1
|
Wu L, Chen Y, Yan Y, Wang H, Guy CD, Carney J, Moreno CL, Quintanilla-Arteaga A, Monsivais F, Zheng Z, Zeng M. Identification of Potential Therapeutic Targets Against Anthrax-Toxin-Induced Liver and Heart Damage. Toxins (Basel) 2025; 17:54. [PMID: 39998071 PMCID: PMC11861023 DOI: 10.3390/toxins17020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/26/2025] Open
Abstract
Anthrax represents a disease resulting from infection by toxin-secreting bacteria, Bacillus anthracis. This research aimed to identify new therapeutic targets to combat anthrax. We performed assays to assess cell viability, apoptosis, glycogen consumption, and compound uptake and release in hepatocytes and cardiomyocytes responding to anthrax toxins. Microarray analysis was carried out to identify the genes potentially involved in toxin-induced toxicity. Knockdown experiments were performed to validate the contributions of the identified genes. Our study showed that anthrax edema toxin (EdTx) and lethal toxin (LeTx) induced lethal damage in mouse liver and heart, respectively. Microarray assays showed that 218 genes were potentially involved in EdTx-mediated toxicity, and 18 genes were potentially associated with LeTx-mediated toxicity. Among these genes, the knockdown of Rgs1, Hcar2, Fosl2, Hcar2, Cxcl2, and Cxcl3 protected primary hepatocytes from EdTx-induced cytotoxicity. Plasminogen activator inhibitor 1 (PAI-1)-encoding Serpine1 constituted the most significantly upregulated gene in response to LeTx treatment in mouse liver. PAI-1 knockout mouse models had a higher tolerance to LeTx compared with wild-type counterparts, suggesting that PAI-1 is essential for LeTx-induced toxicity and might represent a therapeutic target in LeTx-induced tissue damage. These results provide potential therapeutic targets for combating anthrax-toxin-induced liver and heart damage.
Collapse
Affiliation(s)
- Lihong Wu
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Yanping Chen
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Yongyong Yan
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Haiyan Wang
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Cynthia D. Guy
- Liver and GI Pathology Section, Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - John Carney
- Liver and GI Pathology Section, Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carla L. Moreno
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Anaisa Quintanilla-Arteaga
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Fernando Monsivais
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Zhichao Zheng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
2
|
da Fonseca IIM, Nagamine MK, Gentile LB, Nishiya AT, da Fonseca JM, de Oliveira Massoco C, Ward JM, Liu S, Leppla SH, Dagli MLZ. Targeting canine mammary neoplastic epithelial cells with a reengineered anthrax toxin: first study. Vet Res Commun 2024; 48:2407-2428. [PMID: 38805149 DOI: 10.1007/s11259-024-10400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Mammary tumors are the most frequent type of neoplasms in intact female dogs. New therapies that target neoplastic cells without affecting normal cells are highly sought. The Bacillus anthracis toxin has been reengineered to target tumor cells that express urokinase plasminogen activators and metalloproteinases. In previous studies carried out in our laboratory, the reengineered anthrax toxin had inhibitory effects on canine oral mucosal melanoma and canine osteosarcoma cells. In this study, five canine neoplastic epithelial cell lines (four adenocarcinomas and one adenoma) and one non-neoplastic canine mammary epithelial cell line were treated with different concentrations of reengineered anthrax toxin components. Cell viability was quantified using an MTT assay and half-maximal inhibitory concentration (IC50) values. Cell lines were considered sensitive when the IC50 was lower than 5000 ng/ml. One canine mammary adenocarcinoma cell line and one mammary adenoma cell line showed significantly decreased viability after treatment, whereas the non-neoplastic cell line was resistant. We conclude that the reengineered anthrax toxin may be considered a targeted therapy for canine mammary neoplasms while preserving normal canine mammary epithelial cells.
Collapse
Affiliation(s)
- Ivone Izabel Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Márcia Kazumi Nagamine
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Luciana Boffoni Gentile
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Adriana Tomoko Nishiya
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Jonathan Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | | | - Shihui Liu
- Aging Institute and Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Stephen Howard Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil.
| |
Collapse
|
3
|
Tessier E, Cheutin L, Garnier A, Vigne C, Tournier JN, Rougeaux C. Early Circulating Edema Factor in Inhalational Anthrax Infection: Does It Matter? Microorganisms 2024; 12:308. [PMID: 38399712 PMCID: PMC10891819 DOI: 10.3390/microorganisms12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Anthrax toxins are critical virulence factors of Bacillus anthracis and Bacillus cereus strains that cause anthrax-like disease, composed of a common binding factor, the protective antigen (PA), and two enzymatic proteins, lethal factor (LF) and edema factor (EF). While PA is required for endocytosis and activity of EF and LF, several studies showed that these enzymatic factors disseminate within the body in the absence of PA after intranasal infection. In an effort to understand the impact of EF in the absence of PA, we used a fluorescent EF chimera to facilitate the study of endocytosis in different cell lines. Unexpectedly, EF was found inside cells in the absence of PA and showed a pole-dependent endocytosis. However, looking at enzymatic activity, PA was still required for EF to induce an increase in intracellular cAMP levels. Interestingly, the sequential delivery of EF and then PA rescued the rise in cAMP levels, indicating that PA and EF may functionally associate during intracellular trafficking, as well as it did at the cell surface. Our data shed new light on EF trafficking and the potential location of PA and EF association for optimal cytosolic delivery.
Collapse
Affiliation(s)
- Emilie Tessier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Laurence Cheutin
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Annabelle Garnier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Clarisse Vigne
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Jean-Nicolas Tournier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
- Institut Pasteur, 75015 Paris, France
| | - Clémence Rougeaux
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| |
Collapse
|
4
|
ANTXR1 as a potential sensor of extracellular mechanical cues. Acta Biomater 2023; 158:80-86. [PMID: 36638946 DOI: 10.1016/j.actbio.2023.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Cell adhesion molecules mediate cell-cell or cell-matrix interactions, some of which are mechanical sensors, such as integrins. Emerging evidence indicates that anthrax toxin receptor 1 (ANTXR1), a newly identified cell adhesion molecule, can also sense extracellular mechanical signals such as hydrostatic pressure and extracellular matrix (ECM) rigidity. ANTXR1 can interact with ECM through connecting intracellular cytoskeleton and ECM molecules (just like integrins) to regulate numerous biological processes, such as cell adhesion, cell migration or ECM homeostasis. Although with high structural similarity to integrins, its functions and downstream signal transduction are independent from those of integrins. In this perspective, based on existing evidence in literature, we analyzed the structural and functional evidence that ANTXR1 can act as a potential sensor for extracellular mechanical cues. To our knowledge, this is the first in-depth overview of ANTXR1 from the perspective of mechanobiology. STATEMENT OF SIGNIFICANCE: An overview of ANTXR1 from the perspective of mechanobiology; An analysis of mechanical sensitivity of ANTXR1 in structure and function; A summary of existing evidence of ANTXR1 as a potential mechanosensor.
Collapse
|
5
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Tournier JN, Rougeaux C. Anthrax Toxin Detection: From In Vivo Studies to Diagnostic Applications. Microorganisms 2020; 8:microorganisms8081103. [PMID: 32717946 PMCID: PMC7464488 DOI: 10.3390/microorganisms8081103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Anthrax toxins are produced by Bacillus anthracis throughout infection and shape the physiopathogenesis of the disease. They are produced in low quantities but are highly efficient. They have thus been long ignored, but recent biochemical methods have improved our knowledge in animal models. This article reviews the various methods that have been used and how they could be applied to clinical diagnosis.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Unité Bactériologie Biothérapies Anti-infectieuses et Immunité, Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91220 Brétigny sur Orge, France;
- Centre National de Référence-Laboratoire Expert Charbon, 1 place Général Valérie André, 91220 Brétigny sur Orge, France
- Innovative Vaccine Laboratory, Institut Pasteur, 28 rue du docteur Roux, 75015 Paris, France
- Ecole du Val-de-Grâce, 1 place Alphonse Laveran, 75005 Paris, France
| | - Clémence Rougeaux
- Unité Bactériologie Biothérapies Anti-infectieuses et Immunité, Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91220 Brétigny sur Orge, France;
- Centre National de Référence-Laboratoire Expert Charbon, 1 place Général Valérie André, 91220 Brétigny sur Orge, France
- Correspondence: ; Tel.: +33-178-651-891
| |
Collapse
|
7
|
Patel VI, Booth JL, Dozmorov M, Brown BR, Metcalf JP. Anthrax Edema and Lethal Toxins Differentially Target Human Lung and Blood Phagocytes. Toxins (Basel) 2020; 12:toxins12070464. [PMID: 32698436 PMCID: PMC7405021 DOI: 10.3390/toxins12070464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of inhalation anthrax, is a serious concern as a bioterrorism weapon. The vegetative form produces two exotoxins: Lethal toxin (LT) and edema toxin (ET). We recently characterized and compared six human airway and alveolar-resident phagocyte (AARP) subsets at the transcriptional and functional levels. In this study, we examined the effects of LT and ET on these subsets and human leukocytes. AARPs and leukocytes do not express high levels of the toxin receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2). Less than 20% expressed surface TEM8, while less than 15% expressed CMG2. All cell types bound or internalized protective antigen, the common component of the two toxins, in a dose-dependent manner. Most protective antigen was likely internalized via macropinocytosis. Cells were not sensitive to LT-induced apoptosis or necrosis at concentrations up to 1000 ng/mL. However, toxin exposure inhibited B. anthracis spore internalization. This inhibition was driven primarily by ET in AARPs and LT in leukocytes. These results support a model of inhalation anthrax in which spores germinate and produce toxins. ET inhibits pathogen phagocytosis by AARPs, allowing alveolar escape. In late-stage disease, LT inhibits phagocytosis by leukocytes, allowing bacterial replication in the bloodstream.
Collapse
Affiliation(s)
- Vineet I. Patel
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - J. Leland Booth
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Brent R. Brown
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - Jordan P. Metcalf
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
- Department of Microbiology and Immunology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
8
|
Cai C, Dang W, Liu S, Huang L, Li Y, Li G, Yan S, Jiang C, Song X, Hu Y, Gu J. Anthrax toxin receptor 1/tumor endothelial marker 8 promotes gastric cancer progression through activation of the PI3K/AKT/mTOR signaling pathway. Cancer Sci 2020; 111:1132-1145. [PMID: 31977138 PMCID: PMC7156833 DOI: 10.1111/cas.14326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/25/2019] [Accepted: 01/06/2020] [Indexed: 01/18/2023] Open
Abstract
Anthrax toxin receptor 1 (ANTXR1), a type I transmembrane protein, is one of the receptors that facilitates the entrance of anthrax toxin into cells. Previous studies have confirmed the pivotal role of ANTXR1 in progression and tumorigenesis of diverse cancer types. However, the biological function of ANTXR1 in gastric cancer (GC) is still unknown. The present study aimed to investigate the role of ANTXR1 in GC and illuminate the potential molecular mechanisms. Bioinformatics analysis found that ANTXR1 expression was significantly upregulated in GC tissue and its overexpression was associated with poor prognosis of GC patients. Moreover, we confirmed the upregulation of ANTXR1 in GC cell lines and GC tissue by quantitative PCR, western blot analysis, and immunohistochemical analysis. Additionally, high protein expression level of ANTXR1 was positively associated with several clinicopathological parameters in GC patients. In our study, a series of in vitro and in vivo assays were undertaken through strategies of loss/gain-of-function and rescue assays. Consequently, our results indicated that ANTXR1 induced proliferation, cell cycle progression, invasion and migration, and tumorigenicity and induced suppressed apoptosis in GC. Mechanistic investigation indicated that ANTXR1 exerted its promoting effects on GC through activation of the PI3K/AKT/mTOR signaling pathway. In conclusion, our findings suggested that ANTXR1 plays a crucial role in the development and progression of GC and could serve as a novel prognostic biomarker and potential therapeutic target for GC.
Collapse
Affiliation(s)
- Chen Cai
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wei Dang
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Shilei Liu
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ling Huang
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Yang Li
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Guoqiang Li
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Siyuan Yan
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Chengkai Jiang
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Xiaoling Song
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Yunping Hu
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Jun Gu
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| |
Collapse
|
9
|
Cheng B, Liu Y, Zhao Y, Li Q, Liu Y, Wang J, Chen Y, Zhang M. The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Sci Rep 2019; 9:12642. [PMID: 31477767 PMCID: PMC6718418 DOI: 10.1038/s41598-019-49100-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
Anthrax toxin protein receptor (ANTXR) 1 has many similarities to integrin and is regarded in some respects as a single-stranded integrin protein. However, it is not clear whether ANTXR1 responds to mechanical signals secondary to the activation of integrins or whether it is a completely new, independent and previously undiscovered mechanosensor that responds to an undefined subset of mechanical signaling molecules. Our study demonstrates that ANTXR1 is a novel mechanosensor on the cell membrane, acting independently from the classical mechanoreceptor molecule integrinβ1. We show that bone marrow stromal cells (BMSCs) respond to the hydrostatic pressure towards chondrogenic differentiation partly through the glycogen synthase kinase (GSK) 3β/β-Catenin signaling pathway, which can be partly regulated by ANTXR1 and might be related to the direct binding between ANTXR1 and low-density lipoprotein receptor-related protein (LRP) 5/6. In addition, ANTXR1 specifically activates Smad2 and upregulates Smad4 expression to facilitate the transport of activated Smad2 to the nucleus to regulate chondrogenesis, which might be related to the direct binding between ANTXR1 and Actin/Fascin1. We also demonstrate that ANTXR1 binds to some extent with integrinβ1, but this interaction does not affect the expression and function of either protein under pressure. Thus, we conclude that ANTXR1 plays a crucial role in BMSC mechanotransduction and controls specific signaling pathways that are distinct from those of integrin to influence the chondrogenic responses of BMSCs under hydrostatic pressure.
Collapse
Affiliation(s)
- Baixiang Cheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Yanzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Ying Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Qiang Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Yanli Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Junjun Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Yongjin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China.
| | - Min Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
10
|
Dutta D, Mukherjee D, Mukherjee IA, Maiti TK, Basak A, Das AK. Staphylococcal superantigen-like proteins interact with human MAP kinase signaling protein ERK2. FEBS Lett 2019; 594:266-277. [PMID: 31468523 DOI: 10.1002/1873-3468.13590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
Abstract
This study aimed to identify the intracellular binding partner of a unique class of staphylococcal secreted exotoxins called superantigen-like proteins (SSL) from human macrophage and keratinocyte cell lysates. Here, we report that SSL1 specifically binds to human extracellular signal-regulated kinase 2 (hERK2), an important stress-activated kinase in mitogen-activated protein kinase signaling pathways. Western blot and in vitro binding studies with recombinant hERK2 confirmed the binding interaction of SSL1, SSL7, and SSL10 with hERK2. Moreover, the SSLs-hERK2 interaction was validated biochemically by ELISA. Our finding shows that SSLs play a novel role by binding with host cell MAP kinase signaling pathway protein. Understanding the SSL-hERK2 interaction will also provide a basis for designing SSL-based peptide inhibitors of hERK2 in cancer therapy.
Collapse
Affiliation(s)
- Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India
| | - Devdeep Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | | | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
11
|
The Anthrax Toxin Receptor 1 (ANTXR1) Is Enriched in Pancreatic Cancer Stem Cells Derived from Primary Tumor Cultures. Stem Cells Int 2019; 2019:1378639. [PMID: 31191663 PMCID: PMC6525821 DOI: 10.1155/2019/1378639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/03/2019] [Indexed: 01/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth leading cause of cancer-related mortality. Cancer stem cells (CSCs) have been shown to be the drivers of pancreatic tumor growth, metastasis, and chemoresistance, but our understanding of these cells is still limited by our inability to efficiently identify and isolate them. While a number of markers capable of identifying pancreatic CSCs (PaCSCs) have been discovered since 2007, there is no doubt that more markers are still needed. The anthrax toxin receptor 1 (ANTXR1) was identified as a functional biomarker of triple-negative breast CSCs, and PDAC patients stratified based on ANTXR1 expression levels showed increased mortality and enrichment of pathways known to be necessary for CSC biology, including TGF-β, NOTCH, Wnt/β-catenin, and IL-6/JAK/STAT3 signaling and epithelial to mesenchymal transition, suggesting that ANTXR1 may represent a putative PaCSC marker. In this study, we show that ANTXR1+ cells are not only detectable across a panel of 7 PDAC patient-derived xenograft primary cultures but ANTXR1 expression significantly increased in CSC-enriched 3D sphere cultures. Importantly, ANTXR1+ cells also coexpressed other known PaCSC markers such as CD44, CD133, and autofluorescence, and ANTXR1+ cells displayed enhanced CSC functional and molecular properties, including increased self-renewal and expression of pluripotency-associated genes, compared to ANTXR1− cells. Thus, this study validates ANTXR1 as a new PaCSC marker and we propose its use in identifying CSCs in this tumor type and its exploitation in the development of CSC-targeted therapies for PDAC.
Collapse
|
12
|
Kojima C, Narita Y, Nakajima Y, Morimoto N, Yoshikawa T, Takahashi N, Handa A, Waku T, Tanaka N. Modulation of Cell Adhesion and Differentiation on Collagen Gels by the Addition of the Ovalbumin Secretory Signal Peptide. ACS Biomater Sci Eng 2019; 5:5698-5704. [DOI: 10.1021/acsbiomaterials.8b01505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Yuri Narita
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yusuke Nakajima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Naoya Morimoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takashi Yoshikawa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nobuyuki Takahashi
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Akihiro Handa
- R & D Division, Kewpie Corporation, 2-5-7 Sengawa-cho, Chofu, Tokyo, 182-0002, Japan
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Naoki Tanaka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
13
|
Shorter SA, Gollings AS, Gorringe-Pattrick MAM, Coakley JE, Dyer PDR, Richardson SCW. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin Drug Deliv 2016; 14:685-696. [DOI: 10.1080/17425247.2016.1227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Friebe S, van der Goot FG, Bürgi J. The Ins and Outs of Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8030069. [PMID: 26978402 PMCID: PMC4810214 DOI: 10.3390/toxins8030069] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Anthrax is a severe, although rather rare, infectious disease that is caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. The infectious form is the spore and the major virulence factors of the bacterium are its poly-γ-D-glutamic acid capsule and the tripartite anthrax toxin. The discovery of the anthrax toxin receptors in the early 2000s has allowed in-depth studies on the mechanisms of anthrax toxin cellular entry and translocation from the endocytic compartment to the cytoplasm. The toxin generally hijacks the endocytic pathway of CMG2 and TEM8, the two anthrax toxin receptors, in order to reach the endosomes. From there, the pore-forming subunit of the toxin inserts into endosomal membranes and enables translocation of the two catalytic subunits. Insertion of the pore-forming unit preferentially occurs in intraluminal vesicles rather than the limiting membrane of the endosome, leading to the translocation of the enzymatic subunits in the lumen of these vesicles. This has important consequences that will be discussed. Ultimately, the toxins reach the cytosol where they act on their respective targets. Target modification has severe consequences on cell behavior, in particular on cells of the immune system, allowing the spread of the bacterium, in severe cases leading to host death. Here we will review the literature on anthrax disease with a focus on the structure of the toxin, how it enters cells and its immunological effects.
Collapse
Affiliation(s)
- Sarah Friebe
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - F Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Jérôme Bürgi
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
15
|
Dyer PDR, Shepherd TR, Gollings AS, Shorter SA, Gorringe-Pattrick MAM, Tang CK, Cattoz BN, Baillie L, Griffiths PC, Richardson SCW. Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity. J Control Release 2015; 220:316-328. [PMID: 26546271 DOI: 10.1016/j.jconrel.2015.10.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
Inefficient cytosolic delivery and vector toxicity contribute to the limited use of antisense oligonucleotides (ASOs) and siRNA as therapeutics. As anthrax toxin (Atx) accesses the cytosol, the purpose of this study was to evaluate the potential of disarmed Atx to deliver either ASOs or siRNA. We hypothesized that this delivery strategy would facilitate improved transfection efficiency while eliminating the toxicity seen for many vectors due to membrane destabilization. Atx complex formation with ASOs or siRNA was achieved via the in-frame fusion of either Saccharomyces cerevisiae GAL4 or Homo sapien sapien PKR (respectively) to a truncation of Atx lethal factor (LFn), which were used with Atx protective antigen (PA). Western immunoblotting confirmed the production of: LFN-GAL4, LFn-PKR and PA which were detected at ~45.9 kDa, ~37 kDa, and ~83 kDa respectively and small angle neutron scattering confirmed the ability of PA to form an annular structure with a radius of gyration of 7.0 ± 1.0 nm when placed in serum. In order to form a complex with LFn-GAL4, ASOs were engineered to contain a double-stranded region, and a cell free in vitro translation assay demonstrated that no loss of antisense activity above 30 pmol ASO was evident. The in vitro toxicity of both PA:LFn-GAL4:ASO and PA:LFn-PKR:siRNA complexes was low (IC50>100 μg/mL in HeLa and Vero cells) and subcellular fractionation in conjunction with microscopy confirmed the detection of LFn-GAL4 or LFn-PKR in the cytosol. Syntaxin5 (Synt5) was used as a model target gene to determine pharmacological activity. The PA:LFn-GAL4:ASO complexes had transfection efficiency approximately equivalent to Nucleofection® over a variety of ASO concentrations (24h post-transfection) and during a 72 h time course. In HeLa cells, at 200 pmol ASO (with PA:LFN-GAL4), 5.4 ± 2.0% Synt5 expression was evident relative to an untreated control after 24h. Using 200 pmol ASOs, Nucleofection® reduced Synt5 expression to 8.1 ± 2.1% after 24h. PA:LFn-GAL4:ASO transfection of non- or terminally-differentiated THP-1 cells and Vero cells resulted in 35.2 ± 19.1%, 36.4 ± 1.8% and 22.9 ± 6.9% (respectively) Synt5 expression after treatment with 200 pmol of ASO and demonstrated versatility. Nucleofection® with Stealth RNAi™ siRNA reduced HeLa Synt5 levels to 4.6 ± 6.1% whereas treatment with the PA:LFn-PKR:siRNA resulted in 8.5 ± 3.4% Synt5 expression after 24h (HeLa cells). These studies report for the first time an ASO and RNAi delivery system based upon protein toxin architecture that is devoid of polycations. This system may utilize regulated membrane back-fusion for the cytosolic delivery of ASOs and siRNA, which would account for the lack of toxicity observed. High delivery efficiency suggests further in vivo evaluation is warranted.
Collapse
Affiliation(s)
- Paul D R Dyer
- Intercellular Delivery Solutions Laboratory, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Thomas R Shepherd
- Intercellular Delivery Solutions Laboratory, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Alexander S Gollings
- Intercellular Delivery Solutions Laboratory, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Susan A Shorter
- Intercellular Delivery Solutions Laboratory, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Monique A M Gorringe-Pattrick
- Intercellular Delivery Solutions Laboratory, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Chun-Kit Tang
- Intercellular Delivery Solutions Laboratory, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Beatrice N Cattoz
- Department of Pharmaceutical, Chemical and Environmental Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3AX, UK
| | - Peter C Griffiths
- Department of Pharmaceutical, Chemical and Environmental Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Simon C W Richardson
- Intercellular Delivery Solutions Laboratory, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
16
|
McComb RC, Ho CL, Bradley KA, Grill LK, Martchenko M. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine. Vaccine 2015; 33:6745-51. [PMID: 26514421 DOI: 10.1016/j.vaccine.2015.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/26/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines.
Collapse
Affiliation(s)
| | - Chi-Lee Ho
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth A Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
17
|
Williamson ED, Dyson EH. Anthrax prophylaxis: recent advances and future directions. Front Microbiol 2015; 6:1009. [PMID: 26441934 PMCID: PMC4585224 DOI: 10.3389/fmicb.2015.01009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Anthrax is a serious, potentially fatal disease that can present in four distinct clinical patterns depending on the route of infection (cutaneous, gastrointestinal, pneumonic, or injectional); effective strategies for prophylaxis and therapy are therefore required. This review addresses the complex mechanisms of pathogenesis employed by the bacterium and describes how, as understanding of these has developed over many years, so too have current strategies for vaccination and therapy. It covers the clinical and veterinary use of live attenuated strains of anthrax and the subsequent identification of protein sub-units for incorporation into vaccines, as well as combinations of protein sub-units with spore or other components. It also addresses the application of these vaccines for conventional prophylactic use, as well as post-exposure use in conjunction with antibiotics. It describes the licensed acellular vaccines AVA and AVP and discusses the prospects for a next generation of recombinant sub-unit vaccines for anthrax, balancing the regulatory requirement and current drive for highly defined vaccines, against the risk of losing the “danger” signals required to induce protective immunity in the vaccinee. It considers novel approaches to reduce time to immunity by means of combining, for example, dendritic cell vaccination with conventional approaches and considers current opportunities for the immunotherapy of anthrax.
Collapse
Affiliation(s)
| | - Edward Hugh Dyson
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| |
Collapse
|
18
|
Zilbermintz L, Leonardi W, Jeong SY, Sjodt M, McComb R, Ho CLC, Retterer C, Gharaibeh D, Zamani R, Soloveva V, Bavari S, Levitin A, West J, Bradley KA, Clubb RT, Cohen SN, Gupta V, Martchenko M. Identification of agents effective against multiple toxins and viruses by host-oriented cell targeting. Sci Rep 2015; 5:13476. [PMID: 26310922 PMCID: PMC4550849 DOI: 10.1038/srep13476] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens.
Collapse
Affiliation(s)
| | | | - Sun-Young Jeong
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Megan Sjodt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095
| | - Ryan McComb
- Keck Graduate Institute, Claremont, CA 91711
| | - Chi-Lee C Ho
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095
| | - Cary Retterer
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702
| | - Dima Gharaibeh
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702
| | - Rouzbeh Zamani
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702
| | - Veronica Soloveva
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702
| | | | - Joel West
- Keck Graduate Institute, Claremont, CA 91711
| | - Kenneth A Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095
| | - Stanley N Cohen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Vivek Gupta
- Keck Graduate Institute, Claremont, CA 91711
| | | |
Collapse
|
19
|
Cote CK, Welkos SL. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination. Toxins (Basel) 2015; 7:3167-78. [PMID: 26287244 PMCID: PMC4549744 DOI: 10.3390/toxins7083167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/08/2015] [Accepted: 08/11/2015] [Indexed: 11/18/2022] Open
Abstract
The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.
Collapse
Affiliation(s)
- Christopher K Cote
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Susan L Welkos
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA.
| |
Collapse
|
20
|
Ohanjanian L, Remy KE, Li Y, Cui X, Eichacker PQ. An overview of investigational toxin-directed therapies for the adjunctive management of Bacillus anthracis infection and sepsis. Expert Opin Investig Drugs 2015; 24:851-65. [PMID: 25920540 DOI: 10.1517/13543784.2015.1041587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sepsis with Bacillus anthracis infection has a very high mortality rate despite appropriate antibiotic and supportive therapies. Over the past 15 years, recent outbreaks in the US and in Europe, coupled with anthrax's bioterrorism weapon potential, have stimulated efforts to develop adjunctive therapies to improve clinical outcomes. Since lethal toxin and edema toxin (LT and ET) make central contributions to the pathogenesis of B. anthracis, these have been major targets in this effort. AREAS COVERED Here, the authors review different investigative biopharmaceuticals that have been recently identified for their therapeutic potential as inhibitors of LT or ET. Among these inhibitors are two antibody preparations that have been included in the Strategic National Stockpile (SNS) and several more that have reached Phase I testing. Presently, however, many of these candidate agents have only been studied in vitro and very few tested in bacteria-challenged models. EXPERT OPINION Although a large number of drugs have been identified as potential therapeutic inhibitors of LT and ET, in most cases their testing has been limited. The use of the two SNS antibody therapies during a large-scale exposure to B. anthracis will be difficult. Further testing and development of agents with oral bioavailability and relatively long shelf lives should be a focus for future research.
Collapse
Affiliation(s)
- Lernik Ohanjanian
- National Institutes of Health, Clinical Center, Critical Care Medicine Department , Building 10, Room 2C145, Bethesda, MD 20892 , USA +1 301 402 2914 ; +1 301 402 1213 ;
| | | | | | | | | |
Collapse
|
21
|
Shen J, Cai C, Yu Z, Pang Y, Zhou Y, Qian L, Wei W, Huang Y. A microfluidic live cell assay to study anthrax toxin induced cell lethality assisted by conditioned medium. Sci Rep 2015; 5:8651. [PMID: 25731605 PMCID: PMC4346806 DOI: 10.1038/srep08651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/29/2015] [Indexed: 01/13/2023] Open
Abstract
It is technically challenging to investigate the function of secreted protein in real time by supply of conditioned medium that contains secreted protein of interest. The internalization of anthrax toxin is facilitated by a secreted protein Dickkopf-1 (DKK1) and its receptor, and eventually leads to cell lethality. To monitor the dynamic interplay between these components in live cells, we use an integrated microfluidic device to perform the cell viability assays with real-time controlled culture microenvironment in parallel. Conditioned medium, which contains the secreted proteins from specific cell lines, can be continuously pumped towards the cells that exposed to toxin. The exogenous DKK1 secreted from distant cells is able to rescue the sensitivity to toxin for those DKK1-knocked-down cells. This high-throughput assay allows us to precisely quantify the dynamic interaction between key components that cause cell death, and provide independent evidence of the function of DKK1 in the complex process of anthrax toxin internalization.
Collapse
Affiliation(s)
- Jie Shen
- 1] Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, 100871, China [2] College of Engineering, Peking University, Beijing, 100871, China [3] School of Life Sciences, Peking University, Beijing, 100871, China
| | - Changzu Cai
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhilong Yu
- 1] Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, 100871, China [2] College of Engineering, Peking University, Beijing, 100871, China
| | - Yuhong Pang
- 1] Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, 100871, China [2] School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Zhou
- 1] Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, 100871, China [2] College of Engineering, Peking University, Beijing, 100871, China
| | - Lili Qian
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Wensheng Wei
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yanyi Huang
- 1] Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, 100871, China [2] College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biol 2015; 42:56-73. [PMID: 25572963 PMCID: PMC4409530 DOI: 10.1016/j.matbio.2014.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/06/2023]
Abstract
It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2.
Collapse
|
23
|
Owen JL, Yang T, Mohamadzadeh M. New insights into gastrointestinal anthrax infection. Trends Mol Med 2014; 21:154-63. [PMID: 25577136 DOI: 10.1016/j.molmed.2014.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/16/2014] [Accepted: 12/11/2014] [Indexed: 02/08/2023]
Abstract
Bacterial infections are the primary cause of gastrointestinal (GI) disorders in both developing and developed countries, and are particularly dangerous for infants and children. Bacillus anthracis is the 'archetype zoonotic' pathogen; no other infectious disease affects such a broad range of species, including humans. Importantly, there are more case reports of GI anthrax infection in children than inhalational disease. Early diagnosis is difficult and widespread systemic disease develops rapidly. This review highlights new findings concerning the roles of the gut epithelia, commensal microbiota, and innate lymphoid cells (ILCs) in initiation of disease and systemic dissemination in animal models of GI anthrax, the understanding of which is crucial to designing alternative therapies that target the establishment of infection.
Collapse
Affiliation(s)
- Jennifer L Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tao Yang
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
24
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
25
|
Nablo BJ, Panchal RG, Bavari S, Nguyen TL, Gussio R, Ribot W, Friedlander A, Chabot D, Reiner JE, Robertson JWF, Balijepalli A, Halverson KM, Kasianowicz JJ. Anthrax toxin-induced rupture of artificial lipid bilayer membranes. J Chem Phys 2014; 139:065101. [PMID: 23947891 DOI: 10.1063/1.4816467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.
Collapse
Affiliation(s)
- Brian J Nablo
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8120, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ascough S, Ingram RJ, Chu KK, Reynolds CJ, Musson JA, Doganay M, Metan G, Ozkul Y, Baillie L, Sriskandan S, Moore SJ, Gallagher TB, Dyson H, Williamson ED, Robinson JH, Maillere B, Boyton RJ, Altmann DM. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity. PLoS Pathog 2014; 10:e1004085. [PMID: 24788397 PMCID: PMC4006929 DOI: 10.1371/journal.ppat.1004085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/07/2014] [Indexed: 11/23/2022] Open
Abstract
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified. Anthrax is of concern with respect to human exposure in endemic regions, concerns about bioterrorism and the considerable global burden of livestock infections. The immunology of this disease remains poorly understood. Vaccination has been based on B. anthracis filtrates or attenuated spore-based vaccines, with more recent trials of next-generation recombinant vaccines. Approaches generally require extensive vaccination regimens and there have been concerns about immunogenicity and adverse reactions. An ongoing need remains for rationally designed, effective and safe anthrax vaccines. The importance of T cell stimulating vaccines is inceasingly recognized. An essential step is an understanding of immunodominant epitopes and their relevance across the diverse HLA immune response genes of human populations. We characterized CD4 T cell immunity to anthrax Lethal Factor (LF), using HLA transgenic mice, as well as testing candidate peptide epitopes for binding to a wide range of HLA alleles. We identified anthrax epitopes, noteworthy in that they elicit exceptionally strong immunity with promiscuous binding across multiple HLA alleles and isotypes. T cell responses in humans exposed to LF through either natural anthrax infection or vaccination were also examined. Epitopes identified as candidates were used to protect HLA transgenic mice from anthrax challenge.
Collapse
Affiliation(s)
- Stephanie Ascough
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Rebecca J. Ingram
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, United Kingdom
| | - Karen K. Chu
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Julie A. Musson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mehmet Doganay
- Department of Infectious Disease, Erciyes University Hospital, Kayseri, Turkey
| | - Gökhan Metan
- Department of Infectious Disease, Erciyes University Hospital, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University Hospital, Kayseri, Turkey
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Stephen J. Moore
- BIOMET, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Theresa B. Gallagher
- BIOMET, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hugh Dyson
- Defence Science Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - E. Diane Williamson
- Defence Science Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - John H. Robinson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard Maillere
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Gif Sur Yvette, France
| | | | - Daniel M. Altmann
- Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Liu S, Moayeri M, Leppla SH. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol 2014; 22:317-25. [PMID: 24684968 DOI: 10.1016/j.tim.2014.02.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
The pathophysiological effects resulting from many bacterial diseases are caused by exotoxins released by the bacteria. Bacillus anthracis, a spore-forming bacterium, is such a pathogen, causing anthrax through a combination of bacterial infection and toxemia. B. anthracis causes natural infection in humans and animals and has been a top bioterrorism concern since the 2001 anthrax attacks in the USA. The exotoxins secreted by B. anthracis use capillary morphogenesis protein 2 (CMG2) as the major toxin receptor and play essential roles in pathogenesis during the entire course of the disease. This review focuses on the activities of anthrax toxins and their roles in initial and late stages of anthrax infection.
Collapse
Affiliation(s)
- Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Qian L, Cai C, Yuan P, Jeong SY, Yang X, Dealmeida V, Ernst J, Costa M, Cohen SN, Wei W. Bidirectional effect of Wnt signaling antagonist DKK1 on the modulation of anthrax toxin uptake. SCIENCE CHINA-LIFE SCIENCES 2014; 57:469-81. [PMID: 24671437 DOI: 10.1007/s11427-014-4646-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 01/07/2023]
Abstract
LRP6, a co-receptor for the morphogen Wnt, aids endocytosis of anthrax complexes. Here we report that Dickkopf1 (DKK1) protein, a secreted LRP6 ligand and antagonist, is also a modulator of anthrax toxin sensitivity. shRNA-mediated gene silencing or TALEN-mediated gene knockout of DKK1 reduced sensitivity of cells to PA-dependent hybrid toxins. However, unlike the solely inhibitory effect on Wnt signaling, the effects of DKK1 overexpression on anthrax toxicity were bidirectional, depending on its endogenous expression and cell context. Fluorescence microscopy and biochemical analyses showed that DKK1 facilitates internalization of anthrax toxins and their receptors, an event mediated by DKK1-LRP6-Kremen2 complex. Monoclonal antibodies against DKK1 provided dose-dependent protection to macrophages from killing by anthrax lethal toxin (LT). Our discovery that DKK1 forms ternary structure with LRP6 and Kremen2 in promoting PA-mediated toxin internalization provides a paradigm for bacterial exploitation of mechanisms that host cells use to internalize signaling proteins.
Collapse
Affiliation(s)
- LiLi Qian
- College of Life Sciences and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
INTRODUCTION Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded 'for the development of multiscale models for complex chemical systems' once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial-and-error approach to a minimum. The intentional dissemination of Bacillus anthracis spores in 2001 via the so-called anthrax letters has led to increased efforts, politically and scientifically, to develop medical countermeasures that will protect people from the threat of anthrax bioterrorism. AREAS COVERED This article provides an overview of the recent rational drug design approaches for discovering inhibitors of anthrax toxin. The review also directs the readers to the vast literature on the recognized advances and future possibilities in the field. EXPERT OPINION Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (protective antigen-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, the situation, in our view, is still insecure. Further, the FDA's animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Better identification and validation of anthrax toxin therapeutic targets at the molecular level as well as elucidation of the parameters determining the corresponding therapeutic windows are still necessary for more effective therapeutic options.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- The Catholic University of America, Department of Biology , Washington, DC , USA +1 202 319 6723 ;
| | | |
Collapse
|
30
|
Chadegani F, Lovell S, Mullangi V, Miyagi M, Battaile KP, Bann JG. (19)F nuclear magnetic resonance and crystallographic studies of 5-fluorotryptophan-labeled anthrax protective antigen and effects of the receptor on stability. Biochemistry 2014; 53:690-701. [PMID: 24387629 PMCID: PMC3985773 DOI: 10.1021/bi401405s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The anthrax protective antigen (PA)
is an 83 kDa protein that is
one of three protein components of the anthrax toxin, an AB toxin
secreted by Bacillus anthracis. PA is capable of
undergoing several structural changes, including oligomerization to
either a heptameric or octameric structure called the prepore, and
at acidic pH a major conformational change to form a membrane-spanning
pore. To follow these structural changes at a residue-specific level,
we have conducted initial studies in which we have biosynthetically
incorporated 5-fluorotryptophan (5-FTrp) into PA, and we have studied
the influence of 5-FTrp labeling on the structural stability of PA
and on binding to the host receptor capillary morphogenesis protein
2 (CMG2) using 19F nuclear magnetic resonance (NMR). There
are seven tryptophans in PA, but of the four domains in PA, only two
contain tryptophans: domain 1 (Trp65, -90, -136, -206, and -226) and
domain 2 (Trp346 and -477). Trp346 is of particular interest because
of its proximity to the CMG2 binding interface, and because it forms
part of the membrane-spanning pore. We show that the 19F resonance of Trp346 is sensitive to changes in pH, consistent with
crystallographic studies, and that receptor binding significantly
stabilizes Trp346 to both pH and temperature. In addition, we provide
evidence that suggests that resonances from tryptophans distant from
the binding interface are also stabilized by the receptor. Our studies
highlight the positive impact of receptor binding on protein stability
and the use of 19F NMR in gaining insight into structural
changes in a high-molecular weight protein.
Collapse
Affiliation(s)
- Fatemeh Chadegani
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | | | | | | | | | | |
Collapse
|
31
|
DuMont AL, Torres VJ. Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids. Trends Microbiol 2013; 22:21-7. [PMID: 24231517 DOI: 10.1016/j.tim.2013.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/12/2023]
Abstract
Staphylococcus aureus employs numerous pore-forming cytotoxins to injure host immune cells and promote infection. Until recently, it was unclear how these cytotoxins targeted specific cell types for lysis. Membrane lipids were initially postulated to be cytotoxin receptor candidates. However, the cell-type specificity and species-dependent targeting of these toxins did not support lipids as sole receptors. The recent identification of proteinaceous receptors for several S. aureus cytotoxins now provides an explanation for the observed tropism. These findings also have important implications for the implementation of animal models to study S. aureus pathogenesis, and for the development of novel therapeutics.
Collapse
Affiliation(s)
- Ashley L DuMont
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
32
|
Jeong SY, Martchenko M, Cohen SN. Calpain-dependent cytoskeletal rearrangement exploited for anthrax toxin endocytosis. Proc Natl Acad Sci U S A 2013; 110:E4007-15. [PMID: 24085852 PMCID: PMC3801034 DOI: 10.1073/pnas.1316852110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The protective antigen component of Bacillus anthracis toxins can interact with at least three distinct proteins on the host cell surface, capillary morphogenesis gene 2 (CMG2), tumor endothelial marker 8, and β1-integrin, and, with the assistance of other host proteins, enters targeted cells by receptor-mediated endocytosis. Using an antisense-based phenotypic screen, we discovered the role of calpains in this process. We show that functions of a ubiquitous Ca(2+)-dependent cysteine protease, calpain-2, and of the calpain substrate talin-1 are exploited for association of anthrax toxin and its principal receptor, CMG2, with higher-order actin filaments and consequently for toxin entry into host cells. Down-regulated expression of calpain-2 or talin-1, or pharmacological interference with calpain action, did not affect toxin binding but reduced endocytosis and increased the survival of cells exposed to anthrax lethal toxin. Adventitious expression of wild-type talin-1 promoted toxin endocytosis and lethality, whereas expression of a talin-1 mutant (L432G) that is insensitive to calpain cleavage did not. Disruption of talin-1, which links integrin-containing focal adhesion complexes to the actin cytoskeleton, facilitated association of toxin bound to its principal cell-surface receptor, CMG2, with higher-order actin filaments undergoing dynamic disassembly and reassembly during endocytosis. Our results reveal a mechanism by which a bacterial toxin uses constitutively occurring calpain-mediated cytoskeletal rearrangement for internalization.
Collapse
Affiliation(s)
| | | | - Stanley N. Cohen
- Departments of Genetics and
- Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
33
|
McCluskey AJ, Collier RJ. Receptor-directed chimeric toxins created by sortase-mediated protein fusion. Mol Cancer Ther 2013; 12:2273-81. [PMID: 23945077 DOI: 10.1158/1535-7163.mct-13-0358] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chimeric protein toxins that act selectively on cells expressing a designated receptor may serve as investigational probes and/or antitumor agents. Here, we report use of the enzyme sortase A (SrtA) to create four chimeric toxins designed to selectively kill cells bearing the tumor marker HER2. We first expressed and purified: (i) a receptor recognition-deficient form of diphtheria toxin that lacks its receptor-binding domain and (ii) a mutated, receptor-binding-deficient form of anthrax-protective antigen. Both proteins carried at the C terminus the sortase recognition sequence LPETGG and a H₆ affinity tag. Each toxin protein was mixed with SrtA plus either of two HER2-recognition proteins--a single-chain antibody fragment or an Affibody--both carrying an N-terminal G₅ tag. With wild-type SrtA, the fusion reaction between the toxin and receptor-recognition proteins approached completion only after several hours, whereas with an evolved form of the enzyme, SrtA*, the reaction was virtually complete within 5 minutes. The four fusion toxins were purified and shown to kill HER2-positive cells in culture with high specificity. Sortase-mediated ligation of binary combinations of diverse natively folded proteins offers a facile way to produce large sets of chimeric proteins for research and medicine.
Collapse
Affiliation(s)
- Andrew J McCluskey
- Corresponding Author: Andrew J. McCluskey, Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115.
| | | |
Collapse
|
34
|
Ingram RJ, Harris A, Ascough S, Metan G, Doganay M, Ballie L, Williamson ED, Dyson H, Robinson JH, Sriskandan S, Altmann DM. Exposure to anthrax toxin alters human leucocyte expression of anthrax toxin receptor 1. Clin Exp Immunol 2013; 173:84-91. [PMID: 23607659 DOI: 10.1111/cei.12090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 12/12/2022] Open
Abstract
Anthrax is a toxin-mediated disease, the lethal effects of which are initiated by the binding of protective antigen (PA) with one of three reported cell surface toxin receptors (ANTXR). Receptor binding has been shown to influence host susceptibility to the toxins. Despite this crucial role for ANTXR in the outcome of disease, and the reported immunomodulatory consequence of the anthrax toxins during infection, little is known about ANTXR expression on human leucocytes. We characterized the expression levels of ANTXR1 (TEM8) on human leucocytes using flow cytometry. In order to assess the effect of prior toxin exposure on ANTXR1 expression levels, leucocytes from individuals with no known exposure, those exposed to toxin through vaccination and convalescent individuals were analysed. Donors could be defined as either 'low' or 'high' expressers based on the percentage of ANTXR1-positive monocytes detected. Previous exposure to toxins appears to modulate ANTXR1 expression, exposure through active infection being associated with lower receptor expression. A significant correlation between low receptor expression and high anthrax toxin-specific interferon (IFN)-γ responses was observed in previously infected individuals. We propose that there is an attenuation of ANTXR1 expression post-infection which may be a protective mechanism that has evolved to prevent reinfection.
Collapse
Affiliation(s)
- R J Ingram
- Section of Infectious Diseases and Immunity, Department of Medicine Imperial College, Hammersmith Hospital, London
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Upregulation of the host SLC11A1 gene by Clostridium difficile toxin B facilitates glucosylation of Rho GTPases and enhances toxin lethality. Infect Immun 2013; 81:2724-32. [PMID: 23690404 DOI: 10.1128/iai.01177-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pseudomembranous enterocolitis associated with Clostridium difficile infection is an important cause of morbidity and mortality in patients being treated with antibiotics. Two closely related large protein toxins produced by C. difficile, TcdA and TcdB, which act identically but at different efficiencies to glucosylate low-molecular-weight Rho GTPases, underlie the microbe's pathogenicity. Using antisense RNA encoded by a library of human expressed sequence tags (ESTs), we randomly inactivated host chromosomal genes in HeLa cells and isolated clones that survived exposure to ordinarily lethal doses of TcdB. This phenotypic screening and subsequent analysis identified solute carrier family 11 member 1 (SLC11A1; formerly NRAMP1), a divalent cation transporter crucial to host defense against certain microbes, as an enhancer of TcdB lethality. Whereas SLC11A1 normally is poorly expressed in human cells of nonmyeloid lineage, TcdB increased SLC11A1 mRNA abundance in such cells through the actions of the RNA-binding protein HuR. We show that short hairpin RNA (shRNA) directed against SLC11A1 reduced TcdB glucosylation of small Rho GTPases and, consequently, toxin lethality. Consistent with the previously known role of SLC11A1 in cation transport, these effects were enhanced by elevation of Mn(2+) in media; conversely, they were decreased by treatment with a chelator of divalent cations. Our findings reveal an unsuspected role for SLC11A1 in determining C. difficile pathogenicity, demonstrate the novel ability of a bacterial toxin to increase its cytotoxicity, establish a mechanistic basis for these effects, and suggest a therapeutic approach to mitigate cell killing by C. difficile toxins A and B.
Collapse
|
36
|
Cryan LM, Habeshian KA, Caldwell TP, Morris MT, Ackroyd PC, Christensen KA, Rogers MS. Identification of small molecules that inhibit the interaction of TEM8 with anthrax protective antigen using a FRET assay. ACTA ACUST UNITED AC 2013; 18:714-25. [PMID: 23479355 DOI: 10.1177/1087057113478655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tumor marker endothelial 8 (TEM8) is a receptor for the protective antigen (PA) component of anthrax toxin. TEM8 is upregulated on endothelial cells lining the blood vessels within tumors, compared with normal blood vessels. A number of studies have demonstrated a pivotal role for TEM8 in developmental and tumor angiogenesis. We have also shown that targeting the anthrax receptors with a mutated form of PA inhibits angiogenesis and tumor formation in vivo. Here we describe the development and testing of a high-throughput fluorescence resonance energy transfer assay to identify molecules that strongly inhibit the interaction of PA and TEM8. The assay we describe is sensitive and robust, with a Z' value of 0.8. A preliminary screen of 2310 known bioactive library compounds identified ebselen and thimerosal as inhibitors of the TEM8-PA interaction. These molecules each contain a cysteine-reactive transition metal, and complementary studies indicate that their inhibition of interaction is due to modification of a cysteine residue in the TEM8 extracellular domain. This is the first demonstration of a high-throughput screening assay that identifies inhibitors of TEM8, with potential application for antianthrax and antiangiogenic diseases.
Collapse
Affiliation(s)
- Lorna M Cryan
- Boston Children’s Hospital, Harvard Medical School, Vascular Biology Program, Department of Surgery, Karp 11, 300 Longwood Ave, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Friedlander AM, Grabenstein JD, Brachman PS. Anthrax vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
38
|
The receptors that mediate the direct lethality of anthrax toxin. Toxins (Basel) 2012; 5:1-8. [PMID: 23271637 PMCID: PMC3564063 DOI: 10.3390/toxins5010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 11/16/2022] Open
Abstract
Tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2) are the two well-characterized anthrax toxin receptors, each containing a von Willebrand factor A (vWA) domain responsible for anthrax protective antigen (PA) binding. Recently, a cell-based analysis was used to implicate another vWA domain-containing protein, integrin β1 as a third anthrax toxin receptor. To explore whether proteins other than TEM8 and CMG2 function as anthrax toxin receptors in vivo, we challenged mice lacking TEM8 and/or CMG2. Specifically, we used as an effector protein the fusion protein FP59, a fusion between the PA-binding domain of anthrax lethal factor (LF) and the catalytic domain of Pseudomonas aeruginosa exotoxin A. FP59 is at least 50-fold more potent than LF in the presence of PA, with 2 μg PA + 2 μg FP59 being sufficient to kill a mouse. While TEM8(-/-) and wild type control mice succumbed to a 5 μg PA + 5 μg FP59 challenge, CMG2(-/-) mice were completely resistant to this dose, confirming that CMG2 is the major anthrax toxin receptor in vivo. To detect whether any toxic effects are mediated by TEM8 or other putative receptors such as integrin β1, CMG2(-/-)/TEM8(-/-) mice were challenged with as many as five doses of 50 μg PA + 50 μg FP59. Strikingly, the CMG2(-/-)/TEM8(-/-) mice were completely resistant to the 5-dose challenge. These results strongly suggest that TEM8 is the only minor anthrax toxin receptor mediating direct lethality in vivo and that other proteins implicated as receptors do not play this role.
Collapse
|
39
|
Wigelsworth DJ, Ruthel G, Schnell L, Herrlich P, Blonder J, Veenstra TD, Carman RJ, Wilkins TD, Van Nhieu GT, Pauillac S, Gibert M, Sauvonnet N, Stiles BG, Popoff MR, Barth H. CD44 Promotes intoxication by the clostridial iota-family toxins. PLoS One 2012; 7:e51356. [PMID: 23236484 PMCID: PMC3517468 DOI: 10.1371/journal.pone.0051356] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/31/2012] [Indexed: 12/16/2022] Open
Abstract
Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.
Collapse
Affiliation(s)
- Darran J. Wigelsworth
- Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gordon Ruthel
- Core Imaging Facility, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leonie Schnell
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Peter Herrlich
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | | | | | - Guy Tran Van Nhieu
- Department of Intracellular Communications and Infectious Microorganisms, College of France, Paris, France
| | - Serge Pauillac
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Maryse Gibert
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Nathalie Sauvonnet
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
| | - Bradley G. Stiles
- Biology Department, Wilson College, Chambersburg, Pennsylvania, United States of America
- * E-mail: (BGS); (HB); (MRP)
| | - Michel R. Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
- * E-mail: (BGS); (HB); (MRP)
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
- * E-mail: (BGS); (HB); (MRP)
| |
Collapse
|
40
|
Anthrax lethal toxin and the induction of CD4 T cell immunity. Toxins (Basel) 2012; 4:878-99. [PMID: 23162703 PMCID: PMC3496994 DOI: 10.3390/toxins4100878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
Collapse
|
41
|
Rajapaksha M, Lovell S, Janowiak BE, Andra KK, Battaile KP, Bann JG. pH effects on binding between the anthrax protective antigen and the host cellular receptor CMG2. Protein Sci 2012; 21:1467-80. [PMID: 22855243 DOI: 10.1002/pro.2136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/11/2022]
Abstract
The anthrax protective antigen (PA) binds to the host cellular receptor capillary morphogenesis protein 2 (CMG2) with high affinity. To gain a better understanding of how pH may affect binding to the receptor, we have investigated the kinetics of binding as a function of pH to the full-length monomeric PA and to two variants: a 2-fluorohistidine-labeled PA (2-FHisPA), which is ∼1 pH unit more stable to variations in pH than WT, and an ∼1 pH unit less stable variant in which Trp346 in the domain 2β(3) -2β(4) loop is substituted with a Phe (W346F). We show using stopped-flow fluorescence that the binding rate increases as the pH is lowered for all proteins, with little influence on the rate of dissociation. In addition, we have crystallized PA and the two variants and examine the influence of pH on structure. In contrast to previous X-ray studies, the domain 2β(3) -2β(4) loop undergoes little change in structure from pH ∼8 to 5.5 for the WT protein, but for the 2-FHis labeled and W346F mutant there are changes in structure consistent with previous X-ray studies. In accord with pH stability studies, we find that the average B-factor values increase by ∼20-30% for all three proteins at low pH. Our results suggest that for the full-length PA, low pH increases the binding affinity, likely through a change in structure that favors a more "bound-like" conformation.
Collapse
|
42
|
Lowe DE, Glomski IJ. Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol 2012; 2:76. [PMID: 22919667 PMCID: PMC3417473 DOI: 10.3389/fcimb.2012.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/16/2012] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host.
Collapse
Affiliation(s)
- David E Lowe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville VA, USA
| | | |
Collapse
|
43
|
Bann JG. Anthrax toxin protective antigen--insights into molecular switching from prepore to pore. Protein Sci 2012; 21:1-12. [PMID: 22095644 DOI: 10.1002/pro.752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protective antigen is a key component of the anthrax toxin, as it allows entry of the enzymatic components edema factor and lethal factor into the host cell, through the formation of a membrane spanning pore. This event is absolutely critical for the pathogenesis of anthrax, and although we have yet to understand the mechanism of pore formation, recent developments have provided key insights into how this process may occur. Based on the available data, a model is proposed for the kinetic steps for protective antigen conversion from prepore to pore. In this model, the driving force for pore formation is the formation of the phi (ϕ)-clamp, a region that forms a leak-free seal around the translocating polypeptide. Formation of the ϕ-clamp elicits movements within the prepore that provide steric freedom for the subsequent conformational changes required to form the membrane spanning pore.
Collapse
Affiliation(s)
- James G Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260-0051, USA.
| |
Collapse
|
44
|
Abstract
The outcome of exposure to infectious microbes or their toxins is influenced by both microbial and host genes. Some host genes encode defense mechanisms, whereas others assist pathogen functions. Genomic analyses have associated host gene mutations with altered infectious disease susceptibility, but evidence for causality is limited. Here we demonstrate that human genetic variation affecting capillary morphogenesis gene 2 (CMG2), which encodes a host membrane protein exploited by anthrax toxin as a principal receptor, dramatically alters toxin sensitivity. Lymphoblastoid cells derived from a HapMap Project cohort of 234 persons of African, European, or Asian ancestry differed in sensitivity mediated by the protective antigen (PA) moiety of anthrax toxin by more than four orders of magnitude, with 99% of the cohort showing a 250-fold range of sensitivity. We find that relative sensitivity is an inherited trait that correlates strongly with CMG2 mRNA abundance in cells of each ethnic/geographical group and in the combined population pool (P = 4 × 10(-11)). The extent of CMG2 expression in transfected murine macrophages and human lymphoblastoid cells affected anthrax toxin binding, internalization, and sensitivity. A CMG2 single-nucleotide polymorphism (SNP) occurring frequently in African and European populations independently altered toxin uptake, but was not statistically associated with altered sensitivity in HapMap cell populations. Our results reveal extensive human diversity in cell lethality dependent on PA-mediated toxin binding and uptake, and identify individual differences in CMG2 expression level as a determinant of this diversity. Testing of genomically characterized human cell populations may offer a broadly useful strategy for elucidating effects of genetic variation on infectious disease susceptibility.
Collapse
|
45
|
Deuquet J, Lausch E, Superti-Furga A, van der Goot FG. The dark sides of capillary morphogenesis gene 2. EMBO J 2012; 31:3-13. [PMID: 22215446 PMCID: PMC3252584 DOI: 10.1038/emboj.2011.442] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/07/2011] [Indexed: 11/08/2022] Open
Abstract
Capillary morphogenesis gene 2 (CMG2) is a type I membrane protein involved in the homeostasis of the extracellular matrix. While it shares interesting similarities with integrins, its exact molecular role is unknown. The interest and knowledge about CMG2 largely stems from the fact that it is involved in two diseases, one infectious and one genetic. CMG2 is the main receptor of the anthrax toxin, and knocking out this gene in mice renders them insensitive to infection with Bacillus anthracis spores. On the other hand, mutations in CMG2 lead to a rare but severe autosomal recessive disorder in humans called Hyaline Fibromatosis Syndrome (HFS). We will here review what is known about the structure of CMG2 and its ability to mediate anthrax toxin entry into cell. We will then describe the limited knowledge available concerning the physiological role of CMG2. Finally, we will describe HFS and the consequences of HFS-associated mutations in CMG2 at the molecular and cellular level.
Collapse
Affiliation(s)
- Julie Deuquet
- Ecole Polytechnique Fédérale de Lausanne, Institute of Global Health, Lausanne, Switzerland
| | - Ekkehart Lausch
- Department of Pediatrics, University of Freiburg, Freiburg, Germany
| | - Andrea Superti-Furga
- Division of Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - F Gisou van der Goot
- Ecole Polytechnique Fédérale de Lausanne, Institute of Global Health, Lausanne, Switzerland
| |
Collapse
|
46
|
Pilpa RM, Bayrhuber M, Marlett JM, Riek R, Young JAT. A receptor-based switch that regulates anthrax toxin pore formation. PLoS Pathog 2011; 7:e1002354. [PMID: 22174672 PMCID: PMC3234216 DOI: 10.1371/journal.ppat.1002354] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/19/2011] [Indexed: 11/19/2022] Open
Abstract
Cellular receptors can act as molecular switches, regulating the sensitivity of microbial proteins to conformational changes that promote cellular entry. The activities of these receptor-based switches are only partially understood. In this paper, we sought to understand the mechanism that underlies the activity of the ANTXR2 anthrax toxin receptor-based switch that binds to domains 2 and 4 of the protective antigen (PA) toxin subunit. Receptor-binding restricts structural changes within the heptameric PA prepore that are required for pore conversion to an acidic endosomal compartment. The transfer cross-saturation (TCS) NMR approach was used to monitor changes in the heptameric PA-receptor contacts at different steps during prepore-to-pore conversion. These studies demonstrated that receptor contact with PA domain 2 is weakened prior to pore conversion, defining a novel intermediate in this pathway. Importantly, ANTXR2 remained bound to PA domain 4 following pore conversion, suggesting that the bound receptor might influence the structure and/or function of the newly formed pore. These studies provide new insights into the function of a receptor-based molecular switch that controls anthrax toxin entry into cells. The bacterium that causes anthrax produces a toxin called anthrax toxin that is largely responsible for causing disease symptoms. The first step in anthrax intoxication involves binding of the toxin to a specific protein, called a receptor, on the cell surface. Receptor-binding acts like a switch to prevent the toxin from forming a pore in a cell membrane until the toxin-receptor complex is taken up into cells and delivered to a specific location (called an endosome) where it is exposed to an “acid bath”. This acidic environment promotes structural changes in the toxin leading to pore formation in the endosomal membrane. In this report, we have studied how the receptor regulates pore formation by following the associated changes in toxin-receptor contacts. These studies have defined a new toxin-receptor intermediate in the pathway leading to pore conversion and demonstrate that the receptor remains bound after pore conversion. Our results provide important new insights into how the receptor regulates anthrax toxin pore formation, information that could be useful for designing new therapeutic strategies to treat this disease.
Collapse
Affiliation(s)
- Rosemarie M. Pilpa
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Monika Bayrhuber
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - John M. Marlett
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Roland Riek
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
- * E-mail: (JATY); (RR)
| | - John A. T. Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (JATY); (RR)
| |
Collapse
|
47
|
Krachler AM, Woolery AR, Orth K. Manipulation of kinase signaling by bacterial pathogens. ACTA ACUST UNITED AC 2011; 195:1083-92. [PMID: 22123833 PMCID: PMC3246894 DOI: 10.1083/jcb.201107132] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial pathogens use effector proteins to manipulate their hosts to propagate infection. These effectors divert host cell signaling pathways to the benefit of the pathogen and frequently target kinase signaling cascades. Notable pathways that are usurped include the nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and p21-activated kinase (PAK) pathways. Analyzing the functions of pathogenic effectors and their intersection with host kinase pathways has provided interesting insights into both the mechanisms of virulence and eukaryotic signaling.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
48
|
Wickström SA, Fässler R. Regulation of membrane traffic by integrin signaling. Trends Cell Biol 2011; 21:266-73. [DOI: 10.1016/j.tcb.2011.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/20/2011] [Accepted: 02/23/2011] [Indexed: 01/23/2023]
|
49
|
Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 2010; 9:804-20. [PMID: 20885411 DOI: 10.1038/nrd3266] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets.
Collapse
Affiliation(s)
- Dermot Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| | | | | |
Collapse
|