1
|
Miller J, Perrier Q, Rengaraj A, Bowlby J, Byers L, Peveri E, Jeong W, Ritchey T, Gambelli AM, Rossi A, Calafiore R, Tomei A, Orlando G, Asthana A. State of the Art of Bioengineering Approaches in Beta-Cell Replacement. CURRENT TRANSPLANTATION REPORTS 2025; 12:17. [PMID: 40342868 PMCID: PMC12055624 DOI: 10.1007/s40472-025-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/11/2025]
Abstract
Purpose of the Review Despite recent advancements in technology for the treatment of type 1 diabetes (T1D), exogenous insulin delivery through automated devices remains the gold standard for treatment. This review will explore progress made in pancreatic islet bioengineering within the field of beta-cell replacement for T1D treatment. Recent Findings First, we will focus on the use of decellularized extracellular matrices (dECM) as a platform for pancreatic organoid development. These matrices preserve microarchitecture and essential biochemical signals for cell differentiation, offering a promising alternative to synthetic matrices. Second, advancements in 3D bioprinting for creating complex organ structures like pancreatic islets will be discussed. This technology allows for increased precision and customization of cellular models, crucial for replicating native pancreatic islet functionality. Finally, this review will explore the use of stem cell-derived organoids to generate insulin-producing islet-like cells. While these organoids face challenges such as functional immaturity and poor vascularization, they represent a significant advancement for disease modeling, drug screening, and autologous islet transplantation. Summary These innovative approaches promise to revolutionize T1D treatment by overcoming the limitations of traditional therapies based on human pancreatic islets.
Collapse
Affiliation(s)
- Jake Miller
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Quentin Perrier
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
- Univ. Grenoble Alpes, Department of Pharmacy, Grenoble Alpes University Hospital, Grenoble, France
| | - Arunkumar Rengaraj
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Joshua Bowlby
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Lori Byers
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Emma Peveri
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Thomas Ritchey
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | | | - Arianna Rossi
- Department of Engineering, University of Perugia, Perugia, Italy
| | | | - Alice Tomei
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Amish Asthana
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| |
Collapse
|
2
|
Kataki AD, Gupta PG, Cheema U, Nisbet A, Wang Y, Kocher HM, Pérez-Mancera PA, Velliou EG. Mapping Tumor-Stroma-ECM Interactions in Spatially Advanced 3D Models of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16708-16724. [PMID: 40052705 PMCID: PMC11931495 DOI: 10.1021/acsami.5c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/21/2025]
Abstract
Bioengineering-based in vitro tumor models are increasingly important as tools for studying disease progression and therapy response for many cancers, including the deadly pancreatic ductal adenocarcinoma (PDAC) that exhibits a tumor/tissue microenvironment of high cellular/biochemical complexity. Therefore, it is crucial for in vitro models to capture that complexity and to enable investigation of the interplay between cancer cells and factors such as extracellular matrix (ECM) proteins or stroma cells. Using polyurethane (PU) scaffolds, we performed a systematic study on how different ECM protein scaffold coatings impact the long-term cell evolution in scaffolds containing only cancer or only stroma cells (activated stellate and endothelial cells). To investigate potential further changes in those biomarkers due to cancer-stroma interactions, we mapped their expression in dual/zonal scaffolds consisting of a cancer core and a stroma periphery, spatially mimicking the fibrotic/desmoplastic reaction in PDAC. In our single scaffolds, we observed that the protein coating affected the cancer cell spatial aggregation, matrix deposition, and biomarker upregulation in a cell-line-dependent manner. In single stroma scaffolds, different levels of fibrosis/desmoplasia in terms of ECM composition/quantity were generated depending on the ECM coating. When studying the evolution of cancer and stroma cells in our dual/zonal model, biomarkers linked to cell aggressiveness/invasiveness were further upregulated by both cancer and stroma cells as compared to single scaffold models. Collectively, our study advances the understanding of how different ECM proteins impact the long-term cell evolution in PU scaffolds. Our findings show that within our bioengineered models, we can stimulate the cells of the PDAC microenvironment to develop different levels of aggressiveness/invasiveness, as well as different levels of fibrosis. Furthermore, we highlight the importance of considering spatial complexity to map cell invasion. Our work contributes to the design of in vitro models with variable, yet biomimetic, tissue-like properties for studying the tumor microenvironment's role in cancer progression.
Collapse
Affiliation(s)
- Anna-Dimitra Kataki
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Priyanka G. Gupta
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
- School
of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, U.K.
| | - Umber Cheema
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Yaohe Wang
- Centre
for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Hemant M. Kocher
- Centre
for Tumour Biology and Experimental Cancer Medicine, Barts Cancer
Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Pedro A. Pérez-Mancera
- Department
of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Eirini G. Velliou
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| |
Collapse
|
3
|
Yoo S, Lee HJ. Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology. Cells Tissues Organs 2024; 214:128-147. [PMID: 39265553 PMCID: PMC11965833 DOI: 10.1159/000541416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Despite significant advances in three-dimensional (3D) cell culture technologies, creating accurate in vitro models that faithfully recapitulate complex in vivo environments remains a major challenge in biomedical research. Traditional culture methods often fail to simultaneously facilitate critical cell-cell and cell-extracellular matrix (ECM) interactions while providing control over mechanical and biochemical properties. SUMMARY This review introduces the spheroid-hydrogel-integrated biomimetic system (SHIBS), a groundbreaking approach that synergistically combines spheroid culture with tailored hydrogel technologies. SHIBS uniquely bridges the gap between traditional culture methods and physiological conditions by offering unprecedented control over both cellular interactions and environmental properties. We explore how SHIBS is revolutionizing fields ranging from drug discovery and disease modeling to regenerative medicine and basic biological research. The review discusses current challenges in SHIBS technology, including reproducibility, scalability, and high-resolution imaging, and outlines ongoing research addressing these issues. Furthermore, we envision the future evolution of SHIBS into more sophisticated organoid-hydrogel-integrated biomimetic systems and its integration with cutting-edge technologies such as microfluidics, 3D bioprinting, and artificial intelligence. KEY MESSAGES SHIBS represents a paradigm shift in 3D cell culture technology, offering a unique solution to recreate complex in vivo environments. Its potential to accelerate the development of personalized therapies across various biomedical fields is significant. While challenges persist, the ongoing advancements in SHIBS technology promise to overcome current limitations, paving the way for more accurate and reliable in vitro models. The future integration of SHIBS with emerging technologies may revolutionize biomimetic modeling, potentially reducing the need for animal testing and expediting drug discovery processes. This comprehensive review provides researchers and clinicians with a holistic understanding of SHIBS technology, its current capabilities, and its future prospects in advancing biomedical research and therapeutic innovations. BACKGROUND Despite significant advances in three-dimensional (3D) cell culture technologies, creating accurate in vitro models that faithfully recapitulate complex in vivo environments remains a major challenge in biomedical research. Traditional culture methods often fail to simultaneously facilitate critical cell-cell and cell-extracellular matrix (ECM) interactions while providing control over mechanical and biochemical properties. SUMMARY This review introduces the spheroid-hydrogel-integrated biomimetic system (SHIBS), a groundbreaking approach that synergistically combines spheroid culture with tailored hydrogel technologies. SHIBS uniquely bridges the gap between traditional culture methods and physiological conditions by offering unprecedented control over both cellular interactions and environmental properties. We explore how SHIBS is revolutionizing fields ranging from drug discovery and disease modeling to regenerative medicine and basic biological research. The review discusses current challenges in SHIBS technology, including reproducibility, scalability, and high-resolution imaging, and outlines ongoing research addressing these issues. Furthermore, we envision the future evolution of SHIBS into more sophisticated organoid-hydrogel-integrated biomimetic systems and its integration with cutting-edge technologies such as microfluidics, 3D bioprinting, and artificial intelligence. KEY MESSAGES SHIBS represents a paradigm shift in 3D cell culture technology, offering a unique solution to recreate complex in vivo environments. Its potential to accelerate the development of personalized therapies across various biomedical fields is significant. While challenges persist, the ongoing advancements in SHIBS technology promise to overcome current limitations, paving the way for more accurate and reliable in vitro models. The future integration of SHIBS with emerging technologies may revolutionize biomimetic modeling, potentially reducing the need for animal testing and expediting drug discovery processes. This comprehensive review provides researchers and clinicians with a holistic understanding of SHIBS technology, its current capabilities, and its future prospects in advancing biomedical research and therapeutic innovations.
Collapse
Affiliation(s)
- Seungyeop Yoo
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
4
|
Inagaki NF, Oki Y, Ikeda S, Tulakarnwong S, Shinohara M, Inagaki FF, Ohta S, Kokudo N, Sakai Y, Ito T. Transplantation of pancreatic beta-cell spheroids in mice via non-swellable hydrogel microwells composed of poly(HEMA- co-GelMA). Biomater Sci 2024; 12:4354-4362. [PMID: 38967234 DOI: 10.1039/d4bm00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Pancreatic islet transplantation is an effective treatment for type I diabetes mellitus. However, many problems associated with pancreatic islet engraftment remain unresolved. In this study, we developed a hydrogel microwell device for islet implantation, fabricated by crosslinking gelatin-methacryloyl (GelMA) and 2-hydroxyethyl methacrylate (HEMA) in appropriate proportions. The fabricated hydrogel microwell device could be freeze-dried and restored by immersion in the culture medium at any time, allowing long-term storage and transport of the device for ready-to-use applications. In addition, due to its non-swelling properties, the shape of the wells of the device was maintained. Thus, the device allowed pancreatic β cell lines to form spheroids and increase insulin secretion. Intraperitoneal implantation of the β cell line-seeded GelMA/HEMA hydrogel microwell device reduced blood glucose levels in diabetic mice. In addition, they were easy to handle during transplantation and were removed from the transplant site without peritoneal adhesions or infiltration by inflammatory cells. These results suggest that the GelMA/HEMA hydrogel microwell device can go from spheroid and/or organoid fabrication to transplantation in a single step.
Collapse
Affiliation(s)
- Natsuko F Inagaki
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Yuichiro Oki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Shunsuke Ikeda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Sarun Tulakarnwong
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Marie Shinohara
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Fuyuki F Inagaki
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Seiichi Ohta
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Norihiro Kokudo
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
5
|
Amin ML, Mawad D, Dokos S, Sorrell CC. Comparative Bioactivities of Chemically Modified Fucoidan and λ-Carrageenan toward Cells Encapsulated in Covalently Cross-Linked Hydrogels. Biomacromolecules 2024; 25:3131-3140. [PMID: 38554085 DOI: 10.1021/acs.biomac.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The sulfated marine polysaccharides, fucoidan and λ-carrageenan, are known to possess anti-inflammatory, immunomodulatory, and cellular protective properties. Although they hold considerable promise for tissue engineering constructs, their covalent cross-linking in hydrogels and comparative bioactivities to cells are absent from the literature. Thus, fucoidan and λ-carrageenan were modified with methacrylate groups and were covalently cross-linked with the synthetic polymer poly(vinyl alcohol)-methacrylate (PVA-MA) to form 20 wt % biosynthetic hydrogels. Identical degrees of methacrylation were confirmed by 1H NMR, and covalent conjugation was determined by using a colorimetric 1,9-dimethyl-methylene blue (DMMB) assay. Pancreatic beta cells were encapsulated in the hydrogels, followed by culturing in the 3D environment for a prolonged period of 32 days and evaluation of the cellular functionality by live/dead, adenosine 5'-triphosphate (ATP) level, and insulin secretion. The results confirmed that fucoidan and λ-carrageenan exhibited ∼12% methacrylate substitution, which generated hydrogels with stable conjugation of the polysaccharides with PVA-MA. The cells encapsulated in the PVA-fucoidan hydrogels demonstrated consistently high ATP levels over the culture period. Furthermore, only cells in the PVA-fucoidan hydrogels retained glucose responsiveness, demonstrating comparatively higher insulin secretion in response to glucose. In contrast, cells in the PVA-λ-carrageenan and the PVA control hydrogels lost all glucose responsiveness. The present work confirms the superior effects of chemically modified fucoidan over λ-carrageenan on pancreatic beta cell survival and function in covalently cross-linked hydrogels, thereby illustrating the importance of differential polysaccharide structural features on their biological effects.
Collapse
Affiliation(s)
- Md Lutful Amin
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Jiang Z, Jiang K, Si H, McBride R, Kisiday J, Oakey J. One Step Encapsulation of Mesenchymal Stromal Cells in PEG Norbornene Microgels for Therapeutic Actions. ACS Biomater Sci Eng 2023; 9:6322-6332. [PMID: 37831923 DOI: 10.1021/acsbiomaterials.3c01057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Cell therapies require control over the cellular response under standardized conditions to ensure continuous delivery of therapeutic agents. Cell encapsulation in biomaterials can be particularly effective at providing cells with a uniformly supportive and permissive cell microenvironment. In this study, two microfluidic droplet device designs were used to successfully encapsulate equine mesenchymal stromal cells (MSCs) into photopolymerized polyethylene glycol norbornene (PEGNB) microscale (∼100-200 μm) hydrogel particles (microgels) in a single on-chip step. To overcome the slow cross-linking kinetics of thiol-ene reactions, long dithiol linkers were used in combination with a polymerization chamber customized to achieve precise retention time for microgels while maintaining cytocompatibility. Thus, homogeneous cell-laden microgels could be continuously fabricated in a high-throughput fashion. Varying linker length mediated both the gel formation rate and material physical properties (stiffness, mass transport, and mesh size) of fabricated microgels. Postencapsulation cell viability and therapeutic indicators of MSCs were evaluated over 14 days, during which the viability remained at least 90%. Gene expression of selected cytokines was not adversely affected by microencapsulation compared to monolayer MSCs. Notably, PEGNB-3.5k microgels rendered significant elevation in FGF-2 and TGF-β on the transcription level, and conditioned media collected from these cultures showed robust promotion in the migration and proliferation of fibroblasts. Collectively, standardized MSC on-chip encapsulation will lead to informed and precise translation to clinical studies, ultimately advancing a variety of tissue engineering and regenerative medicine practices.
Collapse
Affiliation(s)
- Zhongliang Jiang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Kun Jiang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Hangjun Si
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Ralph McBride
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John Kisiday
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
7
|
Martínez G, Begines B, Pajuelo E, Vázquez J, Rodriguez-Albelo LM, Cofini D, Torres Y, Alcudia A. Versatile Biodegradable Poly(acrylic acid)-Based Hydrogels Infiltrated in Porous Titanium Implants to Improve the Biofunctional Performance. Biomacromolecules 2023; 24:4743-4758. [PMID: 37677155 PMCID: PMC10646965 DOI: 10.1021/acs.biomac.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/27/2023] [Indexed: 09/09/2023]
Abstract
This research work proposes a synergistic approach to improve implants' performance through the use of porous Ti substrates to reduce the mismatch between Young's modulus of Ti (around 110 GPa) and the cortical bone (20-25 GPa), and the application of a biodegradable, acrylic acid-based polymeric coating to reduce bacterial adhesion and proliferation, and to enhance osseointegration. First, porous commercially pure Ti substrates with different porosities and pore size distributions were fabricated by using space-holder techniques to obtain substrates with improved tribomechanical behavior. On the other hand, a new diacrylate cross-linker containing a reduction-sensitive disulfide bond was synthesized to prepare biodegradable poly(acrylic acid)-based hydrogels with 1, 2, and 4% cross-linker. Finally, after the required characterization, both strategies were implemented, and the combination of 4% cross-linked poly(acrylic acid)-based hydrogel infiltrated in 30 vol % porosity, 100-200 μm average pore size, was revealed as an outstanding choice for enhancing implant performance.
Collapse
Affiliation(s)
- Guillermo Martínez
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, Seville 41012, Spain
| | - Belén Begines
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, Seville 41012, Spain
| | - Eloisa Pajuelo
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville 41012, Spain
| | - Juan Vázquez
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville 41004, Spain
| | - Luisa Marleny Rodriguez-Albelo
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte,
Escuela Politécnica Superior, Universidad
de Sevilla, Seville 41011, Spain
| | - Davide Cofini
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, Seville 41012, Spain
| | - Yadir Torres
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte,
Escuela Politécnica Superior, Universidad
de Sevilla, Seville 41011, Spain
| | - Ana Alcudia
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, Seville 41012, Spain
| |
Collapse
|
8
|
Mbituyimana B, Adhikari M, Qi F, Shi Z, Fu L, Yang G. Microneedle-based cell delivery and cell sampling for biomedical applications. J Control Release 2023; 362:692-714. [PMID: 37689252 DOI: 10.1016/j.jconrel.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Cell-based therapeutics are novel therapeutic strategies that can potentially treat many presently incurable diseases through novel mechanisms of action. Cell therapies may benefit from the ease, safety, and efficacy of administering therapeutic cells. Despite considerable recent technological and biological advances, several barriers remain to the clinical translation and commercialization of cell-based therapies, including low patient compliance, personal handling inconvenience, poor biosafety, and limited biocompatibility. Microneedles (MNs) are emerging as a promising biomedical device option for improved cell delivery with little invasion, pain-free administration, and simplicity of disposal. MNs have shown considerable promise in treating a wide range of diseases and present the potential to improve cell-based therapies. In this review, we first summarized the latest advances in the various types of MNs developed for cell delivery and cell sampling. Emphasis was given to the design and fabrication of various types of MNs based on their structures and materials. Then we focus on the recent biomedical applications status of MNs-mediated cell delivery and sampling, including tissue repair (wound healing, heart repair, and endothelial repair), cancer treatment, diabetes therapy, cell sampling, and other applications. Finally, the current status of clinical application, potential perspectives, and the challenges for clinical translation are also highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lina Fu
- College of Medicine, Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Central Hospital, Zhumadian, Henan 463000, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
9
|
Roosa CA, Ma M, Chhabra P, Brayman K, Griffin D. Delivery of Dissociated Islets Cells within Microporous Annealed Particle Scaffold to Treat Type 1 Diabetes. ADVANCED THERAPEUTICS 2022; 5:2200064. [PMID: 36405778 PMCID: PMC9674036 DOI: 10.1002/adtp.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 09/03/2023]
Abstract
Type 1 diabetes (T1D) is caused by the autoimmune loss of insulin-producing beta cells in the pancreas. The only clinical approach to patient management of blood glucose that doesn't require exogenous insulin is pancreas or islet transplantation. Unfortunately, donor islets are scarce and there is substantial islet loss immediately after transplantation due, in part, to the local inflammatory response. The delivery of stem cell-derived beta cells (e.g., from induced pluripotent stem cells) and dissociated islet cells hold promise as a treatment for T1D; however, these cells typically require re-aggregation in vitro prior to implantation. Microporous scaffolds have shown high potential to serve as a vehicle for organization, survival, and function of insulin-producing cells. In this study, we investigated the use of microporous annealed particle (MAP) scaffold for delivery of enzymatically dissociated islet cells, a model beta cell source, within the scaffold's interconnected pores. We found that MAP-based cell delivery enables survival and function of dissociated islets cells both in vitro and in an in vivo mouse model of T1D.
Collapse
Affiliation(s)
- Colleen A Roosa
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Mingyang Ma
- Department of Surgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Preeti Chhabra
- Department of Surgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Kenneth Brayman
- Department of Surgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
- Department of Chemical Engineering, University of Virginia, 351 McCormick Rd, Charlottesville, Virginia 22904, USA
| |
Collapse
|
10
|
Guimarães CF, Marques AP, Reis RL. Pushing the Natural Frontier: Progress on the Integration of Biomaterial Cues toward Combinatorial Biofabrication and Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105645. [PMID: 35419887 DOI: 10.1002/adma.202105645] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The engineering of fully functional, biological-like tissues requires biomaterials to direct cellular events to a near-native, 3D niche extent. Natural biomaterials are generally seen as a safe option for cell support, but their biocompatibility and biodegradability can be just as limited as their bioactive/biomimetic performance. Furthermore, integrating different biomaterial cues and their final impact on cellular behavior is a complex equation where the outcome might be very different from the sum of individual parts. This review critically analyses recent progress on biomaterial-induced cellular responses, from simple adhesion to more complex stem cell differentiation, looking at the ever-growing possibilities of natural materials modification. Starting with a discussion on native material formulation and the inclusion of cell-instructive cues, the roles of shape and mechanical stimuli, the susceptibility to cellular remodeling, and the often-overlooked impact of cellular density and cell-cell interactions within constructs, are delved into. Along the way, synergistic and antagonistic combinations reported in vitro and in vivo are singled out, identifying needs and current lessons on the development of natural biomaterial libraries to solve the cell-material puzzle efficiently. This review brings together knowledge from different fields envisioning next-generation, combinatorial biomaterial development toward complex tissue engineering.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Singh P, Verma C, Mukhopadhyay S, Gupta A, Gupta B. Preparation of thyme oil loaded κ-carrageenan-polyethylene glycol hydrogel membranes as wound care system. Int J Pharm 2022; 618:121661. [PMID: 35292394 DOI: 10.1016/j.ijpharm.2022.121661] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
The present study is aimed at fabricating thyme oil loaded hydrogel membranes composed of κ-carrageenan (CG) and polyethylene glycol (PEG), which can provide moist environment and prevent infections for rapid wound healing. Membranes were prepared with different amounts of PEG via solvent casting technique under ambient conditions. Physicochemical properties of CG-PEG membranes as a function of the PEG content were investigated. The surface morphology of membranes displayed smoother surfaces with increasing PEG content up to 40%. In addition, the interaction of PEG with CG polymer chains was evaluated in terms of Free and bound PEG fraction within the membrane matrix. Furthermore, thyme oil (TO) was added to enhance the antibacterial properties of CG-PEG membranes. These membranes showed >95% antimicrobial activity against both gram-positive and gram-negative bacteria depending on the TO content. Suggesting the great potential of these membranes as a strong candidate for providing an effective antimicrobial nature in human healthcare.
Collapse
Affiliation(s)
- Pratibha Singh
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amlan Gupta
- Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Tadong, Gangtok, Sikkim 737102, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
12
|
Waters BJ, Blum B. Axon Guidance Molecules in the Islets of Langerhans. Front Endocrinol (Lausanne) 2022; 13:869780. [PMID: 35498433 PMCID: PMC9048200 DOI: 10.3389/fendo.2022.869780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
The islets of Langerhans, responsible for regulating blood glucose in vertebrates, are clusters of endocrine cells distributed throughout the exocrine pancreas. The spatial architecture of the different cell types within the islets controls cell-cell communication and impacts their ability to collectively regulate glucose. Islets rely on a range of chemotactic and adhesive cues to establish and manage intercellular relationships. Growing evidence indicates that axon guidance molecules such as Slit-Robo, Semaphorin-Neuropilin, Ephrin-Eph, and Netrins, influence endocrine progenitors' cell migration to establish correct architecture during islet morphogenesis, as well as directly regulating physical cell-cell communication in the mature islet to coordinate hormone secretion. In this mini-review, we discuss what is known and not yet known about how axon guidance molecules contribute to islet morphogenesis and function.
Collapse
Affiliation(s)
| | - Barak Blum
- *Correspondence: Bayley J. Waters, ; Barak Blum,
| |
Collapse
|
13
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Kuthubutheen J, Brown D, Mikov M, Al-Salami H. Artificial Cell Encapsulation for Biomaterials and Tissue Bio-Nanoengineering: History, Achievements, Limitations, and Future Work for Potential Clinical Applications and Transplantation. J Funct Biomater 2021; 12:68. [PMID: 34940547 PMCID: PMC8704355 DOI: 10.3390/jfb12040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell loss and failure with subsequent deficiency of insulin production is the hallmark of type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D). Despite the availability of parental insulin, serious complications of both types are profound and endemic. One approach to therapy and a potential cure is the immunoisolation of β cells via artificial cell microencapsulation (ACM), with ongoing promising results in human and animal studies that do not depend on immunosuppressive regimens. However, significant challenges remain in the formulation and delivery platforms and potential immunogenicity issues. Additionally, the level of impact on key metabolic and disease biomarkers and long-term benefits from human and animal studies stemming from the encapsulation and delivery of these cells is a subject of continuing debate. The purpose of this review is to summarise key advances in this field of islet transplantation using ACM and to explore future strategies, limitations, and hurdles as well as upcoming developments utilising bioengineering and current clinical trials.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | | | - Daniel Brown
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia;
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
14
|
Samojlik MM, Stabler CL. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomater 2021; 133:87-101. [PMID: 34102338 PMCID: PMC9148663 DOI: 10.1016/j.actbio.2021.05.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
The effective suppression of adaptive immune responses is essential for the success of allogeneic cell therapies. In islet transplantation for Type 1 Diabetes, pre-existing autoimmunity provides an additional hurdle, as memory autoimmune T cells mediate both an autoantigen-specific attack on the donor beta cells and an alloantigen-specific attack on the donor graft cells. Immunosuppressive agents used for islet transplantation are generally successful in suppressing alloimmune responses, but dramatically hinder the widespread adoption of this therapeutic approach and fail to control memory T cell populations, which leaves the graft vulnerable to destruction. In this review, we highlight the capacity of biomaterials to provide local and nuanced instruction to suppress or alter immune pathways activated in response to an allogeneic islet transplant. Biomaterial immunoisolation is a common approach employed to block direct antigen recognition and downstream cell-mediated graft destruction; however, immunoisolation alone still permits shed donor antigens to escape into the host environment, resulting in indirect antigen recognition, immune cell activation, and the creation of a toxic graft site. Designing materials to decrease antigen escape, improve cell viability, and increase material compatibility are all approaches that can decrease the local release of antigen and danger signals into the implant microenvironment. Implant materials can be further enhanced through the local delivery of anti-inflammatory, suppressive, chemotactic, and/or tolerogenic agents, which serve to control both the innate and adaptive immune responses to the implant with a benefit of reduced systemic effects. Lessons learned from understanding how to manipulate allogeneic and autogenic immune responses to pancreatic islets can also be applied to other cell therapies to improve their efficacy and duration. STATEMENT OF SIGNIFICANCE: This review explores key immunologic concepts and critical pathways mediating graft rejection in Type 1 Diabetes, which can instruct the future purposeful design of immunomodulatory biomaterials for cell therapy. A summary of immunological pathways initiated following cellular implantation, as well as current systemic immunomodulatory agents used, is provided. We then outline the potential of biomaterials to modulate these responses. The capacity of polymeric encapsulation to block some powerful rejection pathways is covered. We also highlight the role of cellular health and biocompatibility in mitigating immune responses. Finally, we review the use of bioactive materials to proactively modulate local immune responses, focusing on key concepts of anti-inflammatory, suppressive, and tolerogenic agents.
Collapse
Affiliation(s)
- Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Mishra V, Nayak P, Sharma M, Albutti A, Alwashmi ASS, Aljasir MA, Alsowayeh N, Tambuwala MM. Emerging Treatment Strategies for Diabetes Mellitus and Associated Complications: An Update. Pharmaceutics 2021; 13:1568. [PMID: 34683861 PMCID: PMC8538773 DOI: 10.3390/pharmaceutics13101568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence of diabetes mellitus (DM) is increasing rapidly at an accelerating rate worldwide. The status of diabetes has changed over the last three generations; whereas before it was deemed a minor disease of older people but currently it is now one of the leading causes of morbidity and mortality among middle-aged and young people. High blood glucose-mediated functional loss, insulin sensitivity, and insulin deficiency lead to chronic disorders such as Type 1 and Type 2 DM. Traditional treatments of DM, such as insulin sensitization and insulin secretion cause undesirable side effects, leading to patient incompliance and lack of treatment. Nanotechnology in diabetes studies has encouraged the development of new modalities for measuring glucose and supplying insulin that hold the potential to improve the quality of life of diabetics. Other therapies, such as β-cells regeneration and gene therapy, in addition to insulin and oral hypoglycemic drugs, are currently used to control diabetes. The present review highlights the nanocarrier-based drug delivery systems and emerging treatment strategies of DM.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana 142021, Punjab, India
| | - Mayank Sharma
- SVKM’s NMIMS School of Pharmacy & Technology Management, Shirpur 425405, Maharashtra, India;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Noorah Alsowayeh
- Biology Department, College of Education, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| |
Collapse
|
16
|
Chang CW, Yeh YC. Poly(glycerol sebacate)-co-poly(ethylene glycol)/Gelatin Hybrid Hydrogels as Biocompatible Biomaterials for Cell Proliferation and Spreading. Macromol Biosci 2021; 21:e2100248. [PMID: 34514730 DOI: 10.1002/mabi.202100248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Indexed: 01/05/2023]
Abstract
Synthetic polymers have been widely employed to prepare hydrogels for biomedical applications, such as cell culture, drug delivery, and tissue engineering. However, the activity of cells cultured in the synthetic polymer-based hydrogels faces the challenges of limited cell proliferation and spreading compared to cells cultured in natural polymer-based hydrogels. To address this concern, a hybrid hydrogel strategy is demonstrated by incorporating thiolated gelatin (GS) into the norbornene-functionalized poly (glycerol sebacate)-co-polyethylene glycol (Nor_PGS-co-PEG, NPP) network to prepare highly biocompatible NPP/GS_UV hydrogels after the thiol-ene photo-crosslinking reaction. The GS introduces several desirable features (i.e., enhanced water content, enlarged pore size, increased mechanical property, and more cell adhesion sites) to the NPP/GS_UV hydrogels, facilitating the cell proliferation and spreading inside the network. Thus, the highly biocompatible NPP/GS_UV hydrogels are promising materials for cell encapsulation and tissue engineering applications. Taken together, the hybrid hydrogel strategy is demonstrated as a powerful approach to fabricate hydrogels with a highly friendly environment for cell culture, expanding the biomedical applications of hydrogels.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
17
|
Leon Plata P, Zaroudi M, Lee CY, Foster C, Nitsche LC, Rios PD, Wang Y, Oberholzer J, Liu Y. Heterogeneous toroidal spiral particles for islet encapsulation. Biomater Sci 2021; 9:3954-3967. [PMID: 33620354 DOI: 10.1039/d0bm02082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transplantable cell encapsulation systems present a promising approach to deliver a therapeutic solution from hormone-producing cells for the treatment of endocrine diseases like type 1 diabetes. However, the development of a broadly effective and safe transplantation system has been challenging. While some current micro-sized capsules have been optimized for adequate nutrient and metabolic transport, they lack the robustness and retrievability for the clinical safety translation that macro-devices may offer. An existing challenge to be addressed in the current macro-devices is their configuration which may lead to unsatisfactory mass transfer. Here, we design and characterize a millimeter-size particle system of poly-ethylene glycol (PEG) featuring internal toroidal spiral channels, called toroidal spiral particles (TSPs). The characteristic internal structure of the TSPs allows for large encapsulation capacity and large surface area available to all the encapsulated cell mass for effective molecular diffusion. The polymeric matrix renders the particle flexible yet robust for safe transplantation and retrieval. We demonstrate the feasibility of fabricating these particles with various polymer compositions, while optimizing their mechanical properties as well as glucose and insulin permeability. Encapsulation of islets of Langerhans is achieved with high loading capacity (∼160 IEQ per TSP) and excellent cell viability. TSP-encapsulated islets showed similar glucose-stimulated insulin secretion to the naked islets. Preliminary biocompatibility of the TSPs on naïve C57BL/6 mice shows minimal inflammatory response after 4-week transplantation into the intraperitoneal (IP) space. Long-term therapeutic efficacy of encapsulated islets needs to be confirmed in diabetic rodent models in the future, while determining minimal mass required to reverse diabetes. However, we believe from the in vitro favorable results and the TSPs' unique design that TSPs may provide a safe, effective method to transplant and retrieve therapeutic cells for type 1 diabetes treatment and may also be applicable for other cell therapies.
Collapse
Affiliation(s)
- Paola Leon Plata
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Uppal G, Bahcecioglu G, Zorlutuna P, Vural DC. Tissue Failure Propagation as Mediated by Circulatory Flow. Biophys J 2020; 119:2573-2583. [PMID: 33189679 DOI: 10.1016/j.bpj.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Aging is driven by subcellular processes that are relatively well understood. However, the qualitative mechanisms and quantitative dynamics of how these micro-level failures cascade to a macro-level catastrophe in a tissue or organs remain largely unexplored. Here, we experimentally and theoretically study how cell failure propagates in an engineered tissue in the presence of advective flow. We argue that cells secrete cooperative factors, thereby forming a network of interdependence governed by diffusion and flow, which fails with a propagating front parallel to advective circulation.
Collapse
Affiliation(s)
- Gurdip Uppal
- Department of Physics, University of Notre Dame, Notre Dame, Indiana
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana.
| | - Dervis Can Vural
- Department of Physics, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
20
|
Jiménez-Jiménez C, Manzano M, Vallet-Regí M. Nanoparticles Coated with Cell Membranes for Biomedical Applications. BIOLOGY 2020; 9:biology9110406. [PMID: 33218092 PMCID: PMC7698879 DOI: 10.3390/biology9110406] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Nanomedicine has developed a new technology based on nanoparticles for drug delivery coated with different cell membranes. Although they were originally developed to increase their blood circulation time and stability though the use of red blood cell membranes, the versatility of this technology has extended to membranes from different cell types, such as white blood cells, platelets, cancer cells, mesenchymal stem cells, and beta cells, among others. Therefore, this cellular diversity and its unique properties, together with the possibility of using a wide range of nanoparticles and different drug dosage forms, has opened a new area for the manufacture of nanoparticles, with many potential applications in the clinic. Abstract Nanoparticles designed for diagnosing and treating different diseases have impacted the scientific research in biomedicine, and are expected to revolutionize the clinic in the near future through a new area called nanomedicine. In the last few years, a new approach in this field has emerged: the use of cell membranes for coating nanoparticles in an attempt to mimic the ability of cells to interface and interact with physiological environments. Although such functions have been replicated through synthetic techniques, many research groups are now employing naturally derived cell membranes to coat different types of nanoparticles in an attempt to improve their performance for a wide range of applications. This review summarizes the literature on nanoparticles coated with cell membranes and, more importantly, aims at inspiring and encouraging new developments to this technology in the biomedical area.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, UCM, Instituto Investigación Sanitaria Hospital 12 de Octubre, imas12, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Miguel Manzano
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, UCM, Instituto Investigación Sanitaria Hospital 12 de Octubre, imas12, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (M.M.); (M.V.-R.)
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, UCM, Instituto Investigación Sanitaria Hospital 12 de Octubre, imas12, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (M.M.); (M.V.-R.)
| |
Collapse
|
21
|
Dash P, Piras AM, Dash M. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Control Release 2020; 327:546-570. [DOI: 10.1016/j.jconrel.2020.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 01/08/2023]
|
22
|
Wang K, Qian M, Qi H, Gao Q, Zhang C. Multifunctional zeolitic imidazolate framework-8 for real-time monitoring ATP fluctuation in mitochondria during photodynamic therapy. NANOSCALE 2020; 12:15663-15669. [PMID: 32672322 DOI: 10.1039/d0nr02149k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) is emerging as a promising vector in encapsulation and delivery of imaging agents or drugs. Adenosine triphosphate (ATP) is the primary energy source in cells and plays a key role in many cellular processes. Although numerous probes have been developed for ATP detection, only a few of them were used to real-time monitor ATP fluctuation in mitochondria during photodynamic therapy (PDT). Here, an ATP-responsive and fluorescent ZIF-8 is synthesized for real-time monitoring mitochondrial ATP fluctuation in living cells during photodynamic therapy. Rhodamine B (RhB) as a fluorescent indicator is encapsulated into ZIF-8 to form multifunctional RhB@ZIF-8 via a one step process. RhB@ZIF-8 can rapidly respond to ATP with ZIF-8 decomposition and fluorescence off-on switch via a competitive coordination interaction and exhibits good sensitivity and selectivity to ATP with a detection limit of 35 μM. Furthermore, RhB@ZIF-8 is successfully utilized for real-time monitoring and imaging mitochondrial ATP fluctuation in living cells during photodynamic therapy with good biocompatibility and high cell permeability. It is found that the ATP levels in mitochondria increased within 1 min of light irradiation and then decreased with further increase of the light irradiation time during PDT using an Ir(iii) complex. This work demonstrates that RhB@ZIF-8 can serve as a promising fluorescent probe to monitor mitochondrial ATP fluctuation with fast response, good sensitivity and endogenous molecule-responsive properties inside living cells.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | | | | | | | | |
Collapse
|
23
|
Mertgen AS, Trossmann VT, Guex AG, Maniura-Weber K, Scheibel T, Rottmar M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21342-21367. [PMID: 32286789 DOI: 10.1021/acsami.0c01893] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties. Tremendous progress in combinatorial surface modification exploiting, for example, topographical features or variations in mechanics combined with biochemical cues has enabled the identification of their key regulatory characteristics on various cell fate decisions. Gradients especially facilitated such research by enabling the investigation of combined continuous changes of different signals. Despite unravelling important synergies for cellular responses, challenges arise in terms of fabrication and characterization of multifunctional engineered materials. This review summarizes recent work on combinatorial surface modifications that aim to control biological responses. Modification and characterization methods for enhanced control over multifunctional material properties are highlighted and discussed. Thereby, this review deepens the understanding and knowledge of biomimetic combinatorial material modification, their challenges but especially their potential.
Collapse
Affiliation(s)
- Anne-Sophie Mertgen
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Vanessa Tanja Trossmann
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, Bayreuth 95440, Germany
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
24
|
Zhang X, Tian C, Chen Z, Zhao G. Hydrogel‐Based Multifunctional Dressing Combining Magnetothermally Responsive Drug Delivery and Stem Cell Therapy for Enhanced Wound Healing. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaozhang Zhang
- Department of Electronic Science and Technology University of Science and Technology of China Hefei Anhui 230027 China
| | - Conghui Tian
- Department of Electronic Science and Technology University of Science and Technology of China Hefei Anhui 230027 China
| | - Zhongrong Chen
- Department of Electronic Science and Technology University of Science and Technology of China Hefei Anhui 230027 China
| | - Gang Zhao
- Department of Electronic Science and Technology University of Science and Technology of China Hefei Anhui 230027 China
| |
Collapse
|
25
|
Liu Y, Luo J, Chen X, Liu W, Chen T. Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. NANO-MICRO LETTERS 2019; 11:100. [PMID: 34138027 PMCID: PMC7770915 DOI: 10.1007/s40820-019-0330-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 05/02/2023]
Abstract
Cell membrane coating technology is an approach to the biomimetic replication of cell membrane properties, and is an active area of ongoing research readily applicable to nanoscale biomedicine. Nanoparticles (NPs) coated with cell membranes offer an opportunity to unite natural cell membrane properties with those of the artificial inner core material. The coated NPs not only increase their biocompatibility but also achieve effective and extended circulation in vivo, allowing for the execution of targeted functions. Although cell membrane-coated NPs offer clear advantages, much work remains before they can be applied in clinical practice. In this review, we first provide a comprehensive overview of the theory of cell membrane coating technology, followed by a summary of the existing preparation and characterization techniques. Next, we focus on the functions and applications of various cell membrane types. In addition, we collate model drugs used in cell membrane coating technology, and review the patent applications related to this technology from the past 10 years. Finally, we survey future challenges and trends pertaining to this technology in an effort to provide a comprehensive overview of the future development of cell membrane coating technology.
Collapse
Affiliation(s)
- Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
26
|
Crisóstomo J, Pereira AM, Bidarra SJ, Gonçalves AC, Granja PL, Coelho JF, Barrias CC, Seiça R. ECM-enriched alginate hydrogels for bioartificial pancreas: an ideal niche to improve insulin secretion and diabetic glucose profile. J Appl Biomater Funct Mater 2019; 17:2280800019848923. [PMID: 31623515 DOI: 10.1177/2280800019848923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION The success of a bioartificial pancreas crucially depends on ameliorating encapsulated beta cells survival and function. By mimicking the cellular in vivo niche, the aim of this study was to develop a novel model for beta cells encapsulation capable of establishing an appropriate microenvironment that supports interactions between cells and extracellular matrix (ECM) components. METHODS ECM components (Arg-Gly-Asp, abbreviated as RGD) were chemically incorporated in alginate hydrogels (alginate-RGD). After encapsulation, INS-1E beta cells outcome was analyzed in vitro and after their implantation in an animal model of diabetes. RESULTS Our alginate-RGD model demonstrated to be a good in vitro niche for supporting beta cells viability, proliferation, and activity, namely by improving the key feature of insulin secretion. RGD peptides promoted cell-matrix interactions, enhanced endogenous ECM components expression, and favored the assembly of individual cells into multicellular spheroids, an essential configuration for proper beta cell functioning. In vivo, our pivotal model for diabetes treatment exhibited an improved glycemic profile of type 2 diabetic rats, where insulin secreted from encapsulated cells was more efficiently used. CONCLUSIONS We were able to successfully introduce a novel valuable function in an old ally in biomedical applications, the alginate. The proposed alginate-RGD model stands out as a promising approach to improve beta cells survival and function, increasing the success of this therapeutic strategy, which might greatly improve the quality of life of an increasing number of diabetic patients worldwide.
Collapse
Affiliation(s)
- Joana Crisóstomo
- IBILI - Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana M Pereira
- IBILI - Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sílvia J Bidarra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal
| | - Ana C Gonçalves
- University Clinic of Hematology and Applied Molecular Biology Unit, University of Coimbra, Coimbra, Portugal.,CIMAGO - Centre of Investigation in Environment Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro L Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal.,FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jorge Fj Coelho
- CEMUC - Centre for Mechanical Engineering of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Raquel Seiça
- IBILI - Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
27
|
Gulli J, Cook E, Kroll E, Rosebrock A, Caudy A, Rosenzweig F. Diverse conditions support near-zero growth in yeast: Implications for the study of cell lifespan. MICROBIAL CELL 2019; 6:397-413. [PMID: 31528631 PMCID: PMC6717879 DOI: 10.15698/mic2019.09.690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Baker's yeast has a finite lifespan and ages in two ways: a mother cell can only divide so many times (its replicative lifespan), and a non-dividing cell can only live so long (its chronological lifespan). Wild and laboratory yeast strains exhibit natural variation for each type of lifespan, and the genetic basis for this variation has been generalized to other eukaryotes, including metazoans. To date, yeast chronological lifespan has chiefly been studied in relation to the rate and mode of functional decline among non-dividing cells in nutrient-depleted batch culture. However, this culture method does not accurately capture two major classes of long-lived metazoan cells: cells that are terminally differentiated and metabolically active for periods that approximate animal lifespan (e.g. cardiac myocytes), and cells that are pluripotent and metabolically quiescent (e.g. stem cells). Here, we consider alternative ways of cultivating Saccharomyces cerevisiae so that these different metabolic states can be explored in non-dividing cells: (i) yeast cultured as giant colonies on semi-solid agar, (ii) yeast cultured in retentostats and provided sufficient nutrients to meet minimal energy requirements, and (iii) yeast encapsulated in a semisolid matrix and fed ad libitum in bioreactors. We review the physiology of yeast cultured under each of these conditions, and explore their potential to provide unique insights into determinants of chronological lifespan in the cells of higher eukaryotes.
Collapse
Affiliation(s)
- Jordan Gulli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Emily Cook
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eugene Kroll
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Adam Rosebrock
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Present address: Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Amy Caudy
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
28
|
Bal T, Inceoglu Y, Karaoz E, Kizilel S. Sensitivity Study for the Key Parameters in Heterospheroid Preparation with Insulin-Secreting β-Cells and Mesenchymal Stem Cells. ACS Biomater Sci Eng 2019; 5:5229-5239. [DOI: 10.1021/acsbiomaterials.9b00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tuğba Bal
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Yasemin Inceoglu
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Erdal Karaoz
- Center for Regenerative Medicine and Stem Cell Research, Liv Hospital, 34340 Besiktas, Istanbul, Turkey
- School of Medicine, Istinye University, 34010 Zeytinburnu, Istanbul, Turkey
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
- Biomedical Science and Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
| |
Collapse
|
29
|
Becker MW, Simonovich JA, Phelps EA. Engineered microenvironments and microdevices for modeling the pathophysiology of type 1 diabetes. Biomaterials 2019; 198:49-62. [DOI: 10.1016/j.biomaterials.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/21/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
|
30
|
Liu HY, Lin CC. A Diffusion-Reaction Model for Predicting Enzyme-Mediated Dynamic Hydrogel Stiffening. Gels 2019; 5:gels5010017. [PMID: 30871250 PMCID: PMC6473751 DOI: 10.3390/gels5010017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 02/04/2023] Open
Abstract
Hydrogels with spatiotemporally tunable mechanical properties have been increasingly employed for studying the impact of tissue mechanics on cell fate processes. These dynamic hydrogels are particularly suitable for recapitulating the temporal stiffening of a tumor microenvironment. To this end, we have reported an enzyme-mediated stiffening hydrogel system where tyrosinase (Tyrase) was used to stiffen orthogonally crosslinked cell-laden hydrogels. Herein, a mathematical model was proposed to describe enzyme diffusion and reaction within a highly swollen gel network, and to elucidate the critical factors affecting the degree of gel stiffening. Briefly, Fick’s second law of diffusion was used to predict enzyme diffusion in a swollen poly(ethylene glycol) (PEG)-peptide hydrogel, whereas the Michaelis–Menten model was employed for estimating the extent of enzyme-mediated secondary crosslinking. To experimentally validate model predictions, we designed a hydrogel system composed of 8-arm PEG-norbornene (PEG8NB) and bis-cysteine containing peptide crosslinker. Hydrogel was crosslinked in a channel slide that permitted one-dimensional diffusion of Tyrase. Model predictions and experimental results suggested that an increasing network crosslinking during stiffening process did not significantly affect enzyme diffusion. Rather, diffusion path length and the time of enzyme incubation were more critical in determining the distribution of Tyrase and the formation of additional crosslinks in the hydrogel network. Finally, we demonstrated that the enzyme-stiffened hydrogels exhibited elastic properties similar to other chemically crosslinked hydrogels. This study provides a better mechanistic understanding regarding the process of enzyme-mediated dynamic stiffening of hydrogels.
Collapse
Affiliation(s)
- Hung-Yi Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
31
|
Lin JC, Chien CY, Lin CL, Yao BY, Chen YI, Liu YH, Fang ZS, Chen JY, Chen WY, Lee NN, Chen HW, Hu CMJ. Intracellular hydrogelation preserves fluid and functional cell membrane interfaces for biological interactions. Nat Commun 2019; 10:1057. [PMID: 30837473 PMCID: PMC6401164 DOI: 10.1038/s41467-019-09049-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cell membranes are an intricate yet fragile interface that requires substrate support for stabilization. Upon cell death, disassembly of the cytoskeletal network deprives plasma membranes of mechanical support and leads to membrane rupture and disintegration. By assembling a network of synthetic hydrogel polymers inside the intracellular compartment using photo-activated crosslinking chemistry, we show that the fluid cell membrane can be preserved, resulting in intracellularly gelated cells with robust stability. Upon assessing several types of adherent and suspension cells over a range of hydrogel crosslinking densities, we validate retention of surface properties, membrane lipid fluidity, lipid order, and protein mobility on the gelated cells. Preservation of cell surface functions is further demonstrated with gelated antigen presenting cells, which engage with antigen-specific T lymphocytes and effectively promote cell expansion ex vivo and in vivo. The intracellular hydrogelation technique presents a versatile cell fixation approach adaptable for biomembrane studies and biomedical device construction.
Collapse
Affiliation(s)
- Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Chen-Ying Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Chi-Long Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Bing-Yu Yao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Yuan-I Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Yu-Han Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Zih-Syun Fang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Jui-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Wei-Ya Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - No-No Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan.
| |
Collapse
|
32
|
Xu L, Guo Y, Huang Y, Xu Y, Lu Y, Wang Z. Hydrogel materials for the application of islet transplantation. J Biomater Appl 2019; 33:1252-1264. [PMID: 30791850 DOI: 10.1177/0885328219831391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes mellitus is a serious disease comprising approximately 10% of all diabetes cases, and the global incidence of type 1 diabetes mellitus is steadily rising without any promise of a cure in the near future. Although islet transplantation has proven to be an effective means of treating type 1 diabetes mellitus and promoting insulin independence in patients, its widespread implementation has been severely constrained by instances of post-transplantation islet cell death, rejection, and severe adverse immune responses. Islet encapsulation is an active area of research aimed at shielding implanted islets from immunological rejection and inflammation while still allowing for effective insulin and nutrient exchange with donor cells. Given their promising physical and chemical properties, hydrogels have been a major subject of focus in the field of islet transplantation and encapsulation technology, offering promising advances towards immunologically privileged islet implants. The present review therefore summarizes the current state of research regarding the use of hydrogels in the context of islet transplantation, including both natural molecular hydrogels and artificial polymer hydrogels, with the goal of understanding the current strengths and weaknesses of this treatment strategy.
Collapse
Affiliation(s)
- Liancheng Xu
- Suqian First Hospital, Suqian, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yibing Guo
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yang Xu
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuhua Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
33
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Rao VV, Vu MK, Ma H, Killaars AR, Anseth KS. Rescuing mesenchymal stem cell regenerative properties on hydrogel substrates post serial expansion. Bioeng Transl Med 2019; 4:51-60. [PMID: 30680318 PMCID: PMC6336661 DOI: 10.1002/btm2.10104] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
The use of human mesenchymal stem/stromal cells (hMSCs) in most clinical trials requires millions of cells/kg, necessitating ex vivo expansion typically on stiff substrates (tissue culture polystyrene [TCPS]), which induces osteogenesis and replicative senescence. Here, we quantified how serial expansion on TCPS influences proliferation, expression of hMSC-specific surface markers, mechanosensing, and secretome. Results show decreased proliferation and surface marker expression after five passages (P5) and decreased mechanosensing ability and cytokine production at later passages (P11-P12). Next, we investigated the capacity of poly(ethylene glycol) hydrogel matrices (E ~ 1 kPa) to rescue hMSC regenerative properties. Hydrogels reversed the reduction in cell surface marker expression observed at P5 on TCPS and increased secretion of cytokines for P11 hMSCs. Collectively, these results show that TCPS expansion significantly changes functional properties of hMSCs. However, some changes can be rescued by using hydrogels, suggesting that tailoring material properties could improve in vitro expansion methods.
Collapse
Affiliation(s)
- Varsha V. Rao
- Dept. of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO, 80303
- BioFrontiers InstituteUniversity of ColoradoBoulderCO, 80303
| | - Michael K. Vu
- Dept. of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO, 80303
- BioFrontiers InstituteUniversity of ColoradoBoulderCO, 80303
| | - Hao Ma
- Dept. of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO, 80303
- BioFrontiers InstituteUniversity of ColoradoBoulderCO, 80303
| | - Anouk R. Killaars
- BioFrontiers InstituteUniversity of ColoradoBoulderCO, 80303
- Dept. of Materials Science and EngineeringUniversity of ColoradoBoulderCO, 80309
| | - Kristi S. Anseth
- Dept. of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO, 80303
- BioFrontiers InstituteUniversity of ColoradoBoulderCO, 80303
| |
Collapse
|
35
|
Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P, Diener MK, Hackert T, Kenngott HG. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng 2019; 10:2041731419884708. [PMID: 31700597 PMCID: PMC6823987 DOI: 10.1177/2041731419884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Schenk
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Hüttner
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Probst
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus K Diener
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannes Götz Kenngott
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
36
|
Jiang Z, Jiang K, McBride R, Oakey JS. Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels. Biomed Mater 2018; 13:065012. [PMID: 30191888 PMCID: PMC6215765 DOI: 10.1088/1748-605x/aadf9a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The encapsulation of live cells into photopolymerized hydrogel scaffolds has the potential to augment or repair tissue defects, establish versatile regenerative medicine strategies, and be developed as well-defined, yet tunable microenvironments to study fundamental cellular behavior. However, hydrogel fabrication limitations constrain most studies to macroscale hydrogel scaffolds encapsulating millions of cells. These macroscale materials possess regions of heterogeneous photopolymerization conditions and are therefore poor platforms to identify the response of individual cells to encapsulation. Recently, microfluidic droplet-based hydrogel miniaturization and cell encapsulation offers high-throughput, reproducible, and continuous fabrication. Reports of post-encapsulation cell viability, however, vary widely among specific techniques. Furthermore, different cell types often exhibit different level of tolerance to photoencapsulation-induced toxicity. Accordingly, we evaluate the cellular tolerance of various encapsulation techniques and photopolymerization parameters for four mammalian cell types, with potential applications in tissue regeneration, using polyethylene glycol diacrylate or polyethylene glycol norbornene (PEGNB) hydrogels on micro- and macro-length scales. We found PEGNB provides excellent cellular tolerance and supports long-term cell survival by mitigating the deleterious effects of acrylate photopolymerization, which are exacerbated at diminishing volumes. PEGNB, therefore, is an excellent candidate for hydrogel miniaturization. PEGNB hydrogel properties, however, were found to have variable effects on encapsulating different cell candidates. This study could provide guidance for cell encapsulation practices in tissue engineering and regenerative medicine research.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Department of Chemical Engineering, University of Wyoming, Laramie, United States of America
| | | | | | | |
Collapse
|
37
|
Hughes BR, Mirbagheri M, Waldman SD, Hwang DK. Direct cell-cell communication with three-dimensional cell morphology on wrinkled microposts. Acta Biomater 2018; 78:89-97. [PMID: 30092377 DOI: 10.1016/j.actbio.2018.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 01/09/2023]
Abstract
Cell-cell communication plays a critical role in a myriad of processes, such as homeostasis, angiogenesis, and carcinogenesis, in multi-cellular organisms. Monolayer cell models have notably improved our understanding of cellular interactions. However, the cultured cells on the planar surfaces adopt a two-dimensional morphology, which poorly imitates cellular organization in vivo, providing physiologically-irrelevant cell responses. Non-planar surfaces comprising various patterns have demonstrated great abilities in directing cellular growth and producing different cell morphologies. In recent years, a few topographical substrates have provided valuable information about cell-cell signalling, however, none of these studies have reported a three-dimensional (3D) cell morphology. Here, we introduce a structurally tunable topographical platform that can maintain cell coupling while inducing a true 3D cell morphology. Optical imaging and fluorescence recovery after photobleaching are used to illustrate these capabilities. Our analyses suggest that the intercellular signalling on the present platform, which we propose is mainly through gap junctions, is comparable to that in natural tissue. STATEMENT OF SIGNIFICANCE A better understanding of direct cellular communication can help treating neurological diseases and cancers, which may be caused by dysfunctional intercellular signaling. To investigate cell-cell contact, cells are conventionally plated onto planar surfaces, where they flatten and adopt a two-dimensional cell morphology. These unrealistic models are physiologically-irrelevant since cells exhibit a three-dimensional (3D) shape in the body. Therefore, porous scaffolds and topographical surfaces, capable of inducing various cell morphologies, have been introduced, in which the latter is more desirable for sample imaging and screening. However, the few non-planar substrates used to study cell coupling have not produced a 3D cell shape. Here, we present a tunable culture platform that can control direct cell-cell communication while maintaining true 3D cell morphologies.
Collapse
|
38
|
Rapid and gentle hydrogel encapsulation of living organisms enables long-term microscopy over multiple hours. Commun Biol 2018; 1:73. [PMID: 30271954 PMCID: PMC6123791 DOI: 10.1038/s42003-018-0079-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
Imaging living organisms at high spatial resolution requires effective and innocuous immobilization. Long-term imaging places further demands on sample mounting with minimal perturbation of the organism. Here we present a simple, inexpensive method for rapid encapsulation of small animals of any developmental stage within a photo-crosslinked polyethylene glycol (PEG) hydrogel, gently restricting movement within their confined spaces. Immobilized animals maintain their original morphology in a hydrated environment compatible with chemical treatment, optical stimulation, and light-sheet microscopy. We demonstrate prolonged three-dimensional imaging of neural responses in the nematode Caenorhabditis elegans, recovery of viable organisms after 24 h, and imaging of larger squid hatchlings. We characterize a range of hydrogel and illumination conditions for immobilization quality, and identify paralytic-free conditions suitable for high-resolution single-cell imaging. Overall, PEG hydrogel encapsulation provides fast, versatile, and gentle mounting of small living organisms, from yeast to zebrafish, for continuous observation over hours. Kyra Burnett et al. present a simple and economical method to encapsulate small living organisms for long-term microscopy in a photo-crosslinked polyethylene glycol hydrogel. This method provides a fast and gentle mounting for continuous imaging over hours, and works with light-sheet microscopy and optogenetic stimulation.
Collapse
|
39
|
Bal T, Oran DC, Sasaki Y, Akiyoshi K, Kizilel S. Sequential Coating of Insulin Secreting Beta Cells within Multilayers of Polysaccharide Nanogels. Macromol Biosci 2018; 18:e1800001. [PMID: 29575787 DOI: 10.1002/mabi.201800001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/31/2018] [Indexed: 12/21/2022]
Abstract
Pancreatic islet transplantation has emerged as a promising treatment for type-1 diabetes (T1D); however, its clinical application is still limited by the life-long use of immunosuppressive drugs, insufficient number of islets to achieve normoglycemia, and large transplantation volume. This paper reports a unique approach for nanothin coating of insulin secreting beta cell aggregates. The coating is based on hydrophobic and covalent interactions between natural acrylate modified cholesterol bearing pullulan (CHPOA) nanogels and MIN6 beta cell aggregates. Beta cell aggregates are prepared as spheroids through hanging drop method, which is optimized with respect to hanging drop volume and initial number of beta cells. These aggregates, defined as pseudoislets, are coated with sequential layers of nanogels and are evaluated as viable and functional for insulin secretion. Coating experiments are carried out using physiologically compatible medium, where pseudoislets are not brought in contact with toxic prepolymer solutions used in existing approaches. This study offers new opportunities through coating of islets with advanced functional materials under completely physiological conditions for clinical translation of cell transplantation technology. The technique developed here will establish a new paradigm for creating tolerable grafts for other chronic diseases such as anemia, cancer, central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Chemical and Biological Engineering, Graduate School of Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Dilem Ceren Oran
- Department of Biomedical Sciences and Engineering, Graduate School of Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, 615-8510, Kyoto, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, 615-8510, Kyoto, Japan
| | - Seda Kizilel
- Department of Chemical and Biological Engineering, Graduate School of Sciences and Engineering, Koc University, 34450, Istanbul, Turkey.,Department of Biomedical Sciences and Engineering, Graduate School of Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| |
Collapse
|
40
|
Bowers DT, Olingy CE, Chhabra P, Langman L, Merrill PH, Linhart RS, Tanes ML, Lin D, Brayman KL, Botchwey EA. An engineered macroencapsulation membrane releasing FTY720 to precondition pancreatic islet transplantation. J Biomed Mater Res B Appl Biomater 2018; 106:555-568. [PMID: 28240814 PMCID: PMC5572559 DOI: 10.1002/jbm.b.33862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/28/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023]
Abstract
Macroencapsulation is a powerful approach to increase the efficiency of extrahepatic pancreatic islet transplant. FTY720, a small molecule that activates signaling through sphingosine-1-phosphate receptors, is immunomodulatory and pro-angiogenic upon sustained delivery from biomaterials. While FTY720 (fingolimod, Gilenya) has been explored for organ transplantation, in the present work the effect of locally released FTY720 from novel nanofiber-based macroencapsulation membranes is explored for islet transplantation. We screened islet viability during culture with FTY720 and various biodegradable polymers. Islet viability is significantly reduced by the addition of high doses (≥500 ng/mL) of soluble FTY720. Among the polymers screened, islets have the highest viability when cultured with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Therefore, PHBV was blended with polycaprolactone (PCL) for mechanical stability and electrospun into nanofibers. Islets had no detectable function ex vivo following 5 days or 12 h of subcutaneous implantation within our engineered device. Subsequently, we explored a preconditioning scheme in which islets are transplanted 2 weeks after FTY720-loaded nanofibers are implanted. This allows FTY720 to orchestrate a local regenerative milieu while preventing premature transplantation into avascular sites that contain high concentrations of FTY720. These results provide a foundation and motivation for further investigation into the use of FTY720 in preconditioning sites for efficacious islet transplantation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 555-568, 2018.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Claire E Olingy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332-0363
| | - Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Linda Langman
- Department of Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Parker H Merrill
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Ritu S Linhart
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Michael L Tanes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Dan Lin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Kenneth L Brayman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
- Department of Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Edward A Botchwey
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332-0363
| |
Collapse
|
41
|
Cohen DJ, Nelson WJ. Secret handshakes: cell-cell interactions and cellular mimics. Curr Opin Cell Biol 2018; 50:14-19. [PMID: 29438902 PMCID: PMC5911421 DOI: 10.1016/j.ceb.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
Cell-cell junctions, acting as 'secret handshakes', mediate cell-cell interactions and make multicellularity possible. Work over the previous century illuminated key players comprising these junctions including the cadherin superfamily, nectins, CAMs, connexins, notch/delta, lectins, and eph/Ephrins. Recent work has focused on elucidating how interactions between these complex and often contradictory cues can ultimately give rise to large-scale organization in tissues. This effort, in turn, has enabled bioengineering advances such as cell-mimetic interfaces that allow us to better probe junction biology and to develop new biomaterials. This review details exciting, recent developments in these areas as well as providing both historical context and a discussion of some topical challenges and opportunities for the future.
Collapse
Affiliation(s)
- Daniel J Cohen
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Abstract
In their native environment, cells are immersed in a complex milieu of biochemical and biophysical cues. These cues may include growth factors, the extracellular matrix, cell-cell contacts, stiffness, and topography, and they are responsible for regulating cellular behaviors such as adhesion, proliferation, migration, apoptosis, and differentiation. The decision-making process used to convert these extracellular inputs into actions is highly complex and sensitive to changes both in the type of individual cue (e.g., growth factor dose/level, timing) and in how these individual cues are combined (e.g., homotypic/heterotypic combinations). In this review, we highlight recent advances in the development of engineering-based approaches to study the cellular decision-making process. Specifically, we discuss the use of biomaterial platforms that enable controlled and tailored delivery of individual and combined cues, as well as the application of computational modeling to analyses of the complex cellular decision-making networks.
Collapse
Affiliation(s)
- Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , .,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin 53705, USA.,Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | - Laura E Strong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ,
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| |
Collapse
|
43
|
Somo SI, Langert K, Yang CY, Vaicik MK, Ibarra V, Appel AA, Akar B, Cheng MH, Brey EM. Synthesis and evaluation of dual crosslinked alginate microbeads. Acta Biomater 2018; 65:53-65. [PMID: 29101016 PMCID: PMC5902406 DOI: 10.1016/j.actbio.2017.10.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022]
Abstract
Alginate hydrogels have been investigated for a broad variety of medical applications. The ability to assemble hydrogels at neutral pH and mild temperatures makes alginate a popular choice for the encapsulation and delivery of cells and proteins. Alginate has been studied extensively for the delivery of islets as a treatment for type 1 diabetes. However, poor stability of the encapsulation systems after implantation remains a challenge. In this paper, alginate was modified with 2-aminoethyl methacrylate hydrochloride (AEMA) to introduce groups that can be photoactivated to generate covalent bonds. This enabled formation of dual crosslinked structure upon exposure to ultraviolet light following initial ionic crosslinking into bead structures. The degree of methacrylation was varied and in vitro stability, long term swelling, and cell viability examined. At low levels of the methacrylation, the beads could be formed by first ionic crosslinks followed by exposure to ultraviolet light to generate covalent bonds. The methacrylated alginate resulted in more stable beads and cells were viable following encapsulation. Alginate microbeads, ionic (unmodified) and dual crosslinked, were implanted into a rat omentum pouch model. Implantation was performed with a local injection of 100 µl of 50 µg/ml of Lipopolysaccharide (LPS) to stimulate a robust inflammatory challenge in vivo. Implants were retrieved at 1 and 3 weeks for analysis. The unmodified alginate microbeads had all failed by week 1, whereas the dual-crosslinked alginate microbeads remained stable up through 3 weeks. The modified alginate microbeads may provide a more stable alternative to current alginate-based systems for cell encapsulation. STATEMENT OF SIGNIFICANCE Alginate, a naturally occurring polysaccharide, has been used for cell encapsulation to prevent graft rejection of cell transplants for people with type I diabetes. Although some success has been observed in clinical trials, the lack of reproducibility and failure to reach insulin dependence for longer periods of time indicates the need for improvements in the procedure. A major requirement for the long-term function of alginate encapsulated cells is the mechanical stability of microcapsules. Insufficient mechanical integrity of the capsules can lead to immunological reactions in the recipients. In this work, alginate was modified to allow photoactivatable groups in order to allow formation of covalent crosslinks in addition to ionic crosslinking. The dual crosslinking design prevents capsule breakdown following implantation in vivo.
Collapse
Affiliation(s)
- Sami I Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Kelly Langert
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Chin-Yu Yang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Marcella K Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Banu Akar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Ming-Huei Cheng
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
44
|
Lim KS, Martens P, Poole-Warren L. Biosynthetic Hydrogels for Cell Encapsulation. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-3-662-57511-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Marchioli G, Zellner L, Oliveira C, Engelse M, Koning ED, Mano J, Apeldoorn AV, Moroni L. Layered PEGDA hydrogel for islet of Langerhans encapsulation and improvement of vascularization. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:195. [PMID: 29151130 PMCID: PMC5694514 DOI: 10.1007/s10856-017-6004-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Islets of Langerhans need to maintain their round morphology and to be fast revascularized after transplantation to preserve functional insulin secretion in response to glucose stimulation. For this purpose, a non-cell-adhesive environment is preferable for their embedding. Conversely, nutrient and oxygen supply to islets is guaranteed by capillary ingrowth within the construct and this can only be achieved in a matrix that provides adhesion cues for cells. In this study, two different approaches are explored, which are both based on a layered architecture, in order to combine these two opposite requirements. A non-adhesive islet encapsulation layer is based on polyethyleneglycole diacrylate (PEGDA). This first layer is combined with a second hydrogel based on thiolated-gelatin, thiolated-heparin and thiolated-hyaluronic acid providing cues for endothelial cell adhesion and acting as a growth factor releasing matrix. In an alternative approach, a conformal PEGDA coating is covalently applied on the surface of the islets. The coated islets are subsequently embedded in the previously mentioned hydrogel containing thiolated glycosaminoglycans. The suitability of this approach as a matrix for controlled growth factor release has been demonstrated by studying the controlled release of VEGF and bFGF for 14 days. Preliminary tube formation has been quantified on the growth factor loaded hydrogels. This approach should facilitate blood vessel ingrowth towards the embedded islets and maintain islet round morphology and functionality upon implantation.
Collapse
Affiliation(s)
- Giulia Marchioli
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Lisa Zellner
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Catarina Oliveira
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Marten Engelse
- Department of Nephrology and Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco de Koning
- Department of Nephrology and Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joao Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Aart van Apeldoorn
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
46
|
Ahrens CC, Dong Z, Li W. Engineering cell aggregates through incorporated polymeric microparticles. Acta Biomater 2017; 62:64-81. [PMID: 28782721 DOI: 10.1016/j.actbio.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
Ex vivo cell aggregates must overcome significant limitations in the transport of nutrients, drugs, and signaling proteins compared to vascularized native tissue. Further, engineered extracellular environments often fail to sufficiently replicate tethered signaling cues and the complex architecture of native tissue. Co-cultures of cells with microparticles (MPs) is a growing field directed towards overcoming many of these challenges by providing local and controlled presentation of both soluble and tethered proteins and small molecules. Further, co-cultured MPs offer a mechanism to better control aggregate architecture and even to report key characteristics of the local microenvironment such as pH or oxygen levels. Herein, we provide a brief introduction to established and developing strategies for MP production including the choice of MP materials, fabrication techniques, and techniques for incorporating additional functionality. In all cases, we emphasize the specific utility of each approach to form MPs useful for applications in cell aggregate co-culture. We review established techniques to integrate cells and MPs. We highlight those strategies that promote targeted heterogeneity or homogeneity, and we describe approaches to engineer cell-particle and particle-particle interactions that enhance aggregate stability and biological response. Finally, we review advances in key application areas of MP aggregates and future areas of development. STATEMENT OF SIGNIFICANT Cell-scaled polymer microparticles (MPs) integrated into cellular aggregates have been shown to be a powerful tool to direct cell response. MPs have supported the development of healthy cartilage, islets, nerves, and vasculature by the maintenance of soluble gradients as well as by the local presentation of tethered cues and diffusing proteins and small molecules. MPs integrated with pluripotent stem cells have directed in vivo expansion and differentiation. Looking forward, MPs are expected to support both the characterization and development of in vitro tissue systems for applications such as drug testing platforms. However, useful co-cultures must be designed keeping in mind the limitations and attributes of each material strategy within the context of the overall tissue biology. The present review integrates prospectives from materials development, drug delivery, and tissue engineering to provide a toolbox for the development and application of MPs useful for long-term co-culture within cell aggregates.
Collapse
Affiliation(s)
- Caroline C Ahrens
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Ziye Dong
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
47
|
Jimenez‐Vergara AC, Lewis J, Hahn MS, Munoz‐Pinto DJ. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks. J Biomed Mater Res B Appl Biomater 2017; 106:1339-1348. [DOI: 10.1002/jbm.b.33942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - John Lewis
- Department of Engineering ScienceTrinity UniversitySan Antonio Texas78212
| | - Mariah S. Hahn
- Biomedical Engineering DepartmentRensselaer Polytechnic InstituteTroy New York12180
| | | |
Collapse
|
48
|
Guo C, Kim H, Ovadia EM, Mourafetis CM, Yang M, Chen W, Kloxin AM. Bio-orthogonal conjugation and enzymatically triggered release of proteins within multi-layered hydrogels. Acta Biomater 2017; 56:80-90. [PMID: 28391052 PMCID: PMC5510749 DOI: 10.1016/j.actbio.2017.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 02/02/2023]
Abstract
Hydrogels are facile architectures for the controlled presentation of proteins with far-reaching applications, from fundamental biological studies in three-dimensional culture to new regenerative medicine and therapeutic delivery strategies. Here, we demonstrate a versatile approach for spatially-defined presentation of engineered proteins within hydrogels through i) immobilization using bio-orthogonal strain-promoted alkyne-azide click chemistry and ii) dynamic protease-driven protein release using exogenously applied enzyme. Model fluorescent proteins were expressed using nonsense codon replacement to incorporate azide-containing unnatural amino acids in a site-specific manner toward maintaining protein activity: here, cyan fluorescent protein (AzCFP), mCherry fluorescent protein (AzmCh), and mCh decorated with a thrombin cut-site. (AzTMBmCh). Eight-arm poly(ethylene glycol) (PEG) was modified with dibenzylcyclooctyne (DBCO) groups and reacted with azide functionalized PEG in aqueous solution for rapid formation of hydrogels. Azide functionalized full-length fluorescent proteins were successfully incorporated into the hydrogel network by reaction with PEG-DBCO prior to gel formation. Temporal release and removal of select proteins (AzTMBmCh) was triggered with the application of thrombin and monitored in real-time with confocal microscopy, providing a responsive handle for controlling matrix properties. Hydrogels with regions of different protein compositions were created using a layering technique with thicknesses of hundreds of micrometers, affording opportunities for the creation of complex geometries on size scales relevant for controlling cellular microenvironments. STATEMENT OF SIGNIFICANCE Controlling protein presentation within biomaterials is important for modulating interactions with biological systems. For example, native tissues are composed of subunits with different matrix compositions (proteins, stiffness) that dynamically interact with cells, influencing function and fate. Toward mimicking such temporally-regulated and spatially-defined microenvironments, we utilize bio-orthogonal click chemistry and protein engineering to create hydrogels with distinct regions of proteins and modify them over time. Through nonsense codon replacement, we site-specifically functionalize large proteins with i) azides for covalent conjugation and ii) an enzymatic cleavage site for user-defined release from hydrogels. Our results exemplify not only the ability to create unique bio-functionalized hydrogels with controlled mechanical properties, but also the potential for creating interesting interfaces for cell culture and tissue engineering applications.
Collapse
Affiliation(s)
- Chen Guo
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Heejae Kim
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Elisa M Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Christine M Mourafetis
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, United States
| | - Mingrui Yang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
49
|
Knobeloch T, Abadi SEM, Bruns J, Zustiak SP, Kwon G. Injectable Polyethylene Glycol Hydrogel for Islet Encapsulation: an in vitro and in vivo Characterization. Biomed Phys Eng Express 2017. [PMID: 29527325 DOI: 10.1088/2057-1976/aa742b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An injection of hydrogel-encapsulated islets that controls blood glucose levels over long term would provide a much needed alternative treatment for type 1 diabetes mellitus (T1DM). To this end, we tested the feasibility of using an injectable polyethylene glycol (PEG) hydrogel as a scaffold for islet encapsulation. Encapsulated islets cultured in vitro for 6 days showed excellent cell viability and released insulin with higher basal and stimulated insulin secretion than control islets. Host responses to PEG hydrogels were studied by injecting PEG hydrogels (no treatment and vehicle controls used) into the peritoneal cavities of B6D2F1 mice and monitoring alterations in body weight, food and water intake, and blood glucose levels. After 2 weeks, peritoneal cavity cells were harvested, followed by hydrogel retrieval, and extraction of spleens. Body weights, food and water intake, and blood glucose levels were unaltered in mice injected with hydrogels compared to no treatment and vehicle-injected control mice. Frozen sections of a hydrogel showed the presence of tissues and small number of immune cells surrounding the hydrogel but no cell infiltration into the hydrogel bulk. Spleen sizes were not significantly different under the experimental conditions. Peritoneal cavity cells were slightly higher in mice injected with hydrogels compared to control mice but no statistical difference between vehicle- and hydrogel-injected mice was noted. As an in vivo feasibility study, streptozotocin-induced diabetic mice were injected with vehicle or hydrogels containing 50 islets each into two sites, the peritoneal cavity and a subcutaneous site on the back. Transient control of blood glucose levels were observed in mice injected with hydrogels containing islets. In summary, we developed an injectable PEG hydrogel that supported islet function and survival in vitro and in vivo and elicited only a mild host response. Our work illustrates the feasibility of using injectable PEG hydrogels for islet encapsulation.
Collapse
Affiliation(s)
- Tracy Knobeloch
- School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, IL 62026
| | | | - Joseph Bruns
- Biomedical Engineering, St. Louis University, St. Louis, MO 63103
| | | | - Guim Kwon
- School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, IL 62026
| |
Collapse
|
50
|
Dorsey TB, Grath A, Wang A, Xu C, Hong Y, Dai G. Evaluation of Photochemistry Reaction Kinetics to Pattern Bioactive Proteins on Hydrogels for Biological Applications. Bioact Mater 2017; 3:64-73. [PMID: 29632897 PMCID: PMC5889137 DOI: 10.1016/j.bioactmat.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bioactive signals play many important roles on cell function and behavior. In most biological studies, soluble biochemical cues such as growth factors or cytokines are added directly into the media to maintain and/or manipulate cell activities in vitro. However, these methods cannot accurately mimic certain in vivo biological signaling motifs, which are often immobilized to extracellular matrix and also display spatial gradients that are critical for tissue morphology. Besides biochemical cues, biophysical properties such as substrate stiffness can influence cell behavior but is not easy to manipulate under conventional cell culturing practices. Recent development in photocrosslinkable hydrogels provides new tools that allow precise control of spatial biochemical and biophysical cues for biological applications, but doing so requires a comprehensive study on various hydrogel photochemistry kinetics to allow thorough photocrosslink reaction while maintain protein bioactivities at the same time. In this paper, we studied several photochemistry reactions and evaluate key photochemical parameters, such as photoinitiators and ultra-violet (UV) exposure times, to understand their unique contributions to undesired protein damage and cell death. Our data illustrates the retention of protein function and minimize of cell health during photoreactions requires careful selection of photoinitiator type and concentration, and UV exposure times. We also developed a robust method based on thiol-norbornene chemistry for independent control of hydrogel stiffness and spatial bioactive patterns. Overall, we highlight a class of bioactive hydrogels to stiffness control and site specific immobilized bioactive proteins/peptides for the study of cellular behavior such as cellular attraction, repulsion and stem cell fate.
Collapse
Affiliation(s)
- Taylor B Dorsey
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180.,Department of Bioengineering, Northeastern University, Boston, MA 02115
| | - Alexander Grath
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Annling Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| | - Guohao Dai
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180.,Department of Bioengineering, Northeastern University, Boston, MA 02115
| |
Collapse
|