1
|
Xu X, Zhang Y, Wu S, Wu Y, Lin X, Chen K, Lin X. Hepatitis B Virus Promotes Angiogenesis in Hepatocellular Carcinoma by Increasing m6A Modification of VEGFA mRNA via IGF2BP3. J Med Virol 2025; 97:e70356. [PMID: 40260505 DOI: 10.1002/jmv.70356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025]
Abstract
Angiogenesis plays a crucial role in the development of HBV-related hepatocellular carcinoma (HCC). VEGFA is a key angiogenic factor, and while its transcriptional regulation by HBV has been extensively studied, its posttranscriptional regulation by HBV remains poorly understood. Building on our previous findings that delineated an RBM15/YTHDF2/IGF2BP3 regulatory axis in m6A-mediated RNA metabolism in HCC, this study further explores the posttranscriptional regulation of VEGFA by HBV. By MeRIP-qPCR and integrating MeRIP-seq data, we discovered that HBV enhances m6A methylation of VEGFA mRNA. Comprehensive cellular and molecular biology experiments demonstrated that HBV induces the upregulation of IGF2BP3, which serves as a key "reader" that recognizes and stabilizes VEGFA mRNA in an m6A methylation-dependent manner. This stabilization leads to elevated VEGFA expression, promoting enhanced cellular functions such as HUVEC migration and tube formation. Furthermore, in an HBV-associated HCC xenograft model, IGF2BP3 knockdown resulted in decreased VEGFA expression and inhibited tumor growth. This study expands our understanding of HBV-driven angiogenesis and identifies the IGF2BP3-VEGFA axis as a potential therapeutic target for antiangiogenic strategies in HBV-related HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Liver Neoplasms/virology
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Animals
- Neovascularization, Pathologic/virology
- Neovascularization, Pathologic/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Hepatitis B virus/pathogenicity
- Hepatitis B virus/physiology
- Mice
- Methylation
- Cell Line, Tumor
- Human Umbilical Vein Endothelial Cells
- Mice, Nude
- Hepatitis B/virology
- Hepatitis B/complications
- Angiogenesis
Collapse
Affiliation(s)
- Xiaoxin Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
| | - Yi Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
| | - Shuxiang Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuecheng Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Shen S, Cai D, Liang H, Zeng G, Liu W, Yan R, Yu X, Zhang H, Liu S, Li W, Deng R, Lu X, Liu Y, Sun J, Guo H. NEDD4 family ubiquitin ligase AIP4 interacts with Alix to enable HBV naked capsid egress in an Alix ubiquitination-independent manner. PLoS Pathog 2024; 20:e1012485. [PMID: 39259704 PMCID: PMC11389946 DOI: 10.1371/journal.ppat.1012485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Hepatitis B virus (HBV) exploits the endosomal sorting complexes required for transport (ESCRT)/multivesicular body (MVB) pathway for virion budding. In addition to enveloped virions, HBV-replicating cells nonlytically release non-enveloped (naked) capsids independent of the integral ESCRT machinery, but the exact secretory mechanism remains elusive. Here, we provide more detailed information about the existence and characteristics of naked capsid, as well as the viral and host regulations of naked capsid egress. HBV capsid/core protein has two highly conserved Lysine residues (K7/K96) that potentially undergo various types of posttranslational modifications for subsequent biological events. Mutagenesis study revealed that the K96 residue is critical for naked capsid egress, and the intracellular egress-competent capsids are associated with ubiquitinated host proteins. Consistent with a previous report, the ESCRT-III-binding protein Alix and its Bro1 domain are required for naked capsid secretion through binding to intracellular capsid, and we further found that the ubiquitinated Alix binds to wild type capsid but not K96R mutant. Moreover, screening of NEDD4 E3 ubiquitin ligase family members revealed that AIP4 stimulates the release of naked capsid, which relies on AIP4 protein integrity and E3 ligase activity. We further demonstrated that AIP4 interacts with Alix and promotes its ubiquitination, and AIP4 is essential for Alix-mediated naked capsid secretion. However, the Bro1 domain of Alix is non-ubiquitinated, indicating that Alix ubiquitination is not absolutely required for AIP4-induced naked capsid secretion. Taken together, our study sheds new light on the mechanism of HBV naked capsid egress in viral life cycle.
Collapse
Affiliation(s)
- Sheng Shen
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Dawei Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hongyan Liang
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ge Zeng
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wendong Liu
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaoyang Yu
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hu Zhang
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Shi Liu
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanying Li
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Deng
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingyu Lu
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanjie Liu
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jian Sun
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
3
|
Su Y, Bu F, Zhu Y, Yang L, Wu Q, Zheng Y, Zhao J, Yu L, Jiang N, Wang Y, Wu J, Xie Y, Zhang X, Gao Y, Lan K, Deng Q. Hepatitis B virus core protein as a Rab-GAP suppressor driving liver disease progression. Sci Bull (Beijing) 2024; 69:2580-2595. [PMID: 38670853 DOI: 10.1016/j.scib.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Chronic hepatitis B virus (HBV) infection can lead to advanced liver pathology. Here, we establish a transgenic murine model expressing a basic core promoter (BCP)-mutated HBV genome. Unlike previous studies on the wild-type virus, the BCP-mutated HBV transgenic mice manifest chronic liver injury that culminates in cirrhosis and tumor development with age. Notably, agonistic anti-Fas treatment induces fulminant hepatitis in these mice even at a negligible dose. As the BCP mutant exhibits a striking increase in HBV core protein (HBc) expression, we posit that HBc is actively involved in hepatocellular injury. Accordingly, HBc interferes with Fis1-stimulated mitochondrial recruitment of Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15). HBc may also inhibit multiple Rab GTPase-activating proteins, including Rab7-specific TBC1D15 and TBC1D5, by binding to their conserved catalytic domain. In cells under mitochondrial stress, HBc thus perturbs mitochondrial dynamics and prevents the recycling of damaged mitochondria. Moreover, sustained HBc expression causes lysosomal consumption via Rab7 hyperactivation, which further hampers late-stage autophagy and substantially increases apoptotic cell death. Finally, we show that adenovirally expressed HBc in a mouse model is directly cytopathic and causes profound liver injury, independent of antigen-specific immune clearance. These findings reveal an unexpected cytopathic role of HBc, making it a pivotal target for HBV-associated liver disease treatment. The BCP-mutated HBV transgenic mice also provide a valuable model for understanding chronic hepatitis B progression and for the assessment of therapeutic strategies.
Collapse
Affiliation(s)
- Yu Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Fan Bu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China; Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Le Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Qiong Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Yuan Zheng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Jianjin Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Lin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Nan Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Jian Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Xu M, Warner C, Duan X, Cheng Z, Jeyarajan AJ, Li W, Wang Y, Shao T, Salloum S, Chen PJ, Yu X, Chung RT, Lin W. HIV coinfection exacerbates HBV-induced liver fibrogenesis through a HIF-1α- and TGF-β1-dependent pathway. J Hepatol 2024; 80:868-881. [PMID: 38311121 PMCID: PMC11102332 DOI: 10.1016/j.jhep.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND & AIMS Persons with chronic HBV infection coinfected with HIV experience accelerated progression of liver fibrosis compared to those with HBV monoinfection. We aimed to determine whether HIV and its proteins promote HBV-induced liver fibrosis in HIV/HBV-coinfected cell culture models through HIF-1α and TGF-β1 signaling. METHODS The HBV-positive supernatant, purified HBV viral particles, HIV-positive supernatant, or HIV viral particles were directly incubated with cell lines or primary hepatocytes, hepatic stellate cells, and macrophages in mono or 3D spheroid coculture models. Cells were incubated with recombinant cytokines and HIV proteins including gp120. HBV sub-genomic constructs were transfected into NTCP-HepG2 cells. We also evaluated the effects of inhibitor of HIF-1α and HIV gp120 in a HBV carrier mouse model that was generated via hydrodynamic injection of the pAAV/HBV1.2 plasmid into the tail vein of wild-type C57BL/6 mice. RESULTS We found that HIV and HIV gp120, through engagement with CCR5 and CXCR4 coreceptors, activate AKT and ERK signaling and subsequently upregulate hypoxia-inducible factor-1α (HIF-1α) to increase HBV-induced transforming growth factor-β1 (TGF-β1) and profibrogenic gene expression in hepatocytes and hepatic stellate cells. HIV gp120 exacerbates HBV X protein-mediated HIF-1α expression and liver fibrogenesis, which can be alleviated by inhibiting HIF-1α. Conversely, TGF-β1 upregulates HIF-1α expression and HBV-induced liver fibrogenesis through the SMAD signaling pathway. HIF-1α small-interfering RNA transfection or the HIF-1α inhibitor (acriflavine) blocked HIV-, HBV-, and TGF-β1-induced fibrogenesis. CONCLUSIONS Our findings suggest that HIV coinfection exacerbates HBV-induced liver fibrogenesis through enhancement of the positive feedback between HIF-1α and TGF-β1 via CCR5/CXCR4. HIF-1α represents a novel target for antifibrotic therapeutic development in HBV/HIV coinfection. IMPACT AND IMPLICATIONS HIV coinfection accelerates the progression of liver fibrosis compared to HBV monoinfection, even among patients with successful suppression of viral load, and there is no sufficient treatment for this disease process. In this study, we found that HIV viral particles and specifically HIV gp120 promote HBV-induced hepatic fibrogenesis via enhancement of the positive feedback between HIF-1α and TGF-β1, which can be ameliorated by inhibition of HIF-1α. These findings suggest that targeting the HIF-1α pathway can reduce liver fibrogenesis in patients with HIV and HBV coinfection.
Collapse
Affiliation(s)
- Min Xu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Charlotte Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China; Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhimeng Cheng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andre J Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wenting Li
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Yongtao Wang
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shadi Salloum
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Pei-Jer Chen
- Graduate Institute of Microbiology, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Xu Yu
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02129, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Song J, Sun X, Zhou Y, Li S, Wu J, Yang L, Zhou D, Yang Y, Liu A, Lu M, Michael R, Qin L, Yang D. Early application of IFNγ mediated the persistence of HBV in an HBV mouse model. Antiviral Res 2024; 225:105872. [PMID: 38556058 DOI: 10.1016/j.antiviral.2024.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The antiviral activity of interferon gamma (IFNγ) against hepatitis B virus (HBV) was demonstrated both in vivo and in vitro in a previous study. IFNγ can suppress HBV replication by accelerating the decay of replication-competent nucleocapsids of HBV. However, in this study, we found that the direct application of the mouse IFNγ (mIFNγ) expression plasmid to the liver of an HBV hydrodynamic injection (HI) mouse model led to the persistence of HBV, as indicated by sustained HBsAg and HBeAg levels in the serum as well as an increased percentage of the HBsAg positive mice, whereas the level of HBV DNA in the serum and the expression of HBcAg in the liver were inhibited at the early stage after HI. Meanwhile, we found that the productions of both HBcAb and HBsAb were suppressed after the application of mIFNγ. In addition, we found that HBV could be effectively inhibited in mice immunized with HBsAg expression plasmid before the application of mIFNγ. Furthermore, mIFNγ showed antiviral effect and promoted the production of HBsAb when the mice subjected to the core-null HBV plasmid. These results indicate that the application of mIFNγ in the HBV HI mouse model, the mice showed defective HBcAg-specific immunity that impeded the production of HBcAb and HBsAb, finally allowing the persistence of the virus. Moreover, IFNγ-induced negative immune regulatory factors also play an important role in virus persistence.
Collapse
Affiliation(s)
- Jingjiao Song
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Xiliang Sun
- Clinical Laboratory, Qingdao West Coast New District People's Hospital, Shandong, PR China.
| | - Yun Zhou
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Receptors-mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, PR China.
| | - Sheng Li
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Lu Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Di Zhou
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Yan Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | | | - Li Qin
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, PR China.
| | - Dongliang Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
6
|
Yin M, Ding X, Yin S, Wang L, Zhang K, Chen Y, Liu R, Zhu C, Li W. Exosomes from hepatitis B virus-infected hepatocytes activate hepatic stellate cells and aggravate liver fibrosis through the miR-506-3p/Nur77 pathway. J Biochem Mol Toxicol 2023; 37:e23432. [PMID: 37352222 DOI: 10.1002/jbt.23432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/06/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Cumulative evidence indicates the important role of Nur77 in organ fibrogenesis. However, the role of Nur77 in hepatitis B virus (HBV)-related liver fibrosis (LF) remains unclear. Cells were transfected with the microRNA mimic miRNA-506-3p or inhibitor, and pcDNA3.1-Nur77 or Nur77 guide RNA. Exosomes were isolated from HBV-infected HepG2-sodium taurocholate cotransporting polypeptide cells. The levels of miR-506-3p, Nur77, and LF-related genes and proteins were detected by quantitative polymerase chain reaction (qPCR) and western blot analysis, respectively. The pathology of the liver from HBV-infected patients was examined using hematoxylin-eosin and Masson's staining. The expression of Nur77 in liver tissue was determined by immunohistochemistry, and the LF score was assessed using the METAVIR system. The relationship between miR-506-3p/Nur77 and LF score was analyzed by correlation analysis. HBV infection downregulated miR-506-3p expression and upregulated Nur77 levels in hepatocytes. Exosomes from HBV-infected hepatocytes also displayed decreased gene expression of miR-506-3p and increased expressions of Nur77- and LF-related genes in stellate cells compared with exosomes from hepatocytes with mock infection. These changes were reversed by Nur77 guide RNA. Nur77 expression in liver tissue was strongly correlated with LF, whereas serum miR-506-3p was strongly negatively correlated with LF. Exosomes from HBV-infected hepatocytes activate stellate cells and aggravate LF through the miR-506-3p/Nur77 pathway. These exosomes may be the basis of a promising therapeutic strategy.
Collapse
Affiliation(s)
- Ming Yin
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Critical Care Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xiurong Ding
- Graduate School of Bengbu Medical University, Bengbu, China
- Department of Infectious Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Song Yin
- Department of Infectious Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Wannan Medical College, Wuhu, China
| | - Longmei Wang
- Department of Infectious Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Wannan Medical College, Wuhu, China
| | - Kaiguang Zhang
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuankun Chen
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chuanlong Zhu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Infectious Disease, Jiangsu Provincial Hospital, Nanjing, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
7
|
Small Hepatitis B Virus Surface Antigen Promotes Hepatic Gluconeogenesis via Enhancing Glucagon/cAMP/Protein Kinase A/CREB Signaling. J Virol 2022; 96:e0102022. [PMID: 36394315 PMCID: PMC9749458 DOI: 10.1128/jvi.01020-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatitis B virus (HBV) is a major risk factor for serious liver diseases. The liver plays a unique role in controlling carbohydrate metabolism to maintain the glucose level within the normal range. Chronic HBV infection has been reported to associate with a high prevalence of diabetes. However, the detailed molecular mechanism underlying the potential association remains largely unknown. Here, we report that liver-targeted delivery of small HBV surface antigen (SHBs), the most abundant viral protein of HBV, could elevate blood glucose levels and impair glucose and insulin tolerance in mice by promoting hepatic gluconeogenesis. Hepatocytes with SHB expression also exhibited increased glucose production and expression of gluconeogenic genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (PEPCK) in response to glucagon stimulation. Mechanistically, SHBs increased cellular levels of cyclic AMP (cAMP) and consequently activated protein kinase A (PKA) and its downstream effector cAMP-responsive element binding protein (CREB). SHBs-induced activation of CREB enhanced transcripts of gluconeogenic genes, thus promoting hepatic gluconeogenesis. The elevated cAMP level resulted from increased transcription activity and expression of adenylyl cyclase 1 (AC1) by SHBs through a binary E-box factor binding site (BEF). Taken together, we unveiled a novel pathogenic role and mechanism of SHBs in hepatic gluconeogenesis, and these results might highlight a potential target for preventive and therapeutic intervention in the development and progression of HBV-associated diabetes. IMPORTANCE Chronic HBV infection causes progressive liver damage and is found to be a risk factor for diabetes. However, the mechanism in the regulation of glucose metabolism by HBV remains to be established. In the current study, we demonstrate for the first time that the small hepatitis B virus surface antigen (SHBs) of HBV elevates AC1 transcription and expression to activate cAMP/PKA/CREB signaling and subsequently induces the expression of gluconeogenic genes and promotes hepatic gluconeogenesis both in vivo and in vitro. This study provides a direct link between HBV infection and diabetes and implicates that SHBs may represent a potential target for the treatment of HBV-induced metabolic disorders.
Collapse
|
8
|
Anti-HBc IgG Responses Occurring at the Early Phase of Infection Correlate Negatively with HBV Replication in a Mouse Model. Viruses 2022; 14:v14092011. [PMID: 36146817 PMCID: PMC9505635 DOI: 10.3390/v14092011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Anti-HBc IgG is usually recognized as a diagnostic marker of hepatitis B, while the functional role anti-HBc IgG in HBV infection has not been fully elucidated. In this study, we firstly investigated the relationship between the anti-HBc IgG responses and the replication of HBV using AAV8-1.3HBV infected C57BL/6N mice. Our data showed that the anti-HBc IgG responses at the early phase of infection correlated negatively with the concentrations of circulating HBsAg and HBV DNA at both the early and chronic phases of infection. This observation was confirmed by an independent experiment using AAV8-1.3HBV infected C57BL/6J mice. Furthermore, to comprehend the potential causal relationship between the anti-HBc IgG responses and HBV infection, mice were treated with an anti-HBc monoclonal antibody at three days post AAV8-1.3HBV infection. Our data showed that the anti-HBc mAb significantly suppressed the fold increase of circulating HBsAg level, and the protective effect was not affected by NK cell depletion. Collectively, our study demonstrated that anti-HBc antibodies occurring at the early phase of HBV infection may contribute to the constraint of the virus replication, which might be developed as an immunotherapy for hepatitis B.
Collapse
|
9
|
Li W, Duan X, Zhu C, Liu X, Jeyarajan AJ, Xu M, Tu Z, Sheng Q, Chen D, Zhu C, Shao T, Cheng Z, Salloum S, Schaefer EA, Kruger AJ, Holmes JA, Chung RT, Lin W. Hepatitis B and Hepatitis C Virus Infection Promote Liver Fibrogenesis through a TGF-β1-Induced OCT4/Nanog Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:672-684. [PMID: 35022275 PMCID: PMC8770612 DOI: 10.4049/jimmunol.2001453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
Hepatitis B virus (HBV)/hepatitis C virus (HCV) coinfection accelerates liver fibrosis progression compared with HBV or HCV monoinfection. Octamer binding transcription factor 4 (OCT4) and Nanog are direct targets of the profibrogenic TGF-β1 signaling cascade. We leveraged a coculture model to monitor the effects of HBV and HCV coinfection on fibrogenesis in both sodium taurocholate cotransporting polypeptide-transfected Huh7.5.1 hepatoma cells and LX2 hepatic stellate cells (HSCs). We used CRISPR-Cas9 to knock out OCT4 and Nanog to evaluate their effects on HBV-, HCV-, or TGF-β1-induced liver fibrogenesis. HBV/HCV coinfection and HBx, HBV preS2, HCV Core, and HCV NS2/3 overexpression increased TGF-β1 mRNA levels in sodium taurocholate cotransporting polypeptide-Huh7.5.1 cells compared with controls. HBV/HCV coinfection further enhanced profibrogenic gene expression relative to HBV or HCV monoinfection. Coculture of HBV and HCV monoinfected or HBV/HCV coinfected hepatocytes with LX2 cells significantly increased profibrotic gene expression and LX2 cell invasion and migration. OCT4 and Nanog guide RNA independently suppressed HBV-, HCV-, HBV/HCV-, and TGF-β1-induced α-SMA, TIMP-1, and Col1A1 expression and reduced Huh7.5.1, LX2, primary hepatocyte, and primary human HSC migratory capacity. OCT4/Nanog protein expression also correlated positively with fibrosis stage in liver biopsies from patients with chronic HBV or HCV infection. In conclusion, HBV and HCV independently and cooperatively promote liver fibrogenesis through a TGF-β1-induced OCT4/Nanog-dependent pathway.
Collapse
Affiliation(s)
- Wenting Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan Province, China
| | - Chuanlong Zhu
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao Liu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Southwest University, College of Animal Science and Technology, Chongqing, China
| | - Andre J Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Min Xu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zeng Tu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Microbiology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Qiuju Sheng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Dong Chen
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chuanwu Zhu
- Department of Hepatology, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zhimeng Cheng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shadi Salloum
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Esperance A Schaefer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Annie J Kruger
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC; and
| | - Jacinta A Holmes
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
| |
Collapse
|
10
|
Hepatitis B virus small envelope protein promotes HCC angiogenesis via ER stress signaling to upregulate VEGFA expression. J Virol 2021; 96:e0197521. [PMID: 34910612 DOI: 10.1128/jvi.01975-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular tumor and accumulating evidence has indicated that stimulation of angiogenesis by HBV may contribute to HCC malignancy. The small protein of hepatitis B virus surface antigen (HBsAg), SHBs, is the most abundant HBV viral protein and has a close clinical association with HCC, however, whether SHBs contributes to HCC angiogenesis remains unknown. This study reports that forced expression of SHBs in HCC cells promoted xenograft tumor growth and increased the microvessel density (MVD) within the tumors. Consistently, HBsAg was also positively correlated with MVD count in HCC patients' specimens. The conditioned media from the SHBs-transfected HCC cells increased the capillary tube formation and migration of human umbilical vein endothelial cells (HUVECs). Intriguingly, overexpression of SHBs increased VEGFA expression at both mRNA and protein levels. A higher VEGFA expression level was also observed in the xenograft tumors transplanted with SHBs-expressing HCC cells and in HBsAg-positive HCC tumor tissues as compared to their negative controls. As expected, in the culture supernatants, the secretion of VEGFA was also significantly enhanced from HCC cells expressing SHBs, which promoted HUVECs migration and vessel formation. Furthermore, all the three unfolded protein response (UPR) sensors IRE1α, PERK and ATF6 associated with endoplasmic reticulum (ER) stress were found activated in the SHBs-expressing cells and correlated with VEGFA protein expression and secretion. Taken together, these results suggest an important role of SHBs in HCC angiogenesis and may highlight a potential target for preventive and therapeutic intervention of HBV-related HCC and its malignant progression. IMPORTANCE Chronic hepatitis B virus infection is one of the important risk factors for the development and progression of hepatocellular carcinoma (HCC). HCC is characteristic of hypervascularization even at early phases of the disease due to overexpression of angiogenic factors like vascular endothelial growth factor-A (VEGFA). However, a detailed mechanism in the HBV-induced angiogenesis remains to be established. In this study, we demonstrate for the first time that the most abundant HBV viral protein, i.e. small surface antigens (SHBs) can enhance the angiogenic capacity of HCC cells by upregulation of VEGFA expression both in vitro and in vivo. Mechanistically, SHBs induced endoplasmic reticulum (ER) stress which consequently activated unfolded protein response (UPR) signaling to increase VEGFA expression and secretion. This study suggests that SHBs plays an important pro-angiogenic role in HBV-associated HCC and may represent a potential target for anti-angiogenic therapy in the HCC.
Collapse
|
11
|
Goyal A. Modeling reveals no direct role of the extent of HBV DNA integrations on the outcome of infection. J Theor Biol 2021; 526:110793. [PMID: 34087271 DOI: 10.1016/j.jtbi.2021.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 11/27/2022]
Abstract
Hepatitis B virus (HBV) with its high prevalence and death toll is one of the most important infectious diseases to study. Yet, there is very little progress in the development of within-host models for HBV, which has subsequently hindered our understanding of this virus. The uncertainty around the proliferation of infected hepatocytes has been studied but never in association with other important biological continuous events such as integrations and superinfections. This is despite the fact that these processes affect the diversity and composition of infected cell population in the liver and an improved understanding of the cellular composition will undoubtedly assist in strategizing against this viral infection. Here, we developed novel mathematical models that incorporate these key biological processes and analyzed them both analytically and numerically. Unaffected by the extent of integrated DNA (IDNA), the outcome of HBV infection was primarily dictated by the balance between processes generating and killing infected hepatocytes containing covalent closed circular DNA (cccDNA). The superinfection was found to be a key process in the spread of HBV infection as its exclusion could not reproduce experimentally observed composition of infected hepatocytes at peak of acute HBV infection, a stage where our model predicts that infected hepatocytes most likely carry both cccDNA and IDNA. Our analysis further suggested the existence of some form of selective advantage of infected hepatocytes containing only IDNA to explain the viral dynamics observed during antiviral treatment and the transition from peak to acute infection. Finally, the fine line between liver destruction and resolution of acute HBV infection was found to be highly influenced by the fate of cccDNA during cellular proliferation.
Collapse
Affiliation(s)
- Ashish Goyal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, United States
| |
Collapse
|
12
|
Abstract
BACKGROUND Chemokine (C-C motif) ligand 19 (CCL19) is a leukocyte chemoattractant that plays a crucial role in cell trafficking and leukocyte activation. Dysfunctional CD8+ T cells play a crucial role in persistent HBV infection. However, whether HBV can be cleared by CCL19-activated immunity remains unclear. METHODS We assessed the effects of CCL19 on the activation of PBMCs in patients with HBV infection. We also examined how CCL19 influences HBV clearance and modulates HBV-responsive T cells in a mouse model of chronic hepatitis B (CHB). In addition, C-C chemokine-receptor type 7 (CCR7) knockdown mice were used to elucidate the underlying mechanism of CCL19/CCR7 axis-induced immune activation. RESULTS From in vitro experiments, we found that CCL19 enhanced the frequencies of Ag-responsive IFN-γ+ CD8+ T cells from patients by approximately twofold, while CCR7 knockdown (LV-shCCR7) and LY294002 partially suppressed IFN-γ secretion. In mice, CCL19 overexpression led to rapid clearance of intrahepatic HBV likely through increased intrahepatic CD8+ T-cell proportion, decreased frequency of PD-1+ CD8+ T cells in blood and compromised suppression of hepatic APCs, with lymphocytes producing a significantly high level of Ag-responsive TNF-α and IFN-γ from CD8+ T cells. In both CCL19 over expressing and CCR7 knockdown (AAV-shCCR7) CHB mice, the frequency of CD8+ T-cell activation-induced cell death (AICD) increased, and a high level of Ag-responsive TNF-α and low levels of CD8+ regulatory T (Treg) cells were observed. CONCLUSIONS Findings in this study provide insights into how CCL19/CCR7 axis modulates the host immune system, which may promote the development of immunotherapeutic strategies for HBV treatment by overcoming T-cell tolerance.
Collapse
|
13
|
Poilil Surendran S, George Thomas R, Moon MJ, Park R, Kim DH, Kim KH, Jeong YY. Effect of hepato-toxins in the acceleration of hepatic fibrosis in hepatitis B mice. PLoS One 2020; 15:e0232619. [PMID: 32428024 PMCID: PMC7237019 DOI: 10.1371/journal.pone.0232619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022] Open
Abstract
Chronic liver diseases such as hepatitis B viral (HBV) infection and liver fibrosis have been a major health problem worldwide. However, less research has been conducted owing to the lack of animal models. The key purpose of this study was to determine the effects of different hepatotoxins in HBV-affected liver. In this study, we successfully generated a combined liver fibrosis model by administering HBV 1.2 plasmid and thioacetamide/ethanol (TAA/EtOH). To our knowledge, this is the first study in which an increase in the liver fibrosis level is observed by the intraperitoneal administration of TAA and EtOH in drinking water after the hydrodynamic transfection of the HBV 1.2 plasmid in C3H/HeN mice. The HBV+TAA/EtOH group exhibited higher level of hepatic fibrosis than that of the control groups. The hepatic stellate cell activation in the TAA- and EtOH-administered groups was demonstrated by the elevation in the level of fibrotic markers. In addition, high levels of collagen content and histopathological results were also used to confirm the prominent fibrotic levels. We established a novel HBV mice model by hydrodynamic injection-based HBV transfection in C3H/HeN mice. C3H/HeN mice were reported to have a higher HBV persistence level than that of the C57BL/6 mouse model. All the results showed an increased fibrosis level in the HBV mice treated with TAA and EtOH; hence, this model would be useful to understand the effect of hepatotoxins on the high risk of fibrosis after HBV infection. The acceleration of liver fibrosis can occur with prolonged administration as well as the high dosage of hepatotoxins in mice.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Reju George Thomas
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Rayoung Park
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, Konkuk University School of Medicine, Seoul, South Korea
| | - Kyun Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, Konkuk University School of Medicine, Seoul, South Korea
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
14
|
Liu W, Guo TF, Jing ZT, Tong QY. Repression of Death Receptor-Mediated Apoptosis of Hepatocytes by Hepatitis B Virus e Antigen. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2181-2195. [PMID: 31449776 DOI: 10.1016/j.ajpath.2019.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/25/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
Hepatitis B virus (HBV) e antigen (HBeAg) is associated with viral persistence and pathogenesis. Resistance of HBV-infected hepatocytes to apoptosis is seen as one of the primary promotors for HBV chronicity and malignancy. Fas receptor/ligand (Fas/FasL) and the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) system plays a key role in hepatic death during HBV infection. We found that HBeAg mediates resistance of hepatocytes to FasL or TRAIL-induced apoptosis. Introduction of HBeAg into human hepatocytes rendered resistance to FasL or TRAIL cytotoxicity in a p53-dependent manner. HBeAg further inhibited the expression of p53, total Fas, membrane-bound Fas, TNF receptor superfamily member 10a, and TNF receptor superfamily member 10b at both mRNA and protein levels. In contrast, HBeAg enhanced the expression of soluble forms of Fas through facilitation of Fas alternative mRNA splicing. In a mouse model, expression of HBeAg in mice injected with recombinant adenovirus-associated virus 8 inhibited agonistic anti-Fas antibody-induced hepatic apoptosis. Xenograft tumorigenicity assay also found that HBeAg-induced carcinogenesis was resistant to the proapoptotic effect of TRAIL and chemotherapeutic drugs. These results indicate that HBeAg may prevent hepatocytes from FasL and TRAIL-induced apoptosis by regulating the expression of the proapoptotic and antiapoptotic forms of death receptors, which may contribute to the survival and persistence of infected hepatocytes during HBV infection.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Digestive Disease, China Three Gorges University, Yichang, China; Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China.
| | - Teng-Fei Guo
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
| | - Zhen-Tang Jing
- Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qiao-Yun Tong
- Institute of Digestive Disease, China Three Gorges University, Yichang, China; Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
15
|
Wu LL, Peng WH, Wu HL, Miaw SC, Yeh SH, Yang HC, Liao PH, Lin JS, Chen YR, Hong YT, Wang HY, Chen PJ, Chen DS. Lymphocyte Antigen 6 Complex, Locus C + Monocytes and Kupffer Cells Orchestrate Liver Immune Responses Against Hepatitis B Virus in Mice. Hepatology 2019; 69:2364-2380. [PMID: 30661248 DOI: 10.1002/hep.30510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
To understand the mechanism(s) of age-dependent outcomes of hepatitis B virus (HBV) infection in humans, we previously established an age-related HBV mouse model in which 6-week-old (N6W) C3H/HeN mice exhibited virus tolerance whereas 12-week-old (N12W) counterparts presented virus clearance. By investigating the hepatic myeloid cell dynamics in mice of these two ages, we aim to identify factors associated with HBV clearance. C3H/HeN mice were transfected with an HBV plasmid by hydrodynamic injection. Serum HBV markers were monitored weekly. Hepatic leucocyte populations and their cytokine/chemokine productions were examined at baseline, day 3 (D3), day 7 (D7), and day 14 after injection. C-C chemokine receptor type 2 (CCR2) antagonist and clodronate (CLD) were respectively administered to N12W and N6W mice to study the roles of lymphocyte antigen 6 complex, locus C (Ly6C)+ monocytes and Kupffer cells (KCs) in viral clearance. N12W mice had a significantly higher number of TNF-α-secreting Ly6C+ monocytes and fewer IL-10-secreting KCs at D3 in the liver than their younger N6W counterparts after HBV transfection. In addition, the elevated number of interferon-γ+ TNF-α+ CD8+ T cells at D7 was only seen in the older cohort. The enhanced Ly6C+ monocyte induction in N12W mice resulted from elevated C-C motif chemokine ligand 2 (CCL2) secretion by hepatocytes. CCR2 antagonist administration hampered Ly6C+ monocyte recruitment and degree of KC reduction and delayed HBV clearance in N12W animals. Depletion of KCs by CLD liposomes enhanced Ly6C+ monocyte recruitment and accelerated HBV clearance in N6W mice. Conclusions: Ly6C+ monocytes and KCs may, respectively, represent the resistance and tolerance arms of host defenses. These two cell types play an essential role in determining HBV clearance/tolerance. Manipulation of these cells is a promising avenue for immunotherapy of HBV-related liver diseases.
Collapse
Affiliation(s)
- Li-Ling Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Wei-Hao Peng
- Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, 100 Taiwan.,School of Medicine for International Students, I-Shou University (Yanchao Campus), Kaohsiung, Taiwan
| | - Hui-Lin Wu
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Hung-Chih Yang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Pei-Hsuan Liao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Jing-Shan Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Yan-Rong Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Yen-Tien Hong
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100 Taiwan.,Department of Microbiology, National Taiwan University College of Medicine, Taipei, 100 Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100 Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Ding-Shinn Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100 Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100 Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, 100 Taiwan
| |
Collapse
|
16
|
Association between IL-37 gene polymorphisms and risk of HBV-related liver disease in a Saudi Arabian population. Sci Rep 2019; 9:7123. [PMID: 31073186 PMCID: PMC6509272 DOI: 10.1038/s41598-019-42808-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
Interleukin-37 (IL-37) has recently been recognized as a strong anti-inflammatory cytokine having anti-tumor activity against hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected patients. HCC is a typical inflammation-related cancer, and genetic variations within the IL-37 gene may be associated with the risk of HBV infection. Identification of the allelic patterns that genetically have a high disease risk is essential for the development of preventive diagnostics for HBV-mediated liver disease pathogenesis. In this study, we aimed to investigate the association between single nucleotide polymorphisms (SNPs) within the IL-37 gene and disease sequelae associated with HBV infection. We genotyped ten IL-37 SNPs in 1274 patients infected with HBV and 599 healthy controls from a Saudi Arabian population. Among the selected SNPs, two SNPs (rs2723175 and rs2708973) were strongly associated with HBV infection, and six SNPs (rs2723176, rs2723175, rs2723186, rs364030, rs28947200, rs4392270) were associated with HBV clearance, comparing healthy controls and HBV infected-patients respectively. A suggestive association of rs4849133 was identified with active HBV surface antigen (HBsAg) carrier and HBV-related liver disease progression. In conclusion, our findings suggest that variations at the IL-37 gene may be useful as genetic predictive risk factors for HBV infection and HBV-mediated liver disease progression in the Saudi Arabian population.
Collapse
|
17
|
Endogenously Expressed Antigens Bind Mammalian RNA via Cationic Domains that Enhance Priming of Effector CD8 T Cells by DNA Vaccination. Mol Ther 2019; 27:661-672. [PMID: 30713086 PMCID: PMC6403493 DOI: 10.1016/j.ymthe.2019.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/11/2023] Open
Abstract
Hepatitis B virus (HBV) core (HBV-C) antigens with homologous or heterologous HIV-tat48-57-like (HBV-C149tat) cationic domains non-specifically bind cellular RNA in vector-transfected cells. Here, we investigated whether RNA-binding to cationic domains influences the immunogenicity of endogenously expressed antigens delivered by DNA vaccination. We initially evaluated induction of HBV-C (Kb/C93)-specific CD8+ T cell responses in C57BL/6J (B6) and 1.4HBV-Smut transgenic (tg) mice that harbor a replicating HBV genome in hepatocytes by DNA immunization. RNA-binding HBV-C and HBV-C149tat antigens moderately enhanced Kb/C93-specific CD8+ T cells in B6 mice as compared with RNA-free HBV-C149 antigen (lacking cationic domains). However, only the RNA-binding antigens elicited Kb/C93-specific CD8+ T cells that inhibited HBV replication in 1.4HBV-Smut tg mice. Moreover, RNA-binding to designer antigens, which express a Kb/p15E epitope from an endogenous murine leukemia virus-derived tumor-specific gp70 protein, was crucial to prime tumor-rejecting effector CD8+ T cells in B6 mice. Antigen-bound endogenous RNAs function as a Toll-like receptor 7 (TLR-7) ligand and stimulated priming of Kb/p15E-specific CD8+ T cells in B6, but not TLR-7−/−, mice. Antigen-bound cellular RNAs thus function as an endogenous natural adjuvant in in vivo vector-transfected cells, and thus are an attractive tool to induce and/or enhance effector CD8+ T cell responses directed against chronic viral infections or tumor self-antigens by DNA vaccination.
Collapse
|
18
|
Kawashima K, Isogawa M, Hamada-Tsutsumi S, Baudi I, Saito S, Nakajima A, Tanaka Y. Type I Interferon Signaling Prevents Hepatitis B Virus-Specific T Cell Responses by Reducing Antigen Expression. J Virol 2018; 92:e01099-18. [PMID: 30209178 PMCID: PMC6232490 DOI: 10.1128/jvi.01099-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Robust virus-specific CD8+ T cell responses are required for the clearance of hepatitis B virus (HBV). However, the factors that determine the magnitude of HBV-specific CD8+ T cell responses are poorly understood. To examine the impact of genetic variations of HBV on HBV-specific CD8+ T cell responses, we introduced three HBV clones (Aa_IND [Aa], C_JPN22 [C22], and D_IND60 [D60]) that express various amounts of HBV antigens into the livers of C57BL/6 (B6) (H-2b) mice and B10.D2 (H-2d) mice. In B6 mice, clone C22 barely induced HBV-specific CD8+ T cell responses and persisted the longest, while clone D60 elicited strong HBV-specific CD8+ T cell responses and was rapidly cleared. These differences between HBV clones largely diminished in H-2d mice. Interestingly, the magnitude of HBV-specific CD8+ T cell responses in B6 mice was associated with the HB core antigen expression level during the early phase of HBV transduction. Surprisingly, robust HBV-specific CD8+ T cell responses to clone C22 were induced in interferon-α/β receptor-deficient (IFN-αβR-/-) (H-2b) mice. The induction of HBV-specific CD8+ T cell responses to C22 in IFN-αβR-/- mice reflects enhanced HBV antigen expression because the suppression of antigen expression by HBV-specific small interfering RNA (siRNA) attenuated HBV-specific T cell responses in IFN-αβR-/- mice and prolonged HBV expression. Collectively, these results suggest that HBV genetic variation and type I interferon signaling determine the magnitude of HBV-specific CD8+ T cell responses by regulating the initial antigen expression levels.IMPORTANCE Hepatitis B virus (HBV) causes acute and chronic infection, and approximately 240 million people are chronically infected with HBV worldwide. It is generally believed that virus-specific CD8+ T cell responses are required for the clearance of HBV. However, the relative contributions of genetic variation and innate immune responses to the induction of HBV-specific CD8+ T cell responses are not fully understood. In this study, we discovered that different clearance rates between HBV clones after hydrodynamic transduction were associated with the magnitude of HBV-specific CD8+ T cell responses and initial HB core antigen expression. Surprisingly, type I interferon signaling negatively regulated HBV-specific CD8+ T cell responses by reducing early HBV antigen expression. These results show that the magnitude of the HBV-specific CD8+ T cell response is regulated primarily by the initial antigen expression level.
Collapse
Affiliation(s)
- Keigo Kawashima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Susumu Hamada-Tsutsumi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ian Baudi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
19
|
Jing ZT, Liu W, Wu SX, He Y, Lin YT, Chen WN, Lin XJ, Lin X. Hepatitis B Virus Surface Antigen Enhances the Sensitivity of Hepatocytes to Fas-Mediated Apoptosis via Suppression of AKT Phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2303-2314. [PMID: 30171166 PMCID: PMC6176106 DOI: 10.4049/jimmunol.1800732] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
The Fas receptor/ligand system plays a prominent role in hepatic apoptosis and hepatocyte death. Although hepatitis B virus (HBV) surface Ag (HBsAg) is the most abundant HBV protein in the liver and peripheral blood of patients with chronic HBV infection, its role in Fas-mediated hepatocyte apoptosis has not been disclosed. In this study, we report that HBsAg sensitizes HepG2 cells to agonistic anti-Fas Ab CH11-induced apoptosis through increasing the formation of SDS-stable Fas aggregation and procaspase-8 cleavage but decreasing both the expression of cellular FLIPL/S and the recruitment of FLIPL/S at the death-inducing signaling complex (DISC). Notably, HBsAg increased endoplasmic reticulum stress and consequently reduced AKT phosphorylation by deactivation of phosphoinositide-dependent kinase-1 (PDPK1) and mechanistic target of rapamycin complex 2 (mTORC2), leading to enhancement of Fas-mediated apoptosis. In a mouse model, expression of HBsAg in mice injected with recombinant adenovirus-associated virus 8 aggravated Jo2-induced acute liver failure, which could be effectively attenuated by the AKT activator SC79. Based on these results, it is concluded that HBsAg predisposes hepatocytes to Fas-mediated apoptosis and mice to acute liver failure via suppression of AKT prosurviving activity, suggesting that interventions directed at enhancing the activation or functional activity of AKT may be of therapeutic value in Fas-mediated progressive liver cell injury and liver diseases.
Collapse
Affiliation(s)
- Zhen-Tang Jing
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
| | - Wei Liu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
- Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350004, China
| | - Shu-Xiang Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
| | - Yun He
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
| | - Yan-Ting Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
- Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350004, China
| | - Xin-Jian Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
- Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
20
|
Krieger J, Stifter K, Riedl P, Schirmbeck R. Cationic domains in particle-forming and assembly-deficient HBV core antigens capture mammalian RNA that stimulates Th1-biased antibody responses by DNA vaccination. Sci Rep 2018; 8:14660. [PMID: 30279478 PMCID: PMC6168482 DOI: 10.1038/s41598-018-32971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
The HBV core protein self-assembles into particles and encapsidates immune-stimulatory bacterial RNA through a cationic COOH-terminal (C150-183) domain. To investigate if different cationic domains have an impact on the endogenous RNA-binding of HBV-C antigens in mammalian cells, we developed a strep-tag (st) based expression/purification system for HBV-C/RNA antigens in vector-transfected HEK-293 cells. We showed that HBV-stC but not HBV-stC149 particles (lacking the cationic domain) capture low amounts of mammalian RNA. Prevention of specific phosphorylation in cationic domains, either by exchanging the serine residues S155, S162 and S170 with alanines (HBV-stCAAA) or by exchanging the entire cationic domain with a HIV-tat48-57-like sequence (HBV-stC149tat) enhanced the encapsidation of RNA into mutant core particles. Particle-bound mammalian RNA functioned as TLR-7 ligand and induced a Th1-biased humoral immunity in B6 but not in TLR-7-/- mice by exogenous (protein) and endogenous (DNA) vaccines. Compared to core particles, binding of mammalian RNA to freely exposed cationic domains in assembly-deficient antigens was enhanced. However, RNA bound to non-particulate antigens unleash its Th1-stimulating adjuvant activity by DNA- but not protein-based vaccination. Mammalian RNAs targeted by an endogenously expressed antigen thus function as a natural adjuvant in the host that facilitates priming of Th1-biased immune responses by DNA-based immunization.
Collapse
Affiliation(s)
- Jana Krieger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Petra Riedl
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | | |
Collapse
|
21
|
Liu W, Guo TF, Jing ZT, Yang Z, Liu L, Yang YP, Lin X, Tong QY. Hepatitis B virus core protein promotes hepatocarcinogenesis by enhancing Src expression and activating the Src/PI3K/Akt pathway. FASEB J 2018; 32:3033-3046. [PMID: 29401603 DOI: 10.1096/fj.201701144r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatitis B virus core protein (HBc) is expressed preferentially in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). HBc can function as an oncogene arising from its gene regulatory properties, but how it contributes functionally to hepatocarcinogenesis remains unclear. In this study, we determined the molecular and functional roles of HBc during HBV-associated hepatocellular tumorigenesis. HBc increased tumor formation of hepatoma cells. Moreover, expression of HBc specifically promoted proliferation of hepatoma cells in vitro. Mechanistic investigations revealed that these effects were caused by activation of the Src/PI3K/Akt pathway through proximal switch from inactive Src to the active form of the kinase by HBc. HBc-mediated sarcoma (Src) kinase activation was associated with down-regulation of C-terminal Src kinase (Csk). In addition, HBc enhances Src expression by activation of alternative Src 1A promoter in an Sp1 transcription factor-dependent manner. Proliferation induced by stable HBc expression was associated with increased G1-S cell cycle progression mediated by Src kinase activation. HBc-induced cellular proliferation and tumor formation were reversed by administration of the Src inhibitor saracatinib. Together, our findings suggest that HBc promotes tumorigenesis of hepatoma cells by enhancing the expression of total Src and the active form of the kinase and subsequently activates Src/PI3K/Akt signaling pathway, revealing novel insights into the underlying mechanisms of HBV-associated hepatocarcinogenesis.-Liu, W., Guo, T.-F., Jing, Z.-T., Yang, Z., Liu, L., Yang, Y.-P., Lin, X., Tong, Q.-Y. Hepatitis B virus core protein promotes hepatocarcinogenesis by enhancing Src expression and activating the Src/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China; and
| | - Teng-Fei Guo
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
| | - Zhen-Tang Jing
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Zhi Yang
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China; and
| | - Lei Liu
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China; and
| | - Yuan-Ping Yang
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China; and
| | - Xu Lin
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qiao-Yun Tong
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China; and
| |
Collapse
|
22
|
Wang X, Zhu J, Zhang Y, Li Y, Ma T, Li Q, Xu J, Xu L. The doses of plasmid backbone plays a major role in determining the HBV clearance in hydrodynamic injection mouse model. Virol J 2018; 15:89. [PMID: 29783985 PMCID: PMC5963156 DOI: 10.1186/s12985-018-1002-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background Hepatitis B virus (HBV) chronically infects approximately 350 million people worldwide, causing a major risk of liver disease and hepatocellular carcinoma (HCC). Many mouse models have been tried to establish HBV infection through injection with various HBV-containing plasmids. However, it is not well understood that different plasmids, all of which contain the similar HBV genome, even the same plasmids with different dose, results in opposite immune responses toward HBV. Methods In this study, we investigated the role of HBV-containing plasmid backbones and the HBcAg in determining the HBV persistence. C57BL/6 mice were injected hydrodynamically with 6 μg or 20 μg of WT pAAV/HBV1.2 plasmid, e/core-null pAAV/HBV1.2 plasmid, or none-HBV genome pAAV/control plasmid. Serum levels of HBV-related markers were measured by quantitative immunoradiometric assay (IRMA). Liver HBcAg expression was detected by immunohistochemical staining. The mRNA levels of cytokines and Th1-related immune factors were quantified by qRT-PCR. Results All mice injected with 6 μg of the pAAV/HBV1.2 plasmid shows HBsAg positive at week 6 after hydrodynamic injection (AHI) as previously investigated. However, the mice injected with 20 μg pAAV/HBV1.2 or 6μgpAAV/HBV1.2 plus 14μgpAAV/control plasmid results in HBV clearance within 4 weeks AHI, indicating the anti-HBV activity is induced by 20 μg plasmid DNA, but not by the inserted viral genome. This anti-HBV activity is independent of HBcAg and Toll like receptor (TLR) signaling pathway, since the lack of HBcAg in pAAV/HBV1.2 plasmid or stimulation with TLRs agonists does not influence the kinetics of serum HBsAg in mice. The mRNA levels of t-bet and cxcr3 were dramatically up-regulated in the liver of the mice injected with 20 μg plasmid DNA. Conclusion Our studies demonstrate that plasmid backbones are responsible for modulating immune responses to determine HBV persistence or clearance in our HBV mouse model by hydrodynamic injection of HBV-containing plasmid, and Th1 cells play key roles on HBV clearance.
Collapse
Affiliation(s)
- Xian Wang
- School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei, 230032, Anhui, China.,Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children' s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yue Li
- School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei, 230032, Anhui, China
| | - Tai Ma
- School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei, 230032, Anhui, China
| | - Qun Li
- School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei, 230032, Anhui, China
| | - Jiegou Xu
- School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei, 230032, Anhui, China
| | - Long Xu
- School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
23
|
Yi X, Yuan Y, Li N, Yi L, Wang C, Qi Y, Gong L, Liu G, Kong X. A mouse model with age-dependent immune response and immune-tolerance for HBV infection. Vaccine 2018; 36:794-801. [PMID: 29306503 DOI: 10.1016/j.vaccine.2017.12.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/10/2017] [Accepted: 12/27/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Viral clearance of human HBV infection largely depends on the age of exposure. Thus, a mouse model with age-dependent immune response and immune-tolerance for HBV infection was established. METHODS HBVRag1 mice were generated by crossing Rag1-/- mice with HBV-Tg mice. Following adoptive transfer of splenocytes adult (8-9 weeks old) and young (3 weeks old) HBVRag1 mice were named as HBVRag-ReA and HBVRag-ReY mice respectively. The biochemical parameters that were associated with viral load and immune function, as well as the histological evaluation of the liver tissues between the two mouse models were detected. The immune tolerance of HBVRag-ReY mice that were reconstituted at the early stages of life was evaluated by quantitative hepatitis B core antibody assay, adoptive transfer, and modulation of gut microbiota with the addition of antibiotics. RESULTS HBVRag-ReA mice indicated apparent hepatocytes damage, clearance of HBsAg and production of HBsAb and HBcAb. HBVRag-ReY mice did not develop ALT elevation, and produced HBcAb and HBsAg. A higher number of hepatic CD8+ T and B cells promoted clearance of HBsAg in HBVRag-ReA mice following 30 days of lymphocyte transfer. In contrast to HBVRag-ReA mice, HBVRag-ReY mice exhibited higher levels of Th1/Th2 cytokines. HBVRag-ReY mice exhibited significantly higher (P < .01, approximately 10-fold) serum quantitative anti-HBc levels than HBV-Tg mice, which might be similar to the phase of immune clearance and immune tolerance in human HBV infection. Furthermore, the age-related tolerance in HBVRag-ReY mice that were sensitive to antibiotic treatment was different from that noted in HBV-Tg mice. GS-9620 could inhibit the production of HBsAg, whereas HBV vaccination could induce sustained seroconversion in HBVRag-ReY mice with low levels of HBsAg. CONCLUSIONS The present study described a mouse model with age-dependent immunity and immune-tolerance for HBV infection in vivo, which may mimic chronic HBV infection in humans.
Collapse
Affiliation(s)
- Xuerui Yi
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China.
| | - Youcheng Yuan
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Na Li
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Lu Yi
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Cuiling Wang
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Ying Qi
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Liang Gong
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Guangze Liu
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Xiangping Kong
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| |
Collapse
|
24
|
Horng JH, Wu CR, Chen PJ. Exploring New Therapies for a Serological Cure of Chronic Hepatitis B. HEPATITIS B VIRUS AND LIVER DISEASE 2018:343-353. [DOI: 10.1007/978-981-10-4843-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Hepatitis B virus persistence in mice reveals IL-21 and IL-33 as regulators of viral clearance. Nat Commun 2017; 8:2119. [PMID: 29242561 PMCID: PMC5730569 DOI: 10.1038/s41467-017-02304-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) generally causes self-limiting infection in immunocompetent adults, but establishes chronic infection in some adults and in most maternally infected infants. Factors determining clearance versus persistence are not fully understood. Hydrodynamic injection (HDI) of HBV replicon plasmid via tail vein generally results in quick clearance in immunocompetent adult mice. Here, we report the identification of strain-specific persistence of HBV in mice: one genotype B strain, designated BPS, persisted up to 33 weeks in ~50% of HDI mice. BPS persistence requires viral replication and multiple viral features. Compared to quickly cleared strains, BPS fails to induce robust post-exposure serum IL-21/IL-33 responses. Injection of IL-21-expressing or IL-33-expressing plasmids facilitates clearance of pre-established BPS persistence and protects cured mice from BPS re-challenge. IL-21 and IL-33 also induce clearance of pre-established HBV persistence in another mouse model. These data reveal IL-21 and IL-33 as potent regulators of HBV clearance and valid drug candidates. Hepatitis B virus (HBV) establishes chronic infection in only some patients, but the mechanisms underlying clearance failure in these patients are not fully understood. Here, the authors identify and characterize an HBV strain that can persist in mice and show that IL-21 and IL-33 responses contribute to clearance.
Collapse
|
26
|
Li L, Li S, Zhou Y, Yang L, Zhou D, Yang Y, Lu M, Yang D, Song J. The dose of HBV genome contained plasmid has a great impact on HBV persistence in hydrodynamic injection mouse model. Virol J 2017; 14:205. [PMID: 29070073 PMCID: PMC5657044 DOI: 10.1186/s12985-017-0874-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 01/12/2023] Open
Abstract
Background Hydrodynamic injection (HI) of hepatitis B virus (HBV) mouse model is an useful tool for HBV related research in vivo. However, only 40% of C57/BL6 mice injected with 10 μg HBV genome contained plasmid (pAAV-HBV1.2), serum HBsAg more than 6 months and none of the BALB/c mice injected with 10 μg pAAV-HBV1.2 plasmid DNA, serum HBsAg positive more than 4 weeks in the previous study. Methods In this study, C57/BL6 and BALB/c mice were hydrodynamic injected with different doses of pAAV-HBV1.2 plasmid DNA. HBV related serum markers were detected by ELISA. ALT levels in the serum were measured using full automated biochemistry analyzer. HBcAg positive cells in the liver were detected by immunohistochemical staining. The mRNA levels of IRF3, ISGs including ISG15, OAS, PKR and immune factors including IFNγ, TNFα, TGFβ, IL-6, IL-10, PDL1 in liver of the mice were quantified by qRT-PCR. Results The results showed that the mice injected with 100 μg high-concentration or 1 μg low-concentration of pAAV-HBV1.2 plasmid DNA did not excert dominant influence on HBV persistence. In contrast, injection of 5 μg intermediate-dose of pAAV-HBV1.2 plasmid DNA led to significant prolonged HBsAg expression and HBV persistence in both C57/BL6 (80% of the mice with HBsAg positive more than 6 months) and BALB/c (60% of the mice with HBsAg positive more than 3 months) mice. IFNγ was significant up-regulated in liver of the mice injected with 1 μg or 100 μg pAAV-HBV1.2 plasmid DNA. TNFα was up-regulated significantly in liver of the mice injected with 100 μg pAAV-HBV1.2 plasmid DNA. Moreover, PDL1 was significant up-regulated in liver of the mice injected with 5 μg pAAV-HBV1.2 plasmid DNA. Conclusion In this paper we demonstrated that, in the HBV HI mouse model, the concentration of injected pAAV-HBV1.2 plasmid DNA contributes to the diverse kinetics of HBsAg and HBeAg in the serum as well as HBcAg expression level in the liver, which then determined the HBV persisternce, while the antiviral factors IFNγ, TNFα as well as immune negative regulatory factor PDL1 play important roles on HBV persistence.
Collapse
Affiliation(s)
- Lei Li
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Sheng Li
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Di Zhou
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yang
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjiao Song
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
27
|
Yan Z, Zeng J, Yu Y, Xiang K, Hu H, Zhou X, Gu L, Wang L, Zhao J, Young JAT, Gao L. HBVcircle: A novel tool to investigate hepatitis B virus covalently closed circular DNA. J Hepatol 2017; 66:1149-1157. [PMID: 28213165 DOI: 10.1016/j.jhep.2017.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) persists as a stable episome in infected hepatocytes and serves as a template for the transcription of all viral genes. Due to the narrow host range of HBV, the development of a robust mouse model that supports cccDNA-dependent viral replication is a key hurdle in the development of novel HBV therapeutics. This study aimed to develop a novel tool to investigate HBV cccDNA. METHODS Through minicircle technology, HBVcircle, a recombinant cccDNA, was easily generated and extracted from a genetically engineered E. coli strain. We characterized the performance of HBVcircle in cell culture by transfection and in immunocompetent mice by hydrodynamic injection (HDI). RESULTS We demonstrated that HBVcircle formed authentic cccDNA-like molecules in vitro in transiently transfected hepatic cells and in vivo in mouse liver after HDI. HBVcircle supported high levels and persistent HBV replication. In addition, we investigated different factors affecting HBV in vivo replication and persistence, including the host genetic background, vector design and dosage, viral genes and genotypes, and immune activation status. Furthermore, different classes of anti-HBV drugs were also assessed with the HBVcircle system. CONCLUSION Compared with previous reported HBV mouse models which employ other viral vectors to introduce overlength HBV genomes, viral gene expression and associated phenotypes are entirely driven by cccDNA-like viral genomes in the HBVcircle mouse model. Therefore, the HBVcircle is a close mimic of cccDNA, and it represents a novel tool for addressing HBV cccDNA related biological questions and for anti-HBV drug discovery. LAY SUMMARY To establish a mouse model that supports cccDNA-dependent transcription, a novel tool named HBVcircle, was developed with minicircle technology. HBVcircle formed authentic cccDNA-like molecules in hepatocytes, and supported high levels and persistent HBV replication in vivo. The HBVcircle is a close mimic of cccDNA, and it represents a novel tool for addressing HBV cccDNA related biological questions and for anti-HBV drug discovery.
Collapse
Affiliation(s)
- Zhipeng Yan
- Roche Innovation Center Shanghai, Shanghai 201203, China
| | - Jing Zeng
- Roche Innovation Center Shanghai, Shanghai 201203, China
| | - Youjun Yu
- Roche Innovation Center Shanghai, Shanghai 201203, China
| | - Kunlun Xiang
- Roche Innovation Center Shanghai, Shanghai 201203, China
| | - Hui Hu
- Roche Innovation Center Shanghai, Shanghai 201203, China
| | - Xue Zhou
- Roche Innovation Center Shanghai, Shanghai 201203, China
| | - Lili Gu
- Roche Innovation Center Shanghai, Shanghai 201203, China
| | - Li Wang
- Roche Innovation Center Shanghai, Shanghai 201203, China
| | - Jie Zhao
- Roche Innovation Center Shanghai, Shanghai 201203, China
| | | | - Lu Gao
- Roche Innovation Center Shanghai, Shanghai 201203, China.
| |
Collapse
|
28
|
Yu X, Lan P, Hou X, Han Q, Lu N, Li T, Jiao C, Zhang J, Zhang C, Tian Z. HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. J Hepatol 2017; 66:693-702. [PMID: 28027970 DOI: 10.1016/j.jhep.2016.12.018] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) has developed strategies to evade immune responses. However, the mechanisms involved remain unclear. The NLRP3 inflammasome plays crucial roles in antiviral host defense and its downstream factor IL-1β has been shown to inhibit HBV infection in vivo. This study aims to assess whether HBV can affect the NLRP3 inflammasome signaling pathways and shed light on the underlying mechanisms HBV utilizes to evade host innate immune responses. METHODS HBV inhibition of the lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation was evaluated by Western blot, quantitative RT-PCR, flow cytometry and immunofluorescence. RESULTS Kupffer cells expressed significantly more NLRP3 and IL-1β after LPS stimulation; whereas, chronic HBV infection suppressed LPS-induced NLRP3 and pro-IL-1β expression as well as IL-1β maturation. This inhibitory activity is mediated by HBeAg, and is involved in the inhibition of NF-κB signal pathway and reactive oxygen species (ROS) production. The inhibitory effect of HBeAg was confirmed in patients with chronic hepatitis B (CHB) and hepatocellular carcinoma by comparing the levels of IL-1β and NLRP3-related proteins in para-carcinoma tissues from HBeAg-positive or negative patients. Moreover, chronic HBV infection increases the susceptibility of mice to S. typhimurium infection, possibly via inhibiting the NLRP3 inflammasome activation and IL-1β production. CONCLUSIONS HBeAg inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing NF-κB pathway and ROS production. This finding provides a novel mechanism for HBV-mediated suppression of innate immune responses, and identifies new therapeutic targets for chronic HBV infection and related diseases. LAY SUMMARY HBeAg suppresses LPS-induced NLRP3 inflammasome activation and IL-1β production in two ways, one is to repress NLRP3 and pro-IL-1β expression via inhibiting NF-κB phosphorylation, and the other is to repress caspase-1 activation and IL-1β maturation via inhibiting ROS production. This effect contributes to the HBV persistence and immune tolerance.
Collapse
Affiliation(s)
- Xin Yu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Peixiang Lan
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Tao Li
- Division of Liver Diseases, Shandong Provincial Hospital, Jinan 250001, Shandong, China
| | - Chenwei Jiao
- Department of Pediatric Surgery, Shandong Provincial Hospital, Jinan 250001, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China.
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
29
|
PreC and C Regions of Woodchuck Hepatitis Virus Facilitate Persistent Expression of Surface Antigen of Chimeric WHV-HBV Virus in the Hydrodynamic Injection BALB/c Mouse Model. Viruses 2017; 9:v9020035. [PMID: 28230775 PMCID: PMC5332954 DOI: 10.3390/v9020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022] Open
Abstract
In the hydrodynamic injection (HI) BALB/c mouse model with the overlength viral genome, we have found that woodchuck hepatitis virus (WHV) could persist for a prolonged period of time (up to 45 weeks), while hepatitis B virus (HBV) was mostly cleared at week four. In this study, we constructed a series of chimeric genomes based on HBV and WHV, in which the individual sequences of a 1.3-fold overlength HBV genome in pBS-HBV1.3 were replaced by their counterparts from WHV. After HI with the WHV-HBV chimeric constructs in BALB/c mice, serum viral antigen, viral DNA (vDNA), and intrahepatic viral antigen expression were analyzed to evaluate the persistence of the chimeric genomes. Interestingly, we found that HI with three chimeric WHV-HBV genomes resulted in persistent antigenemia in mice. All of the persistent chimeric genomes contained the preC region and the part of the C region encoding the N-terminal 1–145 amino acids of the WHV genome. These results indicated that the preC region and the N-terminal part of the C region of the WHV genome may play a role in the persistent antigenemia. The chimeric WHV-HBV genomes were able to stably express viral antigens in the liver and could be further used to express hepadnaviral antigens to study their pathogenic potential.
Collapse
|
30
|
Kim H, Lee SA, Do SY, Kim BJ. Precore/core region mutations of hepatitis B virus related to clinical severity. World J Gastroenterol 2016; 22:4287-4296. [PMID: 27158197 PMCID: PMC4853686 DOI: 10.3748/wjg.v22.i17.4287] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/10/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of an effective vaccine, hepatitis B virus (HBV) infection remains a major health problem, with more than 350 million chronically infected people worldwide and over 1 million annual deaths due to cirrhosis and liver cancer. HBV mutations are primarily generated due both to a lack of proofreading capacity by HBV polymerase and to host immune pressure, which is a very important factor for predicting disease progression and therapeutic outcomes. Several types of HBV precore/core (preC/C) mutations have been described to date. The host immune response against T cells drives mutation in the preC/C region. Specifically, preC/C mutations in the MHC class II restricted region are more common than in other regions and are significantly related to hepatocellular carcinoma. Certain mutations, including preC G1896A, are also significantly related to HBeAg-negative chronic infection. This review article mainly focuses on the HBV preC/C mutations that are related to disease severity and on the HBeAg serostatus of chronically infected patients.
Collapse
|
31
|
Maternal-Derived Hepatitis B Virus e Antigen Alters Macrophage Function in Offspring to Drive Viral Persistence after Vertical Transmission. Immunity 2016; 44:1204-14. [PMID: 27156385 DOI: 10.1016/j.immuni.2016.04.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/17/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
In contrast to horizontal transmission of hepatitis B virus (HBV) between adults, which often leads to self-limited acute infection, vertical transmission of HBV from mother to child often leads to chronic infection. However, the mechanisms linking vertical transmission with chronic infection are not known. We developed a mouse model to study the effect of maternal HBV infection on HBV persistence in offspring and found that HBV carried by the mother impaired CD8(+) T cell responses to HBV in her offspring, resulting in HBV persistence. This impairment of CD8(+) T cell responses was mediated by hepatic macrophages, which were predisposed by maternal HBV e antigen (HBeAg) to support HBV persistence by upregulation of inhibitory ligand PD-L1 and altered polarization upon restimulation with HBeAg. Depletion of hepatic macrophages led to CD8(+) T cell activation and HBV clearance in the offspring, raising the possibility of targeting macrophages to treat chronic HBV patients.
Collapse
|
32
|
Zeng Z, Li L, Chen Y, Wei H, Sun R, Tian Z. Interferon-γ facilitates hepatic antiviral T cell retention for the maintenance of liver-induced systemic tolerance. J Exp Med 2016; 213:1079-93. [PMID: 27139489 PMCID: PMC4886358 DOI: 10.1084/jem.20151218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 04/11/2016] [Indexed: 12/29/2022] Open
Abstract
IFN-γ mediates hepatic T cell retention and the maintenance of systemic tolerance during hepatitis B virus persistence in the liver. Persistent exposure to liver pathogens leads to systemic antigen-specific tolerance, a major cause of chronicity during hepatotropic infection. The mechanism regarding how this systemic tolerance is maintained remains poorly elucidated. In a well established mouse model of hepatitis B virus (HBV) persistence–induced systemic tolerance, we observed that interferon-γ (IFN-γ) deficiency led to complete loss of tolerance, resulting in robust anti-HBV responses upon peripheral vaccination. The recovery of vaccine-induced anti-HBV responses was mainly caused by the retained antigen-specific CD4+ T cells rather than decreased functional inhibitory cells in the periphery. Mechanistically, HBV persistence induced sustained hepatic CD4+ T cell–derived IFN-γ production. IFN-γ was found to promote CXCL9 secretion from liver-resident macrophages. This T cell chemokine facilitated the retention of antiviral CD4+ T cells in the liver in a CXCR3-dependent manner. Hepatic sequestrated antiviral CD4+ T cells subsequently underwent local apoptotic elimination partially via cytotoxic T lymphocyte–associated protein 4 ligation. These findings reveal an unexpected tolerogenic role for IFN-γ during viral persistence in the liver, providing new mechanistic insights regarding the maintenance of systemic antigen-specific tolerance during HBV persistence.
Collapse
Affiliation(s)
- Zhutian Zeng
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Lu Li
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230027, China
| | - Yongyan Chen
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Zhigang Tian
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230027, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
33
|
Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein. J Virol 2015; 90:1729-40. [PMID: 26637457 DOI: 10.1128/jvi.02604-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3β-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3β and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3β, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. IMPORTANCE Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism underlying HBV-induced pathogenesis of hepatic steatosis still remains to be elucidated. In this study, we found that expression of liver fatty acid binding protein (FABP1) was dramatically increased in the sera of HBV-infected patients and in both sera and liver tissues of HBV-transgenic mice. Forced expression of HBx led to FABP1 upregulation, whereas knockdown of FABP1 remarkably diminished lipid accumulation in both in vitro and in vivo models. It is possible that HBx promotes hepatic lipid accumulation through upregulating FABP1 in the development of HBV-induced nonalcoholic fatty liver disease. Therefore, inhibition of FABP1 might have therapeutic value in steatosis-associated chronic HBV infection.
Collapse
|
34
|
Kanda T, Wu S, Sasaki R, Nakamura M, Haga Y, Jiang X, Nakamoto S, Yokosuka O. HBV Core Protein Enhances Cytokine Production. Diseases 2015; 3:213-220. [PMID: 28943621 PMCID: PMC5548245 DOI: 10.3390/diseases3030213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection, a cause of hepatocellular carcinoma (HCC), remains a serious global health concern. HCC development and human hepatocarcinogenesis are associated with hepatic inflammation caused by host interferons and cytokines. This article focused on the association between the HBV core protein, which is one of the HBV-encoding proteins, and cytokine production. The HBV core protein induced the production of interferons and cytokines in human hepatoma cells and in a mouse model. These factors may be responsible for persistent HBV infection and hepatocarcinogenesis. Inhibitors of programmed death (PD)-1 and HBV core and therapeutic vaccines including HBV core might be useful for the treatment of patients with chronic HBV infection. Inhibitors of HBV core, which is important for hepatic inflammation, could be helpful in preventing the progression of liver diseases in HBV-infected patients.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Reina Sasaki
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Masato Nakamura
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Yuki Haga
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Xia Jiang
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shingo Nakamoto
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
35
|
Li M, Sun R, Xu L, Yin W, Chen Y, Zheng X, Lian Z, Wei H, Tian Z. Kupffer Cells Support Hepatitis B Virus-Mediated CD8+ T Cell Exhaustion via Hepatitis B Core Antigen-TLR2 Interactions in Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:3100-9. [PMID: 26304988 DOI: 10.4049/jimmunol.1500839] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/28/2015] [Indexed: 12/17/2022]
Abstract
Hepatitis B virus (HBV) persistence is a fundamental process in chronic HBV infection and a key factor in all related liver diseases; however, the mechanisms have yet to be elucidated. We studied the role of TLR2 in HBV persistence using a well-established HBV-carrier mouse model generated by hydrodynamically injecting a phospho-adeno-associated virus/HBV1.2 plasmid into mice. We found that a genetic deficiency in TLR2 improves HBV elimination, whereas activating TLR2 led to more stable HBV persistence, suggesting that TLR2 activation is critical in HBV persistence. Furthermore, we noted that TLR2 activation could inhibit CD8(+) T cell function, causing the exhaustion phenotype in HBV-carrier mice, because TLR2 deficiency might rescue CD8(+) T cell function in a cellular adoptive experiment. TLR2 expression on Kupffer cells (KCs) was upregulated in HBV-carrier mice, which accounts for HBV persistence, because the difference in anti-HBV immunity between HBV-carrier wild-type and Tlr2(-/-) mice did not exist after KC depletion. In addition, similar to TLR2 deficiency, after KC depletion, CD8(+) T cells were more efficiently activated in HBV-carrier mice, leading to rapid HBV elimination. KCs produced more IL-10 upon TLR2 activation in response to direct hepatitis B core Ag stimulation, and the elevated IL-10 inhibited CD8(+) T cell function in HBV-carrier mice, because IL-10 deficiency or anti-IL-10R treatment resulted in CD8(+) T cells with stronger antiviral function. In conclusion, KCs support liver tolerance by inducing anti-HBV CD8(+) T cell exhaustion via IL-10 production after TLR2 activation by hepatitis B core Ag stimulation.
Collapse
Affiliation(s)
- Min Li
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; and Institute of Immunology and Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Long Xu
- Institute of Immunology and Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenwei Yin
- Institute of Immunology and Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yongyan Chen
- Institute of Immunology and Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaodong Zheng
- Institute of Immunology and Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhexiong Lian
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China; Institute of Immunology and Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China; Institute of Immunology and Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; and Institute of Immunology and Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
36
|
Cheng L, Li F, Bility MT, Murphy CM, Su L. Modeling hepatitis B virus infection, immunopathology and therapy in mice. Antiviral Res 2015; 121:1-8. [PMID: 26099683 DOI: 10.1016/j.antiviral.2015.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022]
Abstract
Despite the availability of a preventive vaccine, chronic hepatitis B virus (HBV) infection-induced liver diseases continue to be a major global public health problem. HBV naturally infects only humans and chimpanzees. This narrow host range has hindered our ability to study the characteristics of the virus and how it interacts with its host. It is thus important to establish small animal models to study HBV infection, persistence, clearance and the immunopathogenesis of chronic hepatitis B. In this review, we briefly summarize currently available animal models for HBV research, then focus on mouse models, especially the recently developed humanized mice that can support HBV infection and immunopathogenesis in vivo. This article is part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."
Collapse
Affiliation(s)
- Liang Cheng
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Feng Li
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Moses T Bility
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Christopher M Murphy
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Lishan Su
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
37
|
Pan D, Lin Y, Wu W, Song J, Zhang E, Wu C, Chen X, Hu K, Yang D, Xu Y, Lu M. Persistence of the recombinant genomes of woodchuck hepatitis virus in the mouse model. PLoS One 2015; 10:e0125658. [PMID: 25942393 PMCID: PMC4420481 DOI: 10.1371/journal.pone.0125658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/17/2015] [Indexed: 12/12/2022] Open
Abstract
Hydrodynamic injection (HI) with a replication competent hepatitis B virus (HBV) genome may lead to transient or prolonged HBV replication in mice. However, the prolonged HBV persistence after HI depends on the specific backbone of the vector carrying HBV genome and the genetic background of the mouse strain. We asked whether a genetically closely related hepadnavirus, woodchuck hepatitis virus (WHV), may maintain the gene expression and replication in the mouse liver after HI. Interestingly, we found that HI of pBS-WHV1.3 containing a 1.3 fold overlength WHV genome in BALB/c mouse led to the long presence of WHV DNA and WHV proteins expression in the mouse liver. Thus, we asked whether WHV genome carrying foreign DNA sequences could maintain the long term gene expression and persistence. For this purpose, the coding region of HBV surface antigen (HBsAg) was inserted into the WHV genome to replace the corresponding region. Three recombinant WHV-HBV genomes were constructed with the replacement with HBsAg a-determinant, major HBsAg, and middle HBsAg. Serum HBsAg, viral DNA, hepatic WHV protein expression, and viral replication intermediates were detected in mice after HI with recombinant genomes. Similarly, the recombinant genomes could persist for a prolonged period of time up to 45 weeks in mice. WHV and recombinant WHV-HBV genomes did not trigger effective antibody and T-cell responses to viral proteins. The ability of recombinant WHV constructs to persist in mice is an interesting aspect for the future investigation and may be explored for in vivo gene transfer.
Collapse
Affiliation(s)
- Danzhen Pan
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Lin
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Wu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjiao Song
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejuan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunchen Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xinwen Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Kanghong Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (ML); (YX)
| | - Mengji Lu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Virology, University Hospital of Essen, Essen, Germany
- * E-mail: (ML); (YX)
| |
Collapse
|
38
|
Abstract
We have shown that cellular inhibitor of apoptosis proteins (cIAPs) impair clearance of hepatitis B virus (HBV) infection by preventing TNF-mediated killing/death of infected cells. A key question, with profound therapeutic implications, is whether this finding can be translated to the development of drugs that promote elimination of infected cells. Drug inhibitors of cIAPs were developed as cancer therapeutics to promote TNF-mediated tumor killing. These drugs are also known as Smac mimetics, because they mimic the action of the endogenous protein Smac/Diablo that antagonizes cIAP function. Here, we show using an immunocompetent mouse model of chronic HBV infection that birinapant and other Smac mimetics are able to rapidly reduce serum HBV DNA and serum HBV surface antigen, and they promote the elimination of hepatocytes containing HBV core antigen. The efficacy of Smac mimetics in treating HBV infection is dependent on their chemistry, host CD4(+) T cells, and TNF. Birinapant enhances the ability of entecavir, an antiviral nucleoside analog, to reduce viral DNA production in HBV-infected animals. These results indicate that birinapant and other Smac mimetics may have efficacy in treating HBV infection and perhaps, other intracellular infections.
Collapse
|
39
|
Nucleic Acid Sensors Involved in the Recognition of HBV in the Liver-Specific in vivo Transfection Mouse Models-Pattern Recognition Receptors and Sensors for HBV. Med Sci (Basel) 2015; 3:16-24. [PMID: 29083388 PMCID: PMC5635761 DOI: 10.3390/medsci3020016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 12/25/2022] Open
Abstract
Cellular innate immune system recognizing pathogen infection is critical for the host defense against viruses. Hepatitis B virus (HBV) is a DNA virus with a unique life cycle whereby the DNA and RNA intermediates present at different phases. However, it is still unclear whether the viral DNA or RNA templates are recognized by the pattern-recognition receptors (PRRs) to trigger host antiviral immune response. Here in this article, we review the recent advances in the progress of the HBV studies, focusing on the nucleic acid sensors and the pathways involved in the recognition of HBV in the liver–specific in vivo transfection mouse models. Hydrodynamic injection transfecting the hepatocytes in the gene-disrupted mouse model with the HBV replicative genome DNA has revealed that IFNAR and IRF3/7 are indispensable in HBV eradication in the mice liver but not the RNA sensing pathways. Interestingly, accumulating evidence of the recent studies has demonstrated that HBV markedly interfered with IFN-β induction and antiviral immunity mediated by the Stimulator of interferon genes (STING), which has been identified as a central factor in foreign DNA recognition and antiviral innate immunity. This review will present the current understanding of innate immunity in HBV infection and of the challenges for clearing of the HBV infection.
Collapse
|
40
|
Li X, Zhu J, Lai G, Yan L, Hu J, Chen J, Tang N, Huang A. The infection efficiency and replication ability of circularized HBV DNA optimized the linear HBV DNA in vitro and in vivo. Int J Mol Sci 2015; 16:5141-60. [PMID: 25751726 PMCID: PMC4394468 DOI: 10.3390/ijms16035141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 12/16/2022] Open
Abstract
Studies on molecular mechanisms of the persist infection of hepatitis B virus have been hampered by a lack of a robust animal model. We successfully established a simple, versatile, and reproducible HBV persist infection model in vitro and in vivo with the circularized HBV DNA. The cells and mice were transfected or injected with circularized HBV DNA and pAAV/HBV1.2, respectively. At the indicated time, the cells, supernatants, serum samples, and liver tissues were collected for virological and serological detection. Both in vitro and in vivo, the circularized HBV DNA and pAAV/HBV1.2 could replicate and transcribe efficiently, but the infection effect of the former was superior to the latter (p < 0.05). The injection of circularized HBV genome DNA into the mice robustly supported HBV infection and approximately 80% of HBV infected mice established persistent infection for at least 10 weeks. This study demonstrated that the infection efficiency and replication ability of the circularized structure of HBV DNA overmatched that of the expression plasmid containing the linear structure of HBV DNA in vitro and in vivo. Meanwhile, this research results could provide useful tools and methodology for further study of pathogenic mechanisms and potential antiviral treatments of human chronic HBV infection in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaosong Li
- Laboratory of Molecular Biology on Infectious Diseases and Institute for Viral Hepatitis, Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| | - Junke Zhu
- Laboratory of Molecular Biology on Infectious Diseases and Institute for Viral Hepatitis, Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| | - Guoqi Lai
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China.
| | - Lei Yan
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China.
| | - Jieli Hu
- Laboratory of Molecular Biology on Infectious Diseases and Institute for Viral Hepatitis, Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| | - Juan Chen
- Laboratory of Molecular Biology on Infectious Diseases and Institute for Viral Hepatitis, Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| | - Ni Tang
- Laboratory of Molecular Biology on Infectious Diseases and Institute for Viral Hepatitis, Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| | - Ailong Huang
- Laboratory of Molecular Biology on Infectious Diseases and Institute for Viral Hepatitis, Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
41
|
Su Q, Yi Y, Qiu F, Lu X, Ding J, Jia Z, Tian R, Gao Y, Bi S. Immune responses to HBsAg conjugated to protein D of non-typeable Haemophilus influenzae in mice. PLoS One 2015; 10:e0117736. [PMID: 25689855 PMCID: PMC4331537 DOI: 10.1371/journal.pone.0117736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/01/2015] [Indexed: 11/29/2022] Open
Abstract
Background Hepatitis B vaccine that contains an aluminum hydroxide adjuvant induces apoptotic death of Hepa 1–6 cells. Difficult-to-degrade chemical additives in vaccines effectively enhance vaccine immunogenicity, but also affect the host tissue. Identification of bio-molecules that are readily degraded and compatible in vivo as an adjuvant is important for vaccine research. The hapten–carrier effect suggests that stimulation of helper T (Th) cells by carrier adjuvants is feasible. Protein D (PD) of non-typeable Haemophilus influenzae covalently conjugated to some polysaccharide vaccines has been confirmed to convert T-cell independent (TI) antigens into T-cell dependent (TD) antigens, and elicit strong T-cell responses ultimately. Herein, we would substitube PD for aluminum hydroxide adjuvant in Hepatitis B vaccine. Methods and results Truncated PD (amino acids 20–364) was expressed in Escherichia coli and purified by (NH4)2SO4 precipitation and DEAE chromatography. After evaluation of antigenicity by western blotting, PD was covalently conjugated to yeast-derived recombinant HBsAg by cross-linking with glutaraldehyde. Intramuscular immunization with the conjugate induced higher level of HBsAg-specific antibody than did HBsAg alone (p < 0.05), and was comparable to commercial Hepatitis B vaccine. During the surveillance period (days 35–105), anti-HBs titers were hold high. Moreover, the conjugated vaccine enhanced Th1 immune responses, while Th2 responses were also activated and induced an antibody response, as determined by IFN-γ ELISPOT and IgG1/IgG2a ratio assays. Conclusions Recombinant truncated PD covalently conjugated to HBsAg antigen enhanced the immunogenicity of the antigen in mice simultaneously by humoral and cellular immune response, which would facilitate therapeutic hepatitis B vaccines.
Collapse
Affiliation(s)
- Qiudong Su
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Yao Yi
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Feng Qiu
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Xuexin Lu
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Junying Ding
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Zhiyuan Jia
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Ruiguang Tian
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Yan Gao
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Shengli Bi
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
42
|
Aldabe R, Suárez-Amarán L, Usai C, González-Aseguinolaza G. Animal models of chronic hepatitis delta virus infection host-virus immunologic interactions. Pathogens 2015; 4:46-65. [PMID: 25686091 PMCID: PMC4384072 DOI: 10.3390/pathogens4010046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/05/2015] [Indexed: 02/08/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective RNA virus that has an absolute requirement for a virus belonging to the hepadnaviridae family like hepatitis B virus (HBV) for its replication and formation of new virions. HDV infection is usually associated with a worsening of HBV-induced liver pathogenesis, which leads to more frequent cirrhosis, increased risk of hepatocellular carcinoma (HCC), and fulminant hepatitis. Importantly, no selective therapies are available for HDV infection. The mainstay of treatment for HDV infection is pegylated interferon alpha; however, response rates to this therapy are poor. A better knowledge of HDV–host cell interaction will help with the identification of novel therapeutic targets, which are urgently needed. Animal models like hepadnavirus-infected chimpanzees or the eastern woodchuck have been of great value for the characterization of HDV chronic infection. Recently, more practical animal models in which to perform a deeper study of host virus interactions and to evaluate new therapeutic strategies have been developed. Therefore, the main focus of this review is to discuss the current knowledge about HDV host interactions obtained from cell culture and animal models.
Collapse
Affiliation(s)
- Rafael Aldabe
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain.
| | - Lester Suárez-Amarán
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain
| | - Carla Usai
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain.
| | - Gloria González-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain.
| |
Collapse
|
43
|
Chyuan IT, Tsai HF, Tzeng HT, Sung CC, Wu CS, Chen PJ, Hsu PN. Tumor necrosis factor-alpha blockage therapy impairs hepatitis B viral clearance and enhances T-cell exhaustion in a mouse model. Cell Mol Immunol 2015; 12:317-25. [PMID: 25661729 DOI: 10.1038/cmi.2015.01] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 12/25/2022] Open
Abstract
Hepatitis B virus (HBV) reactivation and recurrence are common in patients undergoing immunosuppression therapy. Tumor necrosis factor (TNF) blockage therapy is effective for the treatment of many autoimmune inflammatory diseases. However, the role of TNF-α blockage therapy in the innate and adaptive immune responses against HBV is still not clear. A detailed analysis of HBV infection under TNF-α blockage therapy is essential for the prophylaxis and therapy for HBV reactivation and recurrence. In this study, HBV clearance and T-cell responses were analyzed in a HBV-transfected mouse model under anti-TNF blockage therapy. Our results demonstrated that under TNF-α blockage therapy, HBV viral clearance was impaired with persistent elevated HBV viral load in a dose- and temporal-dependent manner. The impairment of HBV clearance under anti-TNF-α blockage therapy occurred at early time points after HBV infection. In addition, TNF-α blockade maintained a higher serum HBV viral load and increased the number of intrahepatic programmed cell death (PD)-1(high)CD127(low) exhausted T cells. Furthermore, TNF-α blockade abolished Toll-like receptor 9 (TLR9) ligand-induced facilitation of HBV viral clearance. Taken together, TNF-α blockade impairs HBV clearance and enhances viral load, and these effects depend on early administration after HBV infection. Our results here demonstrate that early TNF-α blockade reduces viral clearance and persistently maintains elevated HBV viral load in a mouse model, suggesting that HBV may reactivate during therapy with TNF-α-blocking agents.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- 1] Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan, China [2] Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Hwei-Fang Tsai
- 1] Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan, China [2] Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, China
| | - Horng-Tay Tzeng
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Chi-Chang Sung
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan, China
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Ping-Ning Hsu
- 1] Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China [2] Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, China
| |
Collapse
|
44
|
Hepatitis B virus core protein sensitizes hepatocytes to tumor necrosis factor-induced apoptosis by suppression of the phosphorylation of mitogen-activated protein kinase kinase 7. J Virol 2014; 89:2041-51. [PMID: 25428880 DOI: 10.1128/jvi.03106-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Hepatitis B, which caused by hepatitis B virus (HBV) infection, remains a major health threat worldwide. Hepatic injury and regeneration from chronic inflammation are the main driving factors of liver fibrosis and cirrhosis in chronic hepatitis B. Proinflammatory tumor necrosis factor alpha (TNF-α) has been implicated as a major inducer of liver cell death during viral hepatitis. Here, we report that in hepatoma cell lines and in primary mouse and human hepatocytes, expression of hepatitis B virus core (HBc) protein made cells susceptible to TNF-α-induced apoptosis. We found by tandem affinity purification and mass spectrometry that receptor of activated protein kinase C 1 (RACK1) interacted with HBc. RACK1 was recently reported as a scaffold protein that facilitates the phosphorylation of mitogen-activated protein kinase kinase 7 (MKK7) by its upstream activators. Our study showed that HBc abrogated the interaction between MKK7 and RACK1 by competitively binding to RACK1, thereby downregulating TNF-α-induced phosphorylation of MKK7 and the activation of c-Jun N-terminal kinase (JNK). In line with this finding, specific knockdown of MKK7 increased the sensitivity of hepatocytes to TNF-α-induced apoptosis, while overexpression of RACK1 counteracted the proapoptotic activity of HBc. Capsid particle formation was not obligatory for HBc proapoptotic activity, as analyzed using an assembly-defective HBc mutant. In conclusion, the expression of HBc sensitized hepatocytes to TNF-α-induced apoptosis by disrupting the interaction between MKK7 and RACK1. Our study is thus the first indication of the pathogenic effects of HBc in liver injury during hepatitis B. IMPORTANCE Our study revealed a previously unappreciated role of HBc in TNF-α-mediated apoptosis. The proapoptotic activity of HBc is important for understanding hepatitis B pathogenesis. In particular, HBV variants associated with severe hepatitis may upregulate apoptosis of hepatocytes through enhanced HBc expression. Our study also found that MKK7 is centrally involved in TNF-α-induced hepatocyte apoptosis and revealed a multifaceted role for JNK signaling in this process.
Collapse
|
45
|
Chen WN, Liu LL, Jiao BY, Lin WS, Lin XJ, Lin X. Hepatitis B virus X protein increases the IL-1β-induced NF-κB activation via interaction with evolutionarily conserved signaling intermediate in Toll pathways (ECSIT). Virus Res 2014; 195:236-45. [PMID: 25449573 DOI: 10.1016/j.virusres.2014.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus X protein (HBx) transactivates multiple transcription factors including nuclear factor-kappa B (NF-κB) that regulates inflammatory-related genes. However, the regulatory mechanism of HBx in NF-κB activation remains largely unknown. This study reports that HBx augments the interleukin-1β (IL-1β)-induced NF-κB activation via interaction with a Toll-like receptor (TLR) adapter protein, ECSIT (evolutionarily conserved signaling intermediate in Toll pathways). GST pull-down and co-immunoprecipitation analyses showed that HBx interacted with ECSIT. Deletion analysis of HBx in a CytoTrap two-hybrid system revealed that the interaction region of HBx for ECSIT was attributed to aa 51-80. Co-transfection of HBx and ECSIT in IL-1β-stimulated cells appeared to activate IKK and IκB signaling pathway as phosphorylation of both IKK α/β and IκBα was increased whereas knockdown of ECSIT or HBxΔ51-80 mutant attenuated the phosphorylation. As a consequence of IκBα degradation, NF-κB was activated as evidenced by increases in NF-κB transcriptional activity and the nuclear translocation of p65 and p50 that resulted in the induction of IL-10. In contrast, knockdown of ECSIT by siRNA or treatment with an NF-κB selective inhibitor (helenalin) abolished the NF-κB activation and IL-10 expression. We conclude that ECSIT appears to be a novel HBx-interacting signal molecule and their interaction is mechanistically important in IL-1β induction of NF-κB activation.
Collapse
Affiliation(s)
- Wan-nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Ling-ling Liu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Bo-yan Jiao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wan-song Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xin-jian Lin
- Department of Medicine and UC San Diego Moores Cancer Center, University of California-San Diego, CA, USA.
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
46
|
A simple and efficient strategy for the de novo construction of greater-than-genome-length hepatitis B virus replicons. J Virol Methods 2014; 207:158-62. [DOI: 10.1016/j.jviromet.2014.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/30/2014] [Accepted: 07/04/2014] [Indexed: 02/06/2023]
|
47
|
Tzeng HT, Tsai HF, Chyuan IT, Liao HJ, Chen CJ, Chen PJ, Hsu PN. Tumor necrosis factor-alpha induced by hepatitis B virus core mediating the immune response for hepatitis B viral clearance in mice model. PLoS One 2014; 9:e103008. [PMID: 25047809 PMCID: PMC4105421 DOI: 10.1371/journal.pone.0103008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/24/2014] [Indexed: 02/06/2023] Open
Abstract
Persistent hepatitis B viral (HBV) infection results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). An efficient control of virus infections requires the coordinated actions of both innate and adaptive immune responses. In order to define the role of innate immunity effectors against HBV, viral clearance was studied in a panel of immunodeficient mouse strains by the hydrodynamic injection approach. Our results demonstrate that HBV viral clearance is not changed in IFN-α/β receptor (IFNAR), RIG-I, MDA5, MYD88, NLRP3, ASC, and IL-1R knock-out mice, indicating that these innate immunity effectors are not required for HBV clearance. In contrast, HBV persists in the absence of tumor necrosis factor-alpha (TNF-α) or in mice treated with the soluble TNF receptor blocker, Etanercept. In these mice, there was an increase in PD-1-expressing CD8+ T-cells and an increase of serum HBV DNA, HBV core, and surface antigen expression as well as viral replication within the liver. Furthermore, the induction of TNF-α in clearing HBV is dependent on the HBV core, and TNF blockage eliminated HBV core-induced viral clearance effects. Finally, the intra-hepatic leukocytes (IHLs), but not the hepatocytes, are the cell source responsible for TNF-α production induced by HBcAg. These results provide evidences for TNF-α mediated innate immune mechanisms in HBV clearance and explain the mechanism of HBV reactivation during therapy with TNF blockage agents.
Collapse
Affiliation(s)
- Horng-Tay Tzeng
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tsai
- Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Tsu Chyuan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Jung Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jen Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
48
|
Dandri M, Lütgehetmann M. Mouse models of hepatitis B and delta virus infection. J Immunol Methods 2014; 410:39-49. [PMID: 24631647 DOI: 10.1016/j.jim.2014.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/05/2023]
Abstract
Liver disease associated to persistent infection with the hepatitis B virus (HBV) continues to be a major health problem of global impact. Therapeutic regimens currently available can efficiently suppress HBV replication; however, the unique replication strategies employed by HBV permit the virus to persist within the infected hepatocytes. As a consequence, relapse of viral activity is commonly observed after cessation of treatment with polymerase inhibitors. Among the HBV chronically infected patients, more than 15million patients are estimated to be co-infected with the hepatitis delta virus (HDV), a defective satellite virus that needs the HBV envelope for propagation. No specific drugs are currently available against HDV, while nucleos(t)ide analogs are not effective against HDV replication. Since chronic HBV/HDV co-infection leads to the most severe form of chronic viral hepatitis in men, a better understanding of the molecular mechanisms of HDV-mediated pathogenesis and the development of improved therapeutic approaches is urgently needed. The obvious limitations imposed by the use of great apes and the paucity of robust experimental models of HBV infection have hindered progresses in understanding the complex network of virus-host interactions that are established in the course of HBV and HDV infections. This review focuses on summarizing recent advances obtained with well-established and more innovative experimental mouse models, giving emphasis on the strength of infection systems based on the reconstitution of the murine liver with human hepatocytes, as tools for elucidating the whole life cycle of HBV and HDV, as well as for studies on interactions with the infected human hepatocytes and for preclinical drug evaluation.
Collapse
Affiliation(s)
- Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research, Hamburg-Lübeck-Borstel Partner Site, Germany.
| | - Marc Lütgehetmann
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Xu L, Yin W, Sun R, Wei H, Tian Z. Kupffer cell-derived IL-10 plays a key role in maintaining humoral immune tolerance in hepatitis B virus-persistent mice. Hepatology 2014; 59:443-52. [PMID: 23929689 DOI: 10.1002/hep.26668] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/30/2013] [Indexed: 12/19/2022]
Abstract
UNLABELLED The liver is considered as a unique lymphoid organ favoring the induction of immune tolerance, rather than immunity. Biologists and clinicians alike have a long-standing interest in how the liver induces systemic immune tolerance, but the mechanism has not yet been well elucidated. Here, we employed hepatitis B virus (HBV)-carrier mice generated by hydrodynamically injecting phosphor-adeno-associated virus/HBV1.2 plasmid as a model for adult chronic HBV infection, which we found were unable to respond to hepatitis B surface antigen vaccination. Humoral tolerance induced in HBV-carrier mice could be transferred into Rag1(-/-) mice, because anti-HBV immunity in immunologically reconstituted Rag1(-/-) mice was inhibited by adoptive transfer of splenocytes from HBV-carrier mice. Humoral tolerance needed at least 7 days for induction and persisted to 3 months after a single HBV plasmid injection. Kupffer cell (KC) depletion or interleukin (IL-10) deficiency broke this humoral tolerance, and exogenous injection of IL-10 could effectively induce this tolerance. CONCLUSION KCs in HBV-carrier mice expressed more IL-10 and mediated the systemic tolerance induction in an IL-10-dependent manner. This previously undescribed humoral tolerance regarding HBV infection will help to explore new approaches to reverse liver-sustained systemic immune tolerance in liver disease.
Collapse
Affiliation(s)
- Long Xu
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | | | |
Collapse
|
50
|
Chuai X, Wang W, Chen H, Deng Y, Wen B, Tan W. Lentiviral backbone-based hepatitis B virus replicon-mediated transfer favours the establishment of persistent hepatitis B virus infection in mice after hydrodynamic injection. Antiviral Res 2013; 101:68-74. [PMID: 24239872 DOI: 10.1016/j.antiviral.2013.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/04/2013] [Accepted: 10/30/2013] [Indexed: 01/29/2023]
Abstract
Establishment of a non-transgenic mouse model of persistent hepatitis B virus (HBV) infection is urgently needed. In this study, we constructed novel lentiviral-transfer plasmids containing HBV replicon DNA (pCS-HBV1.3, containing a 1.3-fold-overlength genome of HBV) and employed hydrodynamic injection (HDI) to develop an HBV-persistent mouse model. We explored the impact of host (different mouse strains, BALB/c and C57BL/6), gender, and the plasmid backbone on persistent HBV in mice. Our data showed that HBV antigenaemia (HBsAg, HBeAg) and HBV DNA persisted for >56days post-injection, while the appearance of anti-HBs antibody in the serum was only found among <30% of female C57BL/6 mice injected with pCS-HBV1.3. Moreover, HBcAg and HBV DNA were also detected in the liver of HDI mice. Compared with previous AAV-backbone based HBV replicon DNA transfer, we found that the HDI transfer with the lentiviral vector-based HBV replicon (pCS-HBV1.3) in this study resulted in a significantly higher level of HBV DNA transfer in the liver and longer persistence of HBV DNA and antigenaemia in the serum. Furthermore, we also showed that immunization of HBV replicon transfer mice with the novel HBSS1-based vaccines was able to overcome tolerance against HBV in mice and induces robust immunity (humoral as well as T-cell responses), followed by the clearance of the HBV viremia. We concluded that lentiviral backbone-based transfer vectors more readily establish persistent HBV infection in mouse models via HDI, providing a new tool useful for the study of HBV infection and immune-based therapies.
Collapse
Affiliation(s)
- Xia Chuai
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China; Department of Microbiology, Hebei Medical University, PR China
| | - Wen Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Hong Chen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Yao Deng
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Bo Wen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Wenjie Tan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China.
| |
Collapse
|