1
|
Verdu Schlie A, Leitch A, Arismendi MI, Stok C, Castro Leal A, Parry DA, Marcondes Lerario A, Harley ME, Lucheze B, Carroll PL, Musialik KI, Auer JMT, Martin CA, Gerasimavicius L, Quigley AJ, de Menezes Correia-Deur JE, Marsh JA, Reijns MAM, Lampe AK, Jackson AP, Jorge AAL, Tamayo-Orrego L. CDK4 loss-of-function mutations cause microcephaly and short stature. Genes Dev 2025; 39:634-651. [PMID: 40210435 PMCID: PMC7617628 DOI: 10.1101/gad.352311.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Cell number is a major determinant of organism size in mammals. In humans, gene mutations in cell cycle components result in restricted growth through reduced cell numbers. Here we identified biallelic mutations in CDK4 as a cause of microcephaly and short stature. CDK4 encodes a key cell cycle kinase that associates with D-type cyclins during G1 of the cell cycle to promote S-phase entry and cell proliferation through retinoblastoma (RB) phosphorylation. CDK4 and CDK6 are believed to be functionally redundant and are targeted jointly by chemotherapeutic CDK4/6 inhibitors. Using molecular and cell biology approaches, we show that functional CDK4 protein is not detectable in cells with CDK4 mutations. Cells display impaired RB phosphorylation in G1, leading to G1/S-phase transition defects and reduced cell proliferation, consistent with complete loss of cellular CDK4 enzymatic activity. Together, these findings demonstrate that CDK4 is itself required for cell proliferation, human growth, and brain size determination during development.
Collapse
Affiliation(s)
- Aitana Verdu Schlie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Andrea Leitch
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Maria Izabel Arismendi
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil
| | - Colin Stok
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Andrea Castro Leal
- Department of Integrated Health, State University of Para, Santarem 68010-200, Brazil
| | - David A Parry
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Antonio Marcondes Lerario
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Margaret E Harley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Bruna Lucheze
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil
| | - Paula L Carroll
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kamila I Musialik
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Julia M T Auer
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Carol-Anne Martin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Alan J Quigley
- Paediatric Imaging Department, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, United Kingdom
| | - Joya Emilie de Menezes Correia-Deur
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Martin A M Reijns
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Anne K Lampe
- South East of Scotland Clinical Genetics Service, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Andrew P Jackson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| | - Alexander A L Jorge
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil;
| | - Lukas Tamayo-Orrego
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
2
|
Ribeiro JH, Etlioglu E, Buset J, Janssen A, Puype H, Berden L, Mbouombouo Mfossa AC, De Vos WH, Vermeirssen V, Baatout S, Rajan N, Quintens R. A human-specific, concerted repression of microcephaly genes contributes to radiation-induced growth defects in cortical organoids. iScience 2025; 28:111853. [PMID: 39967878 PMCID: PMC11834077 DOI: 10.1016/j.isci.2025.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Prenatal radiation-induced DNA damage poses a significant threat to neurodevelopment, resulting in microcephaly which primarily affects the cerebral cortex. So far, mechanistic studies were done in rodents. Here, we leveraged human cortical organoids to model fetal corticogenesis. Organoids were X-irradiated with moderate or high doses at different time points. Irradiation caused a dose- and time-dependent reduction in organoid size, which was more prominent in younger organoids. This coincided with a delayed and attenuated DNA damage response (DDR) in older organoids. Besides the DDR, radiation induced premature differentiation of neural progenitor cells (NPCs). Our transcriptomic analysis demonstrated a concerted p53-E2F4/DREAM-dependent repression of primary microcephaly genes, which was independently confirmed in cultured human NPCs and neurons. This was a human-specific feature, as it was not observed in mouse embryonic brains or primary NPCs. Thus, human cortical organoids are an excellent model for DNA damage-induced microcephaly and to uncover potentially targetable human-specific pathways.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Hanne Puype
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lisa Berden
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Laboratory for Neurophysiology, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | | | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Wilrijk, Belgium
| | - Vanessa Vermeirssen
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Nicholas Rajan
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| |
Collapse
|
3
|
Singh S, Kim H, Ecevitoglu A, Chasse R, Ludko AM, Sanganahalli B, Gangasandra V, Park SR, Yee SP, Grady J, Salamone J, Holly Fitch R, Spellman T, Hyder F, Bae BI. Autism-associated ASPM variant causes macrocephaly and social-cognitive deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638753. [PMID: 40027695 PMCID: PMC11870556 DOI: 10.1101/2025.02.17.638753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
In autism spectrum disorder (ASD), a neurodevelopmental disorder with social-cognitive deficits, macrocephaly occurs in 20% of patients with severe symptoms. However, the role of macrocephaly in ASD pathogenesis remains unclear. Here, we address the mechanistic link between macrocephaly and ASD by investigating a novel ASD-associated gain-of-function A1877T mutation in ASPM ( abnormal spindle-like microcephaly-associated ). ASPM is a key regulator of cortical size and cell proliferation expressed in both excitatory and inhibitory neuronal progenitors but not in differentiated neurons. We found that Aspm gain-of-function knock-in mice exhibit macrocephaly, excessive embryonic neurogenesis with expanded outer radial glia, an increased excitatory-inhibitory (E-I) ratio, brain hyperconnectivity, and social-cognitive deficits with male specificity. Our results suggest that macrocephaly in ASD is not a proportional expansion of excitatory and inhibitory neurons, but a shift in the E-I ratio, independent of the expression patterns of the causative gene. Thus, macrocephaly alone can cause a subset of ASD-like symptoms.
Collapse
|
4
|
Winden KD, Gisser I, Sahin M. Using cortical organoids to understand the pathogenesis of malformations of cortical development. Front Neurosci 2025; 18:1522652. [PMID: 39881808 PMCID: PMC11774837 DOI: 10.3389/fnins.2024.1522652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Malformations of cortical development encompass a broad range of disorders associated with abnormalities in corticogenesis. Widespread abnormalities in neuronal formation or migration can lead to small head size or microcephaly with disorganized placement of cell types. Specific, localized malformations are termed focal cortical dysplasias (FCD). Neurodevelopmental disorders are common in all types of malformations of cortical development with the most prominent being refractory epilepsy, behavioral disorders such as autism spectrum disorder (ASD), and learning disorders. Several genetic pathways have been associated with these disorders from control of cell cycle and cytoskeletal dynamics in global malformations to variants in growth factor signaling pathways, especially those interacting with the mechanistic target of rapamycin (mTOR), in FCDs. Despite advances in understanding these disorders, the underlying developmental pathways that lead to lesion formation and mechanisms through which defects in cortical development cause specific neurological symptoms often remains unclear. One limitation is the difficulty in modeling these disorders, as animal models frequently do not faithfully mirror the human phenotype. To circumvent this obstacle, many investigators have turned to three-dimensional human stem cell models of the brain, known as organoids, because they recapitulate early neurodevelopmental processes. High throughput analysis of these organoids presents a promising opportunity to model pathophysiological processes across the breadth of malformations of cortical development. In this review, we highlight advances in understanding the pathophysiology of brain malformations using organoid models.
Collapse
Affiliation(s)
| | | | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Li XH, Guo D, Chen LQ, Chang ZH, Shi JX, Hu N, Chen C, Zhang XW, Bao SQ, Chen MM, Ming D. Low-intensity ultrasound ameliorates brain organoid integration and rescues microcephaly deficits. Brain 2024; 147:3817-3833. [PMID: 38739753 DOI: 10.1093/brain/awae150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Human brain organoids represent a remarkable platform for modelling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses revealed that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays revealed that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Li-Qun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Pallavicini G, Moccia A, Iegiani G, Parolisi R, Peirent ER, Berto GE, Lorenzati M, Tshuva RY, Ferraro A, Balzac F, Turco E, Salvi SU, Myklebust HF, Wang S, Eisenberg J, Chitale M, Girgla NS, Boda E, Reiner O, Buffo A, Di Cunto F, Bielas SL. Modeling primary microcephaly with human brain organoids reveals fundamental roles of CIT kinase activity. J Clin Invest 2024; 134:e175435. [PMID: 39316437 PMCID: PMC11527453 DOI: 10.1172/jci175435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Brain size and cellular heterogeneity are tightly regulated by species-specific proliferation and differentiation of multipotent neural progenitor cells (NPCs). Errors in this process are among the mechanisms of primary hereditary microcephaly (MCPH), a group of disorders characterized by reduced brain size and intellectual disability. Biallelic citron rho-interacting serine/threonine kinase (CIT) missense variants that disrupt kinase function (CITKI/KI) and frameshift loss-of-function variants (CITFS/FS) are the genetic basis for MCPH17; however, the function of CIT catalytic activity in brain development and NPC cytokinesis is unknown. Therefore, we created the CitKI/KI mouse model and found that it did not phenocopy human microcephaly, unlike biallelic CitFS/FS animals. Nevertheless, both Cit models exhibited binucleation, DNA damage, and apoptosis. To investigate human-specific mechanisms of CIT microcephaly, we generated CITKI/KI and CITFS/FS human forebrain organoids. We found that CITKI/KI and CITFS/FS organoids lost cytoarchitectural complexity, transitioning from pseudostratified to simple neuroepithelium. This change was associated with defects that disrupted the polarity of NPC cytokinesis, in addition to elevating apoptosis. Together, our results indicate that both CIT catalytic and scaffolding functions in NPC cytokinesis are critical for human corticogenesis. Species differences in corticogenesis and the dynamic 3D features of NPC mitosis underscore the utility of human forebrain organoid models for understanding human microcephaly.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | | | - Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Emily R. Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gaia Elena Berto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Martina Lorenzati
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Rami Y. Tshuva
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Alessia Ferraro
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Fiorella Balzac
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | | | | | - Julia Eisenberg
- Department of Human Genetics and
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - Enrica Boda
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Orly Reiner
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Annalisa Buffo
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Stephanie L. Bielas
- Department of Human Genetics and
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Yang Y, Chen BR, Ye XC, Ni LY, Zhang XY, Liu YZ, Lyu TJ, Tian Y, Fu YJ, Wang Y. The chromodomain protein CDYL confers forebrain identity to human cortical organoids by inhibiting neuronatin. Cell Rep 2024; 43:114814. [PMID: 39378153 DOI: 10.1016/j.celrep.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Fate determination of neural stem cells (NSCs) is crucial for cortex development and is closely linked to neurodevelopmental disorders when gene expression networks are disrupted. The transcriptional corepressor chromodomain Y-like (CDYL) is widely expressed across diverse cell populations within the human embryonic cortex. However, its precise role in cortical development remains unclear. Here, we show that CDYL is critical for human cortical neurogenesis and that its deficiency leads to a substantial increase in gamma-aminobutyric acid (GABA)-ergic neurons in cortical organoids. Subsequently, neuronatin (NNAT) is identified as a significant target of CDYL, and its abnormal expression obviously influences the fate commitment of cortical NSCs. Cross-species comparisons of CDYL targets unravel a distinct developmental trajectory between human cortical organoids and the mouse cortex at an analogous stage. Collectively, our data provide insight into the evolutionary roles of CDYL in human cortex development, emphasizing its critical function in maintaining the fate of human cortical NSCs.
Collapse
Affiliation(s)
- Yaming Yang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Bai-Rong Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xi-Chun Ye
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Liang-Yu Ni
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xi-Yin Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yun-Ze Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Tian-Jie Lyu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yue Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yun-Jie Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Abstract
Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Bilgic M, Wu Q, Suetsugu T, Shitamukai A, Tsunekawa Y, Shimogori T, Kadota M, Nishimura O, Kuraku S, Kiyonari H, Matsuzaki F. Truncated radial glia as a common precursor in the late corticogenesis of gyrencephalic mammals. eLife 2023; 12:RP91406. [PMID: 37988289 PMCID: PMC10662950 DOI: 10.7554/elife.91406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
The diversity of neural stem cells is a hallmark of the cerebral cortex development in gyrencephalic mammals, such as Primates and Carnivora. Among them, ferrets are a good model for mechanistic studies. However, information on their neural progenitor cells (NPC), termed radial glia (RG), is limited. Here, we surveyed the temporal series of single-cell transcriptomes of progenitors regarding ferret corticogenesis and found a conserved diversity and temporal trajectory between human and ferret NPC, despite the large timescale difference. We found truncated RG (tRG) in ferret cortical development, a progenitor subtype previously described in humans. The combination of in silico and in vivo analyses identified that tRG differentiate into both ependymal and astrogenic cells. Via transcriptomic comparison, we predict that this is also the case in humans. Our findings suggest that tRG plays a role in the formation of adult ventricles, thereby providing the architectural bases for brain expansion.
Collapse
Affiliation(s)
- Merve Bilgic
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School for Biostudies, Kyoto UniversityKyotoJapan
| | - Quan Wu
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Taeko Suetsugu
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Atsunori Shitamukai
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Tomomi Shimogori
- Molecular Mechanisms of Brain Development, RIKEN Center for Brain ScienceWakoJapan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School for Biostudies, Kyoto UniversityKyotoJapan
| |
Collapse
|
11
|
Singh M, Kumar S. Effect of single nucleotide polymorphisms on the structure of long noncoding RNAs and their interaction with RNA binding proteins. Biosystems 2023; 233:105021. [PMID: 37703988 DOI: 10.1016/j.biosystems.2023.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Long non-coding RNAs (lncRNA) are emerging as a new class of regulatory RNAs with remarkable potential to be utilized as therapeutic targets against many human diseases. Several genome-wide association studies (GWAS) have catalogued Single Nucleotide Polymorphisms (SNPs) present in the noncoding regions of the genome from where lncRNAs originate. In this study, we have selected 67 lncRNAs with GWAS-tagged SNPs and have also investigated their role in affecting the local secondary structures. Majority of the SNPs lead to changes in the secondary structure of lncRNAs to a different extent by altering the base pairing patterns. These structural changes in lncRNA are also manifested in form of alteration in the binding site for RNA binding proteins (RBPs) along with affecting their binding efficacies. Ultimately, these structural modifications may influence the transcriptional and post-transcriptional pathways of these RNAs, leading to the causation of diseases. Hence, it is important to understand the possible underlying mechanism of RBPs in association with GWAS-tagged SNPs in human diseases.
Collapse
Affiliation(s)
- Mandakini Singh
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
12
|
Nasr-Esfahani A, Valipour Motlagh A, Adib M, Pashaei K, Nasr-Esfahani MH. Integrative Bioinformatics Analysis of The Cell Division Cycle and Ribosomal Pathways in The Rat Varicocele: Implications for Drug Discovery. CELL JOURNAL 2023; 25:727-737. [PMID: 37865881 PMCID: PMC10591260 DOI: 10.22074/cellj.2023.2004771.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE Varicocele is a common cause of male infertility, affecting a substantial proportion of infertile men. Recent studies have employed transcriptomic analysis to identify candidate genes that may be implicated in the pathogenesis of this condition. Accordingly, this study sought to leverage rat gene expression profiling, along with protein-protein interaction networks, to identify key regulatory genes, related pathways, and potentially effective drugs for the treatment of varicocele. MATERIALS AND METHODS In this in-silico study, differentially expressed genes (DEGs) from the testicular tissue of 3 rats were screened using the edgeR package in R software and the results were compared to 3 rats in the control group. Data was obtained from GSE139447. Setting a -11 and P<0.05 as cutoff points for statistical significance, up and down-regulated genes were identified. Based on Cytoscape plugins, protein-protein interaction (PPI) networks were drawn, and hub genes were highlighted. ShinyGO was used for pathway enrichment. Finally, effective drugs were identified from the drug database. RESULTS Among the 1277 DEGs in this study, 677 genes were up-regulated while 600 genes were down-regulated in rats with varicocele compared to the control group. Using protein-protein interaction networks, we identified the top five up-regulated genes and the top five down-regulated genes. Enrichment analysis showed that the up-regulated genes were associated with the cell division cycle pathway, while the down-regulated genes were linked to the ribosome pathway. Notably, our findings suggested that dexamethasone may be a promising therapeutic option for individuals with varicocele. CONCLUSION The current investigation indicates that in varicocele the cell division cycle pathway is up-regulated while the ribosome pathway is down-regulated compared to controls. Based on these findings, dexamethasone could be considered a future candidate drug for the treatment of individuals with varicocele.
Collapse
Affiliation(s)
| | - Ali Valipour Motlagh
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Minoo Adib
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kosar Pashaei
- Isfahan Fertility and Infertility Center, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
13
|
Tsai KK, Bae BI, Hsu CC, Cheng LH, Shaked Y. Oncogenic ASPM Is a Regulatory Hub of Developmental and Stemness Signaling in Cancers. Cancer Res 2023; 83:2993-3000. [PMID: 37384617 PMCID: PMC10502471 DOI: 10.1158/0008-5472.can-23-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Despite recent advances in molecularly targeted therapies and immunotherapies, the effective treatment of advanced-stage cancers remains a largely unmet clinical need. Identifying driver mechanisms of cancer aggressiveness can lay the groundwork for the development of breakthrough therapeutic strategies. Assembly factor for spindle microtubules (ASPM) was initially identified as a centrosomal protein that regulates neurogenesis and brain size. Mounting evidence has demonstrated the pleiotropic roles of ASPM in mitosis, cell-cycle progression, and DNA double-strand breaks (DSB) repair. Recently, the exon 18-preserved isoform 1 of ASPM has emerged as a critical regulator of cancer stemness and aggressiveness in various malignant tumor types. Here, we describe the domain compositions of ASPM and its transcript variants and overview their expression patterns and prognostic significance in cancers. A summary is provided of recent progress in the molecular elucidation of ASPM as a regulatory hub of development- and stemness-associated signaling pathways, such as the Wnt, Hedgehog, and Notch pathways, and of DNA DSB repair in cancer cells. The review emphasizes the potential utility of ASPM as a cancer-agnostic and pathway-informed prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Byoung-Il Bae
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Technion Integrated Cancer Center, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Wu X, Li Z, Wang ZQ, Xu X. The neurological and non-neurological roles of the primary microcephaly-associated protein ASPM. Front Neurosci 2023; 17:1242448. [PMID: 37599996 PMCID: PMC10436222 DOI: 10.3389/fnins.2023.1242448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Primary microcephaly (MCPH), is a neurological disorder characterized by small brain size that results in numerous developmental problems, including intellectual disability, motor and speech delays, and seizures. Hitherto, over 30 MCPH causing genes (MCPHs) have been identified. Among these MCPHs, MCPH5, which encodes abnormal spindle-like microcephaly-associated protein (ASPM), is the most frequently mutated gene. ASPM regulates mitotic events, cell proliferation, replication stress response, DNA repair, and tumorigenesis. Moreover, using a data mining approach, we have confirmed that high levels of expression of ASPM correlate with poor prognosis in several types of tumors. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer.
Collapse
Affiliation(s)
- Xingxuan Wu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Laboratory of Genome Stability, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Zheng Li
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhao-Qi Wang
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Laboratory of Genome Stability, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
16
|
Prasad T, Iyer S, Chatterjee S, Kumar M. In vivo models to study neurogenesis and associated neurodevelopmental disorders-Microcephaly and autism spectrum disorder. WIREs Mech Dis 2023:e1603. [PMID: 36754084 DOI: 10.1002/wsbm.1603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
The genesis and functioning of the central nervous system are one of the most intricate and intriguing aspects of embryogenesis. The big lacuna in the field of human CNS development is the lack of accessibility of the human brain for direct observation during embryonic and fetal development. Thus, it is imperative to establish alternative animal models to gain deep mechanistic insights into neurodevelopment, establishment of neural circuitry, and its function. Neurodevelopmental events such as neural specification, differentiation, and generation of neuronal and non-neuronal cell types have been comprehensively studied using a variety of animal models and in vitro model systems derived from human cells. The experimentations on animal models have revealed novel, mechanistic insights into neurogenesis, formation of neural networks, and function. The models, thus serve as indispensable tools to understand the molecular basis of neurodevelopmental disorders (NDDs) arising from aberrations during embryonic development. Here, we review the spectrum of in vivo models such as fruitfly, zebrafish, frog, mice, and nonhuman primates to study neurogenesis and NDDs like microcephaly and Autism Spectrum Disorder. We also discuss nonconventional models such as ascidians and the recent technological advances in the field to study neurogenesis, disease mechanisms, and pathophysiology of human NDDs. This article is categorized under: Cancer > Stem Cells and Development Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Tuhina Prasad
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sharada Iyer
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sayoni Chatterjee
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
De la Cruz G, Nikolaishvili Feinberg N, Williams SE. Automated Immunofluorescence Staining for Analysis of Mitotic Stages and Division Orientation in Brain Sections. Methods Mol Biol 2023; 2583:63-79. [PMID: 36418726 DOI: 10.1007/978-1-0716-2752-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microcephaly often results from mitotic defects in neuronal progenitors, frequently by decreasing proliferation rates or shifting cell fates. During neurogenesis, oriented cell division-the molecular control of mitotic spindle positioning to control the axis of division-represents an important mechanism to balance expansion of the progenitor pool with generating cellular diversity. While mostly studied in the context of cortical development, more recently, spindle orientation has emerged as a key player in the formation of other brain regions such as the cerebellum. Here we describe methods to perform automated dual-color fluorescent immunohistochemistry on murine cerebellar sections using the mitotic markers phospho-Histone H3 and Survivin, and detail analytical and statistical approaches to display and compare division orientation datasets.
Collapse
Affiliation(s)
- Gabriela De la Cruz
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pathology Services Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Nikolaishvili Feinberg
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pathology Services Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E Williams
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Eichmüller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol 2022; 18:661-680. [PMID: 36253568 PMCID: PMC9576133 DOI: 10.1038/s41582-022-00723-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
The current understanding of neurological diseases is derived mostly from direct analysis of patients and from animal models of disease. However, most patient studies do not capture the earliest stages of disease development and offer limited opportunities for experimental intervention, so rarely yield complete mechanistic insights. The use of animal models relies on evolutionary conservation of pathways involved in disease and is limited by an inability to recreate human-specific processes. In vitro models that are derived from human pluripotent stem cells cultured in 3D have emerged as a new model system that could bridge the gap between patient studies and animal models. In this Review, we summarize how such organoid models can complement classical approaches to accelerate neurological research. We describe our current understanding of neurodevelopment and how this process differs between humans and other animals, making human-derived models of disease essential. We discuss different methodologies for producing organoids and how organoids can be and have been used to model neurological disorders, including microcephaly, Zika virus infection, Alzheimer disease and other neurodegenerative disorders, and neurodevelopmental diseases, such as Timothy syndrome, Angelman syndrome and tuberous sclerosis. We also discuss the current limitations of organoid models and outline how organoids can be used to revolutionize research into the human brain and neurological diseases.
Collapse
Affiliation(s)
- Oliver L Eichmüller
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- University of Heidelberg, Heidelberg, Germany
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
19
|
Massimo M, Long KR. Orchestrating human neocortex development across the scales; from micro to macro. Semin Cell Dev Biol 2022; 130:24-36. [PMID: 34583893 DOI: 10.1016/j.semcdb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
How our brains have developed to perform the many complex functions that make us human has long remained a question of great interest. Over the last few decades, many scientists from a wide range of fields have tried to answer this question by aiming to uncover the mechanisms that regulate the development of the human neocortex. They have approached this on different scales, focusing microscopically on individual cells all the way up to macroscopically imaging entire brains within living patients. In this review we will summarise these key findings and how they fit together.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
20
|
Abstract
The centrosome, consisting of centrioles and the associated pericentriolar material, is the main microtubule-organizing centre (MTOC) in animal cells. During most of interphase, the two centrosomes of a cell are joined together by centrosome cohesion into one MTOC. The most dominant element of centrosome cohesion is the centrosome linker, an interdigitating, fibrous network formed by the protein C-Nap1 anchoring a number of coiled-coil proteins including rootletin to the proximal end of centrioles. Alternatively, centrosomes can be kept together by the action of the minus end directed kinesin motor protein KIFC3 that works on interdigitating microtubules organized by both centrosomes and probably by the actin network. Although cells connect the two interphase centrosomes by several mechanisms into one MTOC, the general importance of centrosome cohesion, particularly for an organism, is still largely unclear. In this article, we review the functions of the centrosome linker and discuss how centrosome cohesion defects can lead to diseases.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and
| |
Collapse
|
21
|
Fasano G, Compagnucci C, Dallapiccola B, Tartaglia M, Lauri A. Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Front Mol Neurosci 2022; 15:855786. [PMID: 36034498 PMCID: PMC9403253 DOI: 10.3389/fnmol.2022.855786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The variety in the display of animals' cognition, emotions, and behaviors, typical of humans, has its roots within the anterior-most part of the brain: the forebrain, giving rise to the neocortex in mammals. Our understanding of cellular and molecular events instructing the development of this domain and its multiple adaptations within the vertebrate lineage has progressed in the last decade. Expanding and detailing the available knowledge on regionalization, progenitors' behavior and functional sophistication of the forebrain derivatives is also key to generating informative models to improve our characterization of heterogeneous and mechanistically unexplored cortical malformations. Classical and emerging mammalian models are irreplaceable to accurately elucidate mechanisms of stem cells expansion and impairments of cortex development. Nevertheless, alternative systems, allowing a considerable reduction of the burden associated with animal experimentation, are gaining popularity to dissect basic strategies of neural stem cells biology and morphogenesis in health and disease and to speed up preclinical drug testing. Teleost vertebrates such as zebrafish, showing conserved core programs of forebrain development, together with patients-derived in vitro 2D and 3D models, recapitulating more accurately human neurogenesis, are now accepted within translational workflows spanning from genetic analysis to functional investigation. Here, we review the current knowledge of common and divergent mechanisms shaping the forebrain in vertebrates, and causing cortical malformations in humans. We next address the utility, benefits and limitations of whole-brain/organism-based fish models or neuronal ensembles in vitro for translational research to unravel key genes and pathological mechanisms involved in neurodevelopmental diseases.
Collapse
Affiliation(s)
| | | | | | | | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
22
|
Mori M, Tando S, Ogi H, Tonosaki M, Yaoi T, Fujimori A, Itoh K. Loss of abnormal spindle-like, microcephaly-associated (Aspm) disrupts female folliculogenesis in mice during maturation and aging. Reprod Biol 2022; 22:100673. [PMID: 35901620 DOI: 10.1016/j.repbio.2022.100673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/16/2022]
Abstract
The abnormal spindle-like, microcephaly-associated (ASPM) gene is a causative gene of autosomal recessive primary microcephaly (MCPH) 5 in humans, which is characterized by a reduction in brain volume. It was previously reported that truncated Aspm proteins in transgenic mice caused major defects in the germline, a severe reduction in ovary weight and the number of follicles accompanied by reduced fertility. However; it remains unknown whether a loss of Aspm induces abnormal ovarian function, resulting in female infertility. In order to assess the ovary function, we examined vaginal smear cytology from the age of 7 weeks to 100 weeks in CAG-mediated Cre-loxP conditional Aspm-/- knockout mice and control female mice. In addition, we evaluated the ovarian size, fibrosis ratio and the number of follicles (primordial, primary, secondary, antral and atretic follicles) in mice from 15 weeks to 100 weeks old by image analyses. Mann-Whitney U-test was used for statistical analysis. The size of the ovary was significantly reduced in Aspm knockout mice at 15-20 weeks, 40-50 weeks and 70-80 weeks old compared with the control mice. Furthermore, at all stages, we found a severe decrease in the number of developing follicles at 10-15 weeks, 40-50 weeks and 70-80 weeks old, accompanied by disrupted cyclic changes of vaginal cytology and an aberrant upregulation of Foxo3, Kitl, and Lhcgr in Aspm knockout female. These results suggested that Aspm might play an important role in the folliculogenesis and estrous cyclicity of the postnatal ovary during maturation and aging.
Collapse
Affiliation(s)
- Miyuki Mori
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine (KPUM), Graduate School of Medical Science, Kyoto, Japan
| | - So Tando
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine (KPUM), Graduate School of Medical Science, Kyoto, Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine (KPUM), Graduate School of Medical Science, Kyoto, Japan; SCREEN Holdings Co., Ltd. (SCREEN), Kyoto, Japan
| | - Madoka Tonosaki
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine (KPUM), Graduate School of Medical Science, Kyoto, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine (KPUM), Graduate School of Medical Science, Kyoto, Japan
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine (KPUM), Graduate School of Medical Science, Kyoto, Japan.
| |
Collapse
|
23
|
Farcy S, Albert A, Gressens P, Baffet AD, El Ghouzzi V. Cortical Organoids to Model Microcephaly. Cells 2022; 11:2135. [PMID: 35883578 PMCID: PMC9320662 DOI: 10.3390/cells11142135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
How the brain develops and achieves its final size is a fascinating issue that questions cortical evolution across species and man's place in the animal kingdom. Although animal models have so far been highly valuable in understanding the key steps of cortical development, many human specificities call for appropriate models. In particular, microcephaly, a neurodevelopmental disorder that is characterized by a smaller head circumference has been challenging to model in mice, which often do not fully recapitulate the human phenotype. The relatively recent development of brain organoid technology from induced pluripotent stem cells (iPSCs) now makes it possible to model human microcephaly, both due to genetic and environmental origins, and to generate developing cortical tissue from the patients themselves. These 3D tissues rely on iPSCs differentiation into cortical progenitors that self-organize into neuroepithelial rosettes mimicking the earliest stages of human neurogenesis in vitro. Over the last ten years, numerous protocols have been developed to control the identity of the induced brain areas, the reproducibility of the experiments and the longevity of the cultures, allowing analysis of the later stages. In this review, we describe the different approaches that instruct human iPSCs to form cortical organoids, summarize the different microcephalic conditions that have so far been modeled by organoids, and discuss the relevance of this model to decipher the cellular and molecular mechanisms of primary and secondary microcephalies.
Collapse
Affiliation(s)
- Sarah Farcy
- Institut Curie, PSL Research University, CNRS UMR144, F-75005 Paris, France;
| | - Alexandra Albert
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (A.A.); (P.G.)
| | - Pierre Gressens
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (A.A.); (P.G.)
| | - Alexandre D. Baffet
- Institut Curie, PSL Research University, CNRS UMR144, F-75005 Paris, France;
| | - Vincent El Ghouzzi
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (A.A.); (P.G.)
| |
Collapse
|
24
|
Dang H, Martin‐Villalba A, Schiebel E. Centrosome linker protein C-Nap1 maintains stem cells in mouse testes. EMBO Rep 2022; 23:e53805. [PMID: 35599622 PMCID: PMC9253759 DOI: 10.15252/embr.202153805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
The centrosome linker component C-Nap1 (encoded by CEP250) anchors filaments to centrioles that provide centrosome cohesion by connecting the two centrosomes of an interphase cell into a single microtubule organizing unit. The role of the centrosome linker during development of an animal remains enigmatic. Here, we show that male CEP250-/- mice are sterile because sperm production is abolished. Premature centrosome separation means that germ stem cells in CEP250-/- mice fail to establish an E-cadherin polarity mark and are unable to maintain the older mother centrosome on the basal site of the seminiferous tubules. This failure prompts premature stem cell differentiation in expense of germ stem cell expansion. The concomitant induction of apoptosis triggers the complete depletion of germ stem cells and consequently infertility. Our study reveals a role for centrosome cohesion in asymmetric cell division, stem cell maintenance, and fertility.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität HeidelbergDeutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)Universität HeidelbergHeidelbergGermany
| | - Ana Martin‐Villalba
- Deutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität HeidelbergDeutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
| |
Collapse
|
25
|
Kim H, Gao EB, Draper A, Berens NC, Vihma H, Zhang X, Higashi-Howard A, Ritola KD, Simon JM, Kennedy AJ, Philpot BD. Rescue of behavioral and electrophysiological phenotypes in a Pitt-Hopkins syndrome mouse model by genetic restoration of Tcf4 expression. eLife 2022; 11:e72290. [PMID: 35535852 PMCID: PMC9090324 DOI: 10.7554/elife.72290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by monoallelic mutation or deletion in the transcription factor 4 (TCF4) gene. Individuals with PTHS typically present in the first year of life with developmental delay and exhibit intellectual disability, lack of speech, and motor incoordination. There are no effective treatments available for PTHS, but the root cause of the disorder, TCF4 haploinsufficiency, suggests that it could be treated by normalizing TCF4 gene expression. Here, we performed proof-of-concept viral gene therapy experiments using a conditional Tcf4 mouse model of PTHS and found that postnatally reinstating Tcf4 expression in neurons improved anxiety-like behavior, activity levels, innate behaviors, and memory. Postnatal reinstatement also partially corrected EEG abnormalities, which we characterized here for the first time, and the expression of key TCF4-regulated genes. Our results support a genetic normalization approach as a treatment strategy for PTHS, and possibly other TCF4-linked disorders.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Eric B Gao
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Adam Draper
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Noah C Berens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Hanna Vihma
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Xinyuan Zhang
- Department of Chemistry and Biochemistry, Bates College, Lewiston, United States
| | | | | | - Jeremy M Simon
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hil, Chapel Hill, United States
| | - Andrew J Kennedy
- Department of Chemistry and Biochemistry, Bates College, Lewiston, United States
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hil, Chapel Hill, United States
| |
Collapse
|
26
|
Bölicke N, Albert M. Polycomb-mediated gene regulation in human brain development and neurodevelopmental disorders. Dev Neurobiol 2022; 82:345-363. [PMID: 35384339 DOI: 10.1002/dneu.22876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
The neocortex is considered the seat of higher cognitive function in humans. It develops from a sheet of neural progenitor cells, most of which eventually give rise to neurons. This process of cell fate determination is controlled by precise temporal and spatial gene expression patterns that in turn are affected by epigenetic mechanisms including Polycomb group (PcG) regulation. PcG proteins assemble in multiprotein complexes and catalyze repressive posttranslational histone modifications. Their association with neurodevelopmental disease and various types of cancer of the central nervous system, as well as observations in mouse models, has implicated these epigenetic modifiers in controlling various stages of cortex development. The precise mechanisms conveying PcG-associated transcriptional repression remain incompletely understood and are an active field of research. PcG activity appears to be highly context-specific, raising the question of species-specific differences in the regulation of neural stem and progenitor regulation. In this review, we will discuss our growing understanding of how PcG regulation affects human cortex development, based on studies in murine model systems, but focusing mostly on findings obtained from examining impaired PcG activity in the context of human neurodevelopmental disorders and cancer. Furthermore, we will highlight relevant experimental approaches for functional investigations of PcG regulation in human cortex development.
Collapse
Affiliation(s)
- Nora Bölicke
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
27
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
28
|
Zaqout S, Kaindl AM. Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Front Cell Dev Biol 2022; 9:784700. [PMID: 35111754 PMCID: PMC8802810 DOI: 10.3389/fcell.2021.784700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Microcephaly or reduced head circumference results from a multitude of abnormal developmental processes affecting brain growth and/or leading to brain atrophy. Autosomal recessive primary microcephaly (MCPH) is the prototype of isolated primary (congenital) microcephaly, affecting predominantly the cerebral cortex. For MCPH, an accelerating number of mutated genes emerge annually, and they are involved in crucial steps of neurogenesis. In this review article, we provide a deeper look into the microcephalic MCPH brain. We explore cytoarchitecture focusing on the cerebral cortex and discuss diverse processes occurring at the level of neural progenitors, early generated and mature neurons, and glial cells. We aim to thereby give an overview of current knowledge in MCPH phenotype and normal brain growth.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Angela M. Kaindl
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Lu X, Yang J, Xiang Y. Modeling human neurodevelopmental diseases with brain organoids. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:1. [PMID: 34982276 PMCID: PMC8727646 DOI: 10.1186/s13619-021-00103-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/24/2021] [Indexed: 04/25/2023]
Abstract
Studying the etiology of human neurodevelopmental diseases has long been a challenging task due to the brain's complexity and its limited accessibility. Human pluripotent stem cells (hPSCs)-derived brain organoids are capable of recapitulating various features and functionalities of the human brain, allowing the investigation of intricate pathogenesis of developmental abnormalities. Over the past years, brain organoids have facilitated identifying disease-associated phenotypes and underlying mechanisms for human neurodevelopmental diseases. Integrating with more cutting-edge technologies, particularly gene editing, brain organoids further empower human disease modeling. Here, we review the latest progress in modeling human neurodevelopmental disorders with brain organoids.
Collapse
Affiliation(s)
- Xiaoxiang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiajie Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
30
|
Naqvi SF, Shabbir RMK, Tolun A, Basit S, Malik S. A Two-Base Pair Deletion in IQ Repeats in ASPM Underlies Microcephaly in a Pakistani Family. Genet Test Mol Biomarkers 2022; 26:37-42. [PMID: 35089071 DOI: 10.1089/gtmb.2021.0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aims: Autosomal recessive primary microcephaly (MCPH) is a clinically rare and genetically highly heterogeneous developmental disorder. Biallelic variants in the abnormal spindle-like microcephaly-associated (ASPM) gene account for 40% to 68% of all MCPH cases. This study was designed to elucidate the genetic basis of MCPH in an extended family. To highlight recurrent mutations useful in implementing genetic testing programs, we further aimed to carry out a descriptive review of the reported ASPM mutations. Materials and Methods: A large inbred kindred with seven affected members was investigated, and detailed clinical and behavioral assessments were carried out. Single nucleotide polymorphism (SNP)-based homozygosity mapping and exome sequencing were performed. Results: Affected individuals had characteristic features, including small head, receding forehead, mild to moderate intellectual disability, developmental delay, short stature, apraxia, and behavioral anomalies. We mapped the disease gene locus and detected a rare frameshift deletion c.6854_6855del (p.(Leu2285GlnfsTer32)) in exon 18 of ASPM. A total of 215 mutations in ASPM have been reported in at least 453 families, nearly 50% of which are of Pakistani origin. These mutations can be classified as recurrent, founder or private in Pakistani and other populations. Conclusion: SNP-based homozygosity mapping and exome sequencing are essential in delineating the genetically distinct microcephaly types. The highlighted recurrent mutations in ASPM could be useful in implementing genetic testing programs for MCPH.
Collapse
Affiliation(s)
- Syeda Farwa Naqvi
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rana Muhammad Kamran Shabbir
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aslıhan Tolun
- Department of Molecular Biology and Genetics, MOBGAM, Istanbul Technical University, Istanbul, Turkey
| | - Sulman Basit
- Department of Biochemistry, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Kingdom of Saudi Arabia
| | - Sajid Malik
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
31
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
32
|
Iegiani G, Di Cunto F, Pallavicini G. Inhibiting microcephaly genes as alternative to microtubule targeting agents to treat brain tumors. Cell Death Dis 2021; 12:956. [PMID: 34663805 PMCID: PMC8523548 DOI: 10.1038/s41419-021-04259-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
Medulloblastoma (MB) and gliomas are the most frequent high-grade brain tumors (HGBT) in children and adulthood, respectively. The general treatment for these tumors consists in surgery, followed by radiotherapy and chemotherapy. Despite the improvement in patient survival, these therapies are only partially effective, and many patients still die. In the last decades, microtubules have emerged as interesting molecular targets for HGBT, as various microtubule targeting agents (MTAs) have been developed and tested pre-clinically and clinically with encouraging results. Nevertheless, these treatments produce relevant side effects since they target microtubules in normal as well as in cancerous cells. A possible strategy to overcome this toxicity could be to target proteins that control microtubule dynamics but are required by HGBT cells much more than in normal cell types. The genes mutated in primary hereditary microcephaly (MCPH) are ubiquitously expressed in proliferating cells, but under normal conditions are selectively required during brain development, in neural progenitors. There is evidence that MB and glioma cells share molecular profiles with progenitors of cerebellar granules and of cortical radial glia cells, in which MCPH gene functions are fundamental. Moreover, several studies indicate that MCPH genes are required for HGBT expansion. Among the 25 known MCPH genes, we focus this review on KNL1, ASPM, CENPE, CITK and KIF14, which have been found to control microtubule stability during cell division. We summarize the current knowledge about the molecular basis of their interaction with microtubules. Moreover, we will discuss data that suggest these genes are promising candidates as HGBT-specific targets.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy.
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy.
| |
Collapse
|
33
|
Abstract
The human brain is characterized by the large size and intricate folding of its cerebral cortex, which are fundamental for our higher cognitive function and frequently altered in pathological dysfunction. Cortex folding is not unique to humans, nor even to primates, but is common across mammals. Cortical growth and folding are the result of complex developmental processes that involve neural stem and progenitor cells and their cellular lineages, the migration and differentiation of neurons, and the genetic programs that regulate and fine-tune these processes. All these factors combined generate mechanical stress and strain on the developing neural tissue, which ultimately drives orderly cortical deformation and folding. In this review we examine and summarize the current knowledge on the molecular, cellular, histogenic and mechanical mechanisms that are involved in and influence folding of the cerebral cortex, and how they emerged and changed during mammalian evolution. We discuss the main types of pathological malformations of human cortex folding, their specific developmental origin, and how investigating their genetic causes has illuminated our understanding of key events involved. We close our review by presenting the state-of-the-art animal and in vitro models of cortex folding that are currently used to study these devastating developmental brain disorders in children, and what are the main challenges that remain ahead of us to fully understand brain folding.
Collapse
Affiliation(s)
- Lucia Del Valle Anton
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| | - Victor Borrell
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
34
|
Libé-Philippot B, Vanderhaeghen P. Cellular and Molecular Mechanisms Linking Human Cortical Development and Evolution. Annu Rev Genet 2021; 55:555-581. [PMID: 34535062 DOI: 10.1146/annurev-genet-071719-020705] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cerebral cortex is at the core of brain functions that are thought to be particularly developed in the human species. Human cortex specificities stem from divergent features of corticogenesis, leading to increased cortical size and complexity. Underlying cellular mechanisms include prolonged patterns of neuronal generation and maturation, as well as the amplification of specific types of stem/progenitor cells. While the gene regulatory networks of corticogenesis appear to be largely conserved among all mammals including humans, they have evolved in primates, particularly in the human species, through the emergence of rapidly divergent transcriptional regulatory elements, as well as recently duplicated novel genes. These human-specific molecular features together control key cellular milestones of human corticogenesis and are often affected in neurodevelopmental disorders, thus linking human neural development, evolution, and diseases. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
35
|
Xu J, Wen Z. Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells Int 2021; 2021:5902824. [PMID: 34539790 PMCID: PMC8448601 DOI: 10.1155/2021/5902824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
With the rapid development of stem cell technology, the advent of three-dimensional (3D) cultured brain organoids has opened a new avenue for studying human neurodevelopment and neurological disorders. Brain organoids are stem-cell-derived 3D suspension cultures that self-assemble into an organized structure with cell types and cytoarchitectures recapitulating the developing brain. In recent years, brain organoids have been utilized in various aspects, ranging from basic biology studies, to disease modeling, and high-throughput screening of pharmaceutical compounds. In this review, we overview the establishment and development of brain organoid technology, its recent progress, and translational applications, as well as existing limitations and future directions.
Collapse
Affiliation(s)
- Jie Xu
- The Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
36
|
Zhang H, Yang X, Zhu L, Li Z, Zuo P, Wang P, Feng J, Mi Y, Zhang C, Xu Y, Jin G, Zhang J, Ye H. ASPM promotes hepatocellular carcinoma progression by activating Wnt/β-catenin signaling through antagonizing autophagy-mediated Dvl2 degradation. FEBS Open Bio 2021; 11:2784-2799. [PMID: 34428354 PMCID: PMC8487047 DOI: 10.1002/2211-5463.13278] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal cancers worldwide. In this article, we show that expression of abnormal spindle‐like microcephaly‐associated protein (ASPM) is up‐regulated in liver cancer samples, and this up‐regulation is significantly associated with tumor aggressiveness and reduced survival times of patients. Down‐regulation of ASPM expression inhibits the proliferation, invasion, migration and epithelial‐to‐mesenchymal transition of HCC cells in vitro and inhibits tumor formation in nude mice. ASPM interacts with disheveled‐2 (Dvl2) and antagonizes autophagy‐mediated Dvl2 degradation by weakening the functional interaction between Dvl2 and the lipidated form of microtubule‐associated proteins 1A/1B light chain 3A (LC3II), thereby increasing Dvl2 protein abundance and leading to Wnt/β‐catenin signaling activation in HCC cells. Thus, our results define ASPM as a novel oncoprotein in HCC and indicate that disruption of the Wnt–ASPM–Dvl2–β‐catenin signaling axis might have potential clinical value.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Xiaobei Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Lili Zhu
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Zhihui Li
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Peipei Zuo
- Academy of Medical Sciences, Zhengzhou University, China
| | - Peng Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, China
| | - Jingyu Feng
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Yang Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Chengjuan Zhang
- Center of Repository, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Yan Xu
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Ge Jin
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | | | - Hua Ye
- College of Public Health, Zhengzhou University, China
| |
Collapse
|
37
|
González-Martínez J, Cwetsch AW, Martínez-Alonso D, López-Sainz LR, Almagro J, Melati A, Gómez J, Pérez-Martínez M, Megías D, Boskovic J, Gilabert-Juan J, Graña-Castro O, Pierani A, Behrens A, Ortega S, Malumbres M. Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias. JCI Insight 2021; 6:e146364. [PMID: 34237032 PMCID: PMC8409993 DOI: 10.1172/jci.insight.146364] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that — whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development — lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.
Collapse
Affiliation(s)
- José González-Martínez
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Andrzej W Cwetsch
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Imagine Institute of Genetic Diseases, University of Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris, INSERM U-1266, University of Paris, Paris, France
| | - Diego Martínez-Alonso
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Luis R López-Sainz
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna Melati
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | - Javier Gilabert-Juan
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,University of Paris, NeuroDiderot, Inserm, Paris, France
| | | | - Alessandra Pierani
- Imagine Institute of Genetic Diseases, University of Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris, INSERM U-1266, University of Paris, Paris, France
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,Faculty of Life Sciences, King's College London, Guy's Campus, London, United Kingdom
| | | | - Marcos Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
38
|
Dotan A, Kanduc D, Muller S, Makatsariya A, Shoenfeld Y. Molecular mimicry between SARS-CoV-2 and the female reproductive system. Am J Reprod Immunol 2021; 86:e13494. [PMID: 34407240 PMCID: PMC8420155 DOI: 10.1111/aji.13494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Oogenesis, the process of egg production by the ovary, involves a complex differentiation program leading to the production of functional oocytes. This process comprises a sequential pathway of steps that are finely regulated. The question related to SARS‐CoV‐2 infection and fertility has been evoked for several reasons, including the mechanism of molecular mimicry, which may contribute to female infertility by leading to the generation of deleterious autoantibodies, possibly contributing to the onset of an autoimmune disease in infected patients. Objective The immunological potential of the peptides shared between SARS‐CoV‐2 spike glycoprotein and oogenesis‐related proteins; Thus we planned a systematic study to improve our understanding of the possible effects of SARS‐CoV‐2 infection on female fertility using the angle of molecular mimicry as a starting point. Methods A library of 82 human proteins linked to oogenesis was assembled at random from UniProtKB database using oogenesis, uterine receptivity, decidualization, and placentation as a key words. For the analyses, an artificial polyprotein was built by joining the 82 a sequences of the oogenesis‐associated proteins. These were analyzed by searching the Immune Epitope DataBase for immunoreactive SARS‐CoV‐2 spike glycoprotein epitopes hosting the shared pentapeptides. Results SARS‐CoV‐2 spike glycoprotein was found to share 41 minimal immune determinants, that is, pentapeptides, with 27 human proteins that relate to oogenesis, uterine receptivity, decidualization, and placentation. All the shared pentapeptides that we identified, with the exception of four, are also present in SARS‐CoV‐2 spike glycoprotein–derived epitopes that have been experimentally validated as immunoreactive.
Collapse
Affiliation(s)
- Arad Dotan
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sylviane Muller
- CNRS-Strasbourg University Unit Biotechnology and Cell signaling/ Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France.,Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France.,Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.,University of Strasbourg Institute for Advanced Study, Strasbourg, France
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,President of Ariel University, Ariel, Israel.,Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| |
Collapse
|
39
|
Ferreira CER, Campos GS, Schmidt PI, Sollero BP, Goularte KL, Corcini CD, Gasperin BG, Lucia T, Boligon AA, Cardoso FF. Genome-wide association and genomic prediction for scrotal circumference in Hereford and Braford bulls. Theriogenology 2021; 172:268-280. [PMID: 34303226 DOI: 10.1016/j.theriogenology.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
Scrotal circumference (SC) is widely used as a selection criterion for bulls in breeding programs, since it is easily assessed and correlated with several desirable reproductive traits. The objectives of this study were: to perform a genome-wide association study (GWAS) to identify genomic regions associated with SC adjusted for age (SCa) and for both age and weight (SCaw); to select Tag SNPs from GWAS to construct low-density panel for genomic prediction; and to compare the prediction accuracy of the SC through different methods for Braford and Hereford bulls from the same genetic breeding program. Data of SC from 18,172 bulls (30.4 ± 3.7 cm) and of genotypes from 131 sires and 3,545 animals were used. From GWAS, the top 1% of 1-Mb windows were observed on chromosome (BTA) 2, 20, 7, 8, 15, 3, 16, 27, 6 and 8 for SCa and on BTA 8, 15, 16, 21, 19, 2, 6, 5 and 10 for SCaw, representing 17.4% and 18.8% of the additive genetic variance of SCa and SCaw, respectively. The MeSH analysis was able to translate genomic information providing biological meanings of more specific gene functions related to the SCa and SCaw. The genomic enhancement methods, especially single step GBLUP, that combined phenotype and pedigree data with direct genomic values generated gains in accuracy in relation to pedigree BLUP, suggesting that genomic predictions should be applied to improve genetic gain and to narrow the generation interval compared to traditional methods. The proposed Tag-SNP panels may be useful for lower-cost commercial genomic prediction applications in the future, when the number of bulls in the reference population increases for SC in Hereford and Braford breeds.
Collapse
Affiliation(s)
- Carlos E R Ferreira
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Gabriel S Campos
- Departamento de Zootecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Patricia I Schmidt
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual de São Paulo, Jaboticabal, SP, Brazil
| | | | - Karina L Goularte
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carine D Corcini
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bernardo G Gasperin
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thomaz Lucia
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Arione A Boligon
- Departamento de Zootecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernando F Cardoso
- Departamento de Zootecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil; Embrapa Pecuária Sul, Bagé, RS, Brazil
| |
Collapse
|
40
|
Qi F, Zhou J. Multifaceted roles of centrosomes in development, health, and disease. J Mol Cell Biol 2021; 13:611-621. [PMID: 34264337 PMCID: PMC8648388 DOI: 10.1093/jmcb/mjab041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
The centrosome is a membrane-less organelle consisting of a pair of barrel-shaped centrioles and pericentriolar material and functions as the major microtubule-organizing center and signaling hub in animal cells. The past decades have witnessed the functional complexity and importance of centrosomes in various cellular processes such as cell shaping, division, and migration. In addition, centrosome abnormalities are linked to a wide range of human diseases and pathological states, such as cancer, reproductive disorder, brain disease, and ciliopathies. Herein, we discuss various functions of centrosomes in development and health, with an emphasis on their roles in germ cells, stem cells, and immune responses. We also discuss how centrosome dysfunctions are involved in diseases. A better understanding of the mechanisms regulating centrosome functions may lead the way to potential therapeutic targeting of this organelle in disease treatment.
Collapse
Affiliation(s)
- Feifei Qi
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| |
Collapse
|
41
|
Daura E, Tegelberg S, Yoshihara M, Jackson C, Simonetti F, Aksentjeff K, Ezer S, Hakala P, Katayama S, Kere J, Lehesjoki AE, Joensuu T. Cystatin B-deficiency triggers ectopic histone H3 tail cleavage during neurogenesis. Neurobiol Dis 2021; 156:105418. [PMID: 34102276 DOI: 10.1016/j.nbd.2021.105418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Cystatin B (CSTB) acts as an inhibitor of cysteine proteases of the cathepsin family and loss-of-function mutations result in human brain diseases with a genotype-phenotype correlation. In the most severe case, CSTB-deficiency disrupts brain development, and yet the molecular basis of this mechanism is missing. Here, we establish CSTB as a regulator of chromatin structure during neural stem cell renewal and differentiation. Murine neural precursor cells (NPCs) undergo transient proteolytic cleavage of the N-terminal histone H3 tail by cathepsins B and L upon induction of differentiation into neurons and glia. In contrast, CSTB-deficiency triggers premature H3 tail cleavage in undifferentiated self-renewing NPCs and sustained H3 tail proteolysis in differentiating neural cells. This leads to significant transcriptional changes in NPCs, particularly of nuclear-encoded mitochondrial genes. In turn, these transcriptional alterations impair the enhanced mitochondrial respiration that is induced upon neural stem cell differentiation. Collectively, our findings reveal the basis of epigenetic regulation in the molecular pathogenesis of CSTB deficiency.
Collapse
Affiliation(s)
- Eduard Daura
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Saara Tegelberg
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Christopher Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Francesca Simonetti
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Katri Aksentjeff
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Sini Ezer
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Paula Hakala
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Shintaro Katayama
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Juha Kere
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Tarja Joensuu
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
42
|
Shohayeb B, Muzar Z, Cooper HM. Conservation of neural progenitor identity and the emergence of neocortical neuronal diversity. Semin Cell Dev Biol 2021; 118:4-13. [PMID: 34083116 DOI: 10.1016/j.semcdb.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
One paramount challenge for neuroscientists over the past century has been to identify the embryonic origins of the enormous diversity of cortical neurons found in the adult human neocortex and to unravel the developmental processes governing their emergence. In all mammals, including humans, the radial glia lining the ventricles of the embryonic telencephalon, more recently reclassified as apical radial glia (aRGs), have been identified as the neural progenitors giving rise to all excitatory neurons and inhibitory interneurons of the six-layered cortex. In this review, we explore the fundamental molecular and cellular mechanisms that regulate aRG function and the generation of neuronal diversity in the dorsal telencephalon. We survey the key structural features essential for the retention of the highly polarized aRG morphology and therefore impose aRG identity after cytokinesis. We discuss how these structures and associated molecular signaling complexes influence aRG proliferative capacity and the decision to undergo proliferative self-renewing symmetric or neurogenic asymmetric divisions. We also explore the intriguing and complex question of how the extensive neuronal diversity within the adult neocortex arises from the small aRG population located within the cortical proliferative zone. We further highlight the recent clonal lineage tracing and single-cell transcriptomic profiling studies providing compelling evidence that individual neuronal identity emerges as a consequence of exposure to temporally regulated extrinsic cues which coordinate waves of transcriptional activity that evolve over time to drive neuronal commitment and maturation.
Collapse
Affiliation(s)
- Belal Shohayeb
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia.
| | - Zukhrofi Muzar
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia
| | - Helen M Cooper
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
43
|
Ho UY, Feng CWA, Yeap YY, Bain AL, Wei Z, Shohayeb B, Reichelt ME, Homer H, Khanna KK, Bowles J, Ng DCH. WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis. Commun Biol 2021; 4:645. [PMID: 34059773 PMCID: PMC8167107 DOI: 10.1038/s42003-021-02171-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
WDR62 is a scaffold protein involved in centriole duplication and spindle assembly during mitosis. Mutations in WDR62 can cause primary microcephaly and premature ovarian insufficiency. We have generated a genetrap mouse model deficient in WDR62 and characterised the developmental effects of WDR62 deficiency during meiosis in the testis. We have found that WDR62 deficiency leads to centriole underduplication in the spermatocytes due to reduced or delayed CEP63 accumulation in the pericentriolar matrix. This resulted in prolonged metaphase that led to apoptosis. Round spermatids that inherited a pair of centrioles progressed through spermiogenesis, however, manchette removal was delayed in WDR62 deficient spermatids due to delayed Katanin p80 accumulation in the manchette, thus producing misshapen spermatid heads with elongated manchettes. In mice, WDR62 deficiency resembles oligoasthenoteratospermia, a common form of subfertility in men that is characterised by low sperm counts, poor motility and abnormal morphology. Therefore, proper WDR62 function is necessary for timely spermatogenesis and spermiogenesis during male reproduction. Uda Ho et al find that loss of centriolar scaffold protein WDR62 in mouse testis leads to defects in spermatogenesis. They find that WDR62 deficiency leads to centriole underduplication in spermatocytes and delayed manchette removal in spermatids due to delayed Katanin p80 accumulation.
Collapse
Affiliation(s)
- Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Chun-Wei Allen Feng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Y Yeap
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda L Bain
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Zhe Wei
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hayden Homer
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
44
|
Bose R, Banerjee S, Dunbar GL. Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:640212. [PMID: 34041235 PMCID: PMC8141848 DOI: 10.3389/fcell.2021.640212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 11/15/2022] Open
Abstract
Modeling neurological disorders is challenging because they often have both endogenous and exogenous causes. Brain organoids consist of three-dimensional (3D) self-organizing brain tissue which increasingly is being used to model various aspects of brain development and disorders, such as the generation of neurons, neuronal migration, and functional networks. These organoids have been recognized as important in vitro tools to model developmental features of the brain, including neurological disorders, which can provide insights into the molecular mechanisms involved in those disorders. In this review, we describe recent advances in the generation of two-dimensional (2D), 3D, and blood-brain barrier models that were derived from induced pluripotent stem cells (iPSCs) and we discuss their advantages and limitations in modeling diseases, as well as explore the development of a vascularized and functional 3D model of brain processes. This review also examines the applications of brain organoids for modeling major neurodegenerative diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Raj Bose
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Soumyabrata Banerjee
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Gary L. Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute, Ascension St. Mary's, Saginaw, MI, United States
| |
Collapse
|
45
|
Siskos N, Stylianopoulou E, Skavdis G, Grigoriou ME. Molecular Genetics of Microcephaly Primary Hereditary: An Overview. Brain Sci 2021; 11:brainsci11050581. [PMID: 33946187 PMCID: PMC8145766 DOI: 10.3390/brainsci11050581] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate.
Collapse
|
46
|
Ezan J, Moreau MM, Mamo TM, Shimbo M, Decroo M, Richter M, Peyroutou R, Rachel R, Tissir F, de Anda FC, Sans N, Montcouquiol M. Early loss of Scribble affects cortical development, interhemispheric connectivity and psychomotor activity. Sci Rep 2021; 11:9106. [PMID: 33907211 PMCID: PMC8079449 DOI: 10.1038/s41598-021-88147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/01/2021] [Indexed: 12/03/2022] Open
Abstract
Neurodevelopmental disorders arise from combined defects in processes including cell proliferation, differentiation, migration and commissure formation. The evolutionarily conserved tumor-suppressor protein Scribble (Scrib) serves as a nexus to transduce signals for the establishment of apicobasal and planar cell polarity during these processes. Human SCRIB gene mutations are associated with neural tube defects and this gene is located in the minimal critical region deleted in the rare Verheij syndrome. In this study, we generated brain-specific conditional cKO mouse mutants and assessed the impact of the Scrib deletion on brain morphogenesis and behavior. We showed that embryonic deletion of Scrib in the telencephalon leads to cortical thickness reduction (microcephaly) and partial corpus callosum and hippocampal commissure agenesis. We correlated these phenotypes with a disruption in various developmental mechanisms of corticogenesis including neurogenesis, neuronal migration and axonal connectivity. Finally, we show that Scrib cKO mice have psychomotor deficits such as locomotor activity impairment and memory alterations. Altogether, our results show that Scrib is essential for early brain development due to its role in several developmental cellular mechanisms that could underlie some of the deficits observed in complex neurodevelopmental pathologies.
Collapse
Affiliation(s)
- Jerome Ezan
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France.
| | - Maité M Moreau
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Tamrat M Mamo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Miki Shimbo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Maureen Decroo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Melanie Richter
- Germany Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronan Peyroutou
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Rivka Rachel
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Fadel Tissir
- Developmental Neurobiology Group, Institute of Neuroscience, University of Louvain, Avenue Mounier 73, Box B1.73.16, 1200, Brussels, Belgium
| | - Froylan Calderon de Anda
- Germany Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Sans
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Mireille Montcouquiol
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France.
| |
Collapse
|
47
|
Lindhout FW, Portegies S, Kooistra R, Herstel LJ, Stucchi R, Hummel JJA, Scheefhals N, Katrukha EA, Altelaar M, MacGillavry HD, Wierenga CJ, Hoogenraad CC. Centrosome-mediated microtubule remodeling during axon formation in human iPSC-derived neurons. EMBO J 2021; 40:e106798. [PMID: 33835529 PMCID: PMC8126955 DOI: 10.15252/embj.2020106798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Axon formation critically relies on local microtubule remodeling and marks the first step in establishing neuronal polarity. However, the function of the microtubule‐organizing centrosomes during the onset of axon formation is still under debate. Here, we demonstrate that centrosomes play an essential role in controlling axon formation in human‐induced pluripotent stem cell (iPSC)‐derived neurons. Depleting centrioles, the core components of centrosomes, in unpolarized human neuronal stem cells results in various axon developmental defects at later stages, including immature action potential firing, mislocalization of axonal microtubule‐associated Trim46 proteins, suppressed expression of growth cone proteins, and affected growth cone morphologies. Live‐cell imaging of microtubules reveals that centriole loss impairs axonal microtubule reorganization toward the unique parallel plus‐end out microtubule bundles during early development. We propose that centrosomes mediate microtubule remodeling during early axon development in human iPSC‐derived neurons, thereby laying the foundation for further axon development and function.
Collapse
Affiliation(s)
- Feline W Lindhout
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sybren Portegies
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Robbelien Kooistra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Lotte J Herstel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jessica J A Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nicky Scheefhals
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Department of Neuroscience, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
48
|
Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol 2021; 142:477-530. [PMID: 33706925 PMCID: PMC8363060 DOI: 10.1016/bs.ctdb.2020.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human brain development is an intricate process that involves precisely timed coordination of cell proliferation, fate specification, neuronal differentiation, migration, and integration of diverse cell types. Understanding of these fundamental processes, however, has been largely constrained by limited access to fetal brain tissue and the inability to prospectively study neurodevelopment in humans at the molecular, cellular and system levels. Although non-human model organisms have provided important insights into mechanisms underlying brain development, these systems do not fully recapitulate many human-specific features that often relate to disease. To address these challenges, human brain organoids, self-assembled three-dimensional neural aggregates, have been engineered from human pluripotent stem cells to model the architecture and cellular diversity of the developing human brain. Recent advancements in neural induction and regional patterning using small molecules and growth factors have yielded protocols for generating brain organoids that recapitulate the structure and neuronal composition of distinct brain regions. Here, we first provide an overview of early mammalian brain development with an emphasis on molecular cues that guide region specification. We then focus on recent efforts in generating human brain organoids that model the development of specific brain regions and highlight endeavors to enhance the cellular complexity to better mimic the in vivo developing human brain. We also provide examples of how organoid models have enhanced our understanding of human neurological diseases and conclude by discussing limitations of brain organoids with our perspectives on future advancements to maximize their potential.
Collapse
Affiliation(s)
- Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan G Schnoll
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
49
|
Wu J, He Z, Zhu Y, Jiang C, Deng Y, Wei B. ASPM Predicts Poor Clinical Outcome and Promotes Tumorigenesis for Diffuse Large B-cell Lymphoma. Curr Cancer Drug Targets 2021; 21:80-89. [PMID: 32933462 DOI: 10.2174/1568009620666200915090703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Abnormal spindle-like microcephaly-associated protein (ASPM) has been implicated in the aggressive behavior of several malignant tumors. However, its potential effects on diffuse large B-cell lymphoma (DLBCL) still remain unknown. METHODS ASPM levels were determined by immunohistochemically in DLBCL tissues from 54 patients and 15 reactive lymphoid hyperplasia (RLH) tissues as control, and its association with clinical features and overall survival were evaluated. The effects of ASPM on cell growth, cell apoptosis and cell cycle of DLBCL cells were assessed. Bioinformatics, quantitative RT-PCR and western blotting were conducted for mechanic investigation. RESULTS ASPM expression was upregulated in DLBCL tissues compared with RLH tissues. Its high expression was correlated with inferior clinicopathological characteristics and poor outcomes of DLBCL patients. Multivariate analysis revealed that high ASPM expression emerged as an independent factor for poor prognosis. In DLBCL cell lines, silencing of ASPM suppressed cell growth, induced cell apoptosis and arrested the cell cycle. Mechanically, effects of ASPM knockdown on DLBCL cells were partially dependent on its block of the Wnt/β-catenin pathway. CONCLUSION Collectively, our results suggested that ASPM potentially served as a predictive biomarker of DLCBL tumorigenesis and prognosis, representing a potential therapeutic target for DLCBL.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Zhengmei He
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Chao Jiang
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Yuan Deng
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Bin Wei
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| |
Collapse
|
50
|
Nam KH, Yi SA, Jang HJ, Han JW, Lee J. In vitro modeling for inherited neurological diseases using induced pluripotent stem cells: from 2D to organoid. Arch Pharm Res 2020; 43:877-889. [PMID: 32761309 DOI: 10.1007/s12272-020-01260-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Stem cells are characterized by self-renewal and by their ability to differentiate into cells of various organs. With massive progress in 2D and 3D cell culture techniques, in vitro generation of various types of such organoids from patient-derived stem cells is now possible. As in vitro differentiation protocols are usually made to resemble human developmental processes, organogenesis of patient-derived stem cells can provide key information regarding a range of developmental diseases. Human stem cell-based in vitro modeling as opposed to using animal models can particularly benefit the evaluation of neurological diseases because of significant differences in structure and developmental processes between the human and the animal brain. This review focuses on stem cell-based in vitro modeling of neurodevelopmental disorders, more specifically, the fundamentals and technical advancements in monolayer neuron and brain organoid cultures. Furthermore, we discuss the drawbacks of the conventional culture method and explore the advanced, cutting edge 3D organoid models for several neurodevelopmental diseases, including genetic diseases such as Down syndrome, Rett syndrome, and Miller-Dieker syndrome, as well as brain malformations like macrocephaly and microcephaly. Finally, we discuss the limitations of the current organoid techniques and some potential solutions that pave the way for accurate modeling of neurological disorders in a dish.
Collapse
Affiliation(s)
- Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Ji Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Imnewrun Biosciences Inc., Suwon, 16419, Republic of Korea.
| |
Collapse
|