1
|
Li P, Xu J, Guo Y, Ma X, Wang X, Liu L, Liu Y, Ren X, Li J, Wang Y, Meng L, Zhou S, Yuan L. Impact of vitamin A on aged people's cognition and Alzheimer's disease progression in an animal model. NPJ Sci Food 2025; 9:67. [PMID: 40341393 PMCID: PMC12062344 DOI: 10.1038/s41538-025-00402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 03/09/2025] [Indexed: 05/10/2025] Open
Abstract
The relation between vitamin A (VA) level and cognitive function and the underlying mechanisms have not been thoroughly investigated. Population-based cross-sectional and animal diet intervention studies were conducted to analyze the association between VA nutritional status and cognitive function and the underlying mechanisms. In the population-based study, information from 1817 adults aged 50 years and above was used for data analysis, and we found that subjects with plasma VA level greater than 0.539 μg/ml displayed a lower risk of mild cognitive impairment (MCI). In the animal experiment, VA metabolism was disrupted in Alzheimer's disease (AD) model mice, indicated by increased hepatic VA level and reduced retinol binding protein 4 (RBP4) level. AD model mice fed with low-VA diet showed worse nesting behavior, and cerebral pathologies, including increased Aβ generation, exacerbated neuroinflammation, and impaired brain glucose uptake and insulin signaling pathway. In conclusion, higher plasma VA level (≥ 0.539 μg/ml) might decrease the risk of MCI in the middle-aged and elderly individuals. Low VA nutritional status might disrupt brain glucose metabolism through regulating the insulin signaling pathway, promoting the senile plaque deposit and aggregating cerebral neuroinflammation, finally exacerbating the pathology of AD.
Collapse
Affiliation(s)
- Pengfei Li
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, China
| | - Jingjing Xu
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, China
| | - Yujie Guo
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, China
| | - Xixiang Wang
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, China
| | - Lu Liu
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, China
| | - Yu Liu
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, China
| | - Xiuwen Ren
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, China
| | - Jiahao Li
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, China
| | - Ying Wang
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, Jiangsu, China
| | - Liping Meng
- Inner Mongolia Mengniu Dairy (Group) Co., LTD., Hohhot, 011500, Inner Mongolia, China
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham, ME4 4TB, UK.
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Parker LE, Papanicolaou KN, Zalesak-Kravec S, Weinberger EM, Kane MA, Foster DB. Retinoic acid signaling and metabolism in heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H792-H813. [PMID: 39933792 DOI: 10.1152/ajpheart.00871.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Nearly 70 years after studies first showed that the offspring of vitamin A (retinol, ROL)-deficient rats exhibit structural cardiac defects and over 20 years since the role of vitamin A's potent bioactive metabolite hormone, all-trans retinoic acid (ATRA), was elucidated in embryonic cardiac development, the role of the vitamin A metabolites, or retinoids, in adult heart physiology and heart and vascular disease, remains poorly understood. Studies have shown that low serum levels of retinoic acid correlate with higher all-cause and cardiovascular mortality, though the relationship between circulating retinol and ATRA levels, cardiac tissue ATRA levels, and intracellular cardiac ATRA signaling in the context of heart and vascular disease has only begun to be addressed. We have recently shown that patients with idiopathic dilated cardiomyopathy show a nearly 40% decline of in situ cardiac ATRA levels, despite adequate local stores of retinol. Moreover, we and others have shown that the administration of ATRA forestalls the development of heart failure (HF) in rodent models. In this review, we summarize key facets of retinoid metabolism and signaling and discuss mechanisms by which impaired ATRA signaling contributes to several HF hallmarks including hypertrophy, contractile dysfunction, poor calcium handling, redox imbalance, and fibrosis. We highlight unresolved issues in cardiac ATRA metabolism whose pursuit will help refine therapeutic strategies aimed at restoring ATRA homeostasis.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Eva M Weinberger
- School of Medicine, Imperial College London, London, United Kingdom
| | - Maureen A Kane
- School of Pharmacy, University of Maryland, Baltimore, Maryland, United States
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Bandral M, Sussel L, Lorberbaum DS. Retinoid signaling in pancreas development, islet function, and disease. Curr Top Dev Biol 2024; 161:297-318. [PMID: 39870436 DOI: 10.1016/bs.ctdb.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
All-trans retinoic acid (ATRA) signaling is essential in numerous different biological contexts. This review highlights the diverse roles of ATRA during development, function, and diseases of the pancreas. ATRA is essential to specify pancreatic progenitors from gut tube endoderm, endocrine and exocrine differentiation, and adult islet function. ATRA concentration must be carefully regulated during the derivation of islet-like cells from human pluripotent stem cells (hPSCs) to optimize the expression of key pancreatic transcription factors while mitigating adverse and unwanted cell-types in these cultures. The ATRA pathway is integral to the pancreas and here we will present selected studies from decades of research that has laid the essential groundwork for ongoing projects dedicated to unraveling the complexities of ATRA signaling in the pancreas.
Collapse
Affiliation(s)
- Manuj Bandral
- University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States
| | - Lori Sussel
- University of Colorado Denver Anschutz Medical Campus, Barbara Davis Center for Diabetes, Aurora, CO, United States
| | - David S Lorberbaum
- University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States.
| |
Collapse
|
4
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Esposito M, Amory JK, Kang Y. The pathogenic role of retinoid nuclear receptor signaling in cancer and metabolic syndromes. J Exp Med 2024; 221:e20240519. [PMID: 39133222 PMCID: PMC11318670 DOI: 10.1084/jem.20240519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
The retinoid nuclear receptor pathway, activated by the vitamin A metabolite retinoic acid, has been extensively investigated for over a century. This study has resulted in conflicting hypotheses about how the pathway regulates health and how it should be pharmaceutically manipulated. These disagreements arise from a fundamental contradiction: retinoid agonists offer clear benefits to select patients with rare bone growth disorders, acute promyelocytic leukemia, and some dermatologic diseases, yet therapeutic retinoid pathway activation frequently causes more harm than good, both through acute metabolic dysregulation and a delayed cancer-promoting effect. In this review, we discuss controlled clinical, mechanistic, and genetic data to suggest several disease settings where inhibition of the retinoid pathway may be a compelling therapeutic strategy, such as solid cancers or metabolic syndromes, and also caution against continued testing of retinoid agonists in cancer patients. Considerable evidence suggests a central role for retinoid regulation of immunity and metabolism, with therapeutic opportunities to antagonize retinoid signaling proposed in cancer, diabetes, and obesity.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Kayothera, Inc , Seattle, WA, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch , Princeton, NJ, USA
| |
Collapse
|
6
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
7
|
Yoo HS, Moss KO, Cockrum MA, Woo W, Napoli JL. Energy status regulates levels of the RAR/RXR ligand 9-cis-retinoic acid in mammalian tissues: Glucose reduces its synthesis in β-cells. J Biol Chem 2023; 299:105255. [PMID: 37714463 PMCID: PMC10582780 DOI: 10.1016/j.jbc.2023.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023] Open
Abstract
9-cis-retinoic acid (9cRA) binds retinoic acid receptors (RAR) and retinoid X receptors (RXR) with nanomolar affinities, in contrast to all-trans-retinoic acid (atRA), which binds only RAR with nanomolar affinities. RXR heterodimerize with type II nuclear receptors, including RAR, to regulate a vast gene array. Despite much effort, 9cRA has not been identified as an endogenous retinoid, other than in pancreas. By revising tissue analysis methods, 9cRA quantification by liquid chromatography-tandem mass spectrometry becomes possible in all mouse tissues analyzed. 9cRA occurs in concentrations similar to or greater than atRA. Fasting increases 9cRA in white and brown adipose, brain and pancreas, while increasing atRA in white adipose, liver and pancreas. 9cRA supports FoxO1 actions in pancreas β-cells and counteracts glucose actions that lead to glucotoxicity; in part by inducing Atg7 mRNA, which encodes the key enzyme essential for autophagy. Glucose suppresses 9cRA biosynthesis in the β-cell lines 832/13 and MIN6. Glucose reduces 9cRA biosynthesis in 832/13 cells by inhibiting Rdh5 transcription, unconnected to insulin, through cAMP and Akt, and inhibiting FoxO1. Through adapting tissue specifically to fasting, 9cRA would act independent of atRA. Widespread occurrence of 9cRA in vivo, and its self-sufficient adaptation to energy status, provides new perspectives into regulation of energy balance, attenuation of insulin and glucose actions, regulation of type II nuclear receptors, and retinoid biology.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kristin Obrochta Moss
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michael A Cockrum
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Wonsik Woo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|
8
|
Bohn T, Hellman-Regen J, de Lera AR, Böhm V, Rühl R. Human nutritional relevance and suggested nutritional guidelines for vitamin A5/X and provitamin A5/X. Nutr Metab (Lond) 2023; 20:34. [PMID: 37582723 PMCID: PMC10426203 DOI: 10.1186/s12986-023-00750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/27/2023] [Indexed: 08/17/2023] Open
Abstract
In the last century, vitamin A was identified that included the nutritional relevant vitamin A1 / provitamin A1, as well as the vitamin A2 pathway concept. Globally, nutritional guidelines have focused on vitamin A1 with simplified recommendations and calculations based solely on vitamin A. The vitamin A / provitamin A terminology described vitamin A with respect to acting as a precursor of 11-cis-retinal, the chromophore of the visual pigment, as well as retinoic acid(s), being ligand(s) of the nuclear hormone receptors retinoic acid receptors (RARs) α, β and γ. All-trans-retinoic acid was conclusively shown to be the endogenous RAR ligand, while the concept of its isomer 9-cis-retinoic acid, being "the" endogenous ligand of the retinoid-X receptors (RXRs), remained inconclusive. Recently, 9-cis-13,14-dihydroretinoic acid was conclusively reported as an endogenous RXR ligand, and a direct nutritional precursor was postulated in 2018 and further confirmed by Rühl, Krezel and de Lera in 2021. This was further termed vitamin A5/X / provitamin A5/X. In this review, a new vitamin A5/X / provitamin A5/X concept is conceptualized in parallel to the vitamin A(1) / provitamin A(1) concept for daily dietary intake and towards dietary guidelines, with a focus on the existing national and international regulations for the physiological and nutritional relevance of vitamin A5/X. The aim of this review is to summarize available evidence and to emphasize gaps of knowledge regarding vitamin A5/X, based on new and older studies and proposed future directions as well as to stimulate and propose adapted nutritional regulations.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition Research Group, Department of Precision Health, Luxembourg Institute and Health, 1 A-B, Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Berlin, Germany
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Volker Böhm
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ralph Rühl
- CISCAREX UG, Transvaalstr. 27c, 13351, Berlin, Germany.
| |
Collapse
|
9
|
Guo X, Wang H, Xu J, Hua H. Impacts of vitamin A deficiency on biological rhythms: Insights from the literature. Front Nutr 2022; 9:886244. [PMID: 36466383 PMCID: PMC9718491 DOI: 10.3389/fnut.2022.886244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/02/2022] [Indexed: 03/21/2024] Open
Abstract
Vitamin A is essential for brain function, in addition to its important roles in vision, immunity, and reproduction. Previous studies have shown that retinoic acid (RA), the bioactive form of vitamin A, is involved in the regulation of various intracellular responses related to biological rhythms. RA is reported to affect the circadian rhythm by binding to RA receptors, such as receptors in the circadian feedback loops in the mammalian suprachiasmatic nucleus. However, evidence of the impacts of vitamin A deficiency (VAD) on biological rhythms is limited, and most of the related studies were conducted on animals. In this review, we described the physiological functions of biological rhythms and physiological pathways/molecular mechanisms regulating the biological rhythms. We then discussed the current understanding of the associations of VAD with biological rhythm disorders/diseases (sleep disorders, impairments in learning/memory, emotional disorders, and other immune or metabolism diseases) and summarized the currently proposed mechanisms (mainly by retinoid nuclear receptors and related proteins) for the associations. This review may help recognize the role of VAD in biological rhythm disorders and stimulate clinical or epidemiological studies to confirm the findings of related animal studies.
Collapse
Affiliation(s)
- Xiangrong Guo
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Xu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Hua
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Khalique A, Mohammed AK, Al-khadran NM, Gharaibeh MA, Abu-Gharbieh E, El-Huneidi W, Sulaiman N, Taneera J. Reduced Retinoic Acid Receptor Beta (Rarβ) Affects Pancreatic β-Cell Physiology. BIOLOGY 2022; 11:biology11071072. [PMID: 36101450 PMCID: PMC9312298 DOI: 10.3390/biology11071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022]
Abstract
Various studies have suggested a link between vitamin A (VA), all-trans-retinol, and type 2 diabetes (T2D). However, the functional role/expression of vitamin A receptors (Rarα, β, and γ) in pancreatic β-cells is not clear yet. Accordingly, we performed a series of bioinformatics, molecular and functional experiments in human islet and INS-1 cells to evaluate the role of Rarβ on insulin secretion and pancreatic β-cell function. Microarray and RNA-sequencing (RAN-seq) expression analysis showed that RARα, β, and γ are expressed in human pancreatic islets. RNA-seq expression of RARβ in diabetic/hyperglycemic human islets (HbA1c ≥ 6.3%) revealed a significant reduction (p = 0.004) compared to nondiabetic/normoglycemic cells (HbA1c < 6%). The expression of RARβ with INS and PDX1 showed inverse association, while positive correlations were observed with INSR and HbA1c levels. Exploration of the T2D knowledge portal (T2DKP) revealed that several genetic variants in RARβ are associated with BMI. The most associated variant is rs6804842 (p = 1.2 × 10−25). Silencing of Rarβ in INS-1 cells impaired insulin secretion without affecting cell viability or apoptosis. Interestingly, reactive oxygen species (ROS) production levels were elevated and glucose uptake was reduced in Rarβ-silenced cells. mRNA expression of Ins1, Pdx1, NeuroD1, Mafa, Snap25, Vamp2, and Gck were significantly (p < 0.05) downregulated in Rarβ-silenced cells. For protein levels, Pro/Insulin, PDX1, GLUT2, GCK, pAKT/AKT, and INSR expression were downregulated considerably (p < 0.05). The expression of NEUROD and VAMP2 were not affected. In conclusion, our results indicate that Rarβ is an important molecule for β-cell function. Hence, our data further support the potential role of VA receptors in the development of T2D.
Collapse
Affiliation(s)
- Anila Khalique
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
| | - Nujood Mohammed Al-khadran
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mutaz Al Gharaibeh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
| | - Eman Abu-Gharbieh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Nabil Sulaiman
- Department of Family Medicine, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Correspondence: ; Tel.: +97-165-057-743
| |
Collapse
|
11
|
Yoo HS, Rodriguez A, You D, Lee RA, Cockrum MA, Grimes JA, Wang JC, Kang S, Napoli JL. The glucocorticoid receptor represses, whereas C/EBPβ can enhance or repress CYP26A1 transcription. iScience 2022; 25:104564. [PMID: 35789854 PMCID: PMC9249609 DOI: 10.1016/j.isci.2022.104564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid (RA) counters insulin's metabolic actions. Insulin reduces liver RA biosynthesis by exporting FoxO1 from nuclei. RA induces its catabolism, catalyzed by CYP26A1. A CYP26A1 contribution to RA homeostasis with changes in energy status had not been investigated. We found that glucagon, cortisol, and dexamethasone decrease RA-induced CYP26A1 transcription, thereby reducing RA oxidation during fasting. Interaction between the glucocorticoid receptor and the RAR/RXR coactivation complex suppresses CYP26A1 expression, increasing RA's elimination half-life. Interaction between CCAAT-enhancer-binding protein beta (C/EBPβ) and the major allele of SNP rs2068888 enhances CYP26A1 expression; the minor allele restricts the C/EBPβ effect on CYP26A1. The major and minor alleles associate with impaired human health or reduction in blood triglycerides, respectively. Thus, regulating CYP26A1 transcription contributes to adapting RA to coordinate energy availability with metabolism. These results enhance insight into CYP26A1 effects on RA during changes in energy status and glucocorticoid receptor modification of RAR-regulated gene expression.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Adrienne Rodriguez
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Dongjoo You
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Rebecca A. Lee
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Michael A. Cockrum
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Jack A. Grimes
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Jen-Chywan Wang
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Sona Kang
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Joseph L. Napoli
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Yang HY, Liu M, Sheng Y, Zhu L, Jin MM, Jiang TX, Yang L, Liu PH, Liu XD, Liu L. All-trans retinoic acid impairs glucose-stimulated insulin secretion by activating the RXR/SREBP-1c/UCP2 pathway. Acta Pharmacol Sin 2022; 43:1441-1452. [PMID: 34417575 PMCID: PMC9160277 DOI: 10.1038/s41401-021-00740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Diabetes is often associated with vitamin A disorders. All-trans retinoic acid (ATRA) is the main active constituent of vitamin A. We aimed to investigate whether ATRA influences diabetic progression and its mechanisms using both Goto-Kazizazi (GK) rats and INS-1 cells. Rat experiments demonstrated that ATRA treatment worsened diabetes symptoms, as evidenced by an increase in fasting blood glucose (FBG) levels and impairment of glucose homeostasis. Importantly, ATRA impaired glucose-stimulated insulin secretion (GSIS) and increased the expression of sterol regulatory element-binding protein 1c (SREBP-1c) and uncoupling protein 2 (UCP2) in the rat pancreas. Data from INS-1 cells also showed that ATRA upregulated SREBP-1c and UCP2 expression and impaired GSIS at 23 mM glucose. Srebp-1c or Ucp2 silencing attenuated GSIS impairment by reversing the ATRA-induced increase in UCP2 expression and decrease in ATP content. ATRA and the retinoid X receptor (RXR) agonists 9-cis RA and LG100268 induced the gene expression of Srebp-1c, which was almost completely abolished by the RXR antagonist HX531. RXRα-LBD luciferase reporter plasmid experiments also demonstrated that ATRA concentration-dependently activated RXRα, the EC50 of which was 1.37 μM, which was lower than the ATRA concentration in the pancreas of GK rats treated with a high dose of ATRA (approximately 3 μM), inferring that ATRA can upregulate Srebp-1c expression in the pancreas by activating RXR. In conclusion, ATRA impaired GSIS partly by activating the RXR/SREBP-1c/UCP2 pathway, thus worsening diabetic symptoms. The results highlight the roles of ATRA in diabetic progression and establish new strategies for diabetes treatment.
Collapse
Affiliation(s)
- Han-yu Yang
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Ming Liu
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yun Sheng
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Liang Zhu
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Meng-meng Jin
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Tian-xin Jiang
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Lu Yang
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Pei-hua Liu
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Xiao-dong Liu
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Li Liu
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
13
|
Yoshihara E. Adapting Physiology in Functional Human Islet Organogenesis. Front Cell Dev Biol 2022; 10:854604. [PMID: 35557947 PMCID: PMC9086403 DOI: 10.3389/fcell.2022.854604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
Generation of three-dimensional (3D)-structured functional human islets is expected to be an alternative cell source for cadaveric human islet transplantation for the treatment of insulin-dependent diabetes. Human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer infinite resources for newly synthesized human islets. Recent advancements in hPSCs technology have enabled direct differentiation to human islet-like clusters, which can sense glucose and secrete insulin, and those islet clusters can ameliorate diabetes when transplanted into rodents or non-human primates (NHPs). However, the generated hPSC-derived human islet-like clusters are functionally immature compared with primary human islets. There remains a challenge to establish a technology to create fully functional human islets in vitro, which are functionally and transcriptionally indistinguishable from cadaveric human islets. Understanding the complex differentiation and maturation pathway is necessary to generate fully functional human islets for a tremendous supply of high-quality human islets with less batch-to-batch difference for millions of patients. In this review, I summarized the current progress in the generation of 3D-structured human islets from pluripotent stem cells and discussed the importance of adapting physiology for in vitro functional human islet organogenesis and possible improvements with environmental cues.
Collapse
Affiliation(s)
- Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Napoli JL. Retinoic Acid: Sexually Dimorphic, Anti-Insulin and Concentration-Dependent Effects on Energy. Nutrients 2022; 14:1553. [PMID: 35458115 PMCID: PMC9027308 DOI: 10.3390/nu14081553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
This review addresses the fasting vs. re-feeding effects of retinoic acid (RA) biosynthesis and functions, and sexually dimorphic RA actions. It also discusses other understudied topics essential for understanding RA activities-especially interactions with energy-balance-regulating hormones, including insulin and glucagon, and sex hormones. This report will introduce RA homeostasis and hormesis to provide context. Essential context also will encompass RA effects on adiposity, muscle function and pancreatic islet development and maintenance. These comments provide background for explaining interactions among insulin, glucagon and cortisol with RA homeostasis and function. One aim would clarify the often apparent RA contradictions related to pancreagenesis vs. pancreas hormone functions. The discussion also will explore the adverse effects of RA on estrogen action, in contrast to the enhancing effects of estrogen on RA action, the adverse effects of androgens on RA receptors, and the RA induction of androgen biosynthesis.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
15
|
Triple chemical derivatization strategy assisted liquid chromatography-mass spectrometry for determination of retinoic acids in human serum. Talanta 2022; 245:123474. [DOI: 10.1016/j.talanta.2022.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/18/2022]
|
16
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:1312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
17
|
Yu J, Perri M, Jones JW, Pierzchalski K, Ceaicovscaia N, Cione E, Kane MA. Altered RBP1 Gene Expression Impacts Epithelial Cell Retinoic Acid, Proliferation, and Microenvironment. Cells 2022; 11:792. [PMID: 35269414 PMCID: PMC8909206 DOI: 10.3390/cells11050792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin A is an essential diet-derived nutrient that has biological activity affected through an active metabolite, all-trans retinoic acid (atRA). Retinol-binding protein type 1 (RBP1) is an intracellular chaperone that binds retinol and retinal with high affinity, protects retinoids from non-specific oxidation, and delivers retinoids to specific enzymes to facilitate biosynthesis of RA. RBP1 expression is reduced in many of the most prevalent cancers, including breast cancer. Here, we sought to understand the relationship between RBP1 expression and atRA biosynthesis in mammary epithelial cells, as well as RBP1 expression and atRA levels in human mammary tissue. We additionally aimed to investigate the impact of RBP1 expression and atRA on the microenvironment as well as the potential for therapeutic restoration of RBP1 expression and endogenous atRA production. Using human mammary ductal carcinoma samples and a series of mammary epithelial cell lines representing different stages of tumorigenesis, we investigated the relationship between RBP1 expression as determined by QPCR and atRA via direct liquid chromatography-multistage-tandem mass spectrometry-based quantification. The functional effect of RBP1 expression and atRA in epithelial cells was investigated via the expression of direct atRA targets using QPCR, proliferation using Ki-67 staining, and collagen deposition via picrosirius red staining. We also investigated the atRA content of stromal cells co-cultured with normal and tumorigenic epithelial cells. Results show that RBP1 and atRA are reduced in mammary tumor tissue and tumorigenic epithelial cell lines. Knock down of RBP1 expression using shRNA or overexpression of RBP1 supported a direct relationship between RBP1 expression with atRA. Increases in cellular atRA were able to activate atRA direct targets, inhibit proliferation and inhibit collagen deposition in epithelial cell lines. Conditions encountered in tumor microenvironments, including low glucose and hypoxia, were able to reduce RBP1 expression and atRA. Treatment with either RARα agonist AM580 or demethylating agent Decitabine were able to increase RBP1 expression and atRA. Cellular content of neighboring fibroblasts correlated with the RA producing capacity of epithelial cells in co-culture. This work establishes a direct relationship between RBP1 expression and atRA, which is maintained when RBP1 expression is restored therapeutically. The results demonstrate diseases with reduced RBP1 could potentially benefit from therapeutics that restore RBP1 expression and endogenous atRA.
Collapse
Affiliation(s)
- Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Mariarita Perri
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy;
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Natalia Ceaicovscaia
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy;
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| |
Collapse
|
18
|
Sharma S, Shen T, Chitranshi N, Gupta V, Basavarajappa D, Mirzaei M, You Y, Krezel W, Graham SL, Gupta V. Retinoid X Receptor: Cellular and Biochemical Roles of Nuclear Receptor with a Focus on Neuropathological Involvement. Mol Neurobiol 2022; 59:2027-2050. [PMID: 35015251 PMCID: PMC9015987 DOI: 10.1007/s12035-021-02709-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Retinoid X receptors (RXRs) present a subgroup of the nuclear receptor superfamily with particularly high evolutionary conservation of ligand binding domain. The receptor exists in α, β, and γ isotypes that form homo-/heterodimeric complexes with other permissive and non-permissive receptors. While research has identified the biochemical roles of several nuclear receptor family members, the roles of RXRs in various neurological disorders remain relatively under-investigated. RXR acts as ligand-regulated transcription factor, modulating the expression of genes that plays a critical role in mediating several developmental, metabolic, and biochemical processes. Cumulative evidence indicates that abnormal RXR signalling affects neuronal stress and neuroinflammatory networks in several neuropathological conditions. Protective effects of targeting RXRs through pharmacological ligands have been established in various cell and animal models of neuronal injury including Alzheimer disease, Parkinson disease, glaucoma, multiple sclerosis, and stroke. This review summarises the existing knowledge about the roles of RXR, its interacting partners, and ligands in CNS disorders. Future research will determine the importance of structural and functional heterogeneity amongst various RXR isotypes as well as elucidate functional links between RXR homo- or heterodimers and specific physiological conditions to increase drug targeting efficiency in pathological conditions.
Collapse
Affiliation(s)
- Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Ting Shen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Wojciech Krezel
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, INSERM U1258, CNRS UMR 7104, Unistra, 67404, Illkirch-Graffenstaden, France
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Cione E, Caroleo MC, Kagechika H, Manetti F. Pharmacophore-guided repurposing of fibrates and retinoids as GPR40 allosteric ligands with activity on insulin release. J Enzyme Inhib Med Chem 2021; 36:377-383. [PMID: 33525941 PMCID: PMC8759729 DOI: 10.1080/14756366.2020.1864629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A classical drug repurposing approach was applied to find new putative GPR40 allosteric binders. A two-step computational protocol was set up, based on an initial pharmacophoric-based virtual screening of the DrugBank database of known drugs, followed by docking simulations to confirm the interactions between the prioritised compounds and GPR40. The best-ranked entries showed binding poses comparable to that of TAK-875, a known allosteric agonist of GPR40. Three of them (tazarotenic acid, bezafibrate, and efaproxiral) affect insulin secretion in pancreatic INS-1 832/13 β-cells with EC50 in the nanomolar concentration (5.73, 14.2, and 13.5 nM, respectively). Given the involvement of GPR40 in type 2 diabetes, the new GPR40 modulators represent a promising tool for therapeutic intervention towards this disease. The ability to affect GPR40 was further assessed in human breast cancer MCF-7 cells in which this receptor positively regulates growth activities (EC50 values were 5.6, 21, and 14 nM, respectively).
Collapse
Affiliation(s)
- Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence 2018-2022), University of Calabria, Rende, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence 2018-2022), University of Calabria, Rende, Italy
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Siena, Italy
| |
Collapse
|
20
|
Carazo A, Macáková K, Matoušová K, Krčmová LK, Protti M, Mladěnka P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021; 13:1703. [PMID: 34069881 PMCID: PMC8157347 DOI: 10.3390/nu13051703] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin A is a group of vital micronutrients widely present in the human diet. Animal-based products are a rich source of the retinyl ester form of the vitamin, while vegetables and fruits contain carotenoids, most of which are provitamin A. Vitamin A plays a key role in the correct functioning of multiple physiological functions. The human organism can metabolize natural forms of vitamin A and provitamin A into biologically active forms (retinol, retinal, retinoic acid), which interact with multiple molecular targets, including nuclear receptors, opsin in the retina and, according to the latest research, also some enzymes. In this review, we aim to provide a complex view on the present knowledge about vitamin A ranging from its sources through its physiological functions to consequences of its deficiency and metabolic fate up to possible pharmacological administration and potential toxicity. Current analytical methods used for its detection in real samples are included as well.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michele Protti
- The Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum–University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| |
Collapse
|
21
|
Yang N, Parker LE, Yu J, Jones JW, Liu T, Papanicolaou KN, Talbot CC, Margulies KB, O’Rourke B, Kane MA, Foster DB. Cardiac retinoic acid levels decline in heart failure. JCI Insight 2021; 6:137593. [PMID: 33724958 PMCID: PMC8119182 DOI: 10.1172/jci.insight.137593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Although low circulating levels of the vitamin A metabolite, all-trans retinoic acid (ATRA), are associated with increased risk of cardiovascular events and all-cause mortality, few studies have addressed whether cardiac retinoid levels are altered in the failing heart. Here, we showed that proteomic analyses of human and guinea pig heart failure (HF) were consistent with a decline in resident cardiac ATRA. Quantitation of the retinoids in ventricular myocardium by mass spectrometry revealed 32% and 39% ATRA decreases in guinea pig HF and in patients with idiopathic dilated cardiomyopathy (IDCM), respectively, despite ample reserves of cardiac vitamin A. ATRA (2 mg/kg/d) was sufficient to mitigate cardiac remodeling and prevent functional decline in guinea pig HF. Although cardiac ATRA declined in guinea pig HF and human IDCM, levels of certain retinoid metabolic enzymes diverged. Specifically, high expression of the ATRA-catabolizing enzyme, CYP26A1, in human IDCM could dampen prospects for an ATRA-based therapy. Pertinently, a pan-CYP26 inhibitor, talarozole, blunted the impact of phenylephrine on ATRA decline and hypertrophy in neonatal rat ventricular myocytes. Taken together, we submit that low cardiac ATRA attenuates the expression of critical ATRA-dependent gene programs in HF and that strategies to normalize ATRA metabolism, like CYP26 inhibition, may have therapeutic potential.
Collapse
Affiliation(s)
- Ni Yang
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren E. Parker
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianshi Yu
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Jace W. Jones
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth B. Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - D. Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
García-Padilla C, Lozano-Velasco E, López-Sánchez C, Garcia-Martínez V, Aranega A, Franco D. Non-Coding RNAs in Retinoic Acid as Differentiation and Disease Drivers. Noncoding RNA 2021; 7:ncrna7010013. [PMID: 33671241 PMCID: PMC8005990 DOI: 10.3390/ncrna7010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
All-trans retinoic acid (RA) is the most active metabolite of vitamin A. Several studies have described a pivotal role for RA signalling in different biological processes such as cell growth and differentiation, embryonic development and organogenesis. Since RA signalling is highly dose-dependent, a fine-tuning regulatory mechanism is required. Thus, RA signalling deregulation has a major impact, both in development and disease, related in many cases to oncogenic processes. In this review, we focus on the impact of ncRNA post-transcriptional regulatory mechanisms, especially those of microRNAs and lncRNAs, in RA signalling pathways during differentiation and disease.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
- Correspondence:
| |
Collapse
|
23
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
24
|
Rajakumar A, Kane MA, Yu J, Taylor RN, Sidell N. Aberrant retinoic acid production in the decidua: Implications for pre-eclampsia. J Obstet Gynaecol Res 2020; 46:1007-1016. [PMID: 32343034 DOI: 10.1111/jog.14262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023]
Abstract
Fine-tuning of the endometrium during the evanescent 'window of implantation' relies upon an array of diverse and redundant signaling molecules, particularly the ovarian steroids E2 and P4, but also growth factors, eicosanoids, and vitamins including the vitamin A compounds (retinoids). Pregnancy complications such as preeclampsia (PE) can result from aberrations in the production or function of these molecules that arise during this critical period of decidual development. Such aberrations may be reflected by incomplete decidualization, reduced spiral artery modification, and/or loss of immune tolerance to the developing fetus. Our understanding of the role of the active retinoid metabolite all-trans retinoic acid (RA) in maintaining immune balance in certain tissues, along with data describing its role in decidualization, present a compelling argument that aberrant RA signaling in the decidua can play a significant role in the etiology of PE. Recent findings that decidualization and expression of the anti-angiogenic gene product, 'soluble fms-like tyrosine kinase-1' (sFLT1) are negatively correlated and that sFLT1 expression is directly inhibited by RA, provide additional evidence of the critical role of this retinoid in regulating early vascular development in the decidua. This review provides insight into the production and function of RA in the decidua and how modifications in its metabolism and signaling might lead to certain pregnancy disorders such as PE.
Collapse
Affiliation(s)
- Augustine Rajakumar
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Jie Yu
- Department of Obstetrics & Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Robert N Taylor
- Department of Obstetrics & Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Neil Sidell
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
25
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Zhou Y, Zhou J, Sun B, Xu W, Zhong M, Li Y, He C, Chen Y, Wang X, Jones PM, Sun Z. Vitamin A deficiency causes islet dysfunction by inducing islet stellate cell activation via cellular retinol binding protein 1. Int J Biol Sci 2020; 16:947-956. [PMID: 32140064 PMCID: PMC7053333 DOI: 10.7150/ijbs.37861] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Vitamin A (VA) plays an essential role in pancreatic homeostasis. Islet stellate cells (ISCs) are VA-storing cells in pancreatic islets. Herein, we have investigated the effect of VA on glucose homeostasis trough regulation of ISCs function in dietary VA deficiency model mice. Methods: Male C57BL/6 mice were randomly fed a VA-sufficient, a VA-deficient (VAD) or a VAD-rescued diet. Glucose metabolism was assessed by glucose tolerance tests and immunohistochemistry. ISCs activation degree was evaluated by immunofluorescence, quantitative PCR and western blotting in both, retinol-treated cultured ISCs and model mice. Changes in ISCs phenotype and their effect on islets were assessed by lentiviral transduction and enzyme-linked immunosorbent assays in a co-culture system. Results: VAD mice showed irregular shaped islet, glucose intolerance, islet size distribution excursions, and upregulated expression of α-smooth muscle actin (α-SMA, marker of ISCs activation). Reintroduction of dietary VA restored pancreatic VA levels, endocrine hormone profiles, and inhibited ISCs activation. Incubation with retinol increased the expression of VA signaling factors in ISCs, including cellular retinol binding protein 1 (CRBP1). The knockdown of CRBP1 maintained the quiescent ISCs phenotype and reduced the damage of activated ISCs on islet function. Conclusions: VA deficiency reduced islet function by activating ISCs in VAD mice. Restoring ISCs quiescence via CRBP1 inhibition could reverse the impairment of islet function caused by activated ISCs exposure.
Collapse
Affiliation(s)
- Yunting Zhou
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Junming Zhou
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wei Xu
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London, UK
| | - Ming Zhong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
| | - Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yang Chen
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Xiaohang Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London, UK
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
27
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
28
|
Miller AP, Coronel J, Amengual J. The role of β-carotene and vitamin A in atherogenesis: Evidences from preclinical and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158635. [PMID: 31978554 DOI: 10.1016/j.bbalip.2020.158635] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the principal contributor to myocardial infarction, the leading cause of death worldwide. Epidemiological and mechanistic studies indicate that β-carotene and its vitamin A derivatives stimulate lipid catabolism in several tissues to reduce the incidence of obesity, but their roles within ASCVD are elusive. Herein, we review the mechanisms by which β-carotene and vitamin A modulate ASCVD. First, we summarize the current knowledge linking these nutrients with epidemiological studies and lipoprotein metabolism as one of the initiating factors of ASCVD. Next, we focus on different aspects of vitamin A metabolism in immune cells such as the mechanisms of carotenoid uptake and conversion to the vitamin A metabolite, retinoic acid. Lastly, we review the effects of retinoic acid on immuno-metabolism, differentiation, and function of macrophages and T cells, the two pillars of the innate and adaptive immune response in ASCVD, respectively. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America; Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
29
|
Draut H, Liebenstein T, Begemann G. New Insights into the Control of Cell Fate Choices and Differentiation by Retinoic Acid in Cranial, Axial and Caudal Structures. Biomolecules 2019; 9:E860. [PMID: 31835881 PMCID: PMC6995509 DOI: 10.3390/biom9120860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) signaling is an important regulator of chordate development. RA binds to nuclear RA receptors that control the transcriptional activity of target genes. Controlled local degradation of RA by enzymes of the Cyp26a gene family contributes to the establishment of transient RA signaling gradients that control patterning, cell fate decisions and differentiation. Several steps in the lineage leading to the induction and differentiation of neuromesodermal progenitors and bone-producing osteogenic cells are controlled by RA. Changes to RA signaling activity have effects on the formation of the bones of the skull, the vertebrae and the development of teeth and regeneration of fin rays in fish. This review focuses on recent advances in these areas, with predominant emphasis on zebrafish, and highlights previously unknown roles for RA signaling in developmental processes.
Collapse
|
30
|
Wang S, Yu J, Kane MA, Moise AR. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Pharmacol Ther 2019; 205:107415. [PMID: 31629008 DOI: 10.1016/j.pharmthera.2019.107415] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
The vitamin A metabolite, retinoic acid, is an important signaling molecule during embryonic development serving critical roles in morphogenesis, organ patterning and skeletal and neural development. Retinoic acid is also important in postnatal life in the maintenance of tissue homeostasis, while retinoid-based therapies have long been used in the treatment of a variety of cancers and skin disorders. As the number of people living with chronic disorders continues to increase, there is great interest in extending the use of retinoid therapies in promoting the maintenance and repair of adult tissues. However, there are still many conflicting results as we struggle to understand the role of retinoic acid in the multitude of processes that contribute to tissue injury and repair. This review will assess our current knowledge of the role retinoic acid signaling in the development of fibroblasts, and their transformation to myofibroblasts, and of the potential use of retinoid therapies in the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
31
|
Rühl R, Krezel W, de Lera AR. 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: vitamin A5. Nutr Rev 2019; 76:929-941. [PMID: 30358857 DOI: 10.1093/nutrit/nuy057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The identity of the endogenous RXR ligand has not been conclusively determined, even though several compounds of natural origin, including retinoids and fatty acids, have been postulated to fulfill this role. Filling this gap, 9-cis-13,14-dihydroretinoic acid (9CDHRA) was identified as an endogenous RXR ligand in mice. This review examines the physiological relevance of various potential endogenous RXR ligands, especially 9CDHRA. The elusive steps in the metabolic synthesis of 9CDHRA, as well as the nutritional/nutrimetabolic origin of 9CDHRA, are also explored, along with the suitability of the ligand to be the representative member of a novel vitamin A class (vitamin A5).
Collapse
Affiliation(s)
- Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm, Centre National Recherche Scientifique (CNRS), Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, Centro De Investigaciones Biomédicasand Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Spain
| |
Collapse
|
32
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
33
|
Cione E, Plastina P, Pingitore A, Perri M, Caroleo MC, Fazio A, Witkamp R, Meijerink J. Capsaicin Analogues Derived from n-3 Polyunsaturated Fatty Acids (PUFAs) Reduce Inflammatory Activity of Macrophages and Stimulate Insulin Secretion by β-Cells In Vitro. Nutrients 2019; 11:E915. [PMID: 31022842 PMCID: PMC6520993 DOI: 10.3390/nu11040915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 01/05/2023] Open
Abstract
In this study, two capsaicin analogues, N-eicosapentaenoyl vanillylamine (EPVA) and N-docosahexaenoyl vanillylamine (DHVA), were enzymatically synthesized from their corresponding n-3 long chain polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both dietary relevant components. The compounds significantly reduced the production of some lipopolysaccharide (LPS)-induced inflammatory mediators, including nitric oxide (NO), macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1 or CCL2), by RAW264.7 macrophages. Next to this, only EPVA increased insulin secretion by pancreatic INS-1 832/13 β-cells, while raising intracellular Ca2+ and ATP concentrations. This suggests that the stimulation of insulin release occurs through an increase in the intracellular ATP/ADP ratio in the first phase, while is calcium-mediated in the second phase. Although it is not yet known whether EPVA is endogenously produced, its potential therapeutic value for diabetes treatment merits further investigation.
Collapse
Affiliation(s)
- Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Attilio Pingitore
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Mariarita Perri
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands.
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
34
|
Zhou Y, Sun B, Li W, Zhou J, Gao F, Wang X, Cai M, Sun Z. Pancreatic Stellate Cells: A Rising Translational Physiology Star as a Potential Stem Cell Type for Beta Cell Neogenesis. Front Physiol 2019; 10:218. [PMID: 30930789 PMCID: PMC6424017 DOI: 10.3389/fphys.2019.00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The progressive decline and eventual loss of islet β-cell function underlies the pathophysiological mechanism of the development of both type 1 and type 2 diabetes mellitus. The recovery of functional β-cells is an important strategy for the prevention and treatment of diabetes. Based on similarities in developmental biology and anatomy, in vivo induction of differentiation of other types of pancreatic cells into β-cells is a promising avenue for future diabetes treatment. Pancreatic stellate cells (PSCs), which have attracted intense research interest due to their effects on tissue fibrosis over the last decade, express multiple stem cell markers and can differentiate into various cell types. In particular, PSCs can successfully differentiate into insulin- secreting cells in vitro and can contribute to tissue regeneration. In this article, we will brings together the main concepts of the translational physiology potential of PSCs that have emerged from work in the field and discuss possible ways to develop the future renewable source for clinical treatment of pancreatic diseases.
Collapse
Affiliation(s)
- Yunting Zhou
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wei Li
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Junming Zhou
- Department of Outpatient, Army Engineering University, Jingling Hospital, Nanjing University, Nanjing, China
| | - Feng Gao
- Graduate Innovation Platform of Southeast University, Nanjing, China
| | - Xiaohang Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Min Cai
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
35
|
Cannataro R, Perri M, Gallelli L, Caroleo MC, De Sarro G, Cione E. Ketogenic Diet Acts on Body Remodeling and MicroRNAs Expression Profile. Microrna 2019; 8:116-126. [PMID: 30474543 DOI: 10.2174/2211536608666181126093903] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The Ketogenic Diet (KD) promotes metabolic changes and optimizes energy metabolism. It is unknown if microRNAs (miRs) are influenced by KD in obese subjects. The screening of circulating miRs was performed with the FDA approved platform n-counter flex and blood biochemical parameters were dosed by ADVIA 1800. OBJECTIVES The aim of this study was to evaluate mir profile under 6 weeks of biphasic KD in obese subjects. We enrolled 36 obese subjects (18 females and 18 males) in stage 1 of Edmonton Obesity Staging System (EOSS) parameter. RESULT Any correlation was found between biochemical parameter and three miRs, hsa-let-7b-5p, hsa-miR-143-3p and hsa-miR-504-5p influenced in an equal manner in both sexes. The KD resulted safe and ameliorate both biochemical and anthropometric factors in obese subjects re-collocating them into stage 0 of EOSS parameters. CONCLUSION The miRs herein identified under KD might be a useful tool to monitor low carbohydrate nutritional regimens which reflect indirectly the regulatory biochemical mechanisms and cell signaling that orchestrate metabolic and signaling pathways.
Collapse
Affiliation(s)
- Roberto Cannataro
- GalaScreen SRL, Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Mariarita Perri
- GalaScreen SRL, Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Luca Gallelli
- Department of Health Sciences, University of Magna Graecia, Via Venuta Germaneto, 88100 Catanzaro, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, Via Venuta Germaneto, 88100 Catanzaro, Italy
| | - Erika Cione
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| |
Collapse
|
36
|
Ishizawa M, Akagi D, Makishima M. Lithocholic Acid Is a Vitamin D Receptor Ligand That Acts Preferentially in the Ileum. Int J Mol Sci 2018; 19:ijms19071975. [PMID: 29986424 PMCID: PMC6073204 DOI: 10.3390/ijms19071975] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
The vitamin D receptor (VDR) is a nuclear receptor that mediates the biological action of the active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], and regulates calcium and bone metabolism. Lithocholic acid (LCA), which is a secondary bile acid produced by intestinal bacteria, acts as an additional physiological VDR ligand. Despite recent progress, however, the physiological function of the LCA−VDR axis remains unclear. In this study, in order to elucidate the differences in VDR action induced by 1,25(OH)2D3 and LCA, we compared their effect on the VDR target gene induction in the intestine of mice. While the oral administration of 1,25(OH)2D3 induced the Cyp24a1 expression effectively in the duodenum and jejunum, the LCA increased target gene expression in the ileum as effectively as 1,25(OH)2D3. 1,25(OH)2D3, but not LCA, increased the expression of the calcium transporter gene Trpv6 in the upper intestine, and increased the plasma calcium levels. Although LCA could induce an ileal Cyp24a1 expression as well as 1,25(OH)2D3, the oral LCA administration was not effective in the VDR target gene induction in the kidney. No effect of LCA on the ileal Cyp24a1 expression was observed in the VDR-null mice. Thus, the results indicate that LCA is a selective VDR ligand acting in the lower intestine, particularly the ileum. LCA may be a signaling molecule, which links intestinal bacteria and host VDR function.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Daisuke Akagi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
37
|
Zhong G, Ortiz D, Zelter A, Nath A, Isoherranen N. CYP26C1 Is a Hydroxylase of Multiple Active Retinoids and Interacts with Cellular Retinoic Acid Binding Proteins. Mol Pharmacol 2018; 93:489-503. [PMID: 29476041 PMCID: PMC5894800 DOI: 10.1124/mol.117.111039] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/22/2018] [Indexed: 01/10/2023] Open
Abstract
The clearance of retinoic acid (RA) and its metabolites is believed to be regulated by the CYP26 enzymes, but the specific roles of CYP26A1, CYP26B1, and CYP26C1 in clearing active vitamin A metabolites have not been defined. The goal of this study was to establish the substrate specificity of CYP26C1, and determine whether CYP26C1 interacts with cellular retinoic acid binding proteins (CRABPs). CYP26C1 was found to effectively metabolize all-trans retinoic acid (atRA), 9-cis-retinoic acid (9-cis-RA), 13-cis-retinoic acid, and 4-oxo-atRA with the highest intrinsic clearance toward 9-cis-RA. In comparison with CYP26A1 and CYP26B1, CYP26C1 resulted in a different metabolite profile for retinoids, suggesting differences in the active-site structure of CYP26C1 compared with other CYP26s. Homology modeling of CYP26C1 suggested that this is attributable to the distinct binding orientation of retinoids within the CYP26C1 active site. In comparison with other CYP26 family members, CYP26C1 was up to 10-fold more efficient in clearing 4-oxo-atRA (intrinsic clearance 153 μl/min/pmol) than CYP26A1 and CYP26B1, suggesting that CYP26C1 may be important in clearing this active retinoid. In support of this, CRABPs delivered 4-oxo-atRA and atRA for metabolism by CYP26C1. Despite the tight binding of 4-oxo-atRA and atRA with CRABPs, the apparent Michaelis-Menten constant in biological matrix (Km) value of these substrates with CYP26C1 was not increased when the substrates were bound with CRABPs, in contrast to what is predicted by free drug hypothesis. Together these findings suggest that CYP26C1 is a 4-oxo-atRA hydroxylase and may be important in regulating the concentrations of this active retinoid in human tissues.
Collapse
Affiliation(s)
- Guo Zhong
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - David Ortiz
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - Alex Zelter
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - Abhinav Nath
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| |
Collapse
|
38
|
Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv 2018; 36:1657-1698. [PMID: 29548878 DOI: 10.1016/j.biotechadv.2018.03.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023]
Abstract
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets. This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.
Collapse
Affiliation(s)
- Verena Hiebl
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| | - Simone Latkolik
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
39
|
Abstract
Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, 94720, Berkeley, CA, USA.
| |
Collapse
|
40
|
Brossaud J, Pallet V, Corcuff JB. Vitamin A, endocrine tissues and hormones: interplay and interactions. Endocr Connect 2017; 6:R121-R130. [PMID: 28720593 PMCID: PMC5551430 DOI: 10.1530/ec-17-0101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Vitamin A (retinol) is a micronutrient critical for cell proliferation and differentiation. In adults, vitamin A and metabolites such as retinoic acid (RA) play major roles in vision, immune and brain functions, and tissue remodelling and metabolism. This review presents the physiological interactions of retinoids and endocrine tissues and hormonal systems. Two endocrine systems have been particularly studied. In the pituitary, retinoids targets the corticotrophs with a possible therapeutic use in corticotropinomas. In the thyroid, retinoids interfere with iodine metabolism and vitamin A deficiency aggravates thyroid dysfunction caused by iodine-deficient diets. Retinoids use in thyroid cancer appears less promising than expected. Recent and still controversial studies investigated the relations between retinoids and metabolic syndrome. Indeed, retinoids contribute to pancreatic development and modify fat and glucose metabolism. However, more detailed studies are needed before planning any therapeutic use. Finally, retinoids probably play more minor roles in adrenal and gonads development and function apart from their major effects on spermatogenesis.
Collapse
Affiliation(s)
- Julie Brossaud
- J Brossaud, Nuclear Medicine, University hospital of Bordeaux, Pessac, France
| | - Veronique Pallet
- V Pallet, NutriNeurO-INRA 1286 - Université Bdx 2, University of Bordeaux, Bordeaux, 33076 BORDEAUX , France
| | - Jean-Benoit Corcuff
- J Corcuff, Nuclear Medicine, University hospital of Bordeaux, Pessac, 33604, France
| |
Collapse
|
41
|
André A, Ruivo R, Capitão A, Froufe E, Páscoa I, Costa Castro LF, Santos MM. Cloning and functional characterization of a retinoid X receptor orthologue in Platynereis dumerilii: An evolutionary and toxicological perspective. CHEMOSPHERE 2017; 182:753-761. [PMID: 28535483 DOI: 10.1016/j.chemosphere.2017.05.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
In the present work we provide the first isolation and functional characterization of a RXR orthologue in an annelid species, the Platynereis dumerilii. Using an in vitro luciferase reporter assay we evaluated the annelid receptor ability to respond to ligand 9-cis-retinoic acid, TBT and TPT. Our results show that the annelid RXR responds to 9-cis-retinoic acid and to the organotins by activating reporter gene transcription. The findings suggest a conserved mode of action of the receptor in response to a common signaling molecule and modulation by organotin compounds between vertebrates and Lophotrochozoans.
Collapse
Affiliation(s)
- Ana André
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Raquel Ruivo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Ana Capitão
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Elsa Froufe
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Inês Páscoa
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Miguel Machado Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
42
|
Cheng B, Al-Shammari FH, Ghader IA, Sequeira F, Thakkar J, Mathew TC. Fundamental studies of adrenal retinoid-X-receptor: Protein isoform, tissue expression, subcellular distribution, and ligand availability. J Steroid Biochem Mol Biol 2017; 171:110-120. [PMID: 28267642 DOI: 10.1016/j.jsbmb.2017.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/14/2017] [Accepted: 03/02/2017] [Indexed: 11/21/2022]
Abstract
Adrenal gland reportedly expresses many nuclear receptors that are known to heterodimerize with retinoid-X-receptor (RXR) for functions, but the information regarding the glandular RXR is not adequate. Studies of rat adrenal homogenate by Western blotting revealed three RXR proteins: RXRα (55kDa), RXRβ (47kDa) and RXR (56kDa). RXRγ was not detectable. After fractionation, RXRα was almost exclusively localized in the nuclear fraction. In comparison, substantial portions of RXRβ and RXR were found in both nuclear and post-nuclear particle fractions, suggesting genomic and non-genomic functions. Cells immunostained for RXRα were primarily localized in zona fasciculata (ZF) and medulla, although some stained cells were found in zona glomerulosa (ZG) and zona reticularis (ZR). In contrast, cells immunostained for RXRβ were concentrated principally in ZG, although some stained cells were seen in ZR, ZF, and medulla (in descending order, qualitatively). Analysis of adrenal lipid extracts by LC/MS did not detect 9-cis-retinoic acid (a potent RXR-ligand) but identified all-trans retinoic acid. Since C20 and C22 polyunsaturated fatty acids (PUFAs) can also activate RXR, subcellular availabilities of unesterified fatty acids were investigated by GC/MS. As results, arachidonic acid (C20:4), adrenic acid (C22:4), docosapentaenoic acid (C22:5), and cervonic acid (C22:6) were detected in the lipids extracted from each subcellular fraction. Thus, the RXR-agonizing PUFAs are available in all the main subcellular compartments considerably. The present findings not only shed light on the adrenal network of RXRs but also provide baseline information for further investigations of RXR heterodimers in the regulation of adrenal steroidogenesis.
Collapse
Affiliation(s)
- Behling Cheng
- Department of Biochemistry, Faculty of Medicine, Kuwait University Health Science Center, P. O. Box 24923, Safat 13110, Kuwait.
| | - Fatema H Al-Shammari
- Department of Biochemistry, Faculty of Medicine, Kuwait University Health Science Center, P. O. Box 24923, Safat 13110, Kuwait
| | - Isra'a A Ghader
- Department of Biochemistry, Faculty of Medicine, Kuwait University Health Science Center, P. O. Box 24923, Safat 13110, Kuwait
| | - Fatima Sequeira
- Department of Biochemistry, Faculty of Medicine, Kuwait University Health Science Center, P. O. Box 24923, Safat 13110, Kuwait
| | - Jitendra Thakkar
- Department of Biochemistry, Faculty of Medicine, Kuwait University Health Science Center, P. O. Box 24923, Safat 13110, Kuwait
| | - Thazhumpal C Mathew
- Department of Medical Laboratory Science, Faculty of Allied Health, Kuwait University Health Science Center, P.O. Box 31470, Sulaibekhat 90805, Kuwait
| |
Collapse
|
43
|
Catalán Ú, Barrubés L, Valls RM, Solà R, Rubió L. In vitro Metabolomic Approaches to Investigating the Potential Biological Effects of Phenolic Compounds: An Update. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:236-245. [PMID: 28549934 PMCID: PMC5582796 DOI: 10.1016/j.gpb.2016.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
Dietary phenolic compounds (PCs) have been receiving interest for their presumed roles in disease prevention. However, there is a lack of studies on the underlying molecular mechanisms. In this regard, in vitrometabolomic approaches are suitable for the investigation of the molecular changes in response to PC exposure. Up to date, the biological effects of PCs have only been examined for PCs from rosemary (Rosmarinus officinalis), olive oil, and resveratrol using cell-based metabolomic approach, although transcriptomic and/or proteomic studies have also been conducted in the same in vitro cell experiment in some cases. Our integral analysis of the reviewed studies suggest that PCs may be involved not only in basic cellular processes or macro- and micro-nutrient metabolism, but also in specific metabolic pathways that have been thoroughly investigated. These modulated pathways could have a clinical impact on neurodegenerative diseases, type 2 diabetes, cancer, and cardiovascular diseases. In conclusion, the in vitro metabolomic approaches provide additional information of the molecular mechanisms involved in disease risk reduction of dietary PCs. In order to elucidate the mechanisms of action of PCs, more metabolomic cell-based studies are needed and testing the physiological conjugated forms of PCs in these cell systems could be of special interest.
Collapse
Affiliation(s)
- Úrsula Catalán
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Technological Center of Nutrition and Health (CTNS), Institut d'Investigació Sanitària Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Laura Barrubés
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Technological Center of Nutrition and Health (CTNS), Institut d'Investigació Sanitària Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Rosa Maria Valls
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Technological Center of Nutrition and Health (CTNS), Institut d'Investigació Sanitària Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Technological Center of Nutrition and Health (CTNS), Institut d'Investigació Sanitària Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus 43201, Spain.
| | - Laura Rubió
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Technological Center of Nutrition and Health (CTNS), Institut d'Investigació Sanitària Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus 43201, Spain; Food Technology Department, Universitat de Lleida-AGROTECNIO Center, Lleida 25198, Spain
| |
Collapse
|
44
|
Perri M, Caroleo MC, Liu N, Gallelli L, De Sarro G, Kagechika H, Cione E. 9- cis Retinoic acid modulates myotrophin expression and its miR in physiological and pathophysiological cell models. Exp Cell Res 2017; 354:25-30. [DOI: 10.1016/j.yexcr.2017.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/09/2023]
|
45
|
Ferdek PE, Jakubowska MA. Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers Arch 2017; 469:1039-1050. [PMID: 28382480 PMCID: PMC5554282 DOI: 10.1007/s00424-017-1968-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
Pancreatic stellate cells, normally quiescent, are capable of remarkable transition into their activated myofibroblast-like phenotype. It is now commonly accepted that these cells play a pivotal role in the desmoplastic reaction present in severe pancreatic disorders. In recent years, enormous scientific effort has been devoted to understanding their roles in pancreatic cancer, which continues to remain one of the most deadly diseases. Therefore, it is not surprising that considerably less attention has been given to studying physiological functions of pancreatic stellate cells. Here, we review recent advances not only in the field of pancreatic stellate cell pathophysiology but also emphasise their roles in physiological processes.
Collapse
Affiliation(s)
- Pawel E Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | - Monika A Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK
| |
Collapse
|
46
|
Saeed A, Hoekstra M, Hoeke MO, Heegsma J, Faber KN. The interrelationship between bile acid and vitamin A homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:496-512. [PMID: 28111285 DOI: 10.1016/j.bbalip.2017.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Abstract
Vitamin A is a fat-soluble vitamin important for vision, reproduction, embryonic development, cell differentiation, epithelial barrier function and adequate immune responses. Efficient absorption of dietary vitamin A depends on the fat-solubilizing properties of bile acids. Bile acids are synthesized in the liver and maintained in an enterohepatic circulation. The liver is also the main storage site for vitamin A in the mammalian body, where an intimate collaboration between hepatocytes and hepatic stellate cells leads to the accumulation of retinyl esters in large cytoplasmic lipid droplet hepatic stellate cells. Chronic liver diseases are often characterized by disturbed bile acid and vitamin A homeostasis, where bile production is impaired and hepatic stellate cells lose their vitamin A in a transdifferentiation process to myofibroblasts, cells that produce excessive extracellular matrix proteins leading to fibrosis. Chronic liver diseases thus may lead to vitamin A deficiency. Recent data reveal an intricate crosstalk between vitamin A metabolites and bile acids, in part via the Retinoic Acid Receptor (RAR), Retinoid X Receptor (RXR) and the Farnesoid X Receptor (FXR), in maintaining vitamin A and bile acid homeostasis. Here, we provide an overview of the various levels of "communication" between vitamin A metabolites and bile acids and its relevance for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Institute of Molecular biology & Bio-technology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Mark Hoekstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Martijn Oscar Hoeke
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
47
|
Vaz B, Alvarez R, de Lera AR. Stereocontrolled synthesis of ( S )-9- cis - and ( S )-11- cis -13,14-dihydroretinoic acid. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
de Lera ÁR, Krezel W, Rühl R. An Endogenous Mammalian Retinoid X Receptor Ligand, At Last! ChemMedChem 2016; 11:1027-37. [PMID: 27151148 DOI: 10.1002/cmdc.201600105] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/15/2016] [Indexed: 12/27/2022]
Abstract
9-cis-Retinoic acid was identified and claimed to be the endogenous ligand of the retinoid X receptors (RXRs) in 1992. Since then, the endogenous presence of this compound has never been rigorously confirmed. Instead, concerns have been raised by other groups that have reported that 9-cis-retinoic acid is undetectable or that its presence occurs at very low levels. Furthermore, these low levels could not satisfactorily explain the physiological activation of RXR. Alternative ligands, among them various lipids, have also been identified, but also did not fulfill criteria for rigorous endogenous relevance, and their consideration as bona fide endogenous mammalian RXR ligand has likewise been questioned. Recently, novel studies claim that the saturated analogue 9-cis-13,14-dihydroretinoic acid functions as an endogenous physiologically relevant mammalian RXR ligand.
Collapse
Affiliation(s)
- Ángel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale, U964, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404, Illkirch, France
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,MTA-DE, Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Hungary
| |
Collapse
|
49
|
Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis. PLoS One 2016; 11:e0153556. [PMID: 27078158 PMCID: PMC4831765 DOI: 10.1371/journal.pone.0153556] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/31/2016] [Indexed: 11/26/2022] Open
Abstract
UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA), the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB) irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations.
Collapse
|
50
|
Li Y, Li R, Chen W, Chen G. Vitamin A status and its metabolism contribute to the regulation of hepatic genes during the cycle of fasting and refeeding in rats. J Nutr Biochem 2016; 30:33-43. [PMID: 27012619 DOI: 10.1016/j.jnutbio.2015.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
Abstract
Vitamin A (VA) status and its metabolism affect hepatic metabolic homeostasis. We investigated if VA status and metabolism contribute to energy metabolism and expression of hepatic genes in the cycle of fasting and refeeding. Zucker lean rats with VA sufficient (VAS) or VA deficient (VAD) status were respectively grouped as: ad libitum (VAS-AD or VAD-AD), 48-h fasted (VAS-Fasted or VAD-Fasted), 48-h fasted and refed a VAS diet (VAS-Refed-VAS or VAD-Refed-VAS), or refed a VAD diet (VAS-Refed-VAD or VAD-Refed-VAD) for 6 h. Respiratory exchange ratio (RER) of rats fed the VAS or VAD diet was monitored for 6 weeks. From week four, rats fed the VAS diet had higher RER than those fed the VAD diet. VAS-Refed rats had higher plasma levels of glucose, triglyceride, insulin and leptin than VAD-Refed rats. The mRNA and protein levels of hepatic genes for fuel metabolism in the fasting and refeeding cycle were determined using real-time polymerase chain reaction and immunoblot, respectively. The mRNA levels of glucokinase (Gck), sterol regulatory element-binding protein 1c (Srebp-1c), and fatty acid synthase (Fas) were lowered in VAS-Fasted and VAD-Fasted rats, and increased in VAS-Refed-VAS, VAS-Refed-VAD and VAD-Refed-VAS, but not VAD-Refed-VAD, rats. The ACL and FAS protein levels only dropped in VAS-Fasted rats and increased in VAS-Refed-VAS rats. The GK protein level decreased only in VAS-Fasted rats, and increased in VAS-Refed-VAS, VAS-Refed-VAD and VAD-Refed-VAS (but not VAD-Refed-VAD) rats. We conclude that VA status and its metabolism in the fasting and refeeding cycle contribute to the regulation of hepatic gene expression in rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Rui Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Wei Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA.
| |
Collapse
|