1
|
Lang A, Eastburn EA, Younesi M, Nijsure MP, Siciliano C, Pranatharthi Haran A, Panebianco CJ, Seidl E, Tang R, Alsberg E, Willett NJ, Gottardi R, Huh D, Boerckel JD. CYR61 delivery promotes angiogenesis during bone fracture repair. NPJ Regen Med 2025; 10:20. [PMID: 40263309 PMCID: PMC12015299 DOI: 10.1038/s41536-025-00398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/31/2025] [Indexed: 04/24/2025] Open
Abstract
Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. CYR61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that has been implicated in fracture repair. Here, we map the distribution of endogenous CYR61 during bone repair and evaluate the effects of recombinant CYR61 delivery on vascularized bone regeneration. In vitro, CYR61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, CYR61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted CYR61-induced neovascularization. Together, these data indicate that CYR61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Emily A Eastburn
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mousa Younesi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Carly Siciliano
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Annapurna Pranatharthi Haran
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Elizabeth Seidl
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Tang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- The Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Riccardo Gottardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Passi M, Stöckl JB, Fröhlich T, Moser S, Vollmar AM, Zahler S. CDK5 interacts with MST2 and modulates the Hippo signalling pathway. FEBS Open Bio 2025; 15:647-660. [PMID: 39739588 PMCID: PMC11961382 DOI: 10.1002/2211-5463.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
MST2 (STK3) is a major upstream kinase in the Hippo signalling pathway, an evolutionary conserved pathway in regulation of organ size, self-renewal and tissue homeostasis. Its downstream effectors are the transcriptional regulators YAP and TAZ. This pathway is regulated by a variety of factors, such as substrate stiffness or cell-cell contacts. Using a yeast two-hybrid screen, we detected a novel interaction between the kinases MST2 and CDK5, which we further confirmed by co-immunoprecipitation experiments. Cyclin-dependent kinase 5 (CDK5) is an unusual member of the family of cyclin-dependent kinases, involved in tumour growth and angiogenesis. Although a link between CDK5 and Hippo has been previously postulated, the mode of action is still elusive. Here, we show that knockdown of CDK5 causes reduced transcriptional activity of YAP and that CDK5 influences the phosphorylation levels of the Hippo upstream kinase LATS1. Moreover, a phosphoproteomics approach revealed that CDK5 interferes with the phosphorylation of DLG5, another upstream kinase, which regulates the Hippo pathway. Hence, CDK5 seems to act as a signalling hub for integrating the Hippo pathway and other signalling cascades. These interactions might have important implications for the use of CDK5 inhibitors, which are already in clinical use for tumour diseases.
Collapse
Affiliation(s)
- Mehak Passi
- Center for Drug ResearchLudwig‐Maximilians‐University MunichGermany
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis, Gene Center MunichLudwig‐Maximilians‐University MunichGermany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center MunichLudwig‐Maximilians‐University MunichGermany
| | - Simone Moser
- Center for Drug ResearchLudwig‐Maximilians‐University MunichGermany
- Institute of PharmacyUniversity of InnsbruckAustria
| | | | - Stefan Zahler
- Center for Drug ResearchLudwig‐Maximilians‐University MunichGermany
| |
Collapse
|
3
|
Cherkashina O, Tsitrina A, Abolin D, Morgun E, Kosykh A, Sabirov M, Vorotelyak E, Kalabusheva E. The Recovery of Epidermal Proliferation Pattern in Human Skin Xenograft. Cells 2025; 14:448. [PMID: 40136697 PMCID: PMC11941497 DOI: 10.3390/cells14060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Abnormalities in epidermal keratinocyte proliferation are a characteristic feature of a range of dermatological conditions. These include hyperproliferative states in psoriasis and dermatitis as well as hypoproliferative states in chronic wounds. This emphasises the importance of investigating the proliferation kinetics under conditions of healthy skin and identifying the key regulators of epidermal homeostasis, maintenance, and recovery following wound healing. Animal models contribute to our understanding of human epidermal self-renewal. Human skin xenografting overcomes the ethical limitations of studying human skin during regeneration. The application of this approach has allowed for the identification of a single population of stem cells and both slowly and rapidly cycling progenitors within the epidermal basal layer and the mapping of their location in relation to rete ridges and hair follicles. Furthermore, we have traced the dynamics of the proliferation pattern reorganization that occurs during epidermal regeneration, underlining the role of YAP activity in epidermal relief formation.
Collapse
Affiliation(s)
- Olga Cherkashina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Alexandra Tsitrina
- Ilse Katz Institute of Nanoscale Science, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Danila Abolin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Elena Morgun
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anastasiya Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Marat Sabirov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| |
Collapse
|
4
|
Myeong J, Lee M, Lee B, Kim JH, Nam Y, Choi Y, Kim J, Jeon SY, Shim H, Jung DR, Shin Y, Jeong M, Oh B, Jung J, Kim CS, Han HS, Shin JH, Lee YH, Park NJY, Chong GO, Jeong Y. Microbial metabolites control self-renewal and precancerous progression of human cervical stem cells. Nat Commun 2025; 16:2327. [PMID: 40057497 PMCID: PMC11890575 DOI: 10.1038/s41467-025-57323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
Cervical cancer is the fourth most common female cancer, with the uterine ectocervix being the most commonly affected site. However, cervical stem cells, their differentiation, and their regulation remain poorly understood. Here, we report the isolation of a population enriched for human cervical stem cells and their regulatory mechanisms. Using single-cell RNA sequencing, we characterize the cellular heterogeneity of the human ectocervix and identify cluster-specific cell surface markers. By establishing normal and precancerous cervical organoids and an intralingual transplantation system, we show that ITGB4 and CD24 enable enrichment of human and murine ectocervical stem cells. We discover that Lactobacilli-derived lactic acid regulates cervical stem cells' self-renewal and early tumorigenesis through the PI3K-AKT pathway and YAP1. Finally, we show that D-lactic acid suppresses growth of normal and precancerous organoids, while L-lactic acid does not. Our findings reveal roles of human cervical stem cells and microbial metabolites in cervical health and diseases.
Collapse
Affiliation(s)
| | - Minho Lee
- Department of Life Science, Dongguk University, Gyeonggi-do, Korea
| | - Bawool Lee
- Department of New Biology, DGIST, Daegu, Korea
- New Biology Research Center, DGIST, Daegu, Korea
| | - Joon Hyung Kim
- Department of Life Science, Dongguk University, Gyeonggi-do, Korea
| | - Yeji Nam
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Yeseul Choi
- Graduate Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Korea
- BK21 Four Program, Kyungpook National University School of Medicine, Daegu, Korea
| | | | - Se Young Jeon
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Haewon Shim
- Department of Life Science, Dongguk University, Gyeonggi-do, Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Youngjin Shin
- Department of Life Science, Dongguk University, Gyeonggi-do, Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Byungmoo Oh
- Department of New Biology, DGIST, Daegu, Korea
- New Biology Research Center, DGIST, Daegu, Korea
| | - Jaehun Jung
- Department of Life Science, Dongguk University, Gyeonggi-do, Korea
| | - Christine S Kim
- Department of New Biology, DGIST, Daegu, Korea
- New Biology Research Center, DGIST, Daegu, Korea
| | - Hyung Soo Han
- Graduate Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Korea
- BK21 Four Program, Kyungpook National University School of Medicine, Daegu, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu, Korea
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Yoon Hee Lee
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu, Korea
- Department of Obstetrics and Gynecology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Nora Jee-Young Park
- Clinical Omics Institute, Kyungpook National University, Daegu, Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Department of Pathology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Gun Oh Chong
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Korea.
- Clinical Omics Institute, Kyungpook National University, Daegu, Korea.
- Department of Obstetrics and Gynecology, Kyungpook National University School of Medicine, Daegu, Korea.
| | - Youngtae Jeong
- Department of New Biology, DGIST, Daegu, Korea.
- New Biology Research Center, DGIST, Daegu, Korea.
| |
Collapse
|
5
|
Yuan Q, Yuan Y, Peng Y, Xia X, Chen Q, Yu FX, Feng X. Distinct effects of Hippo-YAP/TAZ and YAP/TAZ-TEAD in epithelial maintenance and repair. Biochem Biophys Res Commun 2025; 751:151427. [PMID: 39903968 DOI: 10.1016/j.bbrc.2025.151427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
The maintenance of epithelial homeostasis is essential for preserving tissue architecture and function, and the transcriptional co-activators YAP/TAZ are central to this regulatory network. Although the Hippo-YAP/TAZ-TEAD axis is known to govern epithelial integrity, it remains unclear to what extent Hippo-controlled YAP/TAZ activity overlaps with, or diverges from, YAP/TAZ-TEAD-dependent transcriptional programs in maintaining epithelial homeostasis. Here, we address this question by employing two complementary mouse models: "SuperHippo," which suppresses YAP/TAZ activity through enhanced Hippo pathway engagement, and "TEADi," which selectively disrupts YAP/TAZ-TEAD interactions. Our results revealed that while both models led to increased epithelial thickness in skin epithelial, SuperHippo mice exhibited pronounced epithelial impairment in oral mucosa, and markedly delayed wound healing. In contrast, TEADi mice displayed tissue-specific phenotypes with minimal disruption to oral epithelium integrity or wound repair. These findings indicate that Hippo-mediated YAP/TAZ regulation may extend beyond TEAD-dependent transcription. Our work clarifies the distinct contributions of Hippo-YAP/TAZ signaling and YAP/TAZ-TEAD interaction to epithelial maintenance and provides a basis for the development of therapeutic strategies targeting YAP/TAZ in epithelial disorders.
Collapse
Affiliation(s)
- Qiuyun Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, 310006, Zhejiang, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Bednarski IA, Dróżdż I, Ciążyńska M, Wódz K, Narbutt J, Lesiak A. Ultraviolet B Exposure Does Not Influence the Expression of YAP mRNA in Human Epidermal Keratinocytes-Preliminary Study. Biomedicines 2025; 13:596. [PMID: 40149574 PMCID: PMC11940570 DOI: 10.3390/biomedicines13030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The causal relationship between exposure to ultraviolet radiation and the development of skin cancers requires constant research for possible orchestrating mechanisms. In recent years, the Hippo pathway, along with its effector protein YAP, became implicated in cutaneous carcinogenesis; however, Hippo pathway regulation by ultraviolet radiation has not been described thoroughly. In order to address this issue, we focused on how different doses of ultraviolet B affect Hippo signaling pathway components and its upstream regulators, JNK1/2 and ABL1, in human keratinocytes. Additionally, we decided to determine how silencing of YAP influences Hippo pathway component expression. Methods: Primary epidermal keratinocytes were irradiated using UVB lamps with increasing doses of ultraviolet B radiation (including 311 nm UVB). Real-time PCR was used to determine the mRNA levels of each investigated gene. The experiment was then performed after YAP silencing using siRNA transfection. Additionally, we determined the mRNA expression of Hippo pathway components in an A431 cSCC cell line. Results: We observed that YAP mRNA expression in the A431 cell line was insignificant in comparison to control, while in the case of LATS1/2, a significant increase was noted. UVB irradiation did not change the levels of YAP mRNA expression in human epidermal keratinocytes. LATS1, LATS2, ABL1 and MAP4K4 mRNA expression was significantly upregulated after UVB irradiation in non-YAP-silenced keratinocytes in a dose-dependent manner, while after YAP silencing, only LATS2 and ABL1 showed significant mRNA upregulation. The 311 nm UVB irradiation resulted in significant, dose-dependent mRNA upregulation in non-YAP-silenced keratinocytes for LATS1, ABL1 and MAP4K4. After YAP silencing, a significant change in mRNA expression was present only in the case of ABL1. Conclusions: YAP mRNA expression does not significantly increase after exposure to UVB; however, it upregulates the expression of its proven (LATS1/2, JNK1/2) regulators, suggesting that in real-life settings, UV-induced dysregulation of the Hippo pathway may not be limited to YAP.
Collapse
Affiliation(s)
- Igor Aleksander Bednarski
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
- Department of Neurology, Medical University of Łódź, 90-419 Łódź, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Łódź, 92-213 Łódź, Poland;
| | - Magdalena Ciążyńska
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Medical University of Łódź, 93-513 Łódź, Poland;
| | - Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720 Brudzew, Poland;
| | - Joanna Narbutt
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
| | - Aleksandra Lesiak
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
| |
Collapse
|
7
|
Wang ZJ, Farooq AS, Chen YJ, Bhargava A, Xu AM, Thomson MW. Identifying perturbations that boost T-cell infiltration into tumours via counterfactual learning of their spatial proteomic profiles. Nat Biomed Eng 2025; 9:390-404. [PMID: 40044819 PMCID: PMC11922765 DOI: 10.1038/s41551-025-01357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2025] [Indexed: 03/21/2025]
Abstract
Cancer progression can be slowed down or halted via the activation of either endogenous or engineered T cells and their infiltration of the tumour microenvironment. Here we describe a deep-learning model that uses large-scale spatial proteomic profiles of tumours to generate minimal tumour perturbations that boost T-cell infiltration. The model integrates a counterfactual optimization strategy for the generation of the perturbations with the prediction of T-cell infiltration as a self-supervised machine learning problem. We applied the model to 368 samples of metastatic melanoma and colorectal cancer assayed using 40-plex imaging mass cytometry, and discovered cohort-dependent combinatorial perturbations (CXCL9, CXCL10, CCL22 and CCL18 for melanoma, and CXCR4, PD-1, PD-L1 and CYR61 for colorectal cancer) that support T-cell infiltration across patient cohorts, as confirmed via in vitro experiments. Leveraging counterfactual-based predictions of spatial omics data may aid the design of cancer therapeutics.
Collapse
Affiliation(s)
- Zitong Jerry Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Abdullah S Farooq
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yu-Jen Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Aman Bhargava
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander M Xu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matt W Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Müller L, Hatzfeld M. Emerging functions of Plakophilin 4 in the control of cell contact dynamics. Cell Commun Signal 2025; 23:109. [PMID: 40001215 PMCID: PMC11863852 DOI: 10.1186/s12964-025-02106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Plakophilin 4 (PKP4, also called p0071) is a unique armadillo family protein localized at adherens junctions that acts as a scaffold protein capable of clustering cadherins. PKP4 also regulates cadherin recycling which is vital to enable junction dynamics. In addition, PKP4 controls the mechanical properties of cells by regulating actin filament organization through small Rho-GTPases. In this setting, PKP4 controls the localization and activity of specific guanine exchange factors (GEFs) and of their opponents, the GTPase activating proteins (GAPs). Through the formation of multiprotein complexes with Rho-GTPases, their regulators and their effectors, PKP4 controls the spatio-temporal activity of Rho signaling to regulate cell adhesion and cell mechanics. In keratinocytes, PKP4 prevents differentiation and at the same time dampens proliferation. This is, in part achieved through an interaction with the Hippo pathway, which controls the activity of the transcriptional co-factors YAP and TAZ. In a feedback loop, YAP/TAZ modulate PKP4 localization and function. Here, we review the various functions of PKP4 in cell signaling, cell mechanics, cell adhesion and growth control. We discuss how these functions converge in the regulation of cell adhesion dynamics to allow cells to adapt to their changing environment and enable proliferation, delamination but, at the same time, guarantee cell barrier function.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Section for RNA biology and Pathogenesis, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany.
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Section for Pathobiochemistry, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| |
Collapse
|
9
|
Peng Y, Yuan Q, Zhou S, Gan J, Shen Z, Xia X, Jiang Y, Chen Q, Yuan Y, He G, Wei Q, Feng X. FAK mediates mechanical signaling to maintain epithelial homeostasis through YAP/TAZ-TEADs. Histochem Cell Biol 2025; 163:31. [PMID: 39918604 DOI: 10.1007/s00418-025-02360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Epithelial homeostasis ensures that the epithelium can perform its normal physiological functions. Mechanical signaling response through integrin-mediated adhesions of the basement membrane (BM) is crucial for maintaining epithelial homeostasis. The essential mechanosensors YAP and the paralog TAZ (YAP/TAZ) have been shown to play a critical role in epithelial homeostasis, but the key regulator that mediates mechanical signaling to YAP/TAZ in maintaining epithelial homeostasis has not been fully understood. In this study, we noticed that mechanical signals correlated with YAP/TAZ activation and basal state maintenance in epithelial stem/progenitor cells through immunohistochemistry. Subsequently, we found that inhibition of focal adhesion kinase (FAK) suppressed YAP/TAZ activation in the human keratinocyte line HaCaT cells. Furthermore, inhibition of the interaction between YAP/TAZ and the transcriptional enhanced associate domains (TEADs) resulted in the differentiation of HaCaT cells. Finally, we used primary mouse epithelial cells to reconstruct the epithelium in vitro and found that FAK inhibition led to both a reduction in YAP/TAZ activity and an increase of differentiation in the basal layer cells. In conclusion, our findings reveal that FAK mediates mechanical signaling to maintain epithelial homeostasis via YAP/TAZ-TEADs.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianguo Gan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengzhong Shen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, 310000, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Gu He
- Department of Dermatology and Venerology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Zhang J, Gao J, Zeng X, Wang Z, Chen C, Rong C, Li S, Cai L, Wang L, Zhang L, Tian Z. A novel Cdc42-YAP-fibronectin signaling axis regulates ameloblast differentiation during early enamel formation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167570. [PMID: 39547518 DOI: 10.1016/j.bbadis.2024.167570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/22/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Enamel formation is a developmental event governed by intricate molecular signal pathways. Cdc42 is proven to regulate enamel development yet its underlying role and molecular mechanism in early amelogenesis remain elusive. The extracellular matrix of tooth germ basement membrane is critical for the regulation of ameloblast differentiation. Present study investigated whether Cdc42 influences amelogenesis by affecting ECM synthesis and how Cdc42 regulates ameloblasts differentiation. Epithelial-specific knockout of Cdc42 (Cdc42-cKO) mice model was employed to study the ECM expression including Fibronectin (Fn) and amelogenesis markers. Cdc42-cKO mice results in retarded ameloblast differentiation and enamel matrix decrease. Fn synthesis in the enamel organ and basal membrane was totally diminished along with Cdc42 knockdown. YAP acting as the Cdc42 downstream transcription factor, its distribution in ameloblasts was synchronously attenuated by Cdc42 knockdown and nuclear localization progressively decreased with tooth germ development. Cdc42 unidirectionally controls the Fn synthesis via YAP regulation. Overall, ameloblast differentiation inhibition by silencing of Cdc42 was successfully rescued by YAP activation. We demonstrated that Cdc42 as an initiator, mediated downstream pathway through transcriptional activator YAP, thereby affecting ameloblast differentiation by controlling Fn synthesis. The Cdc42-YAP-Fn signaling axis are elucidated to act critical role during the early amelogenesis.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingyi Gao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiangliang Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuying Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chao Rong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaowei Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lingxuan Cai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Luchen Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Zhang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Liu Y, Ho C, Wen D, Zhou Z, Tsai T, Sun J, Liu Y, Gao Y, Li Q, Zhang Y. Topical Application of TT-10 Ameliorates Impaired Wound Healing. Plast Reconstr Surg 2025; 155:289-298. [PMID: 38652859 DOI: 10.1097/prs.0000000000011492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND In recent decades, chronic wounds have become an increasingly significant clinical concern because of their increasing morbidity and socioeconomic toll. However, there is currently no product available on the market that specifically targets this intricate process. One clear indicator of delayed wound repair is the inhibition of reepithelialization. Yes-associated protein (YAP), which is a potential focal point for tissue repair and regeneration, has been shown to be prominent in several studies. In this context, the authors have identified the pharmacologic product TT-10, which is a YAP activator, as a potential candidate for the treatment of various forms of chronic wounds. METHODS The role of TT-10 in regulating YAP activity and subcellular localization was determined by Western blotting and immunofluorescence staining. The effect of TT-10 on the biological functions of keratinocytes was assessed by proliferation, wound healing, and apoptosis assays. The impairment of YAP activity in chronic wounds was measured in human and mouse tissues. The in vivo efficacy of TT-10 was examined by gross examination; hematoxylin and eosin staining; and measuring wound areas and gaps in normal, diabetic, and ischemic wounds. RESULTS The authors' findings suggest that TT-10 facilitates the nuclear transport of YAP, consequently increasing YAP activity, which in turn increases the proliferation and migration of keratinocytes. Moreover, the authors showed that intracutaneous injection of TT-10 along the wound periphery promoted reepithelialization by means of YAP activation in the epidermis, culminating in accelerated wound closure in several chronic wound healing models. CONCLUSION The authors' research highlights the potential of TT-10 to treat chronic wounds, which is a persistent challenge in tissue repair. CLINICAL RELEVANCE STATEMENT The authors' research identifies TT-10, a small molecule YAP activator, as a novel therapeutic candidate that enhances keratinocyte function and promotes reepithelialization, offering plastic surgeons an innovative approach to addressing chronic wound challenges.
Collapse
Affiliation(s)
- Yangdan Liu
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Chiakang Ho
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Dongsheng Wen
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Zhiyuan Zhou
- Shanghai Jiao Tong University School of Medicine
| | - Tingyu Tsai
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Jiaming Sun
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Yuxin Liu
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Ya Gao
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Qingfeng Li
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Yifan Zhang
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University
| |
Collapse
|
12
|
Pankratova MD, Riabinin AA, Butova EA, Selivanovskiy AV, Morgun EI, Ulianov SV, Vorotelyak EA, Kalabusheva EP. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate. Int J Mol Sci 2024; 25:12903. [PMID: 39684613 DOI: 10.3390/ijms252312903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The paralogues Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) control cell proliferation and cell fate determination from embryogenesis to ageing. In the skin epidermis, these proteins are involved in both homeostatic cell renewal and injury-induced regeneration and also drive carcinogenesis and other pathologies. YAP and TAZ are usually considered downstream of the Hippo pathway. However, they are the central integrating link for the signalling microenvironment since they are involved in the interplay with signalling cascades induced by growth factors, cytokines, and physical parameters of the extracellular matrix. In this review, we summarise the evidence on how YAP and TAZ are activated in epidermal keratinocytes; how YAP/TAZ-mediated signalling cooperates with other signalling molecules at the plasma membrane, cytoplasmic, and nuclear levels; and how YAP/TAZ ultimately controls transcription programmes, defining epidermal cell fate.
Collapse
Affiliation(s)
- Maria D Pankratova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrei A Riabinin
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Butova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arseniy V Selivanovskiy
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena I Morgun
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P Kalabusheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
13
|
Munger K, White EA. What are the essential determinants of human papillomavirus carcinogenesis? mBio 2024; 15:e0046224. [PMID: 39365046 PMCID: PMC11558995 DOI: 10.1128/mbio.00462-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Human papillomavirus (HPV) infection is the leading viral cause of cancer. Over the past several decades, research on HPVs has provided remarkable insight into human cell biology and into the pathology of viral and non-viral cancers. The HPV E6 and E7 proteins engage host cellular proteins to establish an environment in infected cells that is conducive to virus replication. They rewire host cell signaling pathways to promote proliferation, inhibit differentiation, and limit cell death. The activity of the "high-risk" HPV E6 and E7 proteins is so potent that their dysregulated expression is sufficient to drive the initiation and maintenance of HPV-associated cancers. Consequently, intensive research efforts have aimed to identify the host cell targets of E6 and E7, in part with the idea that some or all of the virus-host interactions would be essential cancer drivers. These efforts have identified a large number of potential binding partners of each oncoprotein. However, over the same time period, parallel research has revealed that a relatively small number of genetic mutations drive carcinogenesis in most non-viral cancers. We therefore propose that a high-priority goal is to identify which of the many targets of E6 and E7 are critical drivers of HPV carcinogenesis. By identifying the cancer-driving targets of E6 and E7, it should be possible to better understand the distinct roles of other targets, perhaps in the viral life cycle, and to focus efforts to develop anti-cancer therapies on the subset of virus-host interactions for which therapeutic intervention would have the greatest impact.
Collapse
Affiliation(s)
- Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Gao Y, Wei H, Peng X, Wang C, Zhu H, Yin J. ER stress-induced YAP upregulation leads to chondrocyte phenotype loss in age-related osteoarthritis. Front Pharmacol 2024; 15:1476255. [PMID: 39600372 PMCID: PMC11588467 DOI: 10.3389/fphar.2024.1476255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background Osteoarthritis (OA) is a common degenerative joint disease, leading to pain and restricted mobility. Age-related endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of OA, but the underlying mechanisms remain unclear. This study aims to explore the relationship between age-related ER stress, YAP overexpression, and chondrocyte phenotype loss in the development of OA. Methods Cartilage samples were collected from patients undergoing amputation, and age-related ER stress markers and YAP expression were assessed using immunohistochemical staining and qPCR. Transgenic mice with cartilage-specific YAP overexpression (YAPOE) were created, and Pamrevlumab was administered to evaluate its therapeutic effects. Results Higher expression of ER stress markers and YAP were showed in aged tissues compared to younger tissues. YAP overexpression led to decreased levels of cartilage phenotype markers and increased osteogenesis-related proteins. In vivo, YAPOE mice exhibited OA-like cartilage degeneration, which was mitigated by Pamrevlumab treatment. Conclusion Age-related ER stress induces YAP overexpression, contributing to OA pathogenesis. Pamrevlumab effectively prevents this phenotype loss in YAPOE mice, suggesting its potential as a therapeutic agent for OA. These findings provide new insights into the molecular mechanisms of OA and highlight the importance of targeting the ER stress-YAP-CTGF signaling pathway in OA treatment and prevention.
Collapse
Affiliation(s)
- Yanchun Gao
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Wei
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyuan Peng
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenchen Wang
- Department of Orthopedics Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhui Yin
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Ferrick KR, Fan Y, Ratnayeke N, Teruel MN, Meyer T. Transient proliferation by reversible YAP and mitogen-control of the cyclin D1/p27 ratio. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617852. [PMID: 39416132 PMCID: PMC11482934 DOI: 10.1101/2024.10.11.617852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hippo-YAP signaling orchestrates epithelial tissue repair and is therefore an attractive target in regenerative medicine. Yet it is unresolved how YAP integrates with mitogen signaling and contact inhibition to control the underlying transient proliferative response. Here we show that reduced contact inhibition, increased mitogen signaling, and YAP-TEAD activation converge on increasing the nuclear cyclin D1/p27 protein ratio during G1 phase, towards a threshold ratio that dictates whether individual cells enter or exit the cell cycle. YAP increases this ratio indirectly, in concert with mitogen signaling, by increasing EGFR and other receptors that signal primarily through ERK. After a delay, contact inhibition suppresses YAP activity which gradually downregulates mitogen signaling and the cyclin D1/p27 ratio. Increasing YAP activity by ablating the suppressor Merlin/NF2 reveals a balancing mechanism in which YAP suppression and contact inhibition of proliferation can be recovered but only at higher local cell density. Thus, critical for tissue repair, robust proliferation responses result from the YAP-induced and receptor-mediated prolonged increase in the cyclin D1/p27 ratio, which is only reversed by delayed suppression of receptor signaling after contact inhibition of YAP.
Collapse
Affiliation(s)
- Katherine R. Ferrick
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, USA
| | - Yilin Fan
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, USA
- Current: Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nalin Ratnayeke
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, USA
- Current: Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary N. Teruel
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Tobias Meyer
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, USA
- Lead contact
| |
Collapse
|
16
|
Wu L, Wang S, Li H, Lu H, Zheng Y, Feng T, Sun Y. Human trophoblast invasion and migration are mediated by the YAP1-CCN1 pathway: defective signaling in trophoblasts during early-onset severe preeclampsia†. Biol Reprod 2024; 111:866-878. [PMID: 38874283 DOI: 10.1093/biolre/ioae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The transcription coactivator YAP1 mediates the major effects of the Hippo signaling pathway. The CCN family is a small group of glycoproteins known to be downstream effectors of YAP1 in diverse tissues. However, whether CCN family members mediate the effects of YAP1 in human trophoblasts is unknown. In this study, placental expression of both YAP1 and CCN1 was found to be impaired in pregnancies complicated by early-onset severe preeclampsia. CCN1 was expressed not only in cytotrophoblasts, trophoblast columns, and mesenchymal cells, similar to active YAP1, but also in syncytiotrophoblasts of normal first-trimester placental villi; moreover, decidual staining of active YAP1 and CCN1 was found in both interstitial and endovascular extravillous trophoblasts. In cultured immortalized human trophoblastic HTR-8/SVneo cells, knockdown of YAP1 decreased CCN1 mRNA and protein expression and led to impaired cell invasion and migration. Also, CCN1 knockdown negatively affected HTR-8/SVneo cell invasion and migration but not viability. YAP1 knockdown was further found to impair HTR-8/SVneo cell viability via G0/G1 cell cycle arrest and apoptosis, while CCN1 knockdown had minimal effect on cell cycle arrest and no effect on apoptosis. Accordingly, treatment with recombinant CCN1 partially reversed the YAP1 knockdown-induced impairment in trophoblast invasion and migration but not in viability. Thus, CCN1 mediates the effects of YAP1 on human trophoblast invasion and migration but not apoptosis, and decreased placental expression of YAP1 and CCN1 in pregnancies complicated by early-onset severe preeclampsia might contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Liang Wu
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shengfu Wang
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyue Li
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haotian Lu
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanke Zheng
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tianfei Feng
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingpu Sun
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Choi YJ, Myeong J, Kim JH, Kim S, Song K, Lee M, Jeong Y. YAP1 regulates esophageal stem cells' self-renewal and differentiation. Biochem Biophys Res Commun 2024; 726:150280. [PMID: 38909534 DOI: 10.1016/j.bbrc.2024.150280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Esophageal epithelium is one of the most proliferative and regenerative epithelia in our body, indicating robust stem cell activity. However, the underlying mechanisms regulating the self-renewal and differentiation of esophageal stem cells need to be more elucidated. Here, we identify the role of YAP1 in esophageal stem cells. YAP1 is differentially expressed in the nuclei of esophageal basal cells. Furthermore, the treatment of verteporfin, a YAP1 inhibitor, interfered with esophageal organoid formation. Consistently, YAP1 deletion decreased esophageal organoid formation and the expression of basal genes while increasing the expression of suprabasal genes. Finally, global transcriptomic analysis revealed that YAP1 inhibition induced a significant enrichment of gene sets related to keratinization and cornification, while depleting gene sets related to DNA repair and chromosome maintenance. Our data uncover a novel regulatory mechanism for esophageal stem cells, which could provide a potential strategy for esophageal regenerative medicine.
Collapse
Affiliation(s)
- Yoon Jeong Choi
- Department of New Biology, DGIST, Daegu, 42988, South Korea; New Biology Research Center, DGIST, Daegu, 42988, South Korea
| | - Jihyeon Myeong
- Department of New Biology, DGIST, Daegu, 42988, South Korea
| | - Joon Hyung Kim
- Department of Life Science, Dongguk University, Gyeonggi-do, 10326, South Korea
| | - Seongsoo Kim
- Department of New Biology, DGIST, Daegu, 42988, South Korea
| | - Kiwon Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Minho Lee
- Department of Life Science, Dongguk University, Gyeonggi-do, 10326, South Korea
| | - Youngtae Jeong
- Department of New Biology, DGIST, Daegu, 42988, South Korea; New Biology Research Center, DGIST, Daegu, 42988, South Korea.
| |
Collapse
|
18
|
Müller L, Gutschner T, Hatzfeld M. A feedback loop between plakophilin 4 and YAP signaling regulates keratinocyte differentiation. iScience 2024; 27:110762. [PMID: 39286493 PMCID: PMC11402648 DOI: 10.1016/j.isci.2024.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
The Hippo signaling pathway is an important regulator of organ growth and differentiation, and its deregulation contributes to the development of cancer. The activity of its downstream targets YAP/TAZ depends on adherens junctions. Plakophilin 4 (PKP4) is a cell-type specific adherens junction protein expressed in the proliferating cells of the epidermis. Here, we show that PKP4 diminishes proliferation as well as differentiation. Depletion of PKP4 increased proliferation but at the same time induced premature epidermal differentiation. PKP4 interacted with several Hippo pathway components, including the transcriptional co-activators YAP/TAZ, and promoted nuclear YAP localization and target gene expression. In differentiated keratinocytes, PKP4 recruited LATS and YAP to cell junctions where YAP is transcriptionally inactive. YAP depletion, on the other hand, reduced PKP4 levels and keratinocyte adhesion indicative of a feedback mechanism controlling adhesion, proliferation, and differentiation by balancing YAP functions.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Section for Pathochemistry, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
- Institute of Molecular Medicine, Section for RNA Biology and Pathogenesis, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
| | - Tony Gutschner
- Institute of Molecular Medicine, Section for RNA Biology and Pathogenesis, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Section for Pathochemistry, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
| |
Collapse
|
19
|
Gawronska-Kozak B, Machcinska-Zielinska S, Walendzik K, Kopcewicz M, Pääkkönen M, Wisniewska J. Hypoxia and Foxn1 alter the proteomic signature of dermal fibroblasts to redirect scarless wound healing to scar-forming skin wound healing in Foxn1 -/- mice. BMC Biol 2024; 22:193. [PMID: 39256768 PMCID: PMC11389453 DOI: 10.1186/s12915-024-01990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Foxn1-/- deficient mice are a rare model of regenerative skin wound healing among mammals. In wounded skin, the transcription factor Foxn1 interacting with hypoxia-regulated factors affects re-epithelialization, epithelial-mesenchymal transition (EMT) and dermal white adipose tissue (dWAT) reestablishment and is thus a factor regulating scar-forming/reparative healing. Here, we hypothesized that transcriptional crosstalk between Foxn1 and Hif-1α controls the switch from scarless (regenerative) to scar-present (reparative) skin wound healing. To verify this hypothesis, we examined (i) the effect of hypoxia/normoxia and Foxn1 signalling on the proteomic signature of Foxn1-/- (regenerative) dermal fibroblasts (DFs) and then (ii) explored the effect of Hif-1α or Foxn1/Hif-1α introduced by a lentiviral (LV) delivery vector to injured skin of regenerative Foxn1-/- mice with particular attention to the remodelling phase of healing. RESULTS We showed that hypoxic conditions and Foxn1 stimulation modified the proteome of Foxn1-/- DFs. Hypoxic conditions upregulated DF protein profiles, particularly those related to extracellular matrix (ECM) composition: plasminogen activator inhibitor-1 (Pai-1), Sdc4, Plod2, Plod1, Lox, Loxl2, Itga2, Vldlr, Ftl1, Vegfa, Hmox1, Fth1, and F3. We found that Pai-1 was stimulated by hypoxic conditions in regenerative Foxn1-/- DFs but was released by DFs to the culture media exclusively upon hypoxia and Foxn1 stimulation. We also found higher levels of Pai-1 protein in DFs isolated from Foxn1+/+ mice (reparative/scar-forming) than in DFs isolated from Foxn1-/- (regenerative/scarless) mice and triggered by injury increase in Foxn1 and Pai-1 protein in the skin of mice with active Foxn1 (Foxn1+/+ mice). Then, we demonstrated that the introduction of Foxn1 and Hif-1α via lentiviral injection into the wounded skin of regenerative Foxn1-/- mice activates reparative/scar-forming healing by increasing the wounded skin area and decreasing hyaluronic acid deposition and the collagen type III to I ratio. We also identified a stimulatory effect of LV-Foxn1 + LV-Hif-1α injection in the wounded skin of Foxn1-/- mice on Pai-1 protein levels. CONCLUSIONS The present data highlight the effect of hypoxia and Foxn1 on the protein profile and functionality of regenerative Foxn1-/- DFs and demonstrate that the introduction of Foxn1 and Hif-1α into the wounded skin of regenerative Foxn1-/- mice activates reparative/scar-forming healing.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. Tuwima 10, 10-748, Olsztyn, Poland.
| | - Sylwia Machcinska-Zielinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Mirva Pääkkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Biocity 5 Floor, 20520, Turku, Finland
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
20
|
Mai Y, Kobayashi Y, Kitahata H, Seo T, Nohara T, Itamoto S, Mai S, Kumamoto J, Nagayama M, Nishie W, Ujiie H, Natsuga K. Patterning in stratified epithelia depends on cell-cell adhesion. Life Sci Alliance 2024; 7:e202402893. [PMID: 39025524 PMCID: PMC11258421 DOI: 10.26508/lsa.202402893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Epithelia consist of proliferating and differentiating cells that often display patterned arrangements. However, the mechanism regulating these spatial arrangements remains unclear. Here, we show that cell-cell adhesion dictates multicellular patterning in stratified epithelia. When cultured keratinocytes, a type of epithelial cell in the skin, are subjected to starvation, they spontaneously develop a pattern characterized by areas of high and low cell density. Pharmacological and knockout experiments show that adherens junctions are essential for patterning, whereas the mathematical model that only considers local cell-cell adhesion as a source of attractive interactions can form regions with high/low cell density. This phenomenon, called cell-cell adhesion-induced patterning (CAIP), influences cell differentiation and proliferation through Yes-associated protein modulation. Starvation, which induces CAIP, enhances the stratification of the epithelia. These findings highlight the intrinsic self-organizing property of epithelial cells.
Collapse
Affiliation(s)
- Yosuke Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kobayashi
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- Department of Mathematics, Faculty of Science, Josai University, Sakado, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Takashi Seo
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuma Nohara
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sota Itamoto
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shoko Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Kumamoto
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Bian Z, Xu C, Wang X, Zhang B, Xiao Y, Liu L, Zhao S, Huang N, Yang F, Zhang Y, Xue S, Wang X, Pan Q, Sun F. TRIM65/NF2/YAP1 Signaling Coordinately Orchestrates Metabolic and Immune Advantages in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402578. [PMID: 39005234 PMCID: PMC11425264 DOI: 10.1002/advs.202402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide. Significantly activated uridine nucleotide and fatty acid metabolism in HCC cells promote malignant proliferation and immune evasion. Herein, it is demonstrated that the tripartite motif 65 (TRIM65) E3 ubiquitin-protein ligase, O-GlcNAcylated via O-GlcNAcylation transferase, is highly expressed in HCC and facilitated metabolic remodeling to promote the accumulation of products related to uracil metabolism and palmitic acid, driving the progression of HCC. Mechanistically, it is showed that TRIM65 mediates ubiquitylation at the K44 residue of neurofibromatosis type 2 (NF2), the key protein upstream of classical Hippo signaling. Accelerated NF2 degradation inhibits yes-associated protein 1 phosphorylation, inducing aberrant activation of related metabolic enzyme transcription, and orchestrating metabolic and immune advantages. In conclusion, these results reveal a critical role for the TRIM family molecule TRIM65 in supporting HCC cell survival and highlight the therapeutic potential of targeting its E3 ligase activity to alter the regulation of proteasomal degradation.
Collapse
Affiliation(s)
- Zhixuan Bian
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Faculty of Medical Laboratory ScienceCollege of Health Science and TechnologySchool of MedicineShanghai jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PaediatricsShanghai200127China
| | - Chang Xu
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Xiaoying Wang
- Department of liver surgeryZhongshan hospitalFudan UniversityShanghai200030China
| | - Baohua Zhang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Yixuan Xiao
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Li Liu
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Shasha Zhao
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Nan Huang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Fengjiao Yang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Yue Zhang
- Department of Central LaboratoryShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Shaobo Xue
- Department of Central LaboratoryShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Xiongjun Wang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Qiuhui Pan
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Faculty of Medical Laboratory ScienceCollege of Health Science and TechnologySchool of MedicineShanghai jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PaediatricsShanghai200127China
| | - Fenyong Sun
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| |
Collapse
|
22
|
Olatunde D, De Benedetti A. TLK1>Nek1 Axis Promotes Nuclear Retention and Activation of YAP with Implications for Castration-Resistant Prostate Cancer. Cancers (Basel) 2024; 16:2918. [PMID: 39199688 PMCID: PMC11352418 DOI: 10.3390/cancers16162918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Despite some advances in controlling the progression of prostate cancer (PCa) that is refractory to the use of ADT/ARSI, most patients eventually succumb to the disease, and there is a pressing need to understand the mechanisms that lead to the development of CRPC. A common mechanism is the ability to integrate AR signals from vanishing levels of testosterone, with the frequent participation of YAP as a co-activator, and pointing to the deregulation of the Hippo pathway as a major determinant. We have recently shown that YAP is post-transcriptionally activated via the TLK1>NEK1 axis by stabilizing phosphorylation at Y407. We are now solidifying this work by showing the following: (1) The phosphorylation of Y407 is critical for YAP retention/partition in the nuclei, and J54 (TLK1i) reverses this along with YAP-Y407 dephosphorylation. (2) The enhanced degradation of (cytoplasmic) YAP is increased by J54 counteracting its Enzalutamide-induced accumulation. (3) The basis for all these effects, including YAP nuclear retention, can be explained by the stronger association of pYAP-Y407 with its transcriptional co-activators, AR and TEAD1. (4) We demonstrate that ChIP for GFP-YAP-wt, but hardly for the GFP-YAP-Y407F mutant, at the promoters of typical ARE- and TEAD1-driven genes is readily detected but becomes displaced after treatment with J54. (5) While xenografts of LNCaP cells show rapid regression following treatment with ARSI+J54, in the VCaP model, driven by the TMPRSS2-ERG oncogenic translocation, tumors initially respond well to the combination but subsequently recur, despite the continuous suppression of pNek1-T141 and pYAP-Y407. This suggests an alternative parallel pathway for CRPC progression for VCaP tumors in the long term, which may be separate from the observed ENZ-driven YAP deregulation, although clearly some YAP gene targets like PD-L1, that are found to accumulate following prolonged ENZ treatment, are still suppressed by the concomitant addition of J54.
Collapse
Affiliation(s)
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, The Feist Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA;
| |
Collapse
|
23
|
Montano E, Bhatia N, Ostojić J. Biomarkers in Cutaneous Keratinocyte Carcinomas. Dermatol Ther (Heidelb) 2024; 14:2039-2058. [PMID: 39030446 PMCID: PMC11333699 DOI: 10.1007/s13555-024-01233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024] Open
Abstract
Skin cancer is the most common cancer type in the USA, with over five million annually treated cases and one in five Americans predicted to develop the disease by the age of 70. Skin cancer can be classified as melanoma or non-melanoma (NMSC), the latter including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC). Development of BCC and SCC is impacted by environmental, behavioral, and genetic risk factors and the incidence is on the rise, with the associated number of deaths surpassing those caused by melanoma, according to recent reports. Substantial morbidity is related to both BCC and SCC, including disfigurement, loss of function, and chronic pain, driving high treatment costs, and representing a heavy financial burden to patients and healthcare systems worldwide. Clinical presentations of BCC and SCC can be diverse, sometimes carrying considerable phenotypic similarities to benign lesions, and underscoring the need for the development of disease-specific biomarkers. Skin biomarker profiling plays an important role in deeper disease understanding, as well as in guiding clinical diagnosis and patient management, prompting the use of both invasive and non-invasive tools to evaluate specific biomarkers. In this work, we review the known and emerging biomarkers of BCC and SCC, with a focus on molecular and histologic biomarkers relevant for aspects of patient management, including prevention/risk assessments, tumor diagnosis, and therapy selection.
Collapse
Affiliation(s)
- Erica Montano
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA
| | - Neal Bhatia
- Therapeutics Clinical Research, San Diego, CA, USA
| | - Jelena Ostojić
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA.
| |
Collapse
|
24
|
Pinelli M, Makdissi S, Scur M, Parsons BD, Baker K, Otley A, MacIntyre B, Nguyen HD, Kim PK, Stadnyk AW, Di Cara F. Peroxisomal cholesterol metabolism regulates yap-signaling, which maintains intestinal epithelial barrier function and is altered in Crohn's disease. Cell Death Dis 2024; 15:536. [PMID: 39069546 DOI: 10.1038/s41419-024-06925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Intestinal epithelial cells line the luminal surface to establish the intestinal barrier, where the cells play essential roles in the digestion of food, absorption of nutrients and water, protection from microbial infections, and maintaining symbiotic interactions with the commensal microbial populations. Maintaining and coordinating all these functions requires tight regulatory signaling, which is essential for intestinal homeostasis and organismal health. Dysfunction of intestinal epithelial cells, indeed, is linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, and gluten-related enteropathies. Emerging evidence suggests that peroxisome metabolic functions are crucial in maintaining intestinal epithelial cell functions and intestinal epithelium regeneration and, therefore, homeostasis. Here, we investigated the molecular mechanisms by which peroxisome metabolism impacts enteric health using the fruit fly Drosophila melanogaster and murine model organisms and clinical samples. We show that peroxisomes control cellular cholesterol, which in turn regulates the conserved yes-associated protein-signaling and contributes to intestinal epithelial structure and epithelial barrier function. Moreover, analysis of intestinal organoid cultures derived from biopsies of patients affected by Crohn's Disease revealed that the dysregulation of peroxisome number, excessive cellular cholesterol, and inhibition of Yap-signaling are markers of disease and could be novel diagnostic and/or therapeutic targets for treating Crohn's Disease. Our studies provided mechanistic insights on peroxisomal signaling in intestinal epithelial cell functions and identified cholesterol as a novel metabolic regulator of yes-associated protein-signaling in tissue homeostasis.
Collapse
Affiliation(s)
- Marinella Pinelli
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Stephanie Makdissi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Anthony Otley
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brad MacIntyre
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Huong D Nguyen
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Peter K Kim
- The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada.
| |
Collapse
|
25
|
Kim H, Son S, Ko Y, Lim H, Lee J, Lee KM, Shin I. CYR61 confers chemoresistance by upregulating survivin expression in triple-negative breast cancer. Carcinogenesis 2024; 45:510-519. [PMID: 38446998 DOI: 10.1093/carcin/bgae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61) is a protein from the CCN family of matricellular proteins that play diverse regulatory roles in the extracellular matrix. CYR61 is involved in cell adhesion, migration, proliferation, differentiation, apoptosis, and senescence. Here, we show that CYR61 induces chemoresistance in triple-negative breast cancer (TNBC). We observed that CYR61 is overexpressed in TNBC patients, and CYR61 expression correlates negatively with the survival of patients who receive chemotherapy. CYR61 knockdown reduced cell migration, sphere formation and the cancer stem cell (CSC) population and increased the chemosensitivity of TNBC cells. Mechanistically, CYR61 activated Wnt/β-catenin signaling and increased survivin expression, which are associated with chemoresistance, the epithelial-mesenchymal transition, and CSC-like phenotypes. Altogether, our study demonstrates a novel function of CYR61 in chemotherapy resistance in breast cancer.
Collapse
Affiliation(s)
- Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Yunhyo Ko
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Hogeun Lim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Joohyung Lee
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Kyung-Min Lee
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Natural Science Institute, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Natural Science Institute, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
26
|
Leask A, Nguyen J, Naik A, Chitturi P, Riser BL. The role of yes activated protein (YAP) in melanoma metastasis. iScience 2024; 27:109864. [PMID: 38770136 PMCID: PMC11103372 DOI: 10.1016/j.isci.2024.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Hippo was first identified in a genetic screen as a protein that suppressed proliferation and cell growth. Subsequently, it was shown that hippo acted in a so-called canonical cascade to suppress Yorkie, the Drosophila equivalent of Yes-activated protein (YAP), a mechanosensitive transcriptional cofactor that enhances the activity of the TEAD family of transcription factors. YAP promotes fibrosis, activation of cancer-associated fibroblasts, angiogenesis and cancer cell invasion. YAP activates the expression of the matricellular proteins CCN1 (cyr61) and CCN2 (ctgf), themselves mediators of fibrogenesis and oncogenesis, and coordination of matrix deposition and angiogenesis. This review discusses how therapeutically targeting YAP through YAP inhibitors verteporfin and celastrol and its downstream mediators CCN1 and CCN2 might be useful in treating melanoma.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Bruce L. Riser
- Department of Physiology & Biophysics, Center for Cancer Cell Biology, Immunology & Infection, Rosalind Franklin University, 3333 N. Green Bay Road, Chicago, IL 60064, USA
- BLR Bio, LLC, Kenosha, WI 53140, USA
| |
Collapse
|
27
|
Kim JY, Quan T. Emerging Perspectives of YAP/TAZ in Human Skin Epidermal and Dermal Aging. Ann Dermatol 2024; 36:135-144. [PMID: 38816974 PMCID: PMC11148314 DOI: 10.5021/ad.23.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 06/01/2024] Open
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo signaling pathway, which plays a central role in tissue homeostasis, organ development, and regeneration. While the dysregulation of YAP/TAZ has been linked to various human diseases, their involvement in the aging of human skin has only recently begun to manifest. In the skin, the YAP/TAZ effectors emerge as central regulators in maintaining homeostasis of epidermal stem cells and dermal extracellular matrix, and thus intimately linked to skin aging processes. This review underscores recent molecular breakthroughs highlighting how age-related decline of YAP/TAZ activity impacts human epidermal and dermal aging. Gaining insight into the evolving roles of YAP/TAZ in human skin aging presents a promising avenue for the development of innovative therapeutic approaches aimed at enhancing skin health and addressing age-related skin conditions.
Collapse
Affiliation(s)
- Jun Young Kim
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Lang A, Eastburn EA, Younesi M, Nijsure M, Siciliano C, Haran AP, Panebianco CJ, Seidl E, Tang R, Alsberg E, Willett NJ, Gottardi R, Huh D, Boerckel JD. Cyr61 delivery promotes angiogenesis during bone fracture repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588239. [PMID: 38617208 PMCID: PMC11014620 DOI: 10.1101/2024.04.05.588239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. Cyr61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that is regulated by mechanical cues during fracture repair. Here, we map the distribution of endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery on vascularized bone regeneration. In vitro, Cyr61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, Cyr61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted Cyr61-induced neovascularization. Together, these data indicate that Cyr61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily A. Eastburn
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Mousa Younesi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Madhura Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Carly Siciliano
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Annapurna Pranatharthi Haran
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Elizabeth Seidl
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Rui Tang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Nick J. Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States
- The Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Riccardo Gottardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Joel D. Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Namoto K, Baader C, Orsini V, Landshammer A, Breuer E, Dinh KT, Ungricht R, Pikiolek M, Laurent S, Lu B, Aebi A, Schönberger K, Vangrevelinghe E, Evrova O, Sun T, Annunziato S, Lachal J, Redmond E, Wang L, Wetzel K, Capodieci P, Turner J, Schutzius G, Unterreiner V, Trunzer M, Buschmann N, Behnke D, Machauer R, Scheufler C, Parker CN, Ferro M, Grevot A, Beyerbach A, Lu WY, Forbes SJ, Wagner J, Bouwmeester T, Liu J, Sohal B, Sahambi S, Greenbaum LE, Lohmann F, Hoppe P, Cong F, Sailer AW, Ruffner H, Glatthar R, Humar B, Clavien PA, Dill MT, George E, Maibaum J, Liberali P, Tchorz JS. NIBR-LTSi is a selective LATS kinase inhibitor activating YAP signaling and expanding tissue stem cells in vitro and in vivo. Cell Stem Cell 2024; 31:554-569.e17. [PMID: 38579685 DOI: 10.1016/j.stem.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.
Collapse
Affiliation(s)
- Kenji Namoto
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| | - Clara Baader
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Vanessa Orsini
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Eva Breuer
- University Hospital Zurich (USZ), Zurich, Switzerland
| | - Kieu Trinh Dinh
- German Cancer Research Center (DKFZ) Heidelberg, Research Group Experimental Hepatology, Inflammation and Cancer, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Bo Lu
- Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
| | - Alexandra Aebi
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Olivera Evrova
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tianliang Sun
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland; Division of Liver Diseases, Institute for Regenerative Medicine, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Julie Lachal
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Emily Redmond
- Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
| | - Louis Wang
- Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
| | - Kristie Wetzel
- Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
| | | | | | - Gabi Schutzius
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Markus Trunzer
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Dirk Behnke
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | - Magali Ferro
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Armelle Grevot
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Wei-Yu Lu
- University of Edinburgh, Center for Inflammation Research, Edinburgh, UK
| | - Stuart J Forbes
- University of Edinburgh, Center for Regenerative Medicine, Edinburgh, UK
| | - Jürgen Wagner
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Jun Liu
- Biomedical Research, Novartis Pharma AG, La Jolla, CA, USA
| | - Bindi Sohal
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Felix Lohmann
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Philipp Hoppe
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Feng Cong
- Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
| | | | - Heinz Ruffner
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ralf Glatthar
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Bostjan Humar
- University Hospital Zurich (USZ), Zurich, Switzerland
| | | | - Michael T Dill
- German Cancer Research Center (DKFZ) Heidelberg, Research Group Experimental Hepatology, Inflammation and Cancer, Heidelberg, Germany; Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Jürgen Maibaum
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jan S Tchorz
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
30
|
Zhang C, Wei W, Tu S, Liang B, Li C, Li Y, Luo W, Wu Y, Dai X, Wang Y, Zheng L, Hao L, Zhang C, Luo Z, Chen YG, Yan X. Upregulation of CYR61 by TGF-β and YAP signaling exerts a counter-suppression of hepatocellular carcinoma. J Biol Chem 2024; 300:107208. [PMID: 38521502 PMCID: PMC11021963 DOI: 10.1016/j.jbc.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Transforming growth factor-β (TGF-β) and Hippo signaling are two critical pathways engaged in cancer progression by regulating both oncogenes and tumor suppressors, yet how the two pathways coordinately exert their functions in the development of hepatocellular carcinoma (HCC) remains elusive. In this study, we firstly conducted an integrated analysis of public liver cancer databases and our experimental TGF-β target genes, identifying CYR61 as a pivotal candidate gene relating to HCC development. The expression of CYR61 is downregulated in clinical HCC tissues and cell lines than that in the normal counterparts. Evidence revealed that CYR61 is a direct target gene of TGF-β in liver cancer cells. In addition, TGF-β-stimulated Smad2/3 and the Hippo pathway downstream effectors YAP and TEAD4 can form a protein complex on the promoter of CYR61, thereby activating the promoter activity and stimulating CYR61 gene transcription in a collaborative manner. Functionally, depletion of CYR61 enhanced TGF-β- or YAP-mediated growth and migration of liver cancer cells. Consistently, ectopic expression of CYR61 was capable of impeding TGF-β- or YAP-induced malignant transformation of HCC cells in vitro and attenuating HCC xenograft growth in nude mice. Finally, transcriptomic analysis indicates that CYR61 can elicit an antitumor program in liver cancer cells. Together, these results add new evidence for the crosstalk between TGF-β and Hippo signaling and unveil an important tumor suppressor function of CYR61 in liver cancer.
Collapse
Affiliation(s)
- Cheng Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjing Wei
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuo Tu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bo Liang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chun Li
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yining Li
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weicheng Luo
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yiqing Wu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaohui Dai
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lijuan Zheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liang Hao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chunbo Zhang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ye-Guang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohua Yan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
31
|
Hutchenreuther J, Nguyen J, Quesnel K, Vincent KM, Petitjean L, Bourgeois S, Boyd M, Bou-Gharios G, Postovit LM, Leask A. Cancer-associated Fibroblast-specific Expression of the Matricellular Protein CCN1 Coordinates Neovascularization and Stroma Deposition in Melanoma Metastasis. CANCER RESEARCH COMMUNICATIONS 2024; 4:556-570. [PMID: 38363129 PMCID: PMC10898341 DOI: 10.1158/2767-9764.crc-23-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Melanoma is the leading cause of skin cancer-related death. As prognosis of patients with melanoma remains problematic, identification of new therapeutic targets remains essential. Matricellular proteins are nonstructural extracellular matrix proteins. They are secreted into the tumor microenvironment to coordinate behavior among different cell types, yet their contribution to melanoma is underinvestigated. Examples of matricellular proteins include those comprising the CCN family. The CCN family member, CCN1, is highly proangiogenic. Herein, we show that, in human patients with melanoma, although found in several tumor cell types, CCN1 is highly expressed by a subset of cancer-associated fibroblasts (CAF) in patients with melanoma and this expression correlates positively with expression of proangiogenic genes and progressive disease/resistance to anti-PD1 checkpoint inhibitors. Consistent with these observations, in a syngeneic C57BL6 mouse model of melanoma, loss of CCN1 expression from Col1A2-Cre-, herein identified as "universal," fibroblasts, impaired metastasis of subcutaneously injected B16F10 tumor cells to lung, concomitant with disrupted neovascularization and collagen organization. Disruption of the extracellular matrix in the loss of CCN1 was validated using a novel artificial intelligence-based image analysis platform that revealed significantly decreased phenotypic fibrosis and composite morphometric collagen scores. As drug resistance is linked to matrix deposition and neoangiogenesis, these data suggest that CCN1, due to its multifaceted role, may represent a novel therapeutic target for drug-resistant melanoma. Our data further emphasize the essential role that cancer-associated, (universal) Col1A2-Cre-fibroblasts and extracellular matrix remodeling play in coordinating behavior among different cell types within the tumor microenvironment. SIGNIFICANCE In human patients, the expression of proangiogenic matricellular protein CCN1 in CAFs correlates positively with expression of stroma and angiogenic markers and progressive disease/resistance to checkpoint inhibitor therapy. In an animal model, loss of CCN1 from CAFs impaired metastasis of melanoma cells, neovascularization, and collagen deposition, emphasizing that CAFs coordinate cellular behavior in a tumor microenvironment and that CCN1 may be a novel target.
Collapse
Affiliation(s)
- James Hutchenreuther
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Katherine Quesnel
- Department of Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Krista M. Vincent
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - Sophia Bourgeois
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Mark Boyd
- Office of the Vice President of Research, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George Bou-Gharios
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lynne-Marie Postovit
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
32
|
Camacho-Macorra C, Tabanera N, Sánchez-Bustamante E, Bovolenta P, Cardozo MJ. Maternal vgll4a regulates zebrafish epiboly through Yap1 activity. Front Cell Dev Biol 2024; 12:1362695. [PMID: 38444829 PMCID: PMC10912589 DOI: 10.3389/fcell.2024.1362695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Gastrulation in zebrafish embryos commences with the morphogenetic rearrangement of blastodermal cells, which undergo a coordinated spreading from the animal pole to wrap around the egg at the vegetal pole. This rearrangement, known as epiboly, relies on the orchestrated activity of maternal transcripts present in the egg, compensating for the gradual activation of the zygotic genome. Epiboly involves the mechano-transducer activity of yap1 but what are the regulators of yap1 activity and whether these are maternally or zygotically derived remain elusive. Our study reveals the crucial role of maternal vgll4a, a proposed Yap1 competitor, during zebrafish epiboly. In embryos lacking maternal/zygotic vgll4a (MZvgll4a), the progression of epiboly and blastopore closure is delayed. This delay is associated with the ruffled appearance of the sliding epithelial cells, decreased expression of yap1-downstream targets and transient impairment of the actomyosin ring at the syncytial layer. Our study also shows that, rather than competing with yap1, vgll4a modulates the levels of the E-cadherin/β-catenin adhesion complex at the blastomeres' plasma membrane and hence their actin cortex distribution. Taking these results together, we propose that maternal vgll4a acts at epiboly initiation upstream of yap1 and the E-cadherin/β-catenin adhesion complex, contributing to a proper balance between tissue tension/cohesion and contractility, thereby promoting a timely epiboly progression.
Collapse
Affiliation(s)
- Carlos Camacho-Macorra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Noemí Tabanera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez-Bustamante
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marcos J Cardozo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
33
|
Zhou W, Lim A, Elmadbouh OHM, Edderkaoui M, Osipov A, Mathison AJ, Urrutia R, Liu T, Wang Q, Pandol SJ. Verteporfin induces lipid peroxidation and ferroptosis in pancreatic cancer cells. Free Radic Biol Med 2024; 212:493-504. [PMID: 38184120 PMCID: PMC10906657 DOI: 10.1016/j.freeradbiomed.2024.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has extremely poor prognosis, with a 5-year survival rate of approximately 11 %. Yes-associated protein (YAP) is a major downstream effector of the Hippo-YAP pathway and plays a pivotal role in regulation of cell proliferation and organ regeneration and tumorigenesis. Activation of YAP signaling has been associated with PDAC progression and drug resistance. Verteporfin (VP) is a photosensitizer used for photodynamic therapy and previous work showed that it can function as a YAP inhibitor. The efficacy of VP on human cancer are being tested in several trials. In this study, we examined the effect of VP on reactive oxygen species (ROS) and lipid peroxidation in pancreatic cancer cells, by using fluorescent molecular probes and by measuring the levels of malondialdehyde, a metabolic byproduct and marker of lipid peroxidation. We found that VP causes rapid increase of both overall ROS and lipid peroxide levels, independent of light activation. These effects were not dependent on YAP, as knockdown of YAP did not cause ROS or lipid peroxidation or enhance VP-induced ROS production. Temoporfin, another photodynamic drug, did not show similar activities. In addition, VP treatment led to loss of cell membrane integrity and reduction of viability. Notably, the activity of VP to induce lipid peroxidation was neutralized by ferroptosis inhibitors ferrostatin-1 or liproxstatin-1. VP treatment also reduced the levels of glutathione peroxidase 4 (GPX4), an enzyme that protects against lipid peroxidation. These results indicate that VP can induce lipid peroxidation and ferroptosis in the absence of light activation. Our findings reveal a novel mechanism by which VP inhibits tumor growth and provide insights into development of new therapeutic strategies for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Arsen Osipov
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Angela J Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
34
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
35
|
Sopel M, Kuberka I, Szczuka I, Taradaj J, Rosińczuk J, Dymarek R. Can Shockwave Treatment Elicit a Molecular Response to Enhance Clinical Outcomes in Pressure Ulcers? The SHOck Waves in wouNds Project. Biomedicines 2024; 12:359. [PMID: 38397961 PMCID: PMC10887019 DOI: 10.3390/biomedicines12020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Wound healing requires the coordinated interaction of dermis cells, the proper deposition of extracellular matrix, re-epithelialization, and angiogenesis. Extracorporeal shock wave (ESW) is a promising therapeutic modality for chronic wounds. This study determined the biological mechanisms activated under ESW, facilitating the healing of pressure ulcers (PUs). A group of 10 patients with PUs received two sessions of radial ESW (300 + 100 pulses, 2.5 bars, 0.15 mJ/mm2, 5 Hz). Histomorphological and immunocytochemical assessments were performed on tissue sections obtained from the wound edges before the ESW (M0) and after the first (M1) and second (M2) ESW. The proliferation index of keratinocytes and fibroblasts (Ki-67), the micro-vessels' density (CD31), and the number of myofibroblasts (α-SMA) were evaluated. The involvement of the yes-associated protein (YAP1) in sensing mechanical strain, and whether the nuclear localization of YAP1, was shown. The increased proliferative activity of epidermal cells and skin fibroblasts and the increased number of myofibroblasts, often visible as integrated cell bands, were also demonstrated as an effect of wound exposure to an ESW. The results indicate that the major skin cells, keratinocytes, and fibroblasts are mechanosensitive. They intensify proliferation and extracellular matrix remodeling in response to mechanical stress. A significant improvement in clinical wound parameters was also observed.
Collapse
Affiliation(s)
- Mirosław Sopel
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Izabela Kuberka
- Department of Anaesthetic and Surgical Nursing, Faculty of Health Sciences, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Izabela Szczuka
- Laboratory of Cells Propagation and Modification, Lower Silesian Oncology Hematology and Pulmonology Center, 53-413 Wroclaw, Poland;
| | - Jakub Taradaj
- Institute of Physiotherapy and Health Sciences, Academy of Physical Education in Katowice, 40-065 Katowice, Poland;
| | - Joanna Rosińczuk
- Department of Internal Medicine Nursing, Faculty of Health Sciences, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Robert Dymarek
- Department of Physiotherapy, Faculty of Health Sciences, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
36
|
Villeneuve C, Hashmi A, Ylivinkka I, Lawson-Keister E, Miroshnikova YA, Pérez-González C, Myllymäki SM, Bertillot F, Yadav B, Zhang T, Matic Vignjevic D, Mikkola ML, Manning ML, Wickström SA. Mechanical forces across compartments coordinate cell shape and fate transitions to generate tissue architecture. Nat Cell Biol 2024; 26:207-218. [PMID: 38302719 PMCID: PMC10866703 DOI: 10.1038/s41556-023-01332-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/08/2023] [Indexed: 02/03/2024]
Abstract
Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. An excellent paradigm to understand the coupling of these processes is mammalian hair follicle development, which is initiated by the formation of an epithelial invagination-termed placode-that coincides with the emergence of a designated hair follicle stem cell population. The mechanisms directing the deformation of the epithelium, cell state transitions and physical compartmentalization of the placode are unknown. Here we identify a key role for coordinated mechanical forces stemming from contractile, proliferative and proteolytic activities across the epithelial and mesenchymal compartments in generating the placode structure. A ring of fibroblast cells gradually wraps around the placode cells to generate centripetal contractile forces, which, in collaboration with polarized epithelial myosin activity, promote elongation and local tissue thickening. These mechanical stresses further enhance compartmentalization of Sox9 expression to promote stem cell positioning. Subsequently, proteolytic remodelling locally softens the basement membrane to facilitate a release of pressure on the placode, enabling localized cell divisions, tissue fluidification and epithelial invagination into the underlying mesenchyme. Together, our experiments and modelling identify dynamic cell shape transformations and tissue-scale mechanical cooperation as key factors for orchestrating organ formation.
Collapse
Affiliation(s)
- Clémentine Villeneuve
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ali Hashmi
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Irene Ylivinkka
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Yekaterina A Miroshnikova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carlos Pérez-González
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Satu-Marja Myllymäki
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Fabien Bertillot
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bhagwan Yadav
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - M Lisa Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY, USA.
| | - Sara A Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
37
|
Kim CL, Lim SB, Choi SH, Kim DH, Sim YE, Jo EH, Kim K, Lee K, Park HS, Lim SB, Kang LJ, Jeong HS, Lee Y, Hansen CG, Mo JS. The LKB1-TSSK1B axis controls YAP phosphorylation to regulate the Hippo-YAP pathway. Cell Death Dis 2024; 15:76. [PMID: 38245531 PMCID: PMC10799855 DOI: 10.1038/s41419-024-06465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The Hippo pathway's main effector, Yes-associated protein (YAP), plays a crucial role in tumorigenesis as a transcriptional coactivator. YAP's phosphorylation by core upstream components of the Hippo pathway, such as mammalian Ste20 kinase 1/2 (MST1/2), mitogen-activated protein kinase kinase kinase kinases (MAP4Ks), and their substrate, large tumor suppressor 1/2 (LATS1/2), influences YAP's subcellular localization, stability, and transcriptional activity. However, recent research suggests the existence of alternative pathways that phosphorylate YAP, independent of these core upstream Hippo pathway components, raising questions about additional means to inactivate YAP. In this study, we present evidence demonstrating that TSSK1B, a calcium/calmodulin-dependent protein kinase (CAMK) superfamily member, is a negative regulator of YAP, suppressing cellular proliferation and oncogenic transformation. Mechanistically, TSSK1B inhibits YAP through two distinct pathways. Firstly, the LKB1-TSSK1B axis directly phosphorylates YAP at Ser94, inhibiting the YAP-TEAD complex's formation and suppressing its target genes' expression. Secondly, the TSSK1B-LATS1/2 axis inhibits YAP via phosphorylation at Ser127. Our findings reveal the involvement of TSSK1B-mediated molecular mechanisms in the Hippo-YAP pathway, emphasizing the importance of multilevel regulation in critical cellular decision-making processes.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Su-Bin Lim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Sue-Hee Choi
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Dong Hyun Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Ye Eun Sim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Eun-Hye Jo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Keeeun Kim
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Keesook Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Li-Jung Kang
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, 50612, South Korea
| | - Youngsoo Lee
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Carsten G Hansen
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, UK
| | - Jung-Soon Mo
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea.
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea.
| |
Collapse
|
38
|
Cassani M, Fernandes S, Oliver‐De La Cruz J, Durikova H, Vrbsky J, Patočka M, Hegrova V, Klimovic S, Pribyl J, Debellis D, Skladal P, Cavalieri F, Caruso F, Forte G. YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302965. [PMID: 37946710 PMCID: PMC10787066 DOI: 10.1002/advs.202302965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions. This study investigates the role of cellular mechanosensitive components in cell-nanoparticle interactions. It is demonstrated that the genetic and pharmacologic inhibition of yes-associated protein (YAP), a key component of cancer cell mechanosensing apparatus and Hippo pathway effector, improves nanoparticle internalization in triple-negative breast cancer cells regardless of nanoparticle properties or substrate characteristics. This process occurs through YAP-dependent regulation of endocytic pathways, cell mechanics, and membrane organization. Hence, the study proposes targeting YAP may sensitize triple-negative breast cancer cells to chemotherapy and increase the selectivity of nanotherapy.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Soraia Fernandes
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jorge Oliver‐De La Cruz
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)BarcelonaSpain
| | - Helena Durikova
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
| | - Jan Vrbsky
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
| | - Marek Patočka
- NenoVisionPurkynova 649/127Brno61200Czech Republic
- Faculty of Mechanical EngineeringBrno University of TechnologyTechnicka 2896/2Brno61669Czech Republic
| | | | - Simon Klimovic
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Jan Pribyl
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Doriana Debellis
- Electron Microscopy FacilityFondazione Istituto Italiano Di TecnologiaVia Morego 30Genoa16163Italy
| | - Petr Skladal
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Francesca Cavalieri
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourne3000VictoriaAustralia
- Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma “Tor Vergata”Via Della Ricerca ScientificaRome00133Italy
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Giancarlo Forte
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
39
|
Kong H, Han JJ, Gorbachev D, Zhang XA. Role of the Hippo pathway in autoimmune diseases. Exp Gerontol 2024; 185:112336. [PMID: 38042379 DOI: 10.1016/j.exger.2023.112336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
The immune system is an important defense against diseases, and it is essential to maintain the homeostasis of the body's internal environment. Under normal physiological conditions, the steady state of the immune system should be sustained to play normal immune response and immune function. Exploring the molecular mechanism of maintaining immune homeostasis under physiological and pathological conditions will provides understanding of the pathogenesis of autoimmune diseases, infections, metabolic disorders, and tumors, as well as new ideas and molecular targets for the prevention and treatment of these diseases. Hippo signaling pathway can not only regulate immune cells such as macrophages, T cells and dendritic cells, but also interact with immune-related signaling pathways such as NF-kB signaling pathway, TGF-β signaling pathway and Toll-like receptor signaling pathway, so as to resist the internal environment disorder caused by the invasion of exogenous pathogenic microorganisms and maintain the internal environment stability and physiological balance of the body. Hippo signaling pathway is also involved in the pathological process of immune system-related diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Hippo pathway is closely related to organ development, stem cell biology, regeneration, and tumor biology. It affects cell differentiation by participating in extracellular and intracellular physiological signal reactions, sensing cell environment, and coordinating cell reactions. This pathway is crucial in maintaining immune homeostasis. This review summarizes the mechanism of Hippo pathway in different immune cells and some autoimmune diseases and the interaction between different immune signaling pathways and Hippo signaling pathway. It aims to explore the role of Hippo in autoimmune diseases and provide theoretical and practical basis for the treatment of autoimmune diseases through Hippo signaling pathway.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|
40
|
Bulos ML, Grzelak EM, Li-Ma C, Chen E, Hull M, Johnson KA, Bollong MJ. Pharmacological inhibition of CLK2 activates YAP by promoting alternative splicing of AMOTL2. eLife 2023; 12:RP88508. [PMID: 38126343 PMCID: PMC10735217 DOI: 10.7554/elife.88508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Yes-associated protein (YAP), the downstream effector of the evolutionarily conserved Hippo pathway, promotes cellular proliferation and coordinates certain regenerative responses in mammals. Small molecule activators of YAP may, therefore, display therapeutic utility in treating disease states involving insufficient proliferative repair. From a high-throughput chemical screen of the comprehensive drug repurposing library ReFRAME, here we report the identification of SM04690, a clinical stage inhibitor of CLK2, as a potent activator of YAP-driven transcriptional activity in cells. CLK2 inhibition promotes alternative splicing of the Hippo pathway protein AMOTL2, producing an exon-skipped gene product that can no longer associate with membrane-bound proteins, resulting in decreased phosphorylation and membrane localization of YAP. This study reveals a novel mechanism by which pharmacological perturbation of alternative splicing inactivates the Hippo pathway and promotes YAP-dependent cellular growth.
Collapse
Affiliation(s)
- Maya L Bulos
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Edyta M Grzelak
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Chloris Li-Ma
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Emily Chen
- Calibr, A Division of Scripps ResearchLa JollaUnited States
| | - Mitchell Hull
- Calibr, A Division of Scripps ResearchLa JollaUnited States
| | | | - Michael J Bollong
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
41
|
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 2023; 24:895-911. [PMID: 37626124 DOI: 10.1038/s41580-023-00644-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/27/2023]
Abstract
Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
42
|
Xiao Y, Chen Y, Chen J, Dong J. ASPP2 Is Phosphorylated by CDK1 during Mitosis and Required for Pancreatic Cancer Cell Proliferation. Cancers (Basel) 2023; 15:5424. [PMID: 38001686 PMCID: PMC10670399 DOI: 10.3390/cancers15225424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: pancreatic cancer is highly lethal. The role of apoptosis-stimulating protein of p53-2 (ASPP2) in this lethal disease remains unclear. This protein belongs to the ASPP family of p53 interacting proteins. Previous studies in this lab used phosphate-binding tag (Phos-tag) sodium dodecyl sulfate (SDS) polyacrylamide gels and identified a motility upshift of the ASPP family of proteins during mitosis. (2) Purpose: this study expands on previous findings to identify the detailed phosphorylation regulation of ASPP2 during mitosis, as well as the function of ASPP2 in pancreatic cancer. (3) Methods: the Phos-tag technique was used to investigate the phosphorylation mechanism of ASPP2 during mitosis. Phospho-specific antibodies were generated to validate the phosphorylation of ASPP2, and ASPP2-inducible expression cell lines were established to determine the role of ASPP2 in pancreatic cancer. RNA sequencing (RNA-Seq) was used to uncover the downstream targets of ASPP2. (4) Results: results demonstrate that ASPP2 is phosphorylated during mitosis by cyclin-dependent kinase 1 (CDK1) at sites S562 and S704. In vitro and in vivo results show that ASPP2 is required for pancreatic cancer growth. Furthermore, the expressions of yes-associated protein (YAP)-related genes are found to be dramatically altered by ASPP2 depletion. Together, these findings reveal the phosphorylation mechanism of ASPP2 during mitosis. Collectively, results strongly indicate that ASPP2 is a potential target for abating tumor cell growth in pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.X.); (Y.C.); (J.C.)
| |
Collapse
|
43
|
Kim MK, Han SH, Park TG, Song SH, Lee JY, Lee YS, Yoo SY, Chi XZ, Kim EG, Jang JW, Lim DS, van Wijnen AJ, Lee JW, Bae SC. The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1. Mol Cells 2023; 46:592-610. [PMID: 37706312 PMCID: PMC10590711 DOI: 10.14348/molcells.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023] Open
Abstract
The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Hyun Han
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Tae-Geun Park
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Soo-Hyun Song
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Ja-Youl Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - You-Soub Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Seo-Yeong Yoo
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Xin-Zi Chi
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Eung-Gook Kim
- Department of Biochemistry, College of Medicine and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Ju-Won Jang
- Department of Biomedical Science, Cheongju University, Cheongju 28503, Korea
| | - Dae Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Jung-Won Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Suk-Chul Bae
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
44
|
Ramey-Ward A, Dong Y, Yang J, Ogasawara H, Bremer-Sai EC, Brazhkina O, Franck C, Davis M, Salaita K. Optomechanically Actuated Hydrogel Platform for Cell Stimulation with Spatial and Temporal Resolution. ACS Biomater Sci Eng 2023; 9:5361-5375. [PMID: 37604774 PMCID: PMC10498418 DOI: 10.1021/acsbiomaterials.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Cells exist in the body in mechanically dynamic environments, yet the vast majority of in vitro cell culture is conducted on static materials such as plastic dishes and gels. To address this limitation, we report an approach to transition widely used hydrogels into mechanically active substrates by doping optomechanical actuator (OMA) nanoparticles within the polymer matrix. OMAs are composed of gold nanorods surrounded by a thermoresponsive polymer shell that rapidly collapses upon near-infrared (NIR) illumination. As a proof of concept, we crosslinked OMAs into laminin-gelatin hydrogels, generating up to 5 μm deformations triggered by NIR pulsing. This response was tunable by NIR intensity and OMA density within the gel and is generalizable to other hydrogel materials. Hydrogel mechanical stimulation enhanced myogenesis in C2C12 myoblasts as evidenced by ERK signaling, myocyte fusion, and sarcomeric myosin expression. We also demonstrate rescued differentiation in a chronic inflammation model as a result of mechanical stimulation. This work establishes OMA-actuated biomaterials as a powerful tool for in vitro mechanical manipulation with broad applications in the field of mechanobiology.
Collapse
Affiliation(s)
- Allison
N. Ramey-Ward
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jin Yang
- Department
of Mechanical Engineering, University of
Wisconsin − Madison, Madison, Wisconsin 53706, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth C. Bremer-Sai
- Department
of Mechanical Engineering, University of
Wisconsin − Madison, Madison, Wisconsin 53706, United States
| | - Olga Brazhkina
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
| | - Christian Franck
- Department
of Mechanical Engineering, University of
Wisconsin − Madison, Madison, Wisconsin 53706, United States
| | - Michael Davis
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
45
|
Bulos ML, Grzelak EM, Li-Ma C, Chen E, Hull M, Johnson KA, Bollong MJ. Pharmacological inhibition of CLK2 activates YAP by promoting alternative splicing of AMOTL2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537449. [PMID: 37131806 PMCID: PMC10153145 DOI: 10.1101/2023.04.19.537449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Yes-associated protein (YAP), the downstream effector of the evolutionarily conserved Hippo pathway, promotes cellular proliferation and coordinates certain regenerative responses in mammals. Small molecule activators of YAP may therefore display therapeutic utility in treating disease states involving insufficient proliferative repair. From a high-throughput chemical screen of the comprehensive drug repurposing library ReFRAME, here we report the identification of SM04690, a clinical stage inhibitor of CLK2, as a potent activator of YAP driven transcriptional activity in cells. CLK2 inhibition promotes alternative splicing of the Hippo pathway protein AMOTL2, producing an exon-skipped gene product that can no longer associate with membrane-bound proteins, resulting in decreased phosphorylation and membrane localization of YAP. This study reveals a novel mechanism by which pharmacological perturbation of alternative splicing inactivates the Hippo pathway and promotes YAP dependent cellular growth.
Collapse
Affiliation(s)
- Maya L. Bulos
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Edyta M. Grzelak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chloris Li-Ma
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Emily Chen
- Calibr, A Division of Scripps Research, La Jolla, CA, 92037, USA
| | - Mitchell Hull
- Calibr, A Division of Scripps Research, La Jolla, CA, 92037, USA
| | | | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
46
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
47
|
Leong NL, Greskovich K, Blommer J, Jiang J. CCN1 expression is regulated by mechanical stimuli in tendons. Biochem Biophys Res Commun 2023; 663:25-31. [PMID: 37116394 DOI: 10.1016/j.bbrc.2023.04.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Tendon overuse injuries are common, but the processes that govern tendon response to mechanical load are not fully understood. A series of experiments of in vitro and in vivo experiments was devised to study to the relationship between mechanical stimuli and the matricellular protein Cellular Communication Network Factor 1 (CCN1) in tenocytes and tendons. First, human and murine tenocytes were subjected to cyclic uniaxial loading in order to evaluate changes in CCN1 gene expression as a response to mechanical stimuli. Then, baseline Ccn1 gene expression in different murine tendons (Achilles, patellar, forearm, and tail) was examined. Finally, changes in Ccn1 expression after in vivo unloading experiments were examined. It was found that CCN1 expression significantly increased in both human and murine tenocytes at 5 and 10% cyclical uniaxial strain, while 2.5% strain did not have any effect on CCN1 expression. At baseline, the Achilles, patellar, and forearm tendons had higher expression levels of Ccn1 as compared to tail tendons. Twenty-four hours of immobilization of the hind-limb resulted in a significant decrease in Ccn1 expression in both the Achilles and patellar tendons. In summary, CCN1 expression is up-regulated in tenocytes subjected to mechanical load and down-regulated by loss of mechanical load in tendons. These results show that CCN1 expression in tendons is at least partially regulated by mechanical stimuli.
Collapse
Affiliation(s)
- Natalie L Leong
- Baltimore VA Medical Center, United States; University of Maryland School of Medicine, Department of Orthopaedic Surgery, United States.
| | - Kathryn Greskovich
- Baltimore VA Medical Center, United States; University of Maryland School of Medicine, Department of Orthopaedic Surgery, United States
| | - Joseph Blommer
- University of Maryland School of Medicine, Department of Orthopaedic Surgery, United States
| | - Jie Jiang
- University of Maryland School of Medicine, Department of Orthopaedic Surgery, United States
| |
Collapse
|
48
|
Marshall AR, Galea GL, Copp AJ, Greene NDE. The surface ectoderm exhibits spatially heterogenous tension that correlates with YAP localisation during spinal neural tube closure in mouse embryos. Cells Dev 2023; 174:203840. [PMID: 37068590 PMCID: PMC10618430 DOI: 10.1016/j.cdev.2023.203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
The single cell layer of surface ectoderm (SE) which overlies the closing neural tube (NT) plays a crucial biomechanical role during mammalian NT closure (NTC), challenging previous assumptions that it is only passive to the force-generating neuroepithelium (NE). Failure of NTC leads to congenital malformations known as NT defects (NTDs), including spina bifida (SB) and anencephaly in the spine and brain respectively. In several mouse NTD models, SB is caused by misexpression of SE-specific genes and is associated with disrupted SE mechanics, including loss of rostrocaudal cell elongation believed to be important for successful closure. In this study, we asked how SE mechanics affect NT morphology, and whether the characteristic rostrocaudal cell elongation at the progressing closure site is a response to tension anisotropy in the SE. We show that blocking SE-specific E-cadherin in ex utero mouse embryo culture influences NT morphology, as well as the F-actin cable. Cell border ablation shows that cell shape is not due to tension anisotropy, but that there are regional differences in SE tension. We also find that YAP nuclear translocation reflects regional tension heterogeneity, and that its expression is sensitive to pharmacological reduction of tension. In conclusion, our results confirm that the SE is a biomechanically important tissue for spinal NT morphogenesis and suggest a possible role of spatial regulation of cellular tension which could regulate downstream gene expression via mechanically-sensitive YAP activity.
Collapse
Affiliation(s)
- Abigail R Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK.
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| |
Collapse
|
49
|
Jebeli M, Lopez SK, Goldblatt ZE, McCollum D, Mana-Capelli S, Wen Q, Billiar K. Multicellular aligned bands disrupt global collective cell behavior. Acta Biomater 2023; 163:117-130. [PMID: 36306982 PMCID: PMC10334361 DOI: 10.1016/j.actbio.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Abstract
Mechanical stress patterns emerging from collective cell behavior have been shown to play critical roles in morphogenesis, tissue repair, and cancer metastasis. In our previous work, we constrained valvular interstitial cell (VIC) monolayers on circular protein islands to study emergent behavior in a controlled manner and demonstrated that the general patterns of cell alignment, size, and apoptosis correlate with predicted mechanical stress fields if radially increasing stiffness or contractility are used in the computational models. However, these radially symmetric models did not predict the existence of local regions of dense aligned cells observed in seemingly random locations of individual aggregates. The goal of this study is to determine how the heterogeneities in cell behavior emerge over time and diverge from the predicted collective cell behavior. Cell-cell interactions in circular multicellular aggregates of VICs were studied with time-lapse imaging ranging from hours to days, and migration, proliferation, and traction stresses were measured. Our results indicate that elongated cells create strong local alignment within preconfluent cell populations on the microcontact printed protein islands. These cells influence the alignment of additional cells to create dense, locally aligned bands of cells which disrupt the predicted global behavior. Cells are highly elongated at the endpoints of the bands yet have decreased spread area in the middle and reduced mobility. Although traction stresses at the endpoints of bands are enhanced, even to the point of detaching aggregates from the culture surface, the cells in dense bands exhibit reduced proliferation, less nuclear YAP, and increased apoptotic rates indicating a low stress environment. These findings suggest that strong local cell-cell interactions between primary fibroblastic cells can disrupt the global collective cellular behavior leading to substantial heterogeneity of cell behaviors in constrained monolayers. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues. STATEMENT OF SIGNIFICANCE: Mechanical stress patterns emerging from collective cell behavior play critical roles in morphogenesis, tissue repair, and cancer metastasis. Much has been learned of these collective behaviors by utilizing microcontact printing to constrain cell monolayers (aggregates) into specific shapes. Here we utilize these tools along with long-term video microscopy tracking of individual aggregates to determine how heterogeneous collective behaviors unique to primary fibroblastic cells emerge over time and diverge from computed stress fields. We find that dense multicellular bands form from local collective behavior and disrupt the global collective behavior resulting in heterogeneous patterns of migration, traction stresses, proliferation, and apoptosis. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues.
Collapse
Affiliation(s)
- Mahvash Jebeli
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Samantha K Lopez
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Zachary E Goldblatt
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Dannel McCollum
- University of Massachusetts Medical School, Worcester MA, USA
| | | | - Qi Wen
- Physics Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Kristen Billiar
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA.
| |
Collapse
|
50
|
Chaqour B. CCN-Hippo YAP signaling in vision and its role in neuronal, glial and vascular cell function and behavior. J Cell Commun Signal 2023:10.1007/s12079-023-00759-6. [PMID: 37191840 DOI: 10.1007/s12079-023-00759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The retina is a highly specialized tissue composed of a network of neurons, glia, and vascular and epithelial cells; all working together to coordinate and transduce visual signals to the brain. The retinal extracellular matrix (ECM) shapes the structural environment in the retina but also supplies resident cells with proper chemical and mechanical signals to regulate cell function and behavior and maintain tissue homeostasis. As such, the ECM affects virtually all aspects of retina development, function and pathology. ECM-derived regulatory cues influence intracellular signaling and cell function. Reversibly, changes in intracellular signaling programs result in alteration of the ECM and downstream ECM-mediated signaling network. Our functional studies in vitro, genetic studies in mice, and multi omics analyses have provided evidence that a subset of ECM proteins referred to as cellular communication network (CCN) affects several aspects of retinal neuronal and vascular development and function. Retinal progenitor, glia and vascular cells are major sources of CCN proteins particularly CCN1 and CCN2. We found that expression of the CCN1 and CCN2 genes is dependent on the activity of YAP, the core component of the hippo-YAP signaling pathway. Central to the Hippo pathway is a conserved cascade of inhibitory kinases that regulate the activity of YAP, the final transducer of this pathway. Reversibly, YAP expression and/or activity is dependent on CCN1 and CCN2 downstream signaling, which creates a positive or negative feedforward loop driving developmental processes (e.g., neurogenesis, gliogenesis, angiogenesis, barriergenesis) and, when dysregulated, disease progression in a range of retinal neurovascular disorders. Here we describe mechanistic hints involving the CCN-Hippo-YAP regulatory axis in retina development and function. This regulatory pathway represents an opportunity for targeted therapies in neurovascular and neurodegenerative diseases. The CCN-YAP regulatory loop in development and pathology.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA, USA.
| |
Collapse
|