1
|
Tuncer C, Hacioglu C. Notch1 and Major Vault Proteins Modulate Temozolomide Resistance in Glioblastoma. J Cell Mol Med 2025; 29:e70474. [PMID: 40100070 PMCID: PMC11916442 DOI: 10.1111/jcmm.70474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
The development of resistance to chemotherapy in the case of aggressive glioblastoma multiforme (GBM) presents a significant treatment challenge. Dysregulation of the Notch signalling pathway promotes tumour proliferation in GBM cells. This study was that targeting the Notch signalling pathway could be a potential therapeutic approach for GBM. Initially, temozolomide-(TMZ)-resistant GBM cells were generated, and the effect of Notch1 on the expression of multiple resistance proteins within these cells was investigated. Subsequently, the expression of Notch-1 in GBM cells was reduced using siRNA. Results revealed a significant reduction in TMZ sensitivity in TMZ-resistant GBM cells, accompanied by a substantial increase in the expression of major vault protein-(MVP), O6-methylguanine-DNA-methyltransferase-(MGMT), and ATP-binding-cassette transporter-G2-(ABCG2). Furthermore, TMZ-resistant U87-R and U251-R cells exhibited higher proliferation rates compared to their parental control cells (U87 and U251). Additionally, we observed that downregulating Notch-1 signalling inhibited the proliferation of TMZ-resistant U87-R and U251-R cells. This downregulation led to the inactivation of MGMT, ABCG2, and MVP. Importantly, it increased chemosensitivity to TMZ, particularly by downregulating MVP expression. Consequently, Notch1 could serve as a potential therapeutic target for GBM cells and may be effective in preventing TMZ resistance by targeting MVP, as well as MGMT and ABCG2 in GBM cells.
Collapse
MESH Headings
- Humans
- Temozolomide/pharmacology
- Glioblastoma/drug therapy
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Vault Ribonucleoprotein Particles/metabolism
- Vault Ribonucleoprotein Particles/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Signal Transduction/drug effects
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Antineoplastic Agents, Alkylating/pharmacology
- Brain Neoplasms/drug therapy
- Brain Neoplasms/metabolism
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- DNA Modification Methylases
- Tumor Suppressor Proteins
- DNA Repair Enzymes
Collapse
Affiliation(s)
- Cengiz Tuncer
- Faculty of Medicine, Department of NeurosurgeryDüzce UniversityDüzceTurkey
| | - Ceyhan Hacioglu
- Faculty of Medicine, Department of Medical BiochemistryDüzce UniversityDüzceTurkey
- Faculty of Pharmacy, Department of BiochemistryDüzce UniversityDüzceTurkey
| |
Collapse
|
2
|
Huang X, Chen W, Wang Y, Shytikov D, Wang Y, Zhu W, Chen R, He Y, Yang Y, Guo W. Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control. Front Med 2025; 19:23-52. [PMID: 39745621 DOI: 10.1007/s11684-024-1107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 02/27/2025]
Abstract
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Huang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wenwei Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanyan Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Dmytro Shytikov
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanwen Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wangyi Zhu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Ruyi Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yuwei He
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanjia Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Biomedical and Health Translational Research Center of Zhejiang Province, Jiaxing, 314400, China.
| |
Collapse
|
3
|
Roosma J. A comprehensive review of oncogenic Notch signaling in multiple myeloma. PeerJ 2024; 12:e18485. [PMID: 39619207 PMCID: PMC11608568 DOI: 10.7717/peerj.18485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024] Open
Abstract
Multiple myeloma remains an incurable plasma cell cancer with radical case-by-case heterogeneity. Because of this, personalized and disease-specific biology of multiple myeloma must be understood for the discovery of effective molecular targets. The highly evolutionarily conserved Notch signaling pathway has been extensively described as a multifaceted driver of the multiple myeloma disease process-contributing to both intrinsic effects of malignant cells and to widespread remodeling of the tumor microenvironment that further facilitates disease progression. Namely, Notch signaling amongst malignant cells promotes increased proliferation, tumor-initiating capacity, drug resistance, and invasiveness. Moreover, Notch signaling between malignant cells and cells of the tumor microenvironment leads to increased osteodegenerative disease and angiogenesis. This comprehensive review will discuss both the intrinsic implications of pathological Notch signaling in multiple myeloma and the extrinsic implications of Notch signaling in the multiple myeloma tumor microenvironment. Additionally, the genetic origins of Notch signaling dysregulation in multiple myeloma and current attempts at targeting Notch therapeutically will be reviewed. While the subject has been reviewed previously, recent developments in the intervening years demand a revised synthesis of the literature. The aim of this work is to introduce and thoroughly synthesize the current state of knowledge in this vein of research and to highlight future directions for both new and in-the-field scientists.
Collapse
Affiliation(s)
- Justin Roosma
- Biology, Eastern Washington University, Cheney, Washington, United States
| |
Collapse
|
4
|
Chembukavu SN, Lindsay AJ. Therapy-induced senescence in breast cancer: an overview. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:902-920. [PMID: 39280248 PMCID: PMC11390292 DOI: 10.37349/etat.2024.00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 09/18/2024] Open
Abstract
Outcomes for women with breast cancer have improved dramatically in recent decades. However, many patients present with intrinsic drug resistance and others are initially sensitive to anti-cancer drugs but acquire resistance during the course of their treatment, leading to recurrence and/or metastasis. Drug therapy-induced senescence (TIS) is a form of drug resistance characterised by the induction of cell cycle arrest and the emergence of a senescence-associated secretory phenotype (SASP) that can develop in response to chemo- and targeted- therapies. A wide range of anticancer interventions can lead to cell cycle arrest and SASP induction, by inducing genotoxic stress, hyperactivation of signalling pathways or oxidative stress. TIS can be anti-tumorigenic in the short-term, but pro-tumorigenic in the long-term by creating a pro-inflammatory and immunosuppressive microenvironment. Moreover, the SASP can promote angiogenesis and epithelial-mesenchymal transition in neighbouring cells. In this review, we will describe the characteristics of TIS in breast cancer and detail the changes in phenotype that accompany its induction. We also discuss strategies for targeting senescent cancer cells in order to prevent or delay tumour recurrence.
Collapse
Affiliation(s)
- Suraj Narayanan Chembukavu
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
5
|
Song WH, Lim YS, Kim JE, Kang HY, Lee C, Rajbongshi L, Hwang SY, Oh SO, Kim BS, Lee D, Song YJ, Yoon S. A Marine Collagen-Based 3D Scaffold for In Vitro Modeling of Human Prostate Cancer Niche and Anti-Cancer Therapeutic Discovery. Mar Drugs 2024; 22:295. [PMID: 39057404 PMCID: PMC11277582 DOI: 10.3390/md22070295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recently, the need to develop a robust three-dimensional (3D) cell culture system that serves as a valuable in vitro tumor model has been emphasized. This system should closely mimic the tumor growth behaviors observed in vivo and replicate the key elements and characteristics of human tumors for the effective discovery and development of anti-tumor therapeutics. Therefore, in this study, we developed an effective 3D in vitro model of human prostate cancer (PC) using a marine collagen-based biomimetic 3D scaffold. The model displayed distinctive molecular profiles and cellular properties compared with those of the 2D PC cell culture. This was evidenced by (1) increased cell proliferation, migration, invasion, colony formation, and chemoresistance; (2) upregulated expression of crucial multidrug-resistance- and cancer-stemness-related genes; (3) heightened expression of key molecules associated with malignant progressions, such as epithelial-mesenchymal transition transcription factors, Notch, matrix metalloproteinases, and pluripotency biomarkers; (4) robust enrichment of prostate cancer stem cells (CSCs); and (5) enhanced expression of integrins. These results suggest that our 3D in vitro PC model has the potential to serve as a research platform for studying PC and prostate CSC biology, as well as for screening novel therapies targeting PC and prostate CSCs.
Collapse
Affiliation(s)
- Won Hoon Song
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Ji-Eun Kim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Hae Yeong Kang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea;
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| |
Collapse
|
6
|
Gion M, García-Mosquera JJ, Pérez-García JM, Peg V, Ruiz-Borrego M, Stradella A, Bermejo B, Guerrero JA, López-Montero L, Mancino M, Rodríguez-Morató J, Antonarelli G, Sampayo-Cordero M, Llombart-Cussac A, Cortés J. Correlation between trophoblast cell-surface antigen-2 (Trop-2) expression and pathological complete response in patients with HER2-positive early breast cancer treated with neoadjuvant docetaxel, carboplatin, trastuzumab, and pertuzumab. Breast Cancer Res Treat 2024; 205:589-598. [PMID: 38456970 DOI: 10.1007/s10549-024-07292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE The prognostic and predictive role of trophoblast cell-surface antigen-2 (Trop-2) overexpression in human epidermal growth factor receptor 2-positive (HER2-positive) breast cancer is currently unknown. We retrospectively analyzed Trop-2 expression and its correlation with clinicopathologic features and pathological complete response (pCR) in HER2-positive early breast cancer (EBC) patients treated with neoadjuvant docetaxel, carboplatin, trastuzumab, and pertuzumab in the PHERGain study. METHODS Trop-2 expression at baseline was determined in formalin-fixed, paraffin-embedded primary tumor biopsies by immunohistochemistry and was first classified into expressing (Trop-2-positive) or not-expressing (Trop-2-negative) tumors. Then, it was classified by histochemical score (H-score) according to its intensity into low (0-9), intermediate (10-49), and high (≥ 50). The association between clinicopathologic features, pCR, and Trop-2 expression was performed with Fisher's exact test. RESULTS Forty-one patients with tissue evaluable for Trop-2 expression were included, with 28 (68.3%) Trop-2-positive tumors. Overall, 17 (41.46%), 14 (34.15%), and 10 (24.40%) tumors were classified as low, intermediate, and high, respectively. Trop-2 expression was significantly associated with decreased pCR rates (50.0% vs. 92.3%; odds ratio [OR] 0.05; 95% CI, 0.002-0.360]; p adjusted = 0.01) but was not correlated with any clinicopathologic features (p ≥ 0.05). Tumors with the highest Trop-2 H-score were less likely to obtain a pCR (OR 0.03; 95% CI, 0.001-0.290, p adjusted < 0.01). This association was confirmed in univariate and multivariate regression analyses. CONCLUSION These findings suggest a potential role of Trop-2 expression as a biomarker of resistance to neoadjuvant chemotherapy plus dual HER2 blockade and may become a strategic target for future combinations in HER2-positive EBC patients.
Collapse
Affiliation(s)
- María Gion
- Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Juan José García-Mosquera
- Dr. Rosell Oncology Institute (IOR), Dexeus University Hospital, Quironsalud Group, Barcelona, Spain
| | - José Manuel Pérez-García
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Ridgewood, NJ, USA
| | - Vicente Peg
- Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Agostina Stradella
- Institut Català d'Oncologia L'Hospitalet, Hospitalet de Llobregat, Barcelona, Spain
| | - Begoña Bermejo
- Hospital Clínico Universitario de Valencia, Biomedical Research Institute INCLIVA, Valencia, Spain
| | - José Antonio Guerrero
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Ridgewood, NJ, USA
| | - Laura López-Montero
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Ridgewood, NJ, USA
| | - Mario Mancino
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Ridgewood, NJ, USA
| | - José Rodríguez-Morató
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Ridgewood, NJ, USA
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Miguel Sampayo-Cordero
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Ridgewood, NJ, USA
| | - Antonio Llombart-Cussac
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain.
- Medica Scientia Innovation Research (MEDSIR), Ridgewood, NJ, USA.
- Hospital Arnau de Vilanova, Valencia, Spain.
- Universidad Católica de Valencia, Valencia, Spain.
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain.
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain.
- Medica Scientia Innovation Research (MEDSIR), Ridgewood, NJ, USA.
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
8
|
Feng M, Santhanam RK, Xing H, Zhou M, Jia H. Inhibition of γ-secretase/Notch pathway as a potential therapy for reversing cancer drug resistance. Biochem Pharmacol 2024; 220:115991. [PMID: 38135129 DOI: 10.1016/j.bcp.2023.115991] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The mechanism of tumor drug resistance is complex and may involve stem cell maintenance, epithelial-mesenchymal transition, the activation of survival signaling pathways, transporter protein expression, and tumor microenvironment remodeling, all of which are linked to γ-secretase/Notch signaling. Increasing evidence has shown that the activation of the γ-secretase/Notch pathway is a key driver of cancer progression and drug resistance development and that γ-secretase inhibitors (GSIs) may be the most promising agents for reversing chemotherapy resistance of tumors by targeting the γ-secretase/Notch pathway. Here, we systematically summarize the roles in supporting γ-secretase/Notch activation-associated transformation of cancer cells into cancer stem cells, promotion of the EMT process, PI3K/Akt, MEK/ERK and NF-κB activation, enhancement of ABC transporter protein expression, and TME alteration in mediating tumor drug resistance. Subsequently, we analyze the mechanism of GSIs targeting the γ-secretase/Notch pathway to reverse tumor drug resistance and propose the outstanding advantages of GSIs in treating breast cancer drug resistance over other tumors. Finally, we emphasize that the development of GSIs for reversing tumor drug resistance is promising.
Collapse
Affiliation(s)
- Mei Feng
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China; Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, China
| | - Ramesh Kumar Santhanam
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Huan Xing
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China
| | - Mingsheng Zhou
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China; Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, China.
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
9
|
Koltai T, Fliegel L. The Relationship between Trop-2, Chemotherapeutic Drugs, and Chemoresistance. Int J Mol Sci 2023; 25:87. [PMID: 38203255 PMCID: PMC10779383 DOI: 10.3390/ijms25010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Trop-2 is a highly conserved one-pass transmembrane mammalian glycoprotein that is normally expressed in tissues such as the lung, intestines, and kidney during embryonic development. It is overexpressed in many epithelial cancers but is absent in non-epithelial tumors. Trop-2 is an intracellular calcium signal transducer that participates in the promotion of cell proliferation, migration, invasion, metastasis, and probably stemness. It also has some tumor suppressor effects. The pro-tumoral actions have been thoroughly investigated and reported. However, Trop-2's activity in chemoresistance is less well known. We review a possible relationship between Trop-2, chemotherapy, and chemoresistance. We conclude that there is a clear role for Trop-2 in some specific chemoresistance events. On the other hand, there is no clear evidence for its participation in multidrug resistance through direct drug transport. The development of antibody conjugate drugs (ACD) centered on anti-Trop-2 monoclonal antibodies opened the gates for the treatment of some tumors resistant to classic chemotherapies. Advanced urothelial tumors and breast cancer were among the first malignancies for which these ACDs have been employed. However, there is a wide group of other tumors that may benefit from anti-Trop-2 therapy as soon as clinical trials are completed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina;
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, 347 Medical Science Bldg., Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
10
|
Mazarei M, Shahabi Rabori V, Ghasemi N, Salehi M, Rayatpisheh N, Jahangiri N, Saberiyan M. LncRNA MALAT1 signaling pathway and clinical applications in overcome on cancers metastasis. Clin Exp Med 2023; 23:4457-4472. [PMID: 37695391 DOI: 10.1007/s10238-023-01179-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
In spite of its high mortality rate and difficulty in finding a cure, scientific advancements have contributed to a reduction in cancer-related fatalities. Aberrant gene expression during carcinogenesis emphasizes the importance of targeting the signaling networks that control gene expression in cancer treatment. Long noncoding RNAs (lncRNAs), which are transcribed RNA molecules that play a role in gene expression regulation, are a recent innovative therapeutic approach for diagnosing and treating malignancies. MALAT1, a well-known lncRNA, functions in gene expression, RNA processing, and epigenetic control. High expression levels of MALAT1 are associated with several human disorders, including metastasis, invasion, autophagy, and proliferation of cancer cells. MALAT1 affects various signaling pathways and microRNAs (miRNAs), and this study aims to outline its functional roles in cancer metastasis and its interactions with cellular signaling pathways. Moreover, MALAT1 and its interactions with signaling pathways can be promising target for cancer treatment.
Collapse
Affiliation(s)
- Madineh Mazarei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nazila Ghasemi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehrnaz Salehi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Rayatpisheh
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Jahangiri
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
11
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
12
|
Bharathiraja P, Yadav P, Sajid A, Ambudkar SV, Prasad NR. Natural medicinal compounds target signal transduction pathways to overcome ABC drug efflux transporter-mediated multidrug resistance in cancer. Drug Resist Updat 2023; 71:101004. [PMID: 37660590 PMCID: PMC10840887 DOI: 10.1016/j.drup.2023.101004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
ATP-binding cassette (ABC) transporters such as ABCB1, ABCG2, and ABCC1 are the major players in drug efflux-mediated multidrug resistance (MDR), which severely affects the efficacy of chemotherapy. Several synthetic compounds block the drug transport by ABC transporters; however, they exhibit a narrow therapeutic window, and produce side effects in non-target normal tissues. Conversely, the downregulation of the expression of ABC drug transporters seems to be a promising strategy to reverse MDR in cancer cells. Several signaling pathways, such as NF-κB, STAT3, Gli, NICD, YAP/TAZ, and Nrf2 upregulate the expression of ABC drug transporters in drug-resistant cancers. Recently, natural medicinal compounds have gained importance to overcome the ABC drug-efflux pump-mediated MDR in cancer. These compounds target transcription factors and the associated signal transduction pathways, thereby downregulating the expression of ABC transporters in drug-resistant cancer cells. Several potent natural compounds have been identified as lead candidates to synergistically enhance chemotherapeutic efficacy, and a few of them are already in clinical trials. Therefore, modulation of signal transduction pathways using natural medicinal compounds for the reversal of ABC drug transporter-mediated MDR in cancer is a novel approach for improving the efficiency of the existing chemotherapeutics. In this review, we discuss the modulatory role of natural medicinal compounds on cellular signaling pathways that regulate the expression of ABC transporters in drug-resistant cancer cells.
Collapse
Affiliation(s)
- Pradhapsingh Bharathiraja
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Priya Yadav
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-4256, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-4256, USA.
| | - N Rajendra Prasad
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India.
| |
Collapse
|
13
|
Nitta H, Takizawa H, Mitsumori T, Iizuka-Honma H, Araki Y, Fujishiro M, Tomita S, Kishikawa S, Hashizume A, Sawada T, Okubo M, Sekiguchi Y, Ando M, Noguchi M. Possible New Histological Prognostic Index for Large B-Cell Lymphoma. J Clin Med 2023; 12:6324. [PMID: 37834968 PMCID: PMC10573887 DOI: 10.3390/jcm12196324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
We conducted a retrospective analysis of GRP94 immunohistochemical (IHC) staining, an ER stress protein, on large B-cell lymphoma (LBCL) cells, intracellular p53, and 15 factors involved in the metabolism of the CHOP regimen: AKR1C3 (HO metabolism), CYP3A4 (CHOP metabolism), and HO efflux pumps (MDR1 and MRP1). The study subjects were 42 patients with LBCL at our hospital. The IHC staining used antibodies against the 17 factors. The odds ratios by logistic regression analysis used a dichotomous variable of CR and non-CR/relapse were statistically significant for MDR1, MRP1, and AKR1C3. The overall survival (OS) after R-CHOP was compared by the log-rank test. The four groups showed that Very good (5-year OS, 100%) consisted of four patients who showed negative IHC staining for both GRP94 and CYP3A4. Very poor (1-year OS, 0%) consisted of three patients who showed positive results in IHC for both GRP94 and CYP3A4. The remaining 35 patients comprised two subgroups: Good (5-year OS 60-80%): 15 patients who showed negative staining for both MDR1 and AKR1C3 and Poor (5-year OS, 10-20%): 20 patients who showed positive staining for either MDR, AKR1C3, MRP1, or p53. The Histological Prognostic Index (HPI) (the four groups: Very poor, Poor, Good, and Very good) is a breakthrough method for stratifying patients based on the factors involved in the development of treatment resistance.
Collapse
Affiliation(s)
- Hideaki Nitta
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.)
| | - Haruko Takizawa
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.)
| | - Toru Mitsumori
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.)
| | - Hiroko Iizuka-Honma
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.)
| | - Yoshihiko Araki
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan;
| | - Maki Fujishiro
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Shigeki Tomita
- Department of Diagnostic Pathology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (S.T.); (S.K.); (A.H.)
| | - Satsuki Kishikawa
- Department of Diagnostic Pathology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (S.T.); (S.K.); (A.H.)
| | - Akane Hashizume
- Department of Diagnostic Pathology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (S.T.); (S.K.); (A.H.)
| | - Tomohiro Sawada
- Department of Clinical Laboratory, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Mitsuo Okubo
- Laboratory of Blood Transfusion, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | | | - Miki Ando
- Division of Hematology, Juntendo University Juntendo Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Masaaki Noguchi
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.)
| |
Collapse
|
14
|
Jin ML, Jeong KW. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp Mol Med 2023; 55:1333-1347. [PMID: 37394580 PMCID: PMC10394043 DOI: 10.1038/s12276-023-01014-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 07/04/2023] Open
Abstract
The development and immune evasion of cancer stem cells (CSCs) limit the efficacy of currently available anticancer therapies. Recent studies have shown that epigenetic reprogramming regulates the expression of characteristic marker proteins and tumor plasticity associated with cancer cell survival and metastasis in CSCs. CSCs also possess unique mechanisms to evade external attacks by immune cells. Hence, the development of new strategies to restore dysregulated histone modifications to overcome cancer resistance to chemotherapy and immunotherapy has recently attracted attention. Restoring abnormal histone modifications can be an effective anticancer strategy to increase the therapeutic effect of conventional chemotherapeutic and immunotherapeutic drugs by weakening CSCs or by rendering them in a naïve state with increased sensitivity to immune responses. In this review, we summarize recent findings regarding the role of histone modifiers in the development of drug-resistant cancer cells from the perspectives of CSCs and immune evasion. In addition, we discuss attempts to combine currently available histone modification inhibitors with conventional chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
15
|
Qi Y, Li M, Li S, Zeng D, Xiao Y, Li J, Ye Q, Bremer E, Zhang GJ. Notch1 promotes resistance to cisplatin by up-regulating Ecto-5'-nucleotidase (CD73) in triple-negative breast cancer cells. Cell Death Discov 2023; 9:204. [PMID: 37391408 DOI: 10.1038/s41420-023-01487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive molecular subtype that due to lack of druggable targets is treated with chemotherapy as standard of care. However, TNBC is prone to chemoresistance and associates with poor survival. The aim of this study was to explore the molecular mechanisms of chemoresistance in TNBC. Firstly, we found that the mRNA expression of Notch1 and CD73 in cisplatin-treated patient material associated with poor clinical outcome. Further, both were upregulated at the protein level in cisplatin-resistant TNBC cell lines. Overexpression of Notch1 intracellular domain (termed N1ICD) increased expression of CD73, whereas knockdown of Notch1 decreased CD73 expression. Using chromatin immunoprecipitation and Dual-Luciferase assay it was identified that N1ICD directly bound the CD73 promoter and activated transcription. Taken together, these findings suggest CD73 as a direct downstream target of Notch1, providing an additional layer to the mechanisms underlying Notch1-mediated cisplatin resistance in TNBC.
Collapse
Affiliation(s)
- Yuzhu Qi
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361101, Xiamen, China
- Department Of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Meifang Li
- The first affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Shaozhong Li
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 516621, Shanwei, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yingsheng Xiao
- Department of Thyroid Surgery, Shantou Central Hospital, Shantou, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qianqian Ye
- Department of Pathology, Maternal and Child Health Hospital of Ganzhou, Ganzhou, Jiangxi, China
| | - Edwin Bremer
- Department Of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Guo-Jun Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361101, Xiamen, China.
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 361101, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 361101, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, 361101, Xiamen, China.
- Central Laboratory, Xiang'an Hospital of Xiamen University, 361101, Xiamen, China.
| |
Collapse
|
16
|
Gordon ER, Wright CA, James M, Cooper SJ. Transcriptomic and functional analysis of ANGPTL4 overexpression in pancreatic cancer nominates targets that reverse chemoresistance. BMC Cancer 2023; 23:524. [PMID: 37291514 DOI: 10.1186/s12885-023-11010-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers based on five-year survival rates. Genes contributing to chemoresistance represent novel therapeutic targets that can improve treatment response. Increased expression of ANGPTL4 in tumors correlates with poor outcomes in pancreatic cancer. METHODS We used statistical analysis of publicly available gene expression data (TCGA-PAAD) to test whether expression of ANGPTL4 and its downstream targets, ITGB4 and APOL1, were correlated with patient survival. We measured the impact of ANGPTL4 overexpression in a common pancreatic cancer cell line, MIA PaCa-2 cells, using CRISPRa for overexpression and DsiRNA for knockdown. We characterized global gene expression changes associated with high levels of ANGPTL4 and response to gemcitabine treatment using RNA-sequencing. Gemcitabine dose response curves were calculated on modified cell lines by measuring cell viability with CellTiter-Glo (Promega). Impacts on cell migration were measured using a time course scratch assay. RESULTS We show that ANGPTL4 overexpression leads to in vitro resistance to gemcitabine and reduced survival times in patients. Overexpression of ANGPTL4 induces transcriptional signatures of tumor invasion and metastasis, proliferation and differentiation, and inhibition of apoptosis. Analyses revealed an overlapping signature of genes associated with both ANGPTL4 activation and gemcitabine response. Increased expression of the genes in this signature in patient PDAC tissues was significantly associated with shorter patient survival. We identified 42 genes that were both co-regulated with ANGPTL4 and were responsive to gemcitabine treatment. ITGB4 and APOL1 were among these genes. Knockdown of either of these genes in cell lines overexpressing ANGPTL4 reversed the observed gemcitabine resistance and inhibited cellular migration associated with epithelial to mesenchymal transition (EMT) and ANGPTL4 overexpression. CONCLUSIONS These data suggest that ANGPTL4 promotes EMT and regulates the genes APOL1 and ITGB4. Importantly, we show that inhibition of both targets reverses chemoresistance and decreases migratory potential. Our findings have revealed a novel pathway regulating tumor response to treatment and suggest relevant therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Emily R Gordon
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Carter A Wright
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
- The University of Alabama in Huntsville, 301 Sparkman Drive, 35899, Huntsville, AL, USA
| | - Mikayla James
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA.
| |
Collapse
|
17
|
Shah K, Al Ashiri L, Nasimian A, Ahmed M, Kazi JU. Venetoclax-Resistant T-ALL Cells Display Distinct Cancer Stem Cell Signatures and Enrichment of Cytokine Signaling. Int J Mol Sci 2023; 24:ijms24055004. [PMID: 36902436 PMCID: PMC10003524 DOI: 10.3390/ijms24055004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Therapy resistance remains one of the major challenges for cancer treatment that largely limits treatment benefits and patient survival. The underlying mechanisms that lead to therapy resistance are highly complicated because of the specificity to the cancer subtype and therapy. The expression of the anti-apoptotic protein BCL2 has been shown to be deregulated in T-cell acute lymphoblastic leukemia (T-ALL), where different T-ALL cells display a differential response to the BCL2-specific inhibitor venetoclax. In this study, we observed that the expression of anti-apoptotic BCL2 family genes, such as BCL2, BCL2L1, and MCL1, is highly varied in T-ALL patients, and inhibitors targeting proteins coded by these genes display differential responses in T-ALL cell lines. Three T-ALL cell lines (ALL-SIL, MOLT-16, and LOUCY) were highly sensitive to BCL2 inhibition within a panel of cell lines tested. These cell lines displayed differential BCL2 and BCL2L1 expression. Prolonged exposure to venetoclax led to the development of resistance to it in all three sensitive cell lines. To understand how cells developed venetoclax resistance, we monitored the expression of BCL2, BCL2L1, and MCL1 over the treatment period and compared gene expression between resistant cells and parental sensitive cells. We observed a different trend of regulation in terms of BCL2 family gene expression and global gene expression profile including genes reported to be expressed in cancer stem cells. Gene set enrichment analysis (GSEA) showed enrichment of cytokine signaling in all three cell lines which was supported by the phospho-kinase array where STAT5 phosphorylation was found to be elevated in resistant cells. Collectively, our data suggest that venetoclax resistance can be mediated through the enrichment of distinct gene signatures and cytokine signaling pathways.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Correspondence:
| |
Collapse
|
18
|
Gordon ER, Wright CA, James M, Cooper SJ. Transcriptomic and functional analysis of ANGPTL4 overexpression in pancreatic cancer nominates targets that reverse chemoresistance. RESEARCH SQUARE 2023:rs.3.rs-2444404. [PMID: 36747689 PMCID: PMC9900996 DOI: 10.21203/rs.3.rs-2444404/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers based on five-year survival rates. Genes contributing to chemoresistance represent novel therapeutic targets that can improve treatment response. Increased expression of ANGPTL4 in tumors correlates with poor outcomes in pancreatic cancer. Methods We used statistical analysis of publicly available gene expression data (TCGA-PAAD) to test whether expression of ANGPTL4 and its downstream targets, ITGB 4 and APOL1 , were correlated with patient survival. We measured the impact of ANGPTL4 overexpression in a common pancreatic cancer cell line, MIA PaCa-2 cells, using CRISPRa for overexpression and DsiRNA for knockdown. We characterized global gene expression changes associated with high levels of ANGPTL4 and response to gemcitabine treatment using RNA-sequencing. Gemcitabine dose response curves were calculated on modified cell lines by measuring cell viability with CellTiter-Glo (Promega). Impacts on cell migration were measured using a time course scratch assay. Results We show that ANGPTL4 overexpression leads to in vitro resistance to gemcitabine and reduced survival times in patients. Overexpression of ANGPTL4 induces transcriptional signatures of tumor invasion and metastasis, proliferation and differentiation, and inhibition of apoptosis. Analyses revealed an overlapping signature of genes associated with both ANGPTL4 activation and gemcitabine response. Increased expression of the genes in this signature in patient PDAC tissues was significantly associated with shorter patient survival. We identified 42 genes that were both co-regulated with ANGPTL4 and were responsive to gemcitabine treatment. ITGB4 and APOL1 were among these genes. Knockdown of either of these genes in cell lines overexpressing ANGPTL4 reversed the observed gemcitabine resistance and inhibited cellular migration associated with epithelial to mesenchymal transition (EMT) and ANGPTL4 overexpression. Conclusions These data suggest that ANGPTL4 promotes EMT and regulates the genes APOL1 and ITGB4 . Importantly, we show that inhibition of both targets reverses chemoresistance and decreases migratory potential. Our findings have revealed a novel pathway regulating tumor response to treatment and suggest relevant therapeutic targets in pancreatic cancer.
Collapse
|
19
|
D’Amico M, De Amicis F. Aberrant Notch signaling in gliomas: a potential landscape of actionable converging targets for combination approach in therapies resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:939-953. [PMID: 36627893 PMCID: PMC9771760 DOI: 10.20517/cdr.2022.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
The current therapeutic protocols and prognosis of gliomas still depend on clinicopathologic and radiographic characteristics. For high-grade gliomas, the standard of care is resection followed by radiotherapy plus temozolomide chemotherapy. However, treatment resistance develops due to different mechanisms, among which is the dynamic interplay between the tumor and its microenvironment. Different signaling pathways cause the proliferation of so-called glioma stem cells, a minor cancer cell population with stem cell-like characteristics and aggressive phenotype. In the last decades, numerous studies have indicated that Notch is a crucial pathway that maintains the characteristics of resistant glioma stem cells. Data obtained from preclinical models indicate that downregulation of the Notch pathway could induce multifaceted drug sensitivity, acting on the expression of drug-transporter proteins, inducing epithelial-mesenchymal transition, and shaping the tumor microenvironment. This review provides a brief overview of the published data supporting the roles of Notch in drug resistance and demonstrates how potential novel strategies targeting Notch could become an efficacious action to improve the therapy of high-grade glioma to overcome drug resistance.
Collapse
Affiliation(s)
- Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende 87036, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende 87036, Italy.,Health Center, University of Calabria, Via P. Bucci, Rende 87036, Italy.,Correspondence to: Prof. Francesca De Amicis, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende 87036, Italy. E-mail:
| |
Collapse
|
20
|
Todosenko N, Yurova K, Khaziakhmatova O, Malashchenko V, Khlusov I, Litvinova L. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102181. [PMID: 36297616 PMCID: PMC9612132 DOI: 10.3390/pharmaceutics14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of “osteoimmunology,” which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
21
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
22
|
Giuli MV, Mancusi A, Giuliani E, Screpanti I, Checquolo S. Notch signaling in female cancers: a multifaceted node to overcome drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:805-836. [PMID: 35582386 PMCID: PMC8992449 DOI: 10.20517/cdr.2021.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Drug resistance is one of the main challenges in cancer therapy, including in the treatment of female-specific malignancies, which account for more than 60% of cancer cases among women. Therefore, elucidating the underlying molecular mechanisms is an urgent need in gynecological cancers to foster novel therapeutic approaches. Notably, Notch signaling, including either receptors or ligands, has emerged as a promising candidate given its multifaceted role in almost all of the hallmarks of cancer. Concerning the connection between Notch pathway and drug resistance in the afore-mentioned tumor contexts, several studies focused on the Notch-dependent regulation of the cancer stem cell (CSC) subpopulation or the induction of the epithelial-to-mesenchymal transition (EMT), both features implicated in either intrinsic or acquired resistance. Indeed, the present review provides an up-to-date overview of the published results on Notch signaling and EMT- or CSC-driven drug resistance. Moreover, other drug resistance-related mechanisms are examined such as the involvement of the Notch pathway in drug efflux and tumor microenvironment. Collectively, there is a long way to go before every facet will be fully understood; nevertheless, some small pieces are falling neatly into place. Overall, the main aim of this review is to provide strong evidence in support of Notch signaling inhibition as an effective strategy to evade or reverse resistance in female-specific cancers.
Collapse
Affiliation(s)
- Maria V Giuli
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Angelica Mancusi
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Eugenia Giuliani
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, Rome 00144, Italy
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina 04100, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
23
|
Notch1 signaling modulates hypoxia-induced multidrug resistance in human laryngeal cancer cells. Mol Biol Rep 2022; 49:6235-6240. [DOI: 10.1007/s11033-022-07421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
24
|
Joshi S, Singh A, Kukreti S. Porphyrin induced structural destabilization of a parallel DNA G-quadruplex in human MRP1 gene promoter. J Mol Recognit 2022; 35:e2950. [PMID: 34990028 DOI: 10.1002/jmr.2950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
Porphyrins are among the first ligands that have been tested for their quadruplex binding and stabilization potential. We report the differential interaction of the positional cationic porphyrin isomers TMPyP3 and TMPyP4 with a parallel G-quadruplex (GQ) formed by 33-mer (TP) regulatory sequence present in the promoter region of the human multidrug resistance protein 1 (MRP1) transporter gene. This GQ element encompasses the three evolutionary conserved SP1 transcription factor binding sites. Taking into account that SP1 binds to a non-canonical GQ motif with higher affinity than to a canonical duplex DNA consensus motif, it is suggestive that GQ distortion by cationic porphyrin will have important implications in the regulation of MRP1 expression. Herein, we employed biophysical analysis using circular dichroism, visible absorption, UV-thermal melting and steady-state fluorescence spectroscopy, reporting destabilization of MRP1 GQ by cationic porphyrins. Results suggest that TMPyP4 and TMPyP3 interact with GQ with a binding affinity of 106 to 107 M-1 . Thermodynamic analysis indicated a significant decrease in melting temperature of GQ (ΔTm of 15.5°C-23.5°C), in the presence of 2 times excess of porphyrins. This study provides the biophysical evidence indicating the destabilisation of a parallel DNA G-quadruplex by cationic porphyrins.
Collapse
Affiliation(s)
- Savita Joshi
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| | - Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
25
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
27
|
Veerasamy T, Eugin Simon S, Tan KO. Emerging strategies for sensitization of therapy resistant tumors toward cancer therapeutics by targeting the Bcl-2 family, TGF-β, Wnt/β-Catenin, RASSF and miRNA regulated signaling pathways. Int J Biochem Cell Biol 2021; 137:106016. [PMID: 34082133 DOI: 10.1016/j.biocel.2021.106016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 02/01/2023]
Abstract
Conventional chemotherapy relies on the cytotoxicity of chemo-drugs to inflict destructive effects on tumor cells. However, as most tumor cells develop resistance to chemo-drugs, small doses of chemo-drugs are unlikely to provide significant clinical benefits in cancer treatment while high doses of chemo-drugs have been shown to impact normal human cells negatively due to the non-specific nature and cytotoxicity associated with chemo-drugs. To overcome this challenge, sensitizations of tumor cells with bioactive molecules that specifically target the pro-survival and pro-apoptosis signaling pathways of the tumor cells are likely to increase the therapeutic impacts and improve the clinical outcomes by reducing the dependency and adverse effects associated with using high doses of chemo-drugs in cancer treatment. This review focuses on emerging strategies to enhance the sensitization of tumor cells toward cancer therapies based on our understanding of tumor cell biology and underlying signaling pathways.
Collapse
Affiliation(s)
- Tarmarajen Veerasamy
- Department of Biological Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Samson Eugin Simon
- Department of Biological Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
28
|
Zhan D, Ni T, Wang H, Lv M, Sunagawa M, Liu Y. Celastrol Inhibits the Proliferation and Decreases Drug Resistance of Cisplatin-Resistant Gastric Cancer SGC7901/DDP Cells. Anticancer Agents Med Chem 2021; 22:270-279. [PMID: 34053427 DOI: 10.2174/1871520621666210528144006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/01/2021] [Accepted: 03/14/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study aimed to determine the effect and mechanism of Celastrol inhibiting the proliferation and decreases drug resistance of cisplatin-resistant gastric cancer cells. OBJECTIVE To explore the effect and mechanism of Celastrol on proliferation and drug resistance of human gastric cancer cisplatin-resistant cells SGC7901/DDP. METHODS The thiazole blue (MTT) method was used to detect the sensitivity of human gastric cancer cisplatin-resistant cells SGC7901/DPP to cisplatin and Celastrol to determine the Drug resistance index (DRI). According to the half inhibitory concentration (IC50) value, the action concentration of the following experimental drugs was set to reduce the cytotoxicity; Annexin V-FITC/PI double staining method was used to detect the apoptosis of SGC7901/DDP cells induced by Celastrol; Western Blot was used to examine the expression levels of P-glycoprotein (P-gp), Multidrug Resistance Associated Protein 1 (MRP1), Breast Cancer Resistance Associated Protein (Breast Cancer Resistance)-relative protein (BCRP), and mechanistic Target of Rapamycin (mTOR) pathway related proteins; Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of P-gp, MRP1, and BCRP. RESULTS (1) Compared with the control group (We set the untreated group as the control group), the proliferation of the SGC7901/DPP cells was significantly inhibited after treating with 0.1-6.4μmol/L Celastrol in a time- and concentration-dependent manner (P<0.05). The Drug resistance index DRI of the SGC7901/DPP cells to DDP was 5.64. (2) Compared with the control group, Celastrol could significantly inhibit the proliferation and induce the apoptosis of the SGC7901/DPP cells (P<0.05). (3) The mRNA and protein expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly higher than those in the SGC7901 cells. However, after treating with Celastrol, the expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly reduced (P<0.05). (4) Compared with the control group, the Celastrol treatment also reduced the expression of the mTOR signaling pathway related proteins, suggesting that the mTOR signaling pathway may be involved in the process of Celastrol inhibiting the proliferation of the SGC7901/DDP cells and reducing their drug resistance. (5) Significantly, the combination of Celastrol and DDP reduced the expression of P-gp, MRP1, and BCRP in the SGC7901/DPP cells. CONCLUSION Celastrol can inhibit the proliferation of the SGC7901/DDP cells, induce their apoptosis, and reduce the expression of drug resistance genes, probably by inhibiting the expression of the proteins related to the mTOR signaling pathway.
Collapse
Affiliation(s)
- Dongmei Zhan
- Institute of Translational Medicine, Medical College, Yangzhou University, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Tengyang Ni
- Institute of Translational Medicine, Medical College, Yangzhou University, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Haibo Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Mengying Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo 142. Japan
| | - Yanqing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| |
Collapse
|
29
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
30
|
Kim H, Kang Y, Li Y, Chen L, Lin L, Johnson ND, Zhu D, Robinson MH, McSwain L, Barwick BG, Yuan X, Liao X, Zhao J, Zhang Z, Shu Q, Chen J, Allen EG, Kenney AM, Castellino RC, Van Meir EG, Conneely KN, Vertino PM, Jin P, Li J. Ten-eleven translocation protein 1 modulates medulloblastoma progression. Genome Biol 2021; 22:125. [PMID: 33926529 PMCID: PMC8082834 DOI: 10.1186/s13059-021-02352-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant pediatric brain tumor that originates in the cerebellum and brainstem. Frequent somatic mutations and deregulated expression of epigenetic regulators in MB highlight the substantial role of epigenetic alterations. 5-hydroxymethylcytosine (5hmC) is a highly abundant cytosine modification in the developing cerebellum and is regulated by ten-eleven translocation (TET) enzymes. RESULTS We investigate the alterations of 5hmC and TET enzymes in MB and their significance to cerebellar cancer formation. We show total abundance of 5hmC is reduced in MB, but identify significant enrichment of MB-specific 5hmC marks at regulatory regions of genes implicated in stem-like properties and Nanog-binding motifs. While TET1 and TET2 levels are high in MBs, only knockout of Tet1 in the smoothened (SmoA1) mouse model attenuates uncontrolled proliferation, leading to a favorable prognosis. The pharmacological Tet1 inhibition reduces cell viability and platelet-derived growth factor signaling pathway-associated genes. CONCLUSIONS These results together suggest a potential key role of 5hmC and indicate an oncogenic nature for TET1 in MB tumorigenesis, suggesting it as a potential therapeutic target for MBs.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Li Chen
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Li Lin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas D Johnson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dan Zhu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - M Hope Robinson
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Leon McSwain
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinbin Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiang Shu
- The Children's Hospital and Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianjun Chen
- Department of Systems Biology and Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, 91010, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna M Kenney
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Robert C Castellino
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Erwin G Van Meir
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Paula M Vertino
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Jian Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
31
|
Jin KT, Lu ZB, Lv JQ, Zhang JG. The role of long non-coding RNAs in mediating chemoresistance by modulating autophagy in cancer. RNA Biol 2020; 17:1727-1740. [PMID: 32129701 PMCID: PMC7714480 DOI: 10.1080/15476286.2020.1737787] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex process in which protein-coding and non-coding genes play essential roles. Long noncoding RNAs (lncRNAs), as a subclass of noncoding genes, are implicated in various cancer processes including growth, proliferation, metastasis, and angiogenesis. Due to presence in body fluids such as blood and urine, lncRNAs have become novel biomarkers in cancer detection, diagnosis, progression, and therapy response. Remarkably, increasing evidence has verified that lncRNAs play essential roles in chemoresistance by targeting different signalling pathways. Autophagy, a highly conserved process in response to environmental stresses such as starvation and hypoxia, plays a paradoxical role in inducing resistance or sensitivity to chemotherapy agents. In this regard, we reviewed chemoresistance, the role of lncRNAs in cancer, and the role of lncRNAs in chemoresistance by modulating autophagy.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang Province, P.R. China
| | - Ze-Bei Lu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
| | - Jie-Qing Lv
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
32
|
Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 2020; 15:136. [PMID: 33183321 PMCID: PMC7659041 DOI: 10.1186/s13000-020-01054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the world which is mainly observed among men. There is a declining mortality rates in developed countries. Although, the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa. MAIN BODY In present review we summarized all of the lncRNAs and miRNAs associated with chemotherapeutic resistance in bladder tumor cells. CONCLUSIONS This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which can be useful to select a proper drug based on the lncRNA profiles of patients to reduce the cytotoxic effects of chemotherapy in such patients.
Collapse
|
33
|
Gharaibeh L, Elmadany N, Alwosaibai K, Alshaer W. Notch1 in Cancer Therapy: Possible Clinical Implications and Challenges. Mol Pharmacol 2020; 98:559-576. [PMID: 32913140 DOI: 10.1124/molpharm.120.000006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The Notch family consists of four highly conserved transmembrane receptors. The release of the active intracellular domain requires the enzymatic activity of γ-secretase. Notch is involved in embryonic development and in many physiologic processes of normal cells, in which it regulates growth, apoptosis, and differentiation. Notch1, a member of the Notch family, is implicated in many types of cancer, including breast cancer (especially triple-negative breast cancer), leukemias, brain tumors, and many others. Notch1 is tightly connected to many signaling pathways that are therapeutically involved in tumorigenesis. Together, they impact apoptosis, proliferation, chemosensitivity, immune response, and the population of cancer stem cells. Notch1 inhibition can be achieved through various and diverse methods, the most common of which are the γ-secretase inhibitors, which produce a pan-Notch inhibition, or the use of Notch1 short interference RNA or Notch1 monoclonal antibodies, which produce a more specific blockade. Downregulation of Notch1 can be used alone or in combination with chemotherapy, which can achieve a synergistic effect and a decrease in chemoresistance. Targeting Notch1 in cancers that harbor high expression levels of Notch1 offers an addition to therapeutic strategies recruited for managing cancer. Considering available evidence, Notch1 offers a legitimate target that might be incorporated in future strategies for combating cancer. In this review, the possible clinical applications of Notch1 inhibition and the obstacles that hinder its clinical application are discussed. SIGNIFICANCE STATEMENT: Notch1 plays an important role in different types of cancer. Numerous approaches of Notch1 inhibition possess potential benefits in the management of various clinical aspects of cancer. The application of different Notch1 inhibition modalities faces many challenges.
Collapse
Affiliation(s)
- L Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - N Elmadany
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - K Alwosaibai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - W Alshaer
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| |
Collapse
|
34
|
Ho HY, Lin FCF, Chen PN, Chen MK, Hsin CH, Yang SF, Lin CW. Tricetin Suppresses Migration and Presenilin-1 Expression of Nasopharyngeal Carcinoma through Akt/GSK-3β Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1203-1220. [PMID: 32668971 DOI: 10.1142/s0192415x20500597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lymph node migration results in poor prognoses for nasopharyngeal carcinoma (NPC) patients. Tricetin, a flavonoid derivative, regulates tumorigenesis activity through its antiproliferative and antimetastatic properties. However, the molecular mechanism of tricetin affecting the migration and invasion of NPC cells remains poorly understood. In this paper, we examined the antimetastatic properties of tricetin in human NPC cells. Our results demonstrated that tricetin at noncytotoxic concentrations (0-80 3M) noticeably reduced the migration and invasion of NPC cells (HONE-1, NPC-39, and NPC-BM). Moreover, tricetin suppressed the indicative protease, presenilin-1 (PS-1), as indicated by protease array. PS-1 was transcriptionally inhibited via the Akt signaling pathway but not mitogen-activated protein kinase pathways, such as the JNK, p38, and ERK1/2 pathways. In addition to upregulating GSK-3[Formula: see text] phosphorylation through Akt suppression, tricetin may downregulate the activity of PS-1. Overall, our study provides new insight into the role of tricetin-induced molecular regulation in the suppression of NPC metastasis and suggests that tricetin has prospective therapeutic applications for patients with NPC.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chung-Han Hsin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
35
|
A Marine Collagen-Based Biomimetic Hydrogel Recapitulates Cancer Stem Cell Niche and Enhances Progression and Chemoresistance in Human Ovarian Cancer. Mar Drugs 2020; 18:md18100498. [PMID: 33003514 PMCID: PMC7599646 DOI: 10.3390/md18100498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Recent attention has focused on the development of an effective three-dimensional (3D) cell culture system enabling the rapid enrichment of cancer stem cells (CSCs) that are resistant to therapies and serving as a useful in vitro tumor model that accurately reflects in vivo behaviors of cancer cells. Presently, an effective 3D in vitro model of ovarian cancer (OC) was developed using a marine collagen-based hydrogel. Advantages of the model include simplicity, efficiency, bioactivity, and low cost. Remarkably, OC cells grown in this hydrogel exhibited biochemical and physiological features, including (1) enhanced cell proliferation, migration and invasion, colony formation, and chemoresistance; (2) suppressed apoptosis with altered expression levels of apoptosis-regulating molecules; (3) upregulated expression of crucial multidrug resistance-related genes; (4) accentuated expression of key molecules associated with malignant progression, such as epithelial–mesenchymal transition transcription factors, Notch, and pluripotency biomarkers; and (5) robust enrichment of ovarian CSCs. The findings indicate the potential of our 3D in vitro OC model as an in vitro research platform to study OC and ovarian CSC biology and to screen novel therapies targeting OC and ovarian CSCs.
Collapse
|
36
|
Zhang X, Gu G, Song L, Wang D, Xu Y, Yang S, Xu B, Cao Z, Liu C, Zhao C, Zong Y, Qin Y, Xu J. ID4 Promotes Breast Cancer Chemotherapy Resistance via CBF1-MRP1 Pathway. J Cancer 2020; 11:3846-3857. [PMID: 32328189 PMCID: PMC7171490 DOI: 10.7150/jca.31988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
Chemo-resistance is considered a key problem in triple negative breast cancer (TNBC) chemotherapy and as such, an urgent need exists to identify its exact mechanisms. Inhibitor of DNA binding factor 4 (ID4) was reported to play diverse roles in different breast cancer molecular phenotypes. In addition, ID4 was associated with mammary carcinoma drug resistance however its functions and contributions remain insufficiently defined. The expression of ID4 in MCF-7, MCF-7/Adr and MDA-MB-231 breast cancer cell lines and patients' tissues were detected by RT-PCR, western blot and immunohistochemistry. Furthermore, TCGA database was applied to confirm these results. Edu and CCK8 assay were performed to detect the proliferation and drug resistance in breast cancer cell lines. Transwell and scratch migration assay were used to detected metastasis. Western blot, TCGA database, Immunoprecipitation (IP), Chromatin Immunoprecipitation (ChIP) and Luciferase reporter assay were used to investigate the tumor promotion mechanisms of ID4. In this study, we report that the expression levels of ID4 appeared to correlate with breast cancers subtype differentiation biomarkers (including ER, PR) and chemo-resistance related proteins (including MRP1, ABCG2, P-gp). Down-regulation of ID4 in MCF-7/Adr and MDA-MB-231 breast cancer cell lines significantly suppressed cell proliferation and invasion, however enhanced Adriamycin sensitivity. We further demonstrated that the oncogenic and chemo-resistant effects of ID4 could be mediated by binding to CBF1 promoter region though combination with MyoD1, and then the downstream target MRP1 could be activated. We reveal for the first time that ID4 performs its function via a CBF1-MRP1 signaling axis, and this finding provides a novel perspective to find potential therapeutic targets for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Guangyan Gu
- Department of Histology and Embryology, Shandong University Cheeloo College of Medicine, Jinan, 250012, Shandong, China
| | - Lin Song
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Dan Wang
- Department of Science and education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Science and education, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yali Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Shuping Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Bin Xu
- Department of Pathology, Shengli Oil Field Central Hospital, Dongying, Shandong Province, 257034, P.R China
| | - Zhixin Cao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Chunmei Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Chunming Zhao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yuanyuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yejun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| |
Collapse
|
37
|
Kuai X, Jia L, Yang T, Huang X, Zhao W, Zhang M, Chen Y, Zhu J, Feng Z, Tang Q. Trop2 Promotes Multidrug Resistance by Regulating Notch1 Signaling Pathway in Gastric Cancer Cells. Med Sci Monit 2020; 26:e919566. [PMID: 31964857 PMCID: PMC6996863 DOI: 10.12659/msm.919566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chemotherapy is widely used in gastric cancer treatment, but multidrug resistance remains a leading cause of chemotherapy failure. Trop2 is highly expressed in gastric tumor tissues and greatly influences cancer progression. However, little is known about the relationship between Trop2 and drug resistance in gastric cancer. MATERIAL AND METHODS In the present study, Trop2 was knocked down in BGC823 cells and overexpressed in HGC27. CCK-8 assay was performed to explore the relationship of Trop2 expression and cell proliferation treated with anticancer drugs. Flow cytometry was performed to assess the relationship between Trop2 and cell apoptosis after chemotherapy. Subcutaneous xenograft models were generated to explore the curative effect of DDP to GC in vivo. MRP1 and Notch1 expressions were assessed by Western blot. RESULTS Trop2 decreased cell proliferation inhibition and apoptosis after chemotherapeutic treatments. DDP showed stronger therapeutic effects on Trop2-knockdown tumor than control in vivo. MRP1 and Notch1 signaling pathway were confirmed to participate in Trop2-induced drug resistance. CONCLUSIONS Our findings suggest that Trop2 promotes the resistance of gastric cancer to chemotherapy by activating the Notch1 pathway.
Collapse
Affiliation(s)
- Xingwang Kuai
- Jiangsu College of Nursing, Huaian, Jiangsu, China (mainland)
| | - Lizhou Jia
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia, China (mainland)
| | - Tingting Yang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xiaochen Huang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wei Zhao
- Department of Pathology, The Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Mingjiong Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yuan Chen
- Department of Otolaryngology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jin Zhu
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu, China (mainland)
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Qi Tang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
38
|
Li NN, Guo Y, Jiang CJ, Zhou YY, Li CH, Li ZG, Wang DL. Allyl isothiocyanate upregulates MRP1 expression through Notch1 signaling in human bronchial epithelial cells. Can J Physiol Pharmacol 2019; 98:324-331. [PMID: 31747319 DOI: 10.1139/cjpp-2019-0448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multidrug resistance associated protein-1 (MRP1) and Notch signaling are closely related and both play a critical role in chronic obstructive pulmonary disease (COPD) establishment and progression. The aim of our work was to test whether Notch1 is involved in allyl isothiocyanate (AITC) induced MRP1 expression. We used cigarette smoke extract (CSE) to simulate the smoking microenvironment in vitro. The results demonstrated that CSE led to apoptosis as well as reduced the expression of Notch1, Hes1, and MRP1, while AITC significantly reversed this downregulation. Transfected with Notch1 siRNA downregulated MRP1 expression and activity, aggravated the suppression effect by CSE, and abolished the AITC-induced Notch1, Hes1, and MRP1 expression. Validation of the correlation between Notch1 and MRP1 was implemented by gel-shift assays (electrophoretic mobility shift assay). The result revealed an interaction between a specific promoter region of MRP1 and the intracellular domain of Notch1. In conclusion, Notch1 signaling positively regulated MRP1 in 16HBE cells and AITC induced MRP1 expression and function may be attributed to Notch1 signaling. These findings show that Notch1 and MRP1 might have a potential protective effect in the COPD process and become a new therapeutic target for COPD or other lung diseases. It also provides a theoretical basis for the therapeutic effects of AITC.
Collapse
Affiliation(s)
- Ni-Ni Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Cheng-Jun Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuan-Yuan Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chen-Hui Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ze-Geng Li
- The First Affiliated Hospital to Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Dian-Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| |
Collapse
|
39
|
Colombo M, Garavelli S, Mazzola M, Platonova N, Giannandrea D, Colella R, Apicella L, Lancellotti M, Lesma E, Ancona S, Palano MT, Barbieri M, Taiana E, Lazzari E, Basile A, Turrini M, Pistocchi A, Neri A, Chiaramonte R. Multiple myeloma exploits Jagged1 and Jagged2 to promote intrinsic and bone marrow-dependent drug resistance. Haematologica 2019; 105:1925-1936. [PMID: 31582544 PMCID: PMC7327642 DOI: 10.3324/haematol.2019.221077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma is still incurable due to an intrinsic aggressiveness or, more frequently, to the interactions of malignant plasma cells with the bone marrow (BM) microenvironment. Myeloma cells educate BM cells to support neoplastic cell growth, survival, acquisition of drug resistance resulting in disease relapse. Myeloma microenvironment is characterized by Notch signaling hyperactivation due to the increased expression of Notch1 and 2 and the ligands Jagged1 and 2 in tumor cells. Notch activation influences myeloma cell biology and promotes the reprogramming of BM stromal cells. In this work we demonstrate, in vitro, ex vivo and by using a zebrafish multiple myeloma model, that Jagged inhibition causes a decrease in both myeloma-intrinsic and stromal cell-induced resistance to currently used drugs, i.e. bortezomib, lenalidomide and melphalan. The molecular mechanism of drug resistance involves the chemokine system CXCR4/SDF1α. Myeloma cell-derived Jagged ligands trigger Notch activity in BM stromal cells. These, in turn, secrete higher levels of SDF1α in the BM microenvironment increasing CXCR4 activation in myeloma cells, which is further potentiated by the concomitant increased expression of this receptor induced by Notch activation. Consistently with the augmented pharmacological resistance, SDF1α boosts the expression of BCL2, Survivin and ABCC1. These results indicate that a Jagged-tailored approach may contribute to disrupting the pharmacological resistance due to intrinsic myeloma cell features or to the pathological interplay with BM stromal cells and, conceivably, improve patients' response to standard-of-care therapies.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Silvia Garavelli
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Mara Mazzola
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano
| | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | | | - Raffaella Colella
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Luana Apicella
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | | | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Silvia Ancona
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | | | - Marzia Barbieri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano.,Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano.,Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano
| | - Elisa Lazzari
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano
| | - Mauro Turrini
- Department of Hematology, Division of Medicine, Valduce Hospital, Como, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano.,Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano
| | | |
Collapse
|
40
|
Allyl isothiocyanate may reverse the expression of MRP1 in COPD rats via the Notch1 signaling pathway. Arch Pharm Res 2019; 42:1000-1011. [PMID: 31571144 DOI: 10.1007/s12272-019-01183-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/20/2019] [Indexed: 01/19/2023]
Abstract
In the present study, the roles of AITC in up-regulating the MRP1 expression and its relationship with the activation of the Notch1 signaling pathway were investigated by combining the in vivo and in vitro experiments. AITC was administered to the COPD model rats and normal rats to explore the association between Notch1 and MRP1. The human bronchial epithelial cells were treated with DAPT, the Notch1 signaling pathway inhibitor, to verify the effect of Notch1 on the expression of AITC-induced MRP1. Compared with the control group, the expressions of Notch1, Hes1 (the target gene of Notch1) and MRP1 in the lung tissue of the COPD model group were significantly inhibited. In contrast to the COPD model group, the expressions of MRP1, Hes1 and Notch1 dramatically up-regulated following the treatment with Low/High doses of AITC. The expression of MRP1 in the 16 HBE cells was down-regulated by the inhibition of Notch in a DAPT concentration-dependent manner. Additionally, the AITC-induced up-regulation of the MRP1 expression was markedly impaired following the inhibition of Notch1. The above results indicated that the pulmonary function and the expression of MRP1 in COPD rats could be improved by AITC, which was partly dependent on the Notch1 signaling pathway. Therefore, targeting the Notch signaling pathway may present as an effective therapeutic strategy for COPD treatment.
Collapse
|
41
|
Alshaer W, Alqudah DA, Wehaibi S, Abuarqoub D, Zihlif M, Hatmal MM, Awidi A. Downregulation of STAT3, β-Catenin, and Notch-1 by Single and Combinations of siRNA Treatment Enhance Chemosensitivity of Wild Type and Doxorubicin Resistant MCF7 Breast Cancer Cells to Doxorubicin. Int J Mol Sci 2019; 20:ijms20153696. [PMID: 31357721 PMCID: PMC6696135 DOI: 10.3390/ijms20153696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/16/2023] Open
Abstract
Combinatorial therapeutic strategies using siRNA and small molecules to eradicate tumors are emerging. Targeting multiple signaling pathways decreases the chances of cancer cells switching and adapting new signaling processes that may occur when using a single therapeutic modality. Aberrant functioning of Notch-1, Wnt/β-catenin, and STAT3 proteins and their crosstalk signaling pathways have been found to be involved in tumor survival, drug resistance, and relapse. In the current study, we describe a therapeutic potential of single and combinations of siRNA designed for silencing Notch-1, Wnt/β-catenin, and STAT3 in MCF7_DoxS (wild type) and MCF7_DoxR (doxorubicin resistant) breast cancer cells. The MCF7_DoxR cells were developed through treatment with a gradual increase in doxorubicin concentration, the expression of targeted genes was investigated, and the expression profiling of CD44/CD24 of the MCF7_DoxS and MCF7_DoxR cells were detected by flow cytometry. Both MCF7_DoxS and MCF7_DoxR breast cancer cells were treated with single and combinations of siRNA to investigate synergism and were analyzed for their effect on cell proliferation with and without doxorubicin treatment. The finding of this study showed the overexpression of targeted genes and the enrichment of the CD44−/CD24+ phenotype in MCF7_DoxR cells when compared to MCF7_DoxS cells. In both cell lines, the gene silencing efficacy showed a synergistic effect when combining STAT3/Notch-1 and STAT3/Notch-1/β-catenin siRNA. Interestingly, the chemosensitivity of MCF7_DoxS and MCF7_DoxR cells to doxorubicin was increased when combined with siRNA treatment. Our study shows the possibility of using single and combinations of siRNA to enhance the chemosensitivity of cancer cells to conventional antitumor chemotherapy.
Collapse
Affiliation(s)
- Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, Hashemite University, Zarqa 13133, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.
- Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
42
|
Panda M, Biswal BK. Cell signaling and cancer: a mechanistic insight into drug resistance. Mol Biol Rep 2019; 46:5645-5659. [PMID: 31280421 DOI: 10.1007/s11033-019-04958-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Drug resistance is a major setback for advanced therapeutics in multiple cancers. The increasing prevalence of this resistance is a growing concern and bitter headache for the researchers since a decade. Hence, it is essential to revalidate the existing strategies available for cancer treatment and to look after a novel therapeutic approach for target based killing of cancer cells at the genetic level. This review outlines the different mechanisms enabling resistance including drug efflux, drug target alternation, alternative splicing, the release of the extracellular vesicle, tumor heterogeneity, epithelial-mesenchymal transition, tumor microenvironment, the secondary mutation in the receptor, epigenetic alternation, heterodimerization of receptors, amplification of target and amplification of components rather than the target. Furthermore, existing evidence and the role of various signaling pathways like EGFR, Ras, PI3K/Akt, Wnt, Notch, TGF-β, Integrin-ECM signaling in drug resistance are explained. Lastly, the prevention of this resistance by a contemporary therapeutic strategy, i.e., a combination of specific signaling pathway inhibitors and the cocktail of a cancer drug is summarized showing the new treatment strategies.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India.
| |
Collapse
|
43
|
Abstract
Cancer is the second leading cause of death in the US. Current major treatments for cancer management include surgery, cytotoxic chemotherapy, targeted therapy, radiation therapy, endocrine therapy and immunotherapy. Despite the endeavors and achievements made in treating cancers during the past decades, resistance to classical chemotherapeutic agents and/or novel targeted drugs continues to be a major problem in cancer therapies. Drug resistance, either existing before treatment (intrinsic) or generated after therapy (acquired), is responsible for most relapses of cancer, one of the major causes of death of the disease. Heterogeneity among patients and tumors, and the versatility of cancer to circumvent therapies make drug resistance more challenging to deal with. Better understanding the mechanisms of drug resistance is required to provide guidance to future cancer treatment and achieve better outcomes. In this review, intrinsic and acquired resistance will be discussed. In addition, new discoveries in mechanisms of drug resistance will be reviewed. Particularly, we will highlight roles of ATP in drug resistance by discussing recent findings of exceptionally high levels of intratumoral extracellular ATP as well as intracellular ATP internalized from extracellular environment. The complexity of drug resistance development suggests that combinational and personalized therapies, which should take ATP into consideration, might provide better strategies and improved efficacy for fighting drug resistance in cancer.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA.,The Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Haiyun Zhang
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA.,The Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA.,The Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
44
|
Li Y, Guo Y, Feng Z, Bergan R, Li B, Qin Y, Zhao L, Zhang Z, Shi M. Involvement of the PI3K/Akt/Nrf2 Signaling Pathway in Resveratrol-Mediated Reversal of Drug Resistance in HL-60/ADR Cells. Nutr Cancer 2019; 71:1007-1018. [PMID: 31032633 DOI: 10.1080/01635581.2019.1578387] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yongjun Li
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yukai Guo
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhuang Feng
- Legacy Health and Cascade Pathology Services, Portland, Oregon, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Bo Li
- Department of Emergency, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Yongliang Qin
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenzhen Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
45
|
Das A, Narayanam MK, Paul S, Mukhnerjee P, Ghosh S, Dastidar DG, Chakrabarty S, Ganguli A, Basu B, Pal M, Chatterji U, Banerjee SK, Karmakar P, Kumar D, Chakrabarti G. A novel triazole, NMK-T-057, induces autophagic cell death in breast cancer cells by inhibiting γ-secretase-mediated activation of Notch signaling. J Biol Chem 2019; 294:6733-6750. [PMID: 30824542 DOI: 10.1074/jbc.ra119.007671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
Notch signaling is reported to be deregulated in several malignancies, including breast, and the enzyme γ-secretase plays an important role in the activation and nuclear translocation of Notch intracellular domain (NICD). Hence, pharmacological inhibition of γ-secretase might lead to the subsequent inhibition of Notch signaling in cancer cells. In search of novel γ-secretase inhibitors (GSIs), we screened a series of triazole-based compounds for their potential to bind γ-secretase and observed that 3-(3'4',5'-trimethoxyphenyl)-5-(N-methyl-3'-indolyl)-1,2,4-triazole compound (also known as NMK-T-057) can bind to γ-secretase complex. Very interestingly, NMK-T-057 was found to inhibit proliferation, colony-forming ability, and motility in various breast cancer (BC) cells such as MDA-MB-231, MDA-MB-468, 4T1 (triple-negative cells), and MCF-7 (estrogen receptor (ER)/progesterone receptor (PR)-positive cell line) with negligible cytotoxicity against noncancerous cells (MCF-10A and peripheral blood mononuclear cells). Furthermore, significant induction of apoptosis and inhibition of epithelial-to-mesenchymal transition (EMT) and stemness were also observed in NMK-T-057-treated BC cells. The in silico study revealing the affinity of NMK-T-057 toward γ-secretase was further validated by a fluorescence-based γ-secretase activity assay, which confirmed inhibition of γ-secretase activity in NMK-T-057-treated BC cells. Interestingly, it was observed that NMK-T-057 induced significant autophagic responses in BC cells, which led to apoptosis. Moreover, NMK-T-057 was found to inhibit tumor progression in a 4T1-BALB/c mouse model. Hence, it may be concluded that NMK-T-057 could be a potential drug candidate against BC that can trigger autophagy-mediated cell death by inhibiting γ-secretase-mediated activation of Notch signaling.
Collapse
Affiliation(s)
- Amlan Das
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and .,Department of Chemistry, National Institute of Technology, Ravangla, South Sikkim 737139, India
| | - Maruthi Kumar Narayanam
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.,Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, and
| | - Santanu Paul
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| | - Pritha Mukhnerjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Debabrata Ghosh Dastidar
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and.,Division of Pharmaceutics, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Subhendu Chakrabarty
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| | - Arnab Ganguli
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| | - Biswarup Basu
- Department of Experimental Hematology and Neuroendocrinology, Chittaranjan National Cancer Institute, 37 Shyama Prasad Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Urmi Chatterji
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sushanta K Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, Missouri 64128.,Departments of Anatomy and Cell Biology and Pathology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, Western Bengal, India
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India,
| | - Gopal Chakrabarti
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| |
Collapse
|
46
|
Xiao YS, Zeng D, Liang YK, Wu Y, Li MF, Qi YZ, Wei XL, Huang WH, Chen M, Zhang GJ. Major vault protein is a direct target of Notch1 signaling and contributes to chemoresistance in triple-negative breast cancer cells. Cancer Lett 2019; 440-441:156-167. [PMID: 30336197 DOI: 10.1016/j.canlet.2018.09.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/12/2018] [Accepted: 09/30/2018] [Indexed: 02/05/2023]
Abstract
Resistance to chemotherapy remains a significant problem in the treatment of breast cancer, especially for triple-negative breast cancer (TNBC), in which standard systemic therapy is currently limited to chemotherapeutic agents. Our study aimed to better understand the molecular mechanisms that lead to failure of chemotherapy in TNBC. Herein, we observed elevated expression of Notch1 and major vault protein (MVP) in MDA-MB-231DDPR cells compared to their parental counterparts. We demonstrated that Notch1 could positively regulate the expression of MVP. Also, Notch1 intracellular domain (ICD) was capable of binding to CBF-1 on the promoter of MVP to drive its transcription, resulting in activation of AKT pathway and promoting the progress of epithelial to mesenchymal transition (EMT). Conversely, silencing of Notch1 and MVP suppressed AKT pathway, reduced EMT and enhanced the sensitivity of TNBC cells to cisplatin and doxorubicin. Survival analysis indicated that the MVP was closely related to shorter recurrence-free survival (RFS) in patients with TNBC. Collectively, this study provides evidence that Notch1 activates AKT pathway and promotes EMT partly through direct activation of MVP. Targeting Notch1/MVP pathway appears to have potential in overcoming chemoresistance in TNBC.
Collapse
Affiliation(s)
- Ying-Sheng Xiao
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China; The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Yuan-Ke Liang
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China; The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China; Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ Groningen, the Netherlands
| | - Yang Wu
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China; The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Mei-Fang Li
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China; The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Yu-Zhu Qi
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China; The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Wen-He Huang
- The Cancer Center and the Department of Breast-Thyroid Surgery, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Rd., Xiang'an, Xiamen, China; The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Min Chen
- Central Laboratory, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Rd., Xiang'an, Xiamen, China
| | - Guo-Jun Zhang
- The Cancer Center and the Department of Breast-Thyroid Surgery, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Rd., Xiang'an, Xiamen, China; ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China; The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China.
| |
Collapse
|
47
|
Zhou G, Latchoumanin O, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv Drug Deliv Rev 2018. [DOI: '10.1016/j.addr.2018.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
48
|
Zhou G, Latchoumanin O, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv Drug Deliv Rev 2018; 134:107-121. [PMID: 29627370 DOI: 10.1016/j.addr.2018.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Traditional anticancer therapies are often unable to completely eradicate the tumor bulk due to multi-drug resistance (MDR) of cancers. A number of mechanisms such as micro-environmental stress and overexpression of drug efflux pumps are involved in the MDR process. Hence, therapeutic strategies for overcoming MDR are urgently needed to improve cancer treatment efficacy. Aptamers are short single-stranded oligonucleotides or peptides exhibiting unique three-dimensional structures and possess several unique advantages over conventional antibodies such as low immunogenicity and stronger tissue-penetration capacity. Aptamers targeting cancer-associated receptors have been explored to selectively deliver a therapeutic cargo (anticancer drugs, siRNAs, miRNAs and drug-carriers) to the intratumoral compartment where they can exert better tumor-killing effects. In this review, we summarize current knowledge of the multiple regulatory mechanisms of MDR, with a particular emphasis on aptamer-mediated novel therapeutic agents and strategies that seek to reversing MDR. The challenges associated with aptamer-based agents and approaches are also discussed.
Collapse
Affiliation(s)
- Gang Zhou
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Lionel Hebbard
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
49
|
Harbuzariu A, Oprea-Ilies GM, Gonzalez-Perez RR. The Role of Notch Signaling and Leptin-Notch Crosstalk in Pancreatic Cancer. MEDICINES (BASEL, SWITZERLAND) 2018; 5:medicines5030068. [PMID: 30004402 PMCID: PMC6164868 DOI: 10.3390/medicines5030068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
There is accumulating evidence that deregulated Notch signaling affects cancer development, and specifically pancreatic cancer (PC) progression. Notch canonical and non-canonical signaling has diverse impact on PC. Moreover, the actions of RBP-Jk (nuclear partner of activated Notch) independent of Notch signaling pathway seem to affect differently cancer progression. Recent data show that in PC and other cancer types the adipokine leptin can modulate Notch/RBP-Jk signaling, thereby, linking the pandemic obesity with cancer and chemoresistance. The potential pivotal role of leptin on PC, and its connection with Notch signaling and chemoresistance are still not completely understood. In this review, we will describe the most important aspects of Notch-RBP-Jk signaling in PC. Further, we will discuss on studies related to RBP-Jk-independent Notch and Notch-independent RPB-Jk signaling. We will also discuss on the novel crosstalk between leptin and Notch in PC and its implications in chemoresistance. The effects of leptin-Notch/RBP-Jk signaling on cancer cell proliferation, apoptosis, and drug resistance require more investigation. Data from these investigations could help to open unexplored ways to improve PC treatment success that has shown little progress for many years.
Collapse
Affiliation(s)
- Adriana Harbuzariu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | - Ruben R Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
50
|
Bai L, Wang A, Zhang Y, Xu X, Zhang X. Knockdown of MALAT1 enhances chemosensitivity of ovarian cancer cells to cisplatin through inhibiting the Notch1 signaling pathway. Exp Cell Res 2018; 366:161-171. [PMID: 29548748 DOI: 10.1016/j.yexcr.2018.03.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in chemoresistance of various tumors including ovarian cancer. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been reported to be upregulated and contributed to ovarian cancer tumorigenesis. The aim of this study was to explore the roles of MALAT1 and the underlying molecular regulatory mechanism in the chemoresistance of ovarian cancer cells. Our data demonstrated that MALAT1 and Notch1 mRNA were upregulated in ovarian cancer tissues, as well as cisplatin (CDDP)-resistant ovarian cancer cells. A positive correlation between MALAT1 and Notch1 mRNA expression was observed. MALAT1 knockdown significantly attenuated CDDP resistance, and enhanced CDDP-induced apoptosis in CDDP-resistant ovarian cancer cells. MALAT1 knockdown enhanced CDDP-induced apoptosis in vivo, as indicated by upregulation of Bax protein expression and downregulation of Bcl-2 protein expression. Additionally, MALAT1 knockdown inhibited the Notch1 pathway and ABCC1 expression in CDDP-resistant ovarian cancer cells. MALAT1 was demonstrated to interact with Notch1. Notch1 knockdown attenuated CDDP resistance, and downregulated the protein expression of ABCC1 in ovarian cancer cells. Taken together, our findings suggested that knockdown of MALAT-1 enhanced chemosensitivity of ovarian cancer cells to CDDP through inhibiting Notch1 signaling pathway.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/drug therapy
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/secondary
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Cisplatin/pharmacology
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/secondary
- Drug Resistance, Neoplasm
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/secondary
- Female
- Follow-Up Studies
- Humans
- Lymphatic Metastasis
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Prognosis
- RNA, Long Noncoding/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lin Bai
- Department of Obstetrics and Gynecology, The First People's Hospital of Shangqiu, No. 292 Kaixuan Nan Road, Suiyang District, Shangqiu 476100, China.
| | - Aihua Wang
- Department of Obstetrics and Gynecology, The First People's Hospital of Shangqiu, No. 292 Kaixuan Nan Road, Suiyang District, Shangqiu 476100, China
| | - Yali Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Shangqiu, No. 292 Kaixuan Nan Road, Suiyang District, Shangqiu 476100, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, The First People's Hospital of Shangqiu, No. 292 Kaixuan Nan Road, Suiyang District, Shangqiu 476100, China
| | - Xiao Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Shangqiu, No. 292 Kaixuan Nan Road, Suiyang District, Shangqiu 476100, China
| |
Collapse
|