J.); (S.V.)
| | - Luxi Li
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; (S.C.); (O.A.); (L.L.); (J.D.); (Y.L.); (C.J.); (S.V.)
| | - Junjing Deng
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; (S.C.); (O.A.); (L.L.); (J.D.); (Y.L.); (C.J.); (S.V.)
| | - Yanqi Luo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; (S.C.); (O.A.); (L.L.); (J.D.); (Y.L.); (C.J.); (S.V.)
| | - Michael Beau Wanzer
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.O.L.); (T.P.); (M.B.W.); (J.P.); (Y.L.); (A.D.G.)
| | - Jelena Popovic
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.O.L.); (T.P.); (M.B.W.); (J.P.); (Y.L.); (A.D.G.)
| | - Ya Li
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.O.L.); (T.P.); (M.B.W.); (J.P.); (Y.L.); (A.D.G.)
| | - Alexander D. Glasco
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.O.L.); (T.P.); (M.B.W.); (J.P.); (Y.L.); (A.D.G.)
| | - Chris Jacobsen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; (S.C.); (O.A.); (L.L.); (J.D.); (Y.L.); (C.J.); (S.V.)
- Department of Physics and Astronomy, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; (S.C.); (O.A.); (L.L.); (J.D.); (Y.L.); (C.J.); (S.V.)
| | - Gayle E. Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.O.L.); (T.P.); (M.B.W.); (J.P.); (Y.L.); (A.D.G.)
- Correspondence: ; Tel.: +1-312-503-4322
| |
Collapse
|
12
|
Tardillo Suárez V, Gallet B, Chevallet M, Jouneau PH, Tucoulou R, Veronesi G, Deniaud A. Correlative transmission electron microscopy and high-resolution hard X-ray fluorescence microscopy of cell sections to measure trace element concentrations at the organelle level. J Struct Biol 2021; 213:107766. [PMID: 34216761 DOI: 10.1016/j.jsb.2021.107766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Abstract
Metals are essential for life and their concentration and distribution in organisms are tightly regulated. Indeed, in their free form, most transition metal ions are toxic. Therefore, an excess of physiologic metal ions or the uptake of non-physiologic metal ions can be highly detrimental to the organism. It is thus fundamental to understand metal distribution under physiological, pathological or environmental conditions, for instance in metal-related pathologies or upon environmental exposure to metals. Elemental imaging techniques can serve this purpose, by allowing the visualization and the quantification of metal species in tissues down to the level of cell organelles. Synchrotron radiation-based X-ray fluorescence (SR-XRF) microscopy is one of the most sensitive techniques to date, and great progress was made to reach nanoscale spatial resolution. Here we propose a correlative method to couple SR-XRF to electron microscopy (EM), with the possibility to quantify selected elemental contents in a specific organelle of interest with 50 × 50 nm2 raster scan resolution. We performed EM and SR-XRF on the same section of hepatocytes exposed to silver nanoparticles, in order to identify mitochondria through EM and visualize Ag co-localized with these organelles through SR-XRF. We demonstrate the accumulation of silver in mitochondria, which can reach a 10-fold higher silver concentration compared to the surrounding cytosol. The sample preparation and experimental setup can be adapted to other scientific questions, making the correlative use of SR-XRF and EM suitable to address a large panel of biological questions related to metal homeostasis.
Collapse
Affiliation(s)
| | - Benoit Gallet
- Institut de Biologie Structurale, CEA, CNRS, Univ. Grenoble Alpes, 71 Avenue des Martyrs, F-38042 Grenoble, France
| | - Mireille Chevallet
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | | | - Rémi Tucoulou
- ESRF, The European Synchrotron. 71 avenue des Martyrs, 38000 Grenoble, France
| | - Giulia Veronesi
- ESRF, The European Synchrotron. 71 avenue des Martyrs, 38000 Grenoble, France; Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France.
| | - Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France.
| |
Collapse
|
13
|
Nanostructure-specific X-ray tomography reveals myelin levels, integrity and axon orientations in mouse and human nervous tissue. Nat Commun 2021; 12:2941. [PMID: 34011929 PMCID: PMC8134484 DOI: 10.1038/s41467-021-22719-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/24/2021] [Indexed: 01/05/2023] Open
Abstract
Myelin insulates neuronal axons and enables fast signal transmission, constituting a key component of brain development, aging and disease. Yet, myelin-specific imaging of macroscopic samples remains a challenge. Here, we exploit myelin’s nanostructural periodicity, and use small-angle X-ray scattering tensor tomography (SAXS-TT) to simultaneously quantify myelin levels, nanostructural integrity and axon orientations in nervous tissue. Proof-of-principle is demonstrated in whole mouse brain, mouse spinal cord and human white and gray matter samples. Outcomes are validated by 2D/3D histology and compared to MRI measurements sensitive to myelin and axon orientations. Specificity to nanostructure is exemplified by concomitantly imaging different myelin types with distinct periodicities. Finally, we illustrate the method’s sensitivity towards myelin-related diseases by quantifying myelin alterations in dysmyelinated mouse brain. This non-destructive, stain-free molecular imaging approach enables quantitative studies of myelination within and across samples during development, aging, disease and treatment, and is applicable to other ordered biomolecules or nanostructures. Small-angle X-ray scattering (SAXS) combines the high tissue penetration of X-rays with specificity to periodic nanostructures. The authors use SAXS tensor tomography (SAXS-TT) on intact mouse and human brain tissue samples, to quantify myelin levels and determine myelin integrity, myelinated axon orientation, and fibre tracts non-destructively.
Collapse
|
14
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Micro x-ray fluorescence analysis of trace element distribution in frozen hydrated HeLa cells at the P06 beamline at Petra III. Biointerphases 2021; 16:011004. [PMID: 33706519 DOI: 10.1116/6.0000593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
X-ray fluorescence analysis enables the study of trace element distributions in biological specimens. When this analysis is done under cryogenic conditions, cells are cryofixed as closely as possible to their natural physiological state, and the corresponding intracellular elemental densities can be analyzed. Details about the experimental setup used for analysis at the P06 beamline at Petra III, DESY and the used cryo-transfer system are described in this work. The system was applied to analyze the elemental distribution in single HeLa cells, a cell line frequently used in a wide range of biological applications. Cells adhered to silicon nitride substrates were cryoprotected within an amorphous ice matrix. Using a continuous scanning scheme and a KB x-ray focus, the distribution of elements in the cells was studied. We were able to image the intracellular potassium and zinc levels in HeLa cells as two key elements relevant for the physiology of cells.
Collapse
|
16
|
Hettiarachchi E, Ivanov S, Kieft T, Goldstein HL, Moskowitz BM, Reynolds RL, Rubasinghege G. Atmospheric Processing of Iron-Bearing Mineral Dust Aerosol and Its Effect on Growth of a Marine Diatom, Cyclotella meneghiniana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:871-881. [PMID: 33382945 DOI: 10.1021/acs.est.0c06995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iron (Fe) is a growth-limiting micronutrient for phytoplankton in major areas of oceans and deposited wind-blown desert dust is a primary Fe source to these regions. Simulated atmospheric processing of four mineral dust proxies and two natural dust samples followed by subsequent growth studies of the marine planktic diatom Cyclotella meneghiniana in artificial sea-water (ASW) demonstrated higher growth response to ilmenite (FeTiO3) and hematite (α-Fe2O3) mixed with TiO2 than hematite alone. The processed dust treatment enhanced diatom growth owing to dissolved Fe (DFe) content. The fresh dust-treated cultures demonstrated growth enhancements without adding such dissolved Fe. These significant growth enhancements and dissolved Fe measurements indicated that diatoms acquire Fe from solid particles. When diatoms were physically separated from mineral dust particles, the growth responses become smaller. The post-mineralogy analysis of mineral dust proxies added to ASW showed a diatom-induced increased formation of goethite, where the amount of goethite formed correlated with observed enhanced growth. The current work suggests that ocean primary productivity may not only depend on dissolved Fe but also on suspended solid Fe particles and their mineralogy. Further, the diatom C. meneghiniana benefits more from mineral dust particles in direct contact with cells than from physically impeded particles, suggesting the possibility for alternate Fe-acquisition mechanism/s.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Sergei Ivanov
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas Kieft
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Harland L Goldstein
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225, United States
| | - Bruce M Moskowitz
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Richard L Reynolds
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225, United States
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| |
Collapse
|
17
|
Ishihara T, Ohkochi T, Yamaguchi A, Kotani Y, Oura M. Visualization of elemental distributions and local analysis of element-specific chemical states of an Arachnoidiscus sp. frustule using soft X-ray spectromicroscopy. PLoS One 2020; 15:e0243874. [PMID: 33326474 PMCID: PMC7743981 DOI: 10.1371/journal.pone.0243874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
Using soft X-ray (SX) spectromicroscopy, we show maps of the spatial distribution of constituent elements and local analysis of the density of states (DOS) related to the element-specific chemical states of diatom frustules, which are composed of naturally grown nanostructured hydrogenated amorphous silica. We applied X-ray photoemission electron microscopy (X-PEEM) as well as microprobe X-ray fluorescence (μXRF) analysis to characterize the surfaces of diatom frustules by means of X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES). We successfully demonstrated that SX spectromicroscopy is able to participate in potential observation tools as a new method to spectroscopically investigate diatom frustules.
Collapse
Affiliation(s)
- Tomoko Ishihara
- Soft X-ray Spectroscopy Instrumentation Team, Physical and Chemical Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Takuo Ohkochi
- Soft X-ray Spectroscopy Instrumentation Team, Physical and Chemical Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- Spectroscopic Analysis Group II, Spectroscopy and Imaging Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo, Japan
| | - Akinobu Yamaguchi
- Soft X-ray Spectroscopy Instrumentation Team, Physical and Chemical Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, Ako-gun, Hyogo, Japan
| | - Yoshinori Kotani
- Spectroscopic Analysis Group II, Spectroscopy and Imaging Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo, Japan
| | - Masaki Oura
- Soft X-ray Spectroscopy Instrumentation Team, Physical and Chemical Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- * E-mail:
| |
Collapse
|
18
|
Palle J, Wittig NK, Kubec A, Niese S, Rosenthal M, Burghammer M, Grünewald TA, Birkedal H. Nanobeam X-ray fluorescence and diffraction computed tomography on human bone with a resolution better than 120 nm. J Struct Biol 2020; 212:107631. [DOI: 10.1016/j.jsb.2020.107631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
|
19
|
Delasoie J, Schiel P, Vojnovic S, Nikodinovic-Runic J, Zobi F. Photoactivatable Surface-Functionalized Diatom Microalgae for Colorectal Cancer Targeted Delivery and Enhanced Cytotoxicity of Anticancer Complexes. Pharmaceutics 2020; 12:E480. [PMID: 32466116 PMCID: PMC7285135 DOI: 10.3390/pharmaceutics12050480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Systemic toxicity and severe side effects are commonly associated with anticancer chemotherapies. New strategies based on enhanced drug selectivity and targeted delivery to cancer cells while leaving healthy tissue undamaged can reduce the global patient burden. Herein, we report the design, synthesis and characterization of a bio-inspired hybrid multifunctional drug delivery system based on diatom microalgae. The microalgae's surface was chemically functionalized with hybrid vitamin B12-photoactivatable molecules and the materials further loaded with highly active rhenium(I) tricarbonyl anticancer complexes. The constructs showed enhanced adherence to colorectal cancer (CRC) cells and slow release of the chemotherapeutic drugs. The overall toxicity of the hybrid multifunctional drug delivery system was further enhanced by photoactivation of the microalgae surface. Depending on the construct and anticancer drug, a 2-fold increase in the cytotoxic efficacy of the drug was observed upon light irradiation. The use of this targeted drug delivery strategy, together with selective spatial-temporal light activation, may lead to lower effective concentration of anticancer drugs, thereby reducing medication doses, possible side effects and overall burden for the patient.
Collapse
Affiliation(s)
- Joachim Delasoie
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland; (J.D.); (P.S.)
| | - Philippe Schiel
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland; (J.D.); (P.S.)
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.V.); (J.N.-R.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.V.); (J.N.-R.)
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland; (J.D.); (P.S.)
| |
Collapse
|
20
|
Jones MWM, Kopittke PM, Casey L, Reinhardt J, Blamey FPC, van der Ent A. Assessing radiation dose limits for X-ray fluorescence microscopy analysis of plant specimens. ANNALS OF BOTANY 2020; 125:599-610. [PMID: 31777920 PMCID: PMC7102987 DOI: 10.1093/aob/mcz195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/27/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS X-ray fluorescence microscopy (XFM) is a powerful technique to elucidate the distribution of elements within plants. However, accumulated radiation exposure during analysis can lead to structural damage and experimental artefacts including elemental redistribution. To date, acceptable dose limits have not been systematically established for hydrated plant specimens. METHODS Here we systematically explore acceptable dose rate limits for investigating fresh sunflower (Helianthus annuus) leaf and root samples and investigate the time-dose damage in leaves attached to live plants. KEY RESULTS We find that dose limits in fresh roots and leaves are comparatively low (4.1 kGy), based on localized disintegration of structures and element-specific redistribution. In contrast, frozen-hydrated samples did not incur any apparent damage even at doses as high as 587 kGy. Furthermore, we find that for living plants subjected to XFM measurement in vivo and grown for a further 9 d before being reimaged with XFM, the leaves display elemental redistribution at doses as low as 0.9 kGy and they continue to develop bleaching and necrosis in the days after exposure. CONCLUSIONS The suggested radiation dose limits for studies using XFM to examine plants are important for the increasing number of plant scientists undertaking multidimensional measurements such as tomography and repeated imaging using XFM.
Collapse
Affiliation(s)
- Michael W M Jones
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Australia
- For correspondence. E-mail
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, Australia
| | - Lachlan Casey
- Centre for Microscopy and Microanalysis, The University of Queensland, Australia
| | | | - F Pax C Blamey
- School of Agriculture and Food Sciences, The University of Queensland, Australia
| | | |
Collapse
|
21
|
Gramaccioni C, Yang Y, Pacureanu A, Vigano N, Procopio A, Valenti P, Rosa L, Berlutti F, Bohic S, Cloetens P. Cryo-nanoimaging of Single Human Macrophage Cells: 3D Structural and Chemical Quantification. Anal Chem 2020; 92:4814-4819. [PMID: 32162903 DOI: 10.1021/acs.analchem.9b04096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
X-ray microscopy is increasingly used in biology, but in most cases only in a qualitative way. We present here a 3D correlative cryo X-ray microscopy approach suited for the quantification of molar concentrations and structure in native samples at nanometer scale. The multimodal approach combines X-ray fluorescence and X-ray holographic nanotomography on "thick" frozen-hydrated cells. The quantitativeness of the X-ray fluorescence reconstruction is improved by estimating the self-attenuation from the 3D holography reconstruction. Applied to complex macrophage cells, we extract the quantification of major and minor elements heavier than phosphorus, as well as the density, in the different organelles. The intracellular landscape shows remarkable elemental differences. This novel analytical microscopy approach will be of particular interest to investigate complex biological and chemical systems in their native environment.
Collapse
Affiliation(s)
- Chiara Gramaccioni
- University of Calabria, Department of Physics, 87036 Arcavata di Rende, Italy
| | - Yang Yang
- ESRF, The European Synchrotron, 38043 Grenoble, France
| | | | - Nicola Vigano
- ESRF, The European Synchrotron, 38043 Grenoble, France
| | - Alessandra Procopio
- University of Bologna, Department of Pharmacy and biotechnology, 40127 Bologna Italy
| | - Piera Valenti
- University of Sapienza Roma, Department of Public Health and Infectious Diseases, 00185 Roma Italy
| | - Luigi Rosa
- University of Sapienza Roma, Department of Public Health and Infectious Diseases, 00185 Roma Italy
| | - Francesca Berlutti
- University of Sapienza Roma, Department of Public Health and Infectious Diseases, 00185 Roma Italy
| | - Sylvain Bohic
- ESRF, The European Synchrotron, 38043 Grenoble, France.,Universite Grenoble Alpes, INSERM, UA7, Synchrotron Radiation for Biomedicine, 38043 Grenoble, France
| | | |
Collapse
|
22
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
23
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2019; 59:1270-1278. [DOI: 10.1002/anie.201911510] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
24
|
Wittig NK, Palle J, Østergaard M, Frølich S, Birkbak ME, Spiers KM, Garrevoet J, Birkedal H. Bone Biomineral Properties Vary across Human Osteonal Bone. ACS NANO 2019; 13:12949-12956. [PMID: 31613594 DOI: 10.1021/acsnano.9b05535] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The biomineralization of bone remains a puzzle. During Haversian remodeling in the dense human cortical bone, osteoclasts excavate a tunnel that is then filled in by osteoblasts with layers of bone of varying fibril orientations, resulting in a lamellar motif. Such bone represents an excellent possibility to increase our understanding of bone as a material as well as bone biomineralization by studying spatio/temporal variations in the biomineral across an osteon. To this end, fluorescence computed tomography and diffraction scattering computed tomography with sub-micrometer resolution is applied to obtain position resolved fluorescence spectra and diffraction patterns in a 3D volume. The microstructural properties of the apatite biomineral are not homogeneous but depend critically on the time point at which it was laid down. This indicates that the nature of bone biomineral is highly dependent on the microenvironment during bone formation and remodeling.
Collapse
Affiliation(s)
- Nina K Wittig
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Jonas Palle
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Maja Østergaard
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Simon Frølich
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Mie E Birkbak
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | | | - Jan Garrevoet
- DESY Photon Science , Notkestr. 85 , D-22607 Hamburg , Germany
| | - Henrik Birkedal
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| |
Collapse
|
25
|
Procopio A, Malucelli E, Pacureanu A, Cappadone C, Farruggia G, Sargenti A, Castiglioni S, Altamura D, Sorrentino A, Giannini C, Pereiro E, Cloetens P, Maier JAM, Iotti S. Chemical Fingerprint of Zn-Hydroxyapatite in the Early Stages of Osteogenic Differentiation. ACS CENTRAL SCIENCE 2019; 5:1449-1460. [PMID: 31482128 PMCID: PMC6716342 DOI: 10.1021/acscentsci.9b00509] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 06/01/2023]
Abstract
The core knowledge about biomineralization is provided by studies on the advanced phases of the process mainly occurring in the extracellular matrix. Here, we investigate the early stages of biomineralization by evaluating the chemical fingerprint of the initial mineral nuclei deposition in the intracellular milieu and their evolution toward hexagonal hydroxyapatite. The study is conducted on human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days, exploiting laboratory X-ray diffraction techniques and cutting-edge developments of synchrotron-based 2D and 3D cryo-X-ray microscopy. We demonstrate that biomineralization starts with Zn-hydroxyapatite nucleation within the cell, rapidly evolving toward hexagonal hydroxyapatite crystals, very similar in composition and structure to the one present in human bone. These results provide experimental evidence of the germinal role of Zn in hydroxyapatite nucleation and foster further studies on the intracellular molecular mechanisms governing the initial phases of bone tissue formation.
Collapse
Affiliation(s)
- Alessandra Procopio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | | | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
- National Institute of Biostructures and Biosystems, Rome 00136, Italy
| | - Azzurra Sargenti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan 20122, Italy
| | - Davide Altamura
- Institute of Crystallography, National Research Council, Bari 70126, Italy
| | - Andrea Sorrentino
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, Bari 70126, Italy
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Peter Cloetens
- ID16A Beamline, ESRF, the European Synchrotron, Grenoble 38043, France
| | - Jeanette A M Maier
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan 20122, Italy
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
- National Institute of Biostructures and Biosystems, Rome 00136, Italy
| |
Collapse
|
26
|
Yang Y, Fus F, Pacureanu A, da Silva JC, De Nolf W, Biot C, Bohic S, Cloetens P. Three-Dimensional Correlative Imaging of a Malaria-Infected Cell with a Hard X-ray Nanoprobe. Anal Chem 2019; 91:6549-6554. [DOI: 10.1021/acs.analchem.8b05957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Y. Yang
- ESRF - the European Sychrotron, 38043 Grenoble, France
| | - F. Fus
- ESRF - the European Sychrotron, 38043 Grenoble, France
- Université Grenoble Alpes, EA-7442 Rayonnement Synchrotron et Recherche Médicale, 38058 Grenoble, France
| | - A. Pacureanu
- ESRF - the European Sychrotron, 38043 Grenoble, France
| | | | - W. De Nolf
- ESRF - the European Sychrotron, 38043 Grenoble, France
| | - C. Biot
- Université de Lille, Faculté des sciences et technologies, 59655 Villeneuve d’ Ascq, France
| | - S. Bohic
- ESRF - the European Sychrotron, 38043 Grenoble, France
- Université Grenoble Alpes, EA-7442 Rayonnement Synchrotron et Recherche Médicale, 38058 Grenoble, France
| | - P. Cloetens
- ESRF - the European Sychrotron, 38043 Grenoble, France
| |
Collapse
|
27
|
Deng J, Lo YH, Gallagher-Jones M, Chen S, Pryor A, Jin Q, Hong YP, Nashed YSG, Vogt S, Miao J, Jacobsen C. Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae. SCIENCE ADVANCES 2018; 4:eaau4548. [PMID: 30406204 PMCID: PMC6214637 DOI: 10.1126/sciadv.aau4548] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/24/2018] [Indexed: 05/20/2023]
Abstract
Accurate knowledge of elemental distributions within biological organisms is critical for understanding their cellular roles. The ability to couple this knowledge with overall cellular architecture in three dimensions (3D) deepens our understanding of cellular chemistry. Using a whole, frozen-hydrated Chlamydomonas reinhardtii cell as an example, we report the development of 3D correlative microscopy through a combination of simultaneous cryogenic x-ray ptychography and x-ray fluorescence microscopy. By taking advantage of a recently developed tomographic reconstruction algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE), we produce high-quality 3D maps of the unlabeled alga's cellular ultrastructure and elemental distributions within the cell. We demonstrate GENFIRE's ability to outperform conventional tomography algorithms and to further improve the reconstruction quality by refining the experimentally intended tomographic angles. As this method continues to advance with brighter coherent light sources and more efficient data handling, we expect correlative 3D x-ray fluorescence and ptychographic tomography to be a powerful tool for probing a wide range of frozen-hydrated biological specimens, ranging from small prokaryotes such as bacteria, algae, and parasites to large eukaryotes such as mammalian cells, with applications that include understanding cellular responses to environmental stimuli and cell-to-cell interactions.
Collapse
Affiliation(s)
- Junjing Deng
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Yuan Hung Lo
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California Los Angeles, CA 90095, USA
| | - Marcus Gallagher-Jones
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Department of Chemistry & Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095-1570, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alan Pryor
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
| | - Qiaoling Jin
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Young Pyo Hong
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Youssef S. G. Nashed
- Mathematics and Computing Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Stefan Vogt
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Corresponding author. (J.M.); (C.J.)
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (J.M.); (C.J.)
| |
Collapse
|
28
|
Kopittke PM, Punshon T, Paterson DJ, Tappero RV, Wang P, Blamey FPC, van der Ent A, Lombi E. Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. PLANT PHYSIOLOGY 2018; 178:507-523. [PMID: 30108140 PMCID: PMC6181034 DOI: 10.1104/pp.18.00759] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 05/06/2023]
Abstract
Understanding the distribution of elements within plant tissues is important across a range of fields in plant science. In this review, we examine synchrotron-based x-ray fluorescence microscopy (XFM) as an elemental imaging technique in plant sciences, considering both its historical and current uses as well as discussing emerging approaches. XFM offers several unique capabilities of interest to plant scientists, including in vivo analyses at room temperature and pressure, good detection limits (approximately 1-100 mg kg-1), and excellent resolution (down to 50 nm). This has permitted its use in a range of studies, including for functional characterization in molecular biology, examining the distribution of nutrients in food products, understanding the movement of foliar fertilizers, investigating the behavior of engineered nanoparticles, elucidating the toxic effects of metal(loid)s in agronomic plant species, and studying the unique properties of hyperaccumulating plants. We anticipate that continuing technological advances at XFM beamlines also will provide new opportunities moving into the future, such as for high-throughput screening in molecular biology, the use of exotic metal tags for protein localization, and enabling time-resolved, in vivo analyses of living plants. By examining current and potential future applications, we hope to encourage further XFM studies in plant sciences by highlighting the versatility of this approach.
Collapse
Affiliation(s)
- Peter M Kopittke
- University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia
| | - Tracy Punshon
- Dartmouth College, Department of Biological Sciences, Life Science Center, Hanover, New Hampshire 03755
| | | | - Ryan V Tappero
- Brookhaven National Laboratory, Photon Sciences Division, Upton, New York 11973
| | - Peng Wang
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing 210095, China
- University of Queensland, Centre for Soil and Environmental Research, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia
| | - F Pax C Blamey
- University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia
| | - Antony van der Ent
- University of Queensland, Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, St. Lucia, Queensland 4072, Australia
| | - Enzo Lombi
- University of South Australia, Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
29
|
Victor TW, Easthon LM, Ge M, O'Toole KH, Smith RJ, Huang X, Yan H, Allen KN, Chu YS, Miller LM. X-ray Fluorescence Nanotomography of Single Bacteria with a Sub-15 nm Beam. Sci Rep 2018; 8:13415. [PMID: 30194316 PMCID: PMC6128931 DOI: 10.1038/s41598-018-31461-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/20/2018] [Indexed: 11/14/2022] Open
Abstract
X-ray Fluorescence (XRF) microscopy is a growing approach for imaging the trace element concentration, distribution, and speciation in biological cells at the nanoscale. Moreover, three-dimensional nanotomography provides the added advantage of imaging subcellular structure and chemical identity in three dimensions without the need for staining or sectioning of cells. To date, technical challenges in X-ray optics, sample preparation, and detection sensitivity have limited the use of XRF nanotomography in this area. Here, XRF nanotomography was used to image the elemental distribution in individual E. coli bacterial cells using a sub-15 nm beam at the Hard X-ray Nanoprobe beamline (HXN, 3-ID) at NSLS-II. These measurements were simultaneously combined with ptychography to image structural components of the cells. The cells were embedded in small (3-20 µm) sodium chloride crystals, which provided a non-aqueous matrix to retain the three-dimensional structure of the E. coli while collecting data at room temperature. Results showed a generally uniform distribution of calcium in the cells, but an inhomogeneous zinc distribution, most notably with concentrated regions of zinc at the polar ends of the cells. This work demonstrates that simultaneous two-dimensional ptychography and XRF nanotomography can be performed with a sub-15 nm beam size on unfrozen biological cells to co-localize elemental distribution and nanostructure simultaneously.
Collapse
Affiliation(s)
- Tiffany W Victor
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | - Mingyuan Ge
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | - Randy J Smith
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xiaojing Huang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yong S Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lisa M Miller
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA.
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
30
|
Chwiej J, Palczynska M, Skoczen A, Janeczko K, Cieslak J, Simon R, Setkowicz Z. Elemental changes of hippocampal formation occurring during postnatal brain development. J Trace Elem Med Biol 2018; 49:1-7. [PMID: 29895356 DOI: 10.1016/j.jtemb.2018.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
In this paper the elemental changes of rat hippocampal formation occurring during the postnatal development were examined. Three groups of animals were used in the study. These were naive Wistar rats at the age of 6-, 30- and 60-days and the chosen life periods corresponded to the neonatal period, childhood and early adulthood in humans, respectively. For the topographic and quantitative elemental analysis X-ray fluorescence microscopy was applied and the measurements were done at the FLUO beamline of ANKA. The detailed quantitative and statistical analysis was done for four areas of hippocampal formation, namely sectors 1 and 3 of the Ammon's horn (CA1 and CA3, respectively), dentate gyrus (DG) and its internal area (hilus of DG, H). The obtained results showed that among the all examined elements (P, S, K, Ca, Fe, Cu, Zn and Se), only the levels of Fe and Zn changed significantly during postnatal development of the hippocampal formation and both the elements were significantly higher in young adults comparing to the rats in neonatal period. The increased Fe areal density was found in all examined hippocampal areas whilst Zn was elevated in CA3, DG and H. In order to follow the dynamics of age-dependent elemental changes, the statistical significance of differences in their accumulation between subsequent moments of time was examined. The obtained results showed statistically relevant increase of Zn level only in the first observation period (between 6th and 30th day of life). Afterwards the areal density of the element did not change significantly. The increase of Fe areal density took place in both examined periods, however the observed changes were small and usually not statistically relevant.
Collapse
Affiliation(s)
- J Chwiej
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
| | - M Palczynska
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - A Skoczen
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - K Janeczko
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow, Poland
| | - J Cieslak
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - R Simon
- Institut fur Synchrotronstrahlung, Research Centre Karlsruhe, Karlsruhe, Germany
| | - Z Setkowicz
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow, Poland
| |
Collapse
|
31
|
Zhang R, Li L, Sultanbawa Y, Xu ZP. X-ray fluorescence imaging of metals and metalloids in biological systems. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2018; 8:169-188. [PMID: 30042869 PMCID: PMC6056246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Metals and metalloids play fundamental roles in many physiological processes in biological systems, but imbalance of these elements in the body may cause many diseases, such as Parkinson's disease, Alzheimer's disease, and even cancers. Thus, to better understand the metallome in health and disease, quantitative determination of their localization, concentration, speciation, and related metabolism at cellular or subcellular levels is of great importance. X-ray fluorescence (XRF) imaging, as a new generation of analytical technique, has been reported as an ideal tool to quantitatively map multiple metals and metalloids in tissues with reasonable sensitivity, specificity, and resolution. In the current review, we have introduced the general concept of XRF imaging technique, reviewed the recent advances using XRF imaging to investigate toxicology of metals and metalloids in life science, and discussed the roles of metals and metalloids in various diseases, including cancers and neurodegenerative diseases. We believe that future research on revealing the roles of metals and metalloids in biological systems will directly benefit from the important breakthroughs in developing XRF imaging techniques.
Collapse
Affiliation(s)
- Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandSt Lucia, QLD 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandSt Lucia, QLD 4072, Australia
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandCoopers Plains, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandSt Lucia, QLD 4072, Australia
| |
Collapse
|
32
|
Yao S, Fan J, Chen Z, Zong Y, Zhang J, Sun Z, Zhang L, Tai R, Liu Z, Chen C, Jiang H. Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells. IUCRJ 2018; 5:141-149. [PMID: 29765603 PMCID: PMC5947718 DOI: 10.1107/s2052252517017912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/15/2017] [Indexed: 05/20/2023]
Abstract
Knowledge of the interactions between nanomaterials and large-size mammalian cells, including cellular uptake, intracellular localization and translocation, has greatly advanced nanomedicine and nanotoxicology. Imaging techniques that can locate nanomaterials within the structures of intact large-size cells at nanoscale resolution play crucial roles in acquiring this knowledge. Here, the quantitative imaging of intracellular nanomaterials in three dimensions was performed by combining dual-energy contrast X-ray microscopy and an iterative tomographic algorithm termed equally sloped tomography (EST). Macrophages with a size of ∼20 µm that had been exposed to the potential antitumour agent [Gd@C82(OH)22] n were investigated. Large numbers of nanoparticles (NPs) aggregated within the cell and were mainly located in phagosomes. No NPs were observed in the nucleus. Imaging of the nanomedicine within whole cells advanced the understanding of the high-efficiency antitumour activity and the low toxicity of this agent. This imaging technique can be used to probe nanomaterials within intact large-size cells at nanometre resolution uniformly in three dimensions and may greatly benefit the fields of nanomedicine and nanotoxicology.
Collapse
Affiliation(s)
- Shengkun Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
| | - Jiadong Fan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
| | - Zhiyun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People’s Republic of China
| | - Yunbing Zong
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| | - Jianhua Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| | - Zhibin Sun
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, 239 Zhangheng Road, Pudong New District, Shanghai 201204, People’s Republic of China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, 239 Zhangheng Road, Pudong New District, Shanghai 201204, People’s Republic of China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People’s Republic of China
| | - Huaidong Jiang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| |
Collapse
|
33
|
Nietzold T, West BM, Stuckelberger M, Lai B, Vogt S, Bertoni MI. Quantifying X-Ray Fluorescence Data Using MAPS. J Vis Exp 2018. [PMID: 29553551 DOI: 10.3791/56042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The quantification of X-ray fluorescence (XRF) microscopy maps by fitting the raw spectra to a known standard is crucial for evaluating chemical composition and elemental distribution within a material. Synchrotron-based XRF has become an integral characterization technique for a variety of research topics, particularly due to its non-destructive nature and its high sensitivity. Today, synchrotrons can acquire fluorescence data at spatial resolutions well below a micron, allowing for the evaluation of compositional variations at the nanoscale. Through proper quantification, it is then possible to obtain an in-depth, high-resolution understanding of elemental segregation, stoichiometric relationships, and clustering behavior. This article explains how to use the MAPS fitting software developed by Argonne National Laboratory for the quantification of full 2-D XRF maps. We use as an example results from a Cu(In,Ga)Se2 solar cell, taken at the Advanced Photon Source beamline 2-ID-D at Argonne National Laboratory. We show the standard procedure for fitting raw data, demonstrate how to evaluate the quality of a fit and present the typical outputs generated by the program. In addition, we discuss in this manuscript certain software limitations and offer suggestions for how to further correct the data to be numerically accurate and representative of spatially resolved, elemental concentrations.
Collapse
Affiliation(s)
- Tara Nietzold
- School for Engineering of Matter, Transport, and Energy, Arizona State University
| | - Bradley M West
- School of Electrical, Computer, and Energy Engineering, Arizona State University
| | | | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory
| | - Stefan Vogt
- Advanced Photon Source, Argonne National Laboratory
| | - Mariana I Bertoni
- School of Electrical, Computer, and Energy Engineering, Arizona State University;
| |
Collapse
|
34
|
Bourassa D, Gleber SC, Vogt S, Shin CH, Fahrni CJ. MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period. Metallomics 2017; 8:1122-1130. [PMID: 27531414 DOI: 10.1039/c6mt00073h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transition metals such as zinc, copper, and iron play key roles in cellular proliferation, cell differentiation, growth, and development. Over the past decade, advances in synchrotron X-ray fluorescence instrumentation presented new opportunities for the three-dimensional mapping of trace metal distributions within intact specimens. Taking advantage of microXRF tomography, we visualized the 3D distribution of zinc and iron in a zebrafish embryo at the onset of the hatching period. The reconstructed volumetric data revealed distinct differences in the elemental distributions, with zinc predominantly localized to the yolk and yolk extension, and iron to various regions of the brain as well as the myotome extending along the dorsal side of the embryo. The data set complements an earlier tomographic study of an embryo at the pharyngula stage (24 hpf), thus offering new insights into the trace metal distribution at key stages of embryonic development.
Collapse
Affiliation(s)
- Daisy Bourassa
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA.
| | - Sophie-Charlotte Gleber
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Stefan Vogt
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Chong Hyun Shin
- School of Biological Sciences and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| | - Christoph J Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA.
| |
Collapse
|
35
|
Jones MWM, Hare DJ, James SA, de Jonge MD, McColl G. Radiation Dose Limits for Bioanalytical X-ray Fluorescence Microscopy. Anal Chem 2017; 89:12168-12175. [DOI: 10.1021/acs.analchem.7b02817] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Michael W. M. Jones
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria 3168, Australia
- ARC
Centre of Excellence in Advanced Molecular Imaging, La Trobe Intitute
of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Dominic J. Hare
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Simon A. James
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Martin D. de Jonge
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria 3168, Australia
| | - Gawain McColl
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
36
|
de Jonge MD, Kingston AM, Afshar N, Garrevoet J, Kirkham R, Ruben G, Myers GR, Latham SJ, Howard DL, Paterson DJ, Ryan CG, McColl G. Spiral scanning X-ray fluorescence computed tomography. OPTICS EXPRESS 2017; 25:23424-23436. [PMID: 29041643 DOI: 10.1364/oe.25.023424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Scanning X-ray fluorescence tomography was once considered impractical due to prohibitive measurement time requirements but is now common for investigating metal distributions within small systems. A recent look-ahead to the possibilities of 4th-generation synchrotron light sources [J. Synchrotron. Radiat. 21, 1031 (2014)] raised the possibility of a spiral-scanning measurement scheme where motion overheads are almost completely eliminated. Here we demonstrate the spiral scanning measurement and use Fourier ring correlation analysis to interrogate sources of resolution degradation. We develop an extension to the Fourier ring correlation formalism that enables direct determination of resolution from the measured sinogram data, greatly enhancing its power as a diagnostic tool for computed tomography.
Collapse
|
37
|
Ivask A, Mitchell AJ, Malysheva A, Voelcker NH, Lombi E. Methodologies and approaches for the analysis of cell-nanoparticle interactions. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1486. [DOI: 10.1002/wnan.1486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Angela Ivask
- Laboratory of Environmental Toxicology; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Andrew J. Mitchell
- Materials Characterisation and Fabrication Platform; University of Melbourne; Melbourne Australia
| | - Anzhela Malysheva
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
| | - Enzo Lombi
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| |
Collapse
|
38
|
Lemelle L, Simionovici A, Schoonjans T, Tucoulou R, Enrico E, Salomé M, Hofmann A, Cavalazzi B. Analytical requirements for quantitative X-ray fluorescence nano-imaging of metal traces in solid samples. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning. Sci Rep 2017; 7:445. [PMID: 28348401 PMCID: PMC5428657 DOI: 10.1038/s41598-017-00569-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/03/2017] [Indexed: 01/19/2023] Open
Abstract
X-ray microscopy can be used to image whole, unsectioned cells in their native hydrated state. It complements the higher resolution of electron microscopy for submicrometer thick specimens, and the molecule-specific imaging capabilites of fluorescence light microscopy. We describe here the first use of fast, continuous x-ray scanning of frozen hydrated cells for simultaneous sub-20 nm resolution ptychographic transmission imaging with high contrast, and sub-100 nm resolution deconvolved x-ray fluorescence imaging of diffusible and bound ions at native concentrations, without the need to add specific labels. By working with cells that have been rapidly frozen without the use of chemical fixatives, and imaging them under cryogenic conditions, we are able to obtain images with well preserved structural and chemical composition, and sufficient stability against radiation damage to allow for multiple images to be obtained with no observable change.
Collapse
|
40
|
Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017; 89:22-41. [PMID: 27976855 PMCID: PMC5827935 DOI: 10.1021/acs.analchem.6b04631] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
41
|
West BM, Stuckelberger M, Jeffries A, Gangam S, Lai B, Stripe B, Maser J, Rose V, Vogt S, Bertoni MI. X-ray fluorescence at nanoscale resolution for multicomponent layered structures: a solar cell case study. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:288-295. [PMID: 28009569 DOI: 10.1107/s1600577516015721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer-Lambert's law, formulae are presented in a general integral form and numerically applicable framework. The procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.
Collapse
Affiliation(s)
- Bradley M West
- School of Electrical, Computer, and Energy Engineering, Arizona State University, 551 E Tyler Mall, Tempe, AZ 85281, USA
| | - Michael Stuckelberger
- School of Electrical, Computer, and Energy Engineering, Arizona State University, 551 E Tyler Mall, Tempe, AZ 85281, USA
| | - April Jeffries
- School for Engineering of Matter, Transport, and Energy, Arizona State University, 551 E Tyler Mall, Tempe, AZ 85281, USA
| | - Srikanth Gangam
- School of Electrical, Computer, and Energy Engineering, Arizona State University, 551 E Tyler Mall, Tempe, AZ 85281, USA
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Benjamin Stripe
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jörg Maser
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Volker Rose
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Stefan Vogt
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mariana I Bertoni
- School of Electrical, Computer, and Energy Engineering, Arizona State University, 551 E Tyler Mall, Tempe, AZ 85281, USA
| |
Collapse
|
42
|
De Samber B, Niemiec MJ, Laforce B, Garrevoet J, Vergucht E, De Rycke R, Cloetens P, Urban CF, Vincze L. Probing Intracellular Element Concentration Changes during Neutrophil Extracellular Trap Formation Using Synchrotron Radiation Based X-Ray Fluorescence. PLoS One 2016; 11:e0165604. [PMID: 27812122 PMCID: PMC5094720 DOI: 10.1371/journal.pone.0165604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/15/2016] [Indexed: 02/07/2023] Open
Abstract
High pressure frozen (HPF), cryo-substituted microtome sections of 2 μm thickness containing human neutrophils (white blood cells) were analyzed using synchrotron radiation based X-ray fluorescence (SR nano-XRF) at a spatial resolution of 50 nm. Besides neutrophils from a control culture, we also analyzed neutrophils stimulated for 1-2 h with phorbol myristate acetate (PMA), a substance inducing the formation of so-called Neutrophil Extracellular Traps (or NETs), a defense system again pathogens possibly involving proteins with metal chelating properties. In order to gain insight in metal transport during this process, precise local evaluation of elemental content was performed reaching limits of detection (LODs) of 1 ppb. Mean weight fractions within entire neutrophils, their nuclei and cytoplasms were determined for the three main elements P, S and Cl, but also for the 12 following trace elements: K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Sr and Pb. Statistical analysis, including linear regression provided objective analysis and a measure for concentration changes. The nearly linear Ca and Cl concentration changes in neutrophils could be explained by already known phenomena such as the induction of Ca channels and the uptake of Cl under activation of NET forming neutrophils. Linear concentration changes were also found for P, S, K, Mn, Fe, Co and Se. The observed linear concentration increase for Mn could be related to scavenging of this metal from the pathogen by means of the neutrophil protein calprotectin, whereas the concentration increase of Se may be related to its antioxidant function protecting neutrophils from the reactive oxygen species they produce against pathogens. We emphasize synchrotron radiation based nanoscopic X-ray fluorescence as an enabling analytical technique to study changing (trace) element concentrations throughout cellular processes, provided accurate sample preparation and data-analysis.
Collapse
Affiliation(s)
- Björn De Samber
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
- * E-mail:
| | - Maria J. Niemiec
- Department of Clinical Microbiology / MIMS, Umeå University, Umeå, Sweden
- Microbial Immunology Research Group, Hans Knöll Institute / Leibniz-Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Brecht Laforce
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
| | | | - Eva Vergucht
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Inflammation Research Centre, VIB and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Peter Cloetens
- European Synchrotron Radiation Facility, Grenoble, France
| | | | - Laszlo Vincze
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Boesenberg U, Ryan CG, Kirkham R, Siddons DP, Alfeld M, Garrevoet J, Núñez T, Claussen T, Kracht T, Falkenberg G. Fast X-ray microfluorescence imaging with submicrometer-resolution integrating a Maia detector at beamline P06 at PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1550-1560. [PMID: 27787262 DOI: 10.1107/s1600577516015289] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/28/2016] [Indexed: 05/20/2023]
Abstract
The high brilliance of third-generation synchrotron sources increases the demand for faster detectors to utilize the available flux. The Maia detector is an advanced imaging scheme for energy-dispersive detection realising dwell times per image-pixel as low as 50 µs and count rates higher than 10 × 106 s-1. In this article the integration of such a Maia detector in the Microprobe setup of beamline P06 at the storage ring PETRA III at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany, is described. The analytical performance of the complete system in terms of rate-dependent energy resolution, scanning-speed-dependent spatial resolution and lower limits of detection is characterized. The potential of the Maia-based setup is demonstrated by key applications from materials science and chemistry, as well as environmental science with geological applications and biological questions that have been investigated at the P06 beamline.
Collapse
Affiliation(s)
- Ulrike Boesenberg
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Christopher G Ryan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Robin Kirkham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | | | - Matthias Alfeld
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Jan Garrevoet
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Teresa Núñez
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Thorsten Claussen
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Thorsten Kracht
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
44
|
Schaumlöffel D, Hutchinson R, Malherbe J, Coustumer PL, Gontier E, Isaure MP. Novel Methods for Bioimaging Including LA-ICP-MS, NanoSIMS, TEM/X-EDS, and SXRF. Metallomics 2016. [DOI: 10.1002/9783527694907.ch4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dirk Schaumlöffel
- Université de Pau et des Pays de l'Adour, CNRS; Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM); UMR 5254 64000 Pau France
| | - Robert Hutchinson
- Electro Scientific Industries; 8 Avro Court, Ermine Business Park Huntingdon, Cambridge PE29 6XS UK
| | - Julien Malherbe
- Université de Pau et des Pays de l'Adour, CNRS; Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM); UMR 5254 64000 Pau France
| | - Philippe Le Coustumer
- Université de Bordeaux, UF Sciences de la Terre et Environnement; Allée G. Saint-Hillaire 33615 Pessac France
| | - Etienne Gontier
- Université de Bordeaux, Bordeaux Imaging Center; UMS 3420 CNRS - US4 INSERM, Pôle d'imagerie électronique; 146 rue Léo Saignat 33076 Bordeaux France
| | - Marie-Pierre Isaure
- Université de Pau et des Pays de l'Adour, CNRS; Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM); UMR 5254 64000 Pau France
| |
Collapse
|
45
|
Malucelli E, Fratini M, Notargiacomo A, Gianoncelli A, Merolle L, Sargenti A, Cappadone C, Farruggia G, Lagomarsino S, Iotti S. Where is it and how much? Mapping and quantifying elements in single cells. Analyst 2016; 141:5221-35. [PMID: 27441316 DOI: 10.1039/c6an01091a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological function of a chemical element in cells not only requires the determination of its intracellular quantity, but also the spatial distribution of its concentration. Different strategies can be employed to quantify and map the intracellular concentration of elements in single cells. The assessment of the intracellular elemental concentration, which is the relevant information, requires the measurement of cell volume. This challenging and demanding task requires combining different techniques allowing gathering of both morphological and compositional information on the same cell. Moreover, the need to analyse samples more similar to their natural state requires complex hardware equipment, and supplementary efforts in preparation protocols. Nevertheless, the response to the question: "where is it and how much?" is worth all these efforts. This review aims at providing an insight into the recent and most advanced techniques and strategies for quantifying and mapping chemical elements in single cells. We describe and discuss indirect detection techniques (label based) which make use of fluorescent dyes, and direct ones (label free), such as particle induced X-ray emission, proton backscattering spectrometry, scanning transmission ion spectrometry, nano-secondary ion mass spectrometry, X-ray fluorescence microscopy, complemented by X-ray imaging.
Collapse
Affiliation(s)
- Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kaščáková S, Kewish CM, Rouzière S, Schmitt F, Sobesky R, Poupon J, Sandt C, Francou B, Somogyi A, Samuel D, Jacquemin E, Dubart-Kupperschmitt A, Nguyen TH, Bazin D, Duclos-Vallée JC, Guettier C, Le Naour F. Rapid and reliable diagnosis of Wilson disease using X-ray fluorescence. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2016; 2:175-86. [PMID: 27499926 PMCID: PMC4958738 DOI: 10.1002/cjp2.48] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
Abstract
Wilson's disease (WD) is a rare autosomal recessive disease due to mutations of the gene encoding the copper-transporter ATP7B. The diagnosis is hampered by the variability of symptoms induced by copper accumulation, the inconstancy of the pathognomonic signs and the absence of a reliable diagnostic test. We investigated the diagnostic potential of X-ray fluorescence (XRF) that allows quantitative analysis of multiple elements. Studies were performed on animal models using Wistar rats (n = 10) and Long Evans Cinnamon (LEC) rats (n = 11), and on human samples including normal livers (n = 10), alcohol cirrhosis (n = 8), haemochromatosis (n = 10), cholestasis (n = 6) and WD (n = 22). XRF experiments were first performed using synchrotron radiation to address the elemental composition at the cellular level. High-resolution mapping of tissue sections allowed measurement of the intensity and the distribution of copper, iron and zinc while preserving the morphology. Investigations were further conducted using a laboratory X-ray source for irradiating whole pieces of tissue. The sensitivity of XRF was highlighted by the discrimination of LEC rats from wild type even under a regimen using copper deficient food. XRF on whole formalin-fixed paraffin embedded needle biopsies allowed profiling of the elements in a few minutes. The intensity of copper related to iron and zinc significantly discriminated WD from other genetic or chronic liver diseases with 97.6% specificity and 100% sensitivity. This study established a definite diagnosis of Wilson's disease based on XRF. This rapid and versatile method can be easily implemented in a clinical setting.
Collapse
Affiliation(s)
- Slávka Kaščáková
- INSERMUnité 1193, Villejuif, F-94800France; Univ Paris-SudUMR-S 1193, Villejuif, F-94800France; DHU HepatinovVillejuif, F-94800France
| | - Cameron M Kewish
- Ligne de lumière NANOSCOPIUM, Synchrotron SOLEIL Gif sur Yvette, F-91192 France
| | - Stéphan Rouzière
- Laboratoire de Physique des Solides UMR CNRS 8502, Univ Paris-Sud, Bâtiment 510 Orsay Cedex 91405 France
| | - Françoise Schmitt
- INSERM, Unité 1064, Centre de Recherche en Transplantation & Immunologie, ITUN, CHU Hôtel DieuNantesFrance; Univ d'AngersHIFIH, UPRES 3859AngersFrance
| | - Rodolphe Sobesky
- INSERMUnité 1193, Villejuif, F-94800France; Univ Paris-SudUMR-S 1193, Villejuif, F-94800France; DHU HepatinovVillejuif, F-94800France; AP-HP Hôpital Paul Brousse, Centre Hépato-BiliaireVillejuifF-94800France; Centre de Référence National de la Maladie de Wilson, AP-HPFrance
| | - Joël Poupon
- Centre de Référence National de la Maladie de Wilson, AP-HPFrance; AP-HP Hôpital Lariboisière, Laboratoire de toxicologie biologiqueParis Cedex 1075475France
| | - Christophe Sandt
- Ligne de lumière SMIS, Synchrotron SOLEIL Gif sur Yvette, F-91192 France
| | - Bruno Francou
- Service de Génétique Moléculaire Pharmacogénétique et Hormonologie Hôpital Bicêtre, Le Kremlin-Bicêtre Cedex F-94276 France
| | - Andrea Somogyi
- Ligne de lumière NANOSCOPIUM, Synchrotron SOLEIL Gif sur Yvette, F-91192 France
| | - Didier Samuel
- INSERMUnité 1193, Villejuif, F-94800France; Univ Paris-SudUMR-S 1193, Villejuif, F-94800France; DHU HepatinovVillejuif, F-94800France; AP-HP Hôpital Paul Brousse, Centre Hépato-BiliaireVillejuifF-94800France; Centre de Référence National de la Maladie de Wilson, AP-HPFrance
| | - Emmanuel Jacquemin
- DHU HepatinovVillejuif, F-94800France; Centre de Référence National de la Maladie de Wilson, AP-HPFrance; Service d'Hépatologie et de Transplantation Hépatique Pédiatriques, Hôpital Bicêtre, AP-HP, Université Paris SudLe Kremlin Bicêtre Cedex, F-94275France; Univ Paris-SudUMR-S 1174OrsayF-91400France
| | - Anne Dubart-Kupperschmitt
- INSERMUnité 1193, Villejuif, F-94800France; Univ Paris-SudUMR-S 1193, Villejuif, F-94800France; DHU HepatinovVillejuif, F-94800France
| | - Tuan Huy Nguyen
- INSERM, Unité 1064, Centre de Recherche en Transplantation & Immunologie, ITUN, CHU Hôtel Dieu Nantes France
| | - Dominique Bazin
- Univ Paris 6, Sorbonne Universités, UPMC, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP) Paris F-75005 France
| | - Jean-Charles Duclos-Vallée
- INSERMUnité 1193, Villejuif, F-94800France; Univ Paris-SudUMR-S 1193, Villejuif, F-94800France; DHU HepatinovVillejuif, F-94800France; AP-HP Hôpital Paul Brousse, Centre Hépato-BiliaireVillejuifF-94800France; Centre de Référence National de la Maladie de Wilson, AP-HPFrance
| | - Catherine Guettier
- INSERMUnité 1193, Villejuif, F-94800France; Univ Paris-SudUMR-S 1193, Villejuif, F-94800France; DHU HepatinovVillejuif, F-94800France; AP-HP Hôpital Paul Brousse, Service d'Anatomo-PathologieVillejuifF-94807France
| | - François Le Naour
- INSERMUnité 1193, Villejuif, F-94800France; Univ Paris-SudUMR-S 1193, Villejuif, F-94800France; DHU HepatinovVillejuif, F-94800France
| |
Collapse
|
47
|
In vivo and in situ synchrotron radiation-based μ-XRF reveals elemental distributions during the early attachment phase of barnacle larvae and juvenile barnacles. Anal Bioanal Chem 2015; 408:1487-96. [DOI: 10.1007/s00216-015-9253-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023]
|
48
|
Birkbak ME, Leemreize H, Frølich S, Stock SR, Birkedal H. Diffraction scattering computed tomography: a window into the structures of complex nanomaterials. NANOSCALE 2015; 7:18402-10. [PMID: 26505175 PMCID: PMC4727839 DOI: 10.1039/c5nr04385a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Modern functional nanomaterials and devices are increasingly composed of multiple phases arranged in three dimensions over several length scales. Therefore there is a pressing demand for improved methods for structural characterization of such complex materials. An excellent emerging technique that addresses this problem is diffraction/scattering computed tomography (DSCT). DSCT combines the merits of diffraction and/or small angle scattering with computed tomography to allow imaging the interior of materials based on the diffraction or small angle scattering signals. This allows, e.g., one to distinguish the distributions of polymorphs in complex mixtures. Here we review this technique and give examples of how it can shed light on modern nanoscale materials.
Collapse
Affiliation(s)
- M E Birkbak
- iNANO and Department of Chemistry, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
49
|
Malysheva A, Lombi E, Voelcker NH. Bridging the divide between human and environmental nanotoxicology. NATURE NANOTECHNOLOGY 2015; 10:835-44. [PMID: 26440721 DOI: 10.1038/nnano.2015.224] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 08/28/2015] [Indexed: 05/17/2023]
Abstract
The need to assess the human and environmental risks of nanoscale materials has prompted the development of new metrological tools for their detection, quantification and characterization. Some of these methods have tremendous potential for use in various scenarios of nanotoxicology. However, in some cases, the limited dialogue between environmental scientists and human toxicologists has hampered the full exploitation of these resources. Here we review recent progress in the development of methods for nanomaterial analysis and discuss the use of these methods in environmental and human toxicology. We highlight the opportunities for collaboration between these two research areas.
Collapse
Affiliation(s)
- Anzhela Malysheva
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Enzo Lombi
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
50
|
Leblanc C, Vilter H, Fournier JB, Delage L, Potin P, Rebuffet E, Michel G, Solari P, Feiters M, Czjzek M. Vanadium haloperoxidases: From the discovery 30 years ago to X-ray crystallographic and V K-edge absorption spectroscopic studies. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.02.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|