1
|
Li Z, Wen X, Lu S, Zheng Y, Zhao P, Mu S, Wang X, Shi Y, Qu F, Chang H. Ice-pop making inspired photothermal ultra-swelling microneedles to facilitate loading and intradermal vaccination of tumor antigen. J Control Release 2025; 379:77-88. [PMID: 39756684 DOI: 10.1016/j.jconrel.2024.12.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Cancer vaccines hold great promise in the fight against cancer. Here, we report an ice-pop making inspired photothermal ultra-swelling microneedle (PUSMN) patch for facilitating and enhancing cancer vaccination. The PUSMN patch consist of an array of microneedles made from photo-crosslinked methacrylated hyaluronic acid and polydopamine, a near-infrared photothermal conversion material, connected to a customized resin handle like an ice-pop stick. Using a fabrication process similar to ice-pop making, the PUSMNs exhibit a rapid swelling ratio of over 2000 %, enabling straightforward and efficient loading of tumor antigen with just a 1-min incubation in the antigen solution, followed by 15 min of drying. The handle not only ensures convenient application but also guarantees full embedding of the PUSMNs in the skin after penetration. Under near-infrared irradiation, PUSMNs efficiently generate local heat, further promoting the activation and maturation of dendritic cells. In vivo vaccination with the model antigen ovalbumin using PUSMNs combined with near-infrared irradiation elicits robust tumor antigen-specific cellular and humoral immune responses, ultimately resulting in delayed tumor growth. Given its ease of use, efficiency, and safety features, this biocompatible PUSMN patch could greatly improve cancer vaccination.
Collapse
Affiliation(s)
- Zhiming Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xueyu Wen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shaojie Lu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanting Zheng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Sijia Mu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanan Shi
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Fengli Qu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
2
|
Tey PY, Dufner A, Knobeloch KP, Pruneda JN, Clague MJ, Urbé S. Rapid turnover of CTLA4 is associated with a complex architecture of reversible ubiquitylation. J Cell Biol 2025; 224:e202312141. [PMID: 39404738 PMCID: PMC11486831 DOI: 10.1083/jcb.202312141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/14/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The immune checkpoint regulator CTLA4 is an unusually short-lived membrane protein. Here, we show that its lysosomal degradation is dependent on ubiquitylation at lysine residues 203 and 213. Inhibition of the v-ATPase partially restores CTLA4 levels following cycloheximide treatment, but also reveals a fraction that is secreted in exosomes. The endosomal deubiquitylase, USP8, interacts with CTLA4, and its loss enhances CTLA4 ubiquitylation in cancer cells, mouse CD4+ T cells, and cancer cell-derived exosomes. Depletion of the USP8 adapter protein, HD-PTP, but not ESCRT-0 recapitulates this cellular phenotype but shows distinct properties vis-à-vis exosome incorporation. Re-expression of wild-type USP8, but neither a catalytically inactive nor a localization-compromised ΔMIT domain mutant can rescue delayed degradation of CTLA4 or counteract its accumulation in clustered endosomes. UbiCRest analysis of CTLA4-associated ubiquitin chain linkages identifies a complex mixture of conventional Lys63- and more unusual Lys27- and Lys29-linked polyubiquitin chains that may underly the rapidity of protein turnover.
Collapse
Affiliation(s)
- Pei Yee Tey
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Almut Dufner
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, USA
| | - Michael J. Clague
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sylvie Urbé
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Tey PY, Dufner A, Knobeloch KP, Pruneda JN, Clague MJ, Urbé S. Rapid turnover of CTLA4 is associated with a complex architecture of reversible ubiquitylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573735. [PMID: 38260548 PMCID: PMC10802369 DOI: 10.1101/2023.12.31.573735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The immune checkpoint regulator CTLA4 is an unusually short-lived membrane protein. Here we show that its lysosomal degradation is dependent on ubiquitylation at Lysine residues 203 and 213. Inhibition of the v-ATPase partially restores CTLA4 levels following cycloheximide treatment, but also reveals a fraction that is secreted in exosomes. The endosomal deubiquitylase, USP8, interacts with CTLA4 and its loss enhances CTLA4 ubiquitylation in cancer cells, mouse CD4+ T cells and in cancer cell-derived exosomes. Depletion of the USP8 adapter protein, HD-PTP, but not ESCRT-0 recapitulates this cellular phenotype, but shows distinct properties vis-à-vis exosome incorporation. Re-expression of wild-type USP8, but neither a catalytically inactive, nor a localization-compromised ΔMIT domain mutant can rescue delayed degradation of CTLA4, or counteract its accumulation in clustered endosomes. UbiCRest analysis of CTLA4-associated ubiquitin chain linkages identifies a complex mixture of conventional Lys63- and more unusual Lys27- and Lys29-linked polyubiquitin chains that may underly the rapidity of protein turnover.
Collapse
Affiliation(s)
- Pei Yee Tey
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool, L69 3BX, UK
| | - Almut Dufner
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael J. Clague
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool, L69 3BX, UK
| | - Sylvie Urbé
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool, L69 3BX, UK
| |
Collapse
|
4
|
Kozono Y, Kuramochi M, Sasaki YC, Kozono H. Ubiquitination of Major Histocompatibility Complex II Changes Its Immunological Recognition Structure. Int J Mol Sci 2023; 24:17083. [PMID: 38069406 PMCID: PMC10707457 DOI: 10.3390/ijms242317083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Ubiquitination is a process that dictates the lifespan of major histocompatibility complex class II (MHC II)/peptide complexes on antigen-presenting cells. This process is tightly controlled by the levels of ubiquitin ligases, and disruptions in the turnover of MHC II can lead to the improper development of CD4+ T cells within the thymus and hinder the formation of regulatory T cells in the peripheral tissue. To investigate the underlying mechanisms, we utilized dendritic cells lacking the Membrane-associated RING-CH (MARCH) I ubiquitin ligase. We discovered that the overexpression of MARCH I decreases the interaction with LAG-3. Moreover, the MHC II molecules tethered with ubiquitin also showed diminished binding to LAG-3. We employed Diffracted X-ray Blinking (DXB), a technique used for single-molecule X-ray imaging, to observe the protein movements on live cells in real time. Our observations indicated that the normal MHC II molecules moved more rapidly across the cell surface compared to those on the MARCH I-deficient dendritic cells or MHC II KR mutants, which is likely a result of ubiquitination. These findings suggest that the signaling from ubiquitinated MHC II to the T cell receptor differs from the non-ubiquitinated forms. It appears that ubiquitinated MHC II might not be quickly internalized, but rather presents antigens to the T cells, leading to a range of significant immunological responses.
Collapse
Affiliation(s)
- Yuko Kozono
- Research Institute for Biomedical Sciences, Tokyo University of Sciences, Noda 278-0022, Chiba, Japan;
| | - Masahiro Kuramochi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-0033, Ibaraki, Japan;
| | - Yuji C. Sasaki
- Department of Advanced Material Science, Graduate School for Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Chiba, Japan;
- AIST-U Tokyo Advanced Operando Measurement Technology Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Kashiwa 277-0882, Chiba, Japan
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo 679-5198, Hyogo, Japan
| | - Haruo Kozono
- Research Institute for Biomedical Sciences, Tokyo University of Sciences, Noda 278-0022, Chiba, Japan;
| |
Collapse
|
5
|
Yang J, Rong SJ, Zhou HF, Yang C, Sun F, Li JY. Lysosomal control of dendritic cell function. J Leukoc Biol 2023; 114:518-531. [PMID: 37774493 DOI: 10.1093/jleuko/qiad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Lysosomal compartments undergo extensive remodeling during dendritic cell (DC) activation to meet the dynamic functional requirements of DCs. Instead of being regarded as stationary and digestive organelles, recent studies have increasingly appreciated the versatile roles of lysosomes in regulating key aspects of DC biology. Lysosomes actively control DC motility by linking calcium efflux to the actomyosin contraction, while enhanced DC lysosomal membrane permeability contributes to the inflammasome activation. Besides, lysosomes provide a platform for the transduction of innate immune signaling and the intricate host-pathogen interplay. Lysosomes and lysosome-associated structures are also critically engaged in antigen presentation and cross-presentation processes, which are pivotal for the induction of antigen-specific adaptive immune response. Through the current review, we emphasize that lysosome targeting strategies serve as vital DC-based immunotherapies in fighting against tumor, infectious diseases, and autoinflammatory disorders.
Collapse
Affiliation(s)
- Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Jiefang Avenue No.1095, 430000, Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| | - Chao Yang
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Ling Jiaohu Road No.11, 430000, Wuhan, China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Jiefang Avenue No.1095, 430000, Wuhan, China
| | - Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| |
Collapse
|
6
|
Platzer R, Hellmeier J, Göhring J, Perez ID, Schatzlmaier P, Bodner C, Focke‐Tejkl M, Schütz GJ, Sevcsik E, Stockinger H, Brameshuber M, Huppa JB. Monomeric agonist peptide/MHCII complexes activate T-cells in an autonomous fashion. EMBO Rep 2023; 24:e57842. [PMID: 37768718 PMCID: PMC10626418 DOI: 10.15252/embr.202357842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.
Collapse
Affiliation(s)
- René Platzer
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Joschka Hellmeier
- TU Wien, Institute of Applied PhysicsViennaAustria
- Present address:
Max Planck Institute of Biochemistry, Molecular Imaging and BionanotechnologyMartinsriedGermany
| | - Janett Göhring
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Iago Doel Perez
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
- Present address:
Takeda Manufacturing Austria AGViennaAustria
| | - Philipp Schatzlmaier
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Clara Bodner
- TU Wien, Institute of Applied PhysicsViennaAustria
| | - Margarete Focke‐Tejkl
- Center for Pathophysiology, Infectiology, Immunology, Institute for Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
| | | | - Eva Sevcsik
- TU Wien, Institute of Applied PhysicsViennaAustria
| | - Hannes Stockinger
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | | | - Johannes B Huppa
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
7
|
Lintao RCV, Kammala AK, Radnaa E, Bettayeb M, Vincent KL, Patrikeev I, Yaklic J, Bonney EA, Menon R. Characterization of fetal microchimeric immune cells in mouse maternal hearts during physiologic and pathologic pregnancies. Front Cell Dev Biol 2023; 11:1256945. [PMID: 37808080 PMCID: PMC10556483 DOI: 10.3389/fcell.2023.1256945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: During pregnancy, fetal cells can be incorporated into maternal tissues (fetal microchimerism), where they can persist postpartum. Whether these fetal cells are beneficial or detrimental to maternal health is unknown. This study aimed to characterize fetal microchimeric immune cells in the maternal heart during pregnancy and postpartum, and to identify differences in these fetal microchimeric subpopulations between normal and pregnancies complicated by spontaneous preterm induced by ascending infection. Methods: A Cre reporter mouse model, which when mated with wild-type C57BL/6J females resulted in cells and tissues of progeny expressing red fluorescent protein tandem dimer Tomato (mT+), was used to detect fetal microchimeric cells. On embryonic day (E)15, 104 colony-forming units (CFU) E. coli was administered intravaginally to mimic ascending infection, with delivery on or before E18.5 considered as preterm delivery. A subset of pregnant mice was sacrificed at E16 and postpartum day 28 to harvest maternal hearts. Heart tissues were processed for immunofluorescence microscopy and high-dimensional mass cytometry by time-of-flight (CyTOF) using an antibody panel of immune cell markers. Changes in cardiac physiologic parameters were measured up to 60 days postpartum via two-dimensional echocardiography. Results: Intravaginal E. coli administration resulted in preterm delivery of live pups in 70% of the cases. mT + expressing cells were detected in maternal uterus and heart, implying that fetal cells can migrate to different maternal compartments. During ascending infection, more fetal antigen-presenting cells (APCs) and less fetal hematopoietic stem cells (HSCs) and fetal double-positive (DP) thymocytes were observed in maternal hearts at E16 compared to normal pregnancy. These HSCs were cleared while DP thymocytes persisted 28 days postpartum following an ascending infection. No significant changes in cardiac physiologic parameters were observed postpartum except a trend in lowering the ejection fraction rate in preterm delivered mothers. Conclusion: Both normal pregnancy and ascending infection revealed distinct compositions of fetal microchimeric immune cells within the maternal heart, which could potentially influence the maternal cardiac microenvironment via (1) modulation of cardiac reverse modeling processes by fetal stem cells, and (2) differential responses to recognition of fetal APCs by maternal T cells.
Collapse
Affiliation(s)
- Ryan C. V. Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mohamed Bettayeb
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kathleen L. Vincent
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Igor Patrikeev
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Jerome Yaklic
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
8
|
Mulherkar TH, Gómez DJ, Sandel G, Jain P. Co-Infection and Cancer: Host–Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses. Viruses 2022; 14:v14092037. [PMID: 36146843 PMCID: PMC9503663 DOI: 10.3390/v14092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) function as a link between innate and adaptive immune responses. Retroviruses HIV-1 and HTLV-1 modulate DCs to their advantage and utilize them to propagate infection. Coinfection of HTLV-1 and HIV-1 has implications for cancer malignancies. Both viruses initially infect DCs and propagate the infection to CD4+ T cells through cell-to-cell transmission using mechanisms including the formation of virologic synapses, viral biofilms, and conduits. These retroviruses are both neurotrophic with neurovirulence determinants. The neuropathogenesis of HIV-1 and HTLV-1 results in neurodegenerative diseases such as HIV-associated neurocognitive disorders (HAND) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Infected DCs are known to traffic to the brain (CNS) and periphery (PNS, lymphatics) to induce neurodegeneration in HAND and HAM/TSP patients. Elevated levels of neuroinflammation have been correlated with cognitive decline and impairment of motor control performance. Current vaccinations and therapeutics for HIV-1 and HTLV-1 are assessed and can be applied to patients with HIV-1-associated cancers and adult T cell leukemia/lymphoma (ATL). These diseases caused by co-infections can result in both neurodegeneration and cancer. There are associations with cancer malignancies and HIV-1 and HTLV-1 as well as other human oncogenic viruses (EBV, HBV, HCV, HDV, and HPV). This review contains current knowledge on DC sensing of HIV-1 and HTLV-1 including DC-SIGN, Tat, Tax, and current viral therapies. An overview of DC interaction with oncogenic viruses including EBV, Hepatitis viruses, and HPV is also provided. Vaccines and therapeutics targeting host–pathogen interactions can provide a solution to co-infections, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Tania H. Mulherkar
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Daniel Joseph Gómez
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Department of Biological Sciences, California State University, 25800 Carlos Bee Blvd, Hayward, CA 94542, USA
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Correspondence:
| |
Collapse
|
9
|
Li Y, Ma X, Yue Y, Zhang K, Cheng K, Feng Q, Ma N, Liang J, Zhang T, Zhang L, Chen Z, Wang X, Ren L, Zhao X, Nie G. Rapid Surface Display of mRNA Antigens by Bacteria-Derived Outer Membrane Vesicles for a Personalized Tumor Vaccine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109984. [PMID: 35315546 DOI: 10.1002/adma.202109984] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Therapeutic mRNA vaccination is an attractive approach to trigger antitumor immunity. However, the mRNA delivery technology for customized tumor vaccine is still limited. In this work, bacteria-derived outer membrane vesicles (OMVs) are employed as an mRNA delivery platform by genetically engineering with surface decoration of RNA binding protein, L7Ae, and lysosomal escape protein, listeriolysin O (OMV-LL). OMV-LL can rapidly adsorb box C/D sequence-labelled mRNA antigens through L7Ae binding (OMV-LL-mRNA) and deliver them into dendritic cells (DCs), following by the cross-presentation via listeriolysin O-mediated endosomal escape. OMV-LL-mRNA significantly inhibits melanoma progression and elicits 37.5% complete regression in a colon cancer model. OMV-LL-mRNA induces a long-term immune memory and protects the mice from tumor challenge after 60 days. In summary, this platform provides a delivery technology distinct from lipid nanoparticles (LNPs) for personalized mRNA tumor vaccination, and with a "Plug-and-Display" strategy that enables its versatile application in mRNA vaccines.
Collapse
Affiliation(s)
- Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yale Yue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kaiyue Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Tianjiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lizhuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zhiqiang Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Xiamen, Beijing, 100101, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Xiamen, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China
| |
Collapse
|
10
|
Tan Y, Huang J, Li Y, Li S, Luo M, Luo J, Lee AW, Fu L, Hu F, Guan X. Near-Infrared Responsive Membrane Nanovesicles Amplify Homologous Targeting Delivery of Anti-PD Immunotherapy against Metastatic Tumors. Adv Healthc Mater 2022; 11:e2101496. [PMID: 34878725 DOI: 10.1002/adhm.202101496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Indexed: 01/10/2023]
Abstract
The major obstacles of anti-PD therapy in metastatic tumors are limited drug delivery in primary tumors and metastatic foci, and the lack of tumor-infiltrating lymphocytes (TILs). Here, the authors constructed a novel cellular membrane nanovesicles platform (M/IR NPs) based on homologous targeting and near-infrared (NIR) responsive release strategy to potentiate PD-1/PD-L1 blockade therapy against metastatic tumors. In tumor-bearing mice, biomimetic M/IR NPs targeted both primary tumors and their lung metastases. Upon laser irradiation, M/IR NPs reduced cancer-associated fibroblasts (CAFs) in tumor microenvironment, thus increasing the penetration of TILs. When shed from homologous tumor cell membranes, positively charged nanoparticles (IR NPs) core can capture released tumor-associated antigens, thereby enhancing the antigen-presenting ability of DCs to activate cytotoxic T lymphocytes. When the photothermal conversion temperature under NIR-laser is higher than 42 °C, M/IR NPs initiated the rupture of cell membranes and the responsive release of PD-1/PD-L1 inhibitor BMS, which significantly attenuated tumor-associated immunosuppression and synergistically induced T cellular immunity to inhibit the tumor growth and metastasis. Overall, biomimetic M/IR NPs can improve the targeting and therapeutic efficacy of anti-PD therapy in primary tumors and metastases, opening up a new avenue for the diagnosis and treatment of metastatic tumors in the future.
Collapse
Affiliation(s)
- Ya‐Nan Tan
- Department of Clinical Oncology The University of Hong Kong‐Shenzhen Hospital Shenzhen 518053 China
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Jian‐Dong Huang
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- School of Biomedical Sciences The University of Hong Kong Hong Kong 00852 China
| | - Yong‐Peng Li
- Department of Urology The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group) Shenzhen 518000 China
| | - Shan‐Shan Li
- Department of Clinical Oncology The University of Hong Kong‐Shenzhen Hospital Shenzhen 518053 China
| | - Min Luo
- Department of Clinical Oncology The University of Hong Kong‐Shenzhen Hospital Shenzhen 518053 China
| | - Jie Luo
- Department of Clinical Oncology The University of Hong Kong Hong Kong 00852 China
| | - Anne Wing‐Mui Lee
- Department of Clinical Oncology The University of Hong Kong‐Shenzhen Hospital Shenzhen 518053 China
- Department of Clinical Oncology The University of Hong Kong Hong Kong 00852 China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases Department of Pharmacology and International Cancer Center Shenzhen University Health Science Center Shenzhen 518060 China
| | - Fu‐Qiang Hu
- College of Pharmaceutical Science Zhejiang University Hangzhou 310058 China
| | - Xin‐Yuan Guan
- Department of Clinical Oncology The University of Hong Kong‐Shenzhen Hospital Shenzhen 518053 China
- Department of Clinical Oncology The University of Hong Kong Hong Kong 00852 China
| |
Collapse
|
11
|
Tan YN, Li YP, Huang JD, Luo M, Li SS, Lee AWM, Hu FQ, Guan XY. Thermal-sensitive lipid nanoparticles potentiate anti-PD therapy through enhancing drug penetration and T lymphocytes infiltration in metastatic tumor. Cancer Lett 2021; 522:238-254. [PMID: 34571084 DOI: 10.1016/j.canlet.2021.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
The response rate of anti-PD therapy in most cancer patients remains low. Therapeutic drug and tumor-infiltrating lymphocytes (TILs) are usually obstructed by the stromal region within tumor microenvironment (TME) rather than distributed around tumor cells, thus unable to induce the immune response of cytotoxic T cells. Here, we constructed the cationic thermosensitive lipid nanoparticles IR780/DPPC/BMS by introducing cationic NIR photosensitizer IR-780 iodide (IR780) modified lipid components, thermosensitive lipid DPPC and PD-1/PD-L1 inhibitor BMS202 (BMS). Upon laser irradiation, IR780/DPPC/BMS penetrated into deep tumor, and reduced cancer-associated fibroblasts (CAFs) around tumor cells to remodel the spatial distribution of TILs in TME. Interestingly, the cationic IR780/DPPC/BMS could capture released tumor-associated antigens (TAAs), thereby enhancing the antigen-presenting ability of DCs to activate cytotoxic T lymphocytes. Moreover, IR780/DPPC/BMS initiated gel-liquid crystal phase transition under laser irradiation, accelerating the disintegration of lipid bilayer structure and leading to the responsive release of BMS, which would reverse the tumor immunosuppression state by blocking PD-1/PD-L1 pathway for a long term. This combination treatment can synergistically exert the antitumor immune response and inhibit the tumor growth and metastasis.
Collapse
Affiliation(s)
- Ya-Nan Tan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yong-Peng Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, China
| | - Jian-Dong Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Min Luo
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Shan-Shan Li
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 00852, China
| | - Fu-Qiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 00852, China.
| |
Collapse
|
12
|
Johnson-Weaver BT, Choi HW, Yang H, Granek JA, Chan C, Abraham SN, Staats HF. Nasal Immunization With Small Molecule Mast Cell Activators Enhance Immunity to Co-Administered Subunit Immunogens. Front Immunol 2021; 12:730346. [PMID: 34566991 PMCID: PMC8461742 DOI: 10.3389/fimmu.2021.730346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.
Collapse
Affiliation(s)
| | - Hae Woong Choi
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
| | - Hang Yang
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Josh A. Granek
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Cliburn Chan
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Soman N. Abraham
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Herman F. Staats
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Helou DG, Mauras A, Fasquelle F, Lanza JS, Loiseau PM, Betbeder D, Cojean S. Intranasal vaccine from whole Leishmania donovani antigens provides protection and induces specific immune response against visceral leishmaniasis. PLoS Negl Trop Dis 2021; 15:e0009627. [PMID: 34403413 PMCID: PMC8370633 DOI: 10.1371/journal.pntd.0009627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
Visceral leishmaniasis is a protozoan disease associated with high fatality rate in developing countries. Although the drug pipeline is constantly improving, available treatments are costly and live-threatening side effects are not uncommon. Moreover, an approved vaccine against human leishmaniasis does not exist yet. Using whole antigens from Leishmania donovani promastigotes (LdAg), we investigated the protective potential of a novel adjuvant-free vaccine strategy. Immunization of mice with LdAg via the intradermal or the intranasal route prior to infection decreases the parasitic burden in primary affected internal organs, including the liver, spleen, and bone marrow. Interestingly, the intranasal route is more efficient than the intradermal route, leading to better parasite clearance and remarkable induction of adaptive immune cells, notably the helper and cytotoxic T cells. In vitro restimulation experiments with Leishmania antigens led to significant IFN-γ secretion by splenocytes; therefore, exemplifying specificity of the adaptive immune response. To improve mucosal delivery and the immunogenic aspects of our vaccine strategy, we used polysaccharide-based nanoparticles (NP) that carry the antigens. The NP-LdAg formulation is remarkably taken up by dendritic cells and induces their maturation in vitro, as revealed by the increased expression of CD80, CD86 and MHC II. Intranasal immunization with NP-LdAg does not improve the parasite clearance in our experimental timeline; however, it does increase the percentage of effector and memory T helper cells in the spleen, suggesting a potential induction of long-term memory. Altogether, this study provides a simple and cost-effective vaccine strategy against visceral leishmaniasis based on LdAg administration via the intranasal route, which could be applicable to other parasitic diseases. Visceral leishmaniasis is a neglected tropical disease caused by specific species of Leishmania parasites that affect internal organs including spleen, liver, and bone marrow. The infective stage called promastigote, is transmitted into the host skin via sandfly bites. Visceral leishmaniasis is usually associated with high mortality rate in poor and developing countries, lacking proper health assistance. Moreover, treatments are expensive while no approved vaccines exist to prevent infection and avoid disease outbreaks. This study suggests an affordable and adjuvant-free vaccine formulation made from the total lysate of promastigotes. Vaccine administration via the intranasal route, ensures a remarkable clearance of Leishmania parasites from the internal organs of infected experimental mice. In particular, intranasal route known to be not invasive, is efficient in inducing adequate immune response against the infective form of the parasite. Further studies are now required to improve this prophylactic vaccine and provide therefore the basis for a promising translational approach.
Collapse
MESH Headings
- Adaptive Immunity
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/blood
- Antigens, Protozoan/immunology
- Bone Marrow/metabolism
- Bone Marrow/parasitology
- Female
- Immunization
- Interferon-gamma/metabolism
- Leishmania donovani/immunology
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Liver/metabolism
- Liver/parasitology
- Mice
- Mice, Inbred BALB C
- Spleen/metabolism
- Spleen/parasitology
Collapse
Affiliation(s)
- Doumet Georges Helou
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
- * E-mail: (DGH); (SC)
| | - Aurélie Mauras
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
| | | | | | | | | | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
- * E-mail: (DGH); (SC)
| |
Collapse
|
14
|
Rijvers L, Melief MJ, van Langelaar J, van der Vuurst de Vries RM, Wierenga-Wolf AF, Koetzier SC, Priatel JJ, Jorritsma T, van Ham SM, Hintzen RQ, van Luijn MM. The Role of Autoimmunity-Related Gene CLEC16A in the B Cell Receptor-Mediated HLA Class II Pathway. THE JOURNAL OF IMMUNOLOGY 2020; 205:945-956. [PMID: 32641384 DOI: 10.4049/jimmunol.1901409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
C-type lectin CLEC16A is located next to CIITA, the master transcription factor of HLA class II (HLA-II), at a susceptibility locus for several autoimmune diseases, including multiple sclerosis (MS). We previously found that CLEC16A promotes the biogenesis of HLA-II peptide-loading compartments (MIICs) in myeloid cells. Given the emerging role of B cells as APCs in these diseases, in this study, we addressed whether and how CLEC16A is involved in the BCR-dependent HLA-II pathway. CLEC16A was coexpressed with surface class II-associated invariant chain peptides (CLIP) in human EBV-positive and not EBV-negative B cell lines. Stable knockdown of CLEC16A in EBV-positive Raji B cells resulted in an upregulation of surface HLA-DR and CD74 (invariant chain), whereas CLIP was slightly but significantly reduced. In addition, IgM-mediated Salmonella uptake was decreased, and MIICs were less clustered in CLEC16A-silenced Raji cells, implying that CLEC16A controls both HLA-DR/CD74 and BCR/Ag processing in MIICs. In primary B cells, CLEC16A was only induced under CLIP-stimulating conditions in vitro and was predominantly expressed in CLIPhigh naive populations. Finally, CLIP-loaded HLA-DR molecules were abnormally enriched, and coregulation with CLEC16A was abolished in blood B cells of patients who rapidly develop MS. These findings demonstrate that CLEC16A participates in the BCR-dependent HLA-II pathway in human B cells and that this regulation is impaired during MS disease onset. The abundance of CLIP already on naive B cells of MS patients may point to a chronically induced stage and a new mechanism underlying B cell-mediated autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Liza Rijvers
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Marie-José Melief
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Jamie van Langelaar
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Roos M van der Vuurst de Vries
- MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Steven C Koetzier
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - John J Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Rogier Q Hintzen
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Marvin M van Luijn
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands; .,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
15
|
Alix E, Godlee C, Cerny O, Blundell S, Tocci R, Matthews S, Liu M, Pruneda JN, Swatek KN, Komander D, Sleap T, Holden DW. The Tumour Suppressor TMEM127 Is a Nedd4-Family E3 Ligase Adaptor Required by Salmonella SteD to Ubiquitinate and Degrade MHC Class II Molecules. Cell Host Microbe 2020; 28:54-68.e7. [PMID: 32526160 PMCID: PMC7342019 DOI: 10.1016/j.chom.2020.04.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/13/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
The Salmonella enterica effector SteD depletes mature MHC class II (mMHCII) molecules from the surface of infected antigen-presenting cells through ubiquitination of the cytoplasmic tail of the mMHCII β chain. Here, through a genome-wide mutant screen of human antigen-presenting cells, we show that the NEDD4 family HECT E3 ubiquitin ligase WWP2 and a tumor-suppressing transmembrane protein of unknown biochemical function, TMEM127, are required for SteD-dependent ubiquitination of mMHCII. Although evidently not involved in normal regulation of mMHCII, TMEM127 was essential for SteD to suppress both mMHCII antigen presentation in mouse dendritic cells and MHCII-dependent CD4+ T cell activation. We found that TMEM127 contains a canonical PPxY motif, which was required for binding to WWP2. SteD bound to TMEM127 and enabled TMEM127 to interact with and induce ubiquitination of mature MHCII. Furthermore, SteD also underwent TMEM127- and WWP2-dependent ubiquitination, which both contributed to its degradation and augmented its activity on mMHCII.
Collapse
Affiliation(s)
- Eric Alix
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Camilla Godlee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Ondrej Cerny
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Samkeliso Blundell
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Romina Tocci
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Sophie Matthews
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Mei Liu
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Jonathan N Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Kirby N Swatek
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royale Parade, 3052 Parkville, Melbourne, Australia
| | - David Komander
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Tabitha Sleap
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.
| |
Collapse
|
16
|
DeKuiper JL, Cooperider HE, Lubben N, Ancel CM, Coussens PM. Mycobacterium avium Subspecies paratuberculosis Drives an Innate Th17-Like T Cell Response Regardless of the Presence of Antigen-Presenting Cells. Front Vet Sci 2020; 7:108. [PMID: 32258066 PMCID: PMC7089878 DOI: 10.3389/fvets.2020.00108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
The gastrointestinal disease of ruminants is clinically known as Johne's disease (JD) and is caused by Mycobacterium avium subspecies paratuberculosis (MAP). An accumulative effect by insensitive diagnostic tools, a long subclinical stage of infection, and lack of effective vaccines have made the control of JD difficult. Currently lacking in the model systems of JD are undefined correlates of protection and the sources of inflammation due to JD. As an alternative to commonly studied immune responses, such as the Th1/Th2 paradigm, a non-classical Th17 immune response to MAP has been suggested. Indeed MAP antigens induce mRNAs encoding the Th17-associated cytokines IL-17A, IL-17F, IL-22, IL-23, IL-27, and IFNγ in CD3+ T cell cultures as determined by RT-qPCR. Although not as robust as when cultured with monocyte-derived macrophages (MDMs), MAP is able to stimulate the upregulation of these cytokines from sorted CD3+ T cells in the absence of antigen-presenting cells (APCs). CD4+ and CD8+ T cells are the main contributors of IL-17A and IL-22 in the absence of APCs. However, MAP-stimulated MDMs are the main contributor of IL-23. In vivo, JD+ cows have more circulating IL-23 than JD– cows, suggesting that this proinflammatory cytokine may be important in the etiology of JD. Our data in this study continue to suggest that Th17-like cells and associated cytokines may indeed play an important role in the immune responses to MAP infection and the development or control of JD.
Collapse
Affiliation(s)
- Justin L DeKuiper
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Hannah E Cooperider
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Noah Lubben
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Caitlin M Ancel
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Paul M Coussens
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
17
|
Abstract
Ubiquitination is a reversible process that controls the intracellular transport of many transmembrane molecules. Ubiquitination of MHC I, MHC II, and CD1a by different members of the MARCH family of E3 ubiquitin ligases is a key event in the regulation of the potent immunostimulatory properties of activated dendritic cells. We describe here methods to monitor and quantify the ubiquitination levels of these different antigen presentation molecules and its impact on their cell surface accumulation.
Collapse
|
18
|
Regulation of Cancer Immune Checkpoint: Mono- and Poly-Ubiquitination: Tags for Fate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:295-324. [PMID: 32185716 DOI: 10.1007/978-981-15-3266-5_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The antagonism, stalemate and compromise between the immune system and tumor cells is closely associated with tumor development and progression. In recent years, tumor immunotherapy has made continuous breakthroughs. It has become an important approach for cancer treatment, improving the survival and prognosis of more and more tumor patients. Further investigating the mechanism of tumor immune regulation, and exploring tumor immunotherapy targets with high specificity and wide applicability will provide researchers and clinicians with favorable weapons towards cancer. Ubiquitination affects protein fate through influencing the activity, stability and location of target protein. The regulation of substrate protein fate by ubiquitination is involved in cell cycle, apoptosis, transcriptional regulation, DNA repair, immune response, protein degradation and quality control. E3 ubiquitin ligase selectively recruits specific protein substrates through specific protein-protein interactions to determine the specificity of the overall ubiquitin modification reaction. Immune-checkpoint inhibitory pathway is an important mechanism for tumor cells to evade immune killing, which can inhibit T cell activity. Blocking the immune checkpoints and activating T cells through targeting the negative regulatory factors of T cell activation and removing the "brake" of T lymphocytes can enhance T cells immune response against tumors. Therefore, blocking the immune checkpoint is one of the methods to enhance the activity of T cells, and it is also a hot target for the development of anti-tumor drugs in recent years, whose inhibitors have shown good effect in specific tumor treatment. Ubiquitination, as one of the most important posttranslational modification of proteins, also modulates the expression, intracellular trafficking, subcellular and membranous location of immune checkpoints, regulating the immune surveillance of T cells to tumors.
Collapse
|
19
|
Synergy between B cell receptor/antigen uptake and MHCII peptide editing relies on HLA-DO tuning. Sci Rep 2019; 9:13877. [PMID: 31554902 PMCID: PMC6761166 DOI: 10.1038/s41598-019-50455-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
B cell receptors and surface-displayed peptide/MHCII complexes constitute two key components of the B-cell machinery to sense signals and communicate with other cell types during antigen-triggered activation. However, critical pathways synergizing antigen-BCR interaction and antigenic peptide-MHCII presentation remain elusive. Here, we report the discovery of factors involved in establishing such synergy. We applied a single-cell measure coupled with super-resolution microscopy to investigate the integrated function of two lysosomal regulators for peptide loading, HLA-DM and HLA-DO. In model cell lines and human tonsillar B cells, we found that tunable DM/DO stoichiometry governs DMfree activity for exchange of placeholder CLIP peptides with high affinity MHCII ligands. Compared to their naïve counterparts, memory B cells with less DMfree concentrate a higher proportion of CLIP/MHCII in lysosomal compartments. Upon activation mediated by high affinity BCR, DO tuning is synchronized with antigen internalization and rapidly potentiates DMfree activity to optimize antigen presentation for T-cell recruitment.
Collapse
|
20
|
Kordon AO, Abdelhamed H, Ahmed H, Baumgartner W, Karsi A, Pinchuk LM. Assessment of the Live Attenuated and Wild-Type Edwardsiella ictaluri-Induced Immune Gene Expression and Langerhans-Like Cell Profiles in the Immune-Related Organs of Catfish. Front Immunol 2019; 10:392. [PMID: 30894864 PMCID: PMC6414466 DOI: 10.3389/fimmu.2019.00392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/14/2019] [Indexed: 01/18/2023] Open
Abstract
Edwardsiella ictaluri is a Gram-negative intracellular pathogen that causes enteric septicemia of catfish (ESC). Successful vaccination against intracellular pathogens requires T cell priming by antigen presenting cells (APCs) that bridge innate and adaptive immunity. However, the evidence on immunological mechanisms that underscore E. ictaluri pathogenesis and the protective role of live attenuated vaccines (LAVs) is scarce. We assessed the expression of immune genes related to antigen presentation by real-time PCR and the distribution patterns of Langerhans-like (L/CD207+) cells by immunohistochemistry in the immune-related tissues of channel catfish challenged with two novel E. ictaluri LAVs, EiΔevpB, and ESC-NDKL1 and wild type (WT) strain. Our results indicated significantly elevated expression of IFN-γ gene in the anterior kidney (AK) and spleen of vaccinated catfish at the early stages of exposure, which correlated with increased numbers of L/CD207+ cells. In general, the ESC-NDKL1-induced IFN-γ gene expression patterns in the AK resembled that of the patterns induced by EiΔevpB. However the MHCII gene expression patterns differed between the strains with significant increases at 6 h post-challenge (pc) with the EiΔevpB and at 7 d pc with the ESC-NDKL1 strains, respectively. Significant increases in activity of T helper type polarization genes such as IFN-γ and T cell co-receptors after exposure to ESC-NDKL1, in combination with elevated numbers of L/CD207+ cells at 7 d pc with both LAVs compared to uninfected and the WT-exposed counterparts, were documented in the spleen. The dominant pro-inflammatory environment with dramatically overexpressed inflammatory genes in the AK and 7 d pc in the spleen in response to E. ictaluri was found in exposed catfish. In general, the pro-inflammatory gene expression profiles in the ESC-NDKL1 pc showed more similarities to the WT strain-induced gene profiles compared to the EiΔevpB counterpart. In addition, E. ictaluri WT significantly decreased the numbers of Langerhans-like L/CD207+ cells in the AK and spleen at 3 and 7 days pc. In conclusion, we report the differential framework of initiation of innate and adaptive immune responses between E. ictaluri strains with both LAVs having a potential of satisfying the stringent requirements for successful vaccines.
Collapse
Affiliation(s)
- Adef O Kordon
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Hamada Ahmed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States.,Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Wes Baumgartner
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Lesya M Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
21
|
Thibodeau J, Moulefera MA, Balthazard R. On the structure–function of MHC class II molecules and how single amino acid polymorphisms could alter intracellular trafficking. Hum Immunol 2019; 80:15-31. [DOI: 10.1016/j.humimm.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/01/2022]
|
22
|
Persky DO, Li H, Rimsza LM, Barr PM, Popplewell LL, Bane CL, Von Gehr A, LeBlanc M, Fisher RI, Smith SM, Friedberg JW. A phase I/II trial of vorinostat (SAHA) in combination with rituximab-CHOP in patients with newly diagnosed advanced stage diffuse large B-cell lymphoma (DLBCL): SWOG S0806. Am J Hematol 2018; 93:486-493. [PMID: 29266344 DOI: 10.1002/ajh.25010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/07/2017] [Accepted: 12/17/2017] [Indexed: 02/06/2023]
Abstract
Loss of major histocompatibility Class II expression (MHCII) in diffuse large B-cell lymphoma (DLBCL) correlates with decreased survival. MHCII transcription is in part regulated by histone acetylation. We tested the hypothesis that combination of histone deacetylase inhibitor (HDACI) with standard chemotherapy would improve outcomes in DLBCL in part through increased MHCII expression. S0806 was a single arm phase I/II trial of vorinostat given at 400 mg po daily on days 1-9 (subsequently amended to days 1-5 due to toxicity), combined with R-CHOP given on day 3 of a 21-day cycle for 8 cycles, with primary phase II endpoint of 2-year progression free survival (PFS). With 72 evaluable patients, at median follow up of 3 years, 2-year PFS estimate was 73%, and OS estimate was 86%. Considering that the regimen fell short of predefined efficacy improvement and was associated with high rates of febrile neutropenia (38%) and sepsis (19%), it cannot be recommended for general use. Consistent with our hypothesis, patients with low MCHII expression on S0806 had numerically superior outcomes compared to those from trial S0433 which did not use an HDACI, but the difference was not statistically significant. Current studies are focused on finding biomarkers of response to HDACI.
Collapse
Affiliation(s)
| | - Hongli Li
- SWOG Statistical Center; Seattle Washington
| | | | | | | | | | - Ann Von Gehr
- Kaiser Permanente NCORP/Kaiser Permanente San Jose; San Jose California
| | | | - Richard I. Fisher
- Fox Chase Cancer Center/Temple University School of Medicine; Philadelphia Pennsylvania
| | | | | |
Collapse
|
23
|
Harton JA. Class II MHC cytoplasmic domain-mediated signaling in B cells: A tail of two signals. Hum Immunol 2018; 80:32-36. [PMID: 30056069 DOI: 10.1016/j.humimm.2018.07.232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/09/2018] [Accepted: 07/25/2018] [Indexed: 01/25/2023]
Abstract
In addition to their role in antigen presentation, class II MHC molecules also transmit signals to B lymphocytes. Class II MHC-mediated signals initiate a range of events in B cells, including induction of cell surface proteins, initiation of cell-cycle progression/proliferation, activation of or protection from apoptosis, and antigen-dependent plasma cell differentiation. Although various transmembrane signaling proteins associate with class II MHC molecules, the class II MHC cytoplasmic domains are essential for signals leading to increased intracellular cAMP and activation of protein kinase C (PKC). Although truncation and mutagenesis studies have provided considerable information about the cytoplasmic domain sequences required, how class II MHC molecules elicit cAMP and PKC activation is not known. Further, appropriate T-dependent B cell responses require intact cAMP and PKC signaling, but the extent to which class II MHC signals are involved is also unknown. This review details our current knowledge of class II MHC cytoplasmic domain signaling in B cells with an emphasis on the likely importance of class II MHC signals for T-dependent antibody responses.
Collapse
Affiliation(s)
- Jonathan A Harton
- Department of Immunology & Microbial Disease, Albany Medical College, 47 New Scotland Avenue, MC-151, Albany, NY 12208, USA.
| |
Collapse
|
24
|
Katikaneni DS, Jin L. B cell MHC class II signaling: A story of life and death. Hum Immunol 2018; 80:37-43. [PMID: 29715484 DOI: 10.1016/j.humimm.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/08/2018] [Accepted: 04/25/2018] [Indexed: 01/17/2023]
Abstract
MHC class II regulates B cell activation, proliferation, and differentiation during cognate B cell-T cell interaction. This is, in part, due to the MHC class II signaling in B cells. Activation of MHC Class II in human B cells or "primed" murine B cells leads to tyrosine phosphorylation, calcium mobilization, AKT, ERK, JNK activation. In addition, crosslinking MHC class II with monoclonal Abs kill malignant human B cells. Several humanized anti-HLA-DR/MHC class II monoclonal Abs entered clinical trials for lymphoma/leukemia and MHC class II-expressing melanomas. Mechanistically, MHC class II is associated with a wealth of transmembrane proteins including the B cell-specific signaling proteins CD79a/b, CD19 and a group of four-transmembrane proteins including tetraspanins and the apoptotic protein MPYS/STING. Furthermore, MHC class II signals are compartmentalized in the tetraspanin-enriched microdomains. In this review, we discuss our current understanding of MHC class II signaling in B cells focusing on its physiological significance and the therapeutic potential.
Collapse
Affiliation(s)
- Divya Sai Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
25
|
Gogoi M, Ravikumar V, Dixit NM, Chakravortty D. Salmonella escapes antigen presentation through K63 ubiquitination mediated endosomal proteolysis of MHC II via modulation of endosomal acidification in dendritic cells. Pathog Dis 2018; 76:4775126. [PMID: 29293966 DOI: 10.1093/femspd/ftx125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/22/2017] [Indexed: 09/19/2023] Open
Abstract
CD4+ T-cell response is vital for successful clearance of Salmonella Typhimurium infection. Efficient antigen presentation is crucial for effective CD4+ T-cell response. Previous study has reported that Salmonella abrogates antigen presentation capacity of dendritic cells in order to escape host adaptive immune response. In this study, we have elucidated the mechanism of Salmonella-mediated downregulation of the total cellular Major Histocompatibility Complex (MHC) II pool in dendritic cells. Infected dendritic cells show upregulation of E3 ubiquitin ligase, MARCH1 expression and K63-linked ubiquitination of MHC II. Salmonella infection also enhances the internalisation of ubiquitin-tagged MHC II molecules that are subsequently degraded by endosomal proteases. In addition, Salmonella regulates the activation of endosomal proteases by lowering the pH of endosomes. In infected dendritic cells, Salmonella delays NOX2 recruitment to the phagosomes thereby preventing its alkalinisation. NOX2 is a significant part of innate immune response against pathogens as it is responsible for Reactive Oxygen Species (ROS) production. In this study, we have demonstrated how Salmonella evades MHC II-mediated adaptive immune response in dendritic cells through enhanced endosomal proteolysis. To escape host CD4+T response, Salmonella delays NOX2 recruitment, an innate immune response element to the phagosomes.
Collapse
Affiliation(s)
- Mayuri Gogoi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| | - Visweswaran Ravikumar
- Division of Biological Sciences, Indian Institute of Science, Bangalore-560012, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
26
|
Liu H, Jain R, Guan J, Vuong V, Ishido S, La Gruta NL, Gray DH, Villadangos JA, Mintern JD. Ubiquitin ligase MARCH 8 cooperates with CD83 to control surface MHC II expression in thymic epithelium and CD4 T cell selection. J Exp Med 2016; 213:1695-703. [PMID: 27503069 PMCID: PMC4995085 DOI: 10.1084/jem.20160312] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/28/2016] [Indexed: 11/09/2022] Open
Abstract
Major histocompatibility complex class II (MHC II) expression is tightly regulated, being subjected to cell type-specific mechanisms that closely control its levels at the cell surface. Ubiquitination by the E3 ubiquitin ligase MARCH 1 regulates MHC II expression in dendritic cells and B cells. In this study, we demonstrate that the related ligase MARCH 8 is responsible for regulating surface MHC II in thymic epithelial cells (TECs). March8(-/-) mice have elevated MHC II at the surface of cortical TECs and autoimmune regulator (AIRE)(-) medullary TECs (mTECs), but not AIRE(+) mTECs. Despite this, thymic and splenic CD4(+) T cell numbers and repertoires remained unaltered in March8(-/-) mice. Notably, the ubiquitination of MHC II by MARCH 8 is controlled by CD83. Mice expressing a mutated form of CD83 (Cd83(anu/anu) mice) have impaired CD4(+) T cell selection, but deleting March8 in Cd83(anu/anu) mice restored CD4(+) T cell selection to normal levels. Therefore, orchestrated regulation of MHC II surface expression in TECs by MARCH 8 and CD83 plays a major role in CD4(+) T cell selection. Our results also highlight the specialized use of ubiquitinating machinery in distinct antigen-presenting cell types, with important functional consequences and implications for therapeutic manipulation.
Collapse
Affiliation(s)
- Haiyin Liu
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Reema Jain
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Jing Guan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Vivian Vuong
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Satoshi Ishido
- Laboratory of Integrative Infection Immunity, Showa Pharmaceutical University, Machida, Tokyo 194-0042, Japan Department of Microbiology, Hyogo College of Medicine, Hyogo 663-8131, Japan
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel H Gray
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
27
|
Oh J, Shin JS. Molecular mechanism and cellular function of MHCII ubiquitination. Immunol Rev 2016; 266:134-44. [PMID: 26085212 DOI: 10.1111/imr.12303] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The major histocompatibility complex class II (MHCII) is ubiquitinated via the evolutionarily conserved lysine in the cytoplasmic tail of the β chain in dendritic cells (DCs) and B cells. The ubiquitination is mediated by the membrane-associated RING-CH1 (MARCH1) ubiquitin ligase although it can be also mediated by the homologous ligase MARCH8 in model cell lines. The ubiquitination promotes MHCII endocytosis and lysosomal sorting that results in a reduction in the level of MHCII at cell surface. Functionally, MHCII ubiquitination serves as a means by which DCs suppress MHCII expression and reduce antigen presentation in response to the immune regulatory cytokine interleukin-10 (IL-10) and regulatory T cells. Recently, additional roles of MHCII ubiquitination have emerged. MHCII ubiquitination promoted DC production of inflammatory cytokines in response to the Toll-like receptor ligands. It also potentiated DC ability to activate antigen-specific naive CD4(+) T cells while limiting the amount of antigens presented at cell surface. Similarly, MHCII ubiquitination promoted DC activation of CD4(+) thymocytes supporting regulatory T-cell development independent of its effect of limiting antigen presentation. Thus, ubiquitination appears to confer MHCII a function independent of presenting antigens by a mechanism yet to be identified.
Collapse
Affiliation(s)
- Jaehak Oh
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Bannard O, McGowan SJ, Ersching J, Ishido S, Victora GD, Shin JS, Cyster JG. Ubiquitin-mediated fluctuations in MHC class II facilitate efficient germinal center B cell responses. J Exp Med 2016; 213:993-1009. [PMID: 27162138 PMCID: PMC4886361 DOI: 10.1084/jem.20151682] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 04/04/2016] [Indexed: 01/21/2023] Open
Abstract
Antibody affinity maturation occurs in germinal centers (GCs) through iterative rounds of somatic hypermutation and selection. Selection involves B cells competing for T cell help based on the amount of antigen they capture and present on their MHC class II (MHCII) proteins. How GC B cells are able to rapidly and repeatedly transition between mutating their B cell receptor genes and then being selected shortly after is not known. We report that MHCII surface levels and degradation are dynamically regulated in GC B cells. Through ectopic expression of a photoconvertible MHCII-mKikGR chimeric gene, we found that individual GC B cells differed in the rates of MHCII protein turnover. Fluctuations in surface MHCII levels were dependent on ubiquitination and the E3 ligase March1. Increases in March1 expression in centroblasts correlated with decreases in surface MHCII levels, whereas CD83 expression in centrocytes helped to stabilize MHCII at that stage. Defects in MHCII ubiquitination caused GC B cells to accumulate greater amounts of a specific peptide-MHCII (pMHCII), suggesting that MHCII turnover facilitates the replacement of old complexes. We propose that pMHCII complexes are periodically targeted for degradation in centroblasts to favor the presentation of recently acquired antigens, thereby promoting the fidelity and efficiency of selection.
Collapse
Affiliation(s)
- Oliver Bannard
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, England, UK Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143 Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - Simon J McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, England, UK
| | - Jonatan Ersching
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Satoshi Ishido
- Laboratory of Integrative Infection Immunity, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - Jason G Cyster
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143 Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
29
|
Mettu RR, Charles T, Landry SJ. CD4+ T-cell epitope prediction using antigen processing constraints. J Immunol Methods 2016; 432:72-81. [PMID: 26891811 DOI: 10.1016/j.jim.2016.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/10/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes.
Collapse
Affiliation(s)
- Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, LA, USA; Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, LA, USA.
| | - Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| |
Collapse
|
30
|
Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells. Proc Natl Acad Sci U S A 2015; 112:10449-54. [PMID: 26240324 DOI: 10.1073/pnas.1507981112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.
Collapse
|
31
|
Hennies CM, Lehn MA, Janssen EM. Quantitating MHC class II trafficking in primary dendritic cells using imaging flow cytometry. J Immunol Methods 2015; 423:18-28. [PMID: 25967952 DOI: 10.1016/j.jim.2015.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 01/24/2023]
Abstract
Presentation of antigenic peptides in MHC class II (MHCII) on dendritic cells (DCs) is the first step in the activation of antigen-specific CD4(+)T cells. The expression of surface MHCII-peptide complexes is tightly regulated as the frequency of MHCII-peptide complexes can affect the magnitude, as well as the phenotype of the ensuing CD4(+)T cell response. The surface MHCII-peptide levels are determined by the balance between expression of newly generated complexes, complex internalization, and their subsequent re-emergence or degradation. However, the molecular mechanisms that underpin these processes are still poorly understood. Here we describe a multispectral imaging flow cytometry assay to visualize MHCII trafficking that can be used as a tool to dissect the molecular mechanisms that regulate MHCII homeostasis in primary mouse and human DCs.
Collapse
Affiliation(s)
- Cassandra M Hennies
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maria A Lehn
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
32
|
van de Weijer ML, Luteijn RD, Wiertz EJHJ. Viral immune evasion: Lessons in MHC class I antigen presentation. Semin Immunol 2015; 27:125-37. [PMID: 25887630 DOI: 10.1016/j.smim.2015.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022]
Abstract
The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.
Collapse
Affiliation(s)
| | - Rutger D Luteijn
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
33
|
The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 2015; 15:203-16. [PMID: 25720354 DOI: 10.1038/nri3818] [Citation(s) in RCA: 730] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antigenic peptide-loaded MHC class II molecules (peptide-MHC class II) are constitutively expressed on the surface of professional antigen-presenting cells (APCs), including dendritic cells, B cells, macrophages and thymic epithelial cells, and are presented to antigen-specific CD4(+) T cells. The mechanisms of antigen uptake, the nature of the antigen processing compartments and the lifetime of cell surface peptide-MHC class II complexes can vary depending on the type of APC. It is likely that these differences are important for the function of each distinct APC subset in the generation of effective adaptive immune responses. In this Review, we describe our current knowledge of the mechanisms of uptake and processing of antigens, the intracellular formation of peptide-MHC class II complexes, the intracellular trafficking of peptide-MHC class II complexes to the APC plasma membrane and their ultimate degradation.
Collapse
|
34
|
Otomo T, Schweizer M, Kollmann K, Schumacher V, Muschol N, Tolosa E, Mittrücker HW, Braulke T. Mannose 6 phosphorylation of lysosomal enzymes controls B cell functions. J Cell Biol 2015; 208:171-80. [PMID: 25601403 PMCID: PMC4298682 DOI: 10.1083/jcb.201407077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/08/2014] [Indexed: 01/25/2023] Open
Abstract
Antigen processing and presentation and cytotoxic targeting depend on the activities of several lysosomal enzymes that require mannose 6-phosphate (M6P) sorting signals for efficient intracellular transport and localization. In this paper, we show that mice deficient in the formation of M6P residues exhibit significant loss of cathepsin proteases in B cells, leading to lysosomal dysfunction with accumulation of storage material, impaired antigen processing and presentation, and subsequent defects in B cell maturation and antibody production. The targeting of lysosomal and granular enzymes lacking M6P residues is less affected in dendritic cells and T cells and sufficient for maintenance of degradative and lytic functions. M6P deficiency also impairs serum immunoglobulin levels and antibody responses to vaccination in patients. Our data demonstrate the critical role of M6P-dependent transport routes for B cell functions in vivo and humoral immunity in mice and human.
Collapse
Affiliation(s)
- Takanobu Otomo
- Department of Biochemistry, Children's Hospital; Department of Electron Microscopy, Center for Molecular Neurobiology; and Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany Department of Pediatrics, Osaka University Graduate School of Medicine, 5650871 Suita, Osaka, Japan
| | - Michaela Schweizer
- Department of Biochemistry, Children's Hospital; Department of Electron Microscopy, Center for Molecular Neurobiology; and Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Katrin Kollmann
- Department of Biochemistry, Children's Hospital; Department of Electron Microscopy, Center for Molecular Neurobiology; and Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Valéa Schumacher
- Department of Biochemistry, Children's Hospital; Department of Electron Microscopy, Center for Molecular Neurobiology; and Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicole Muschol
- Department of Biochemistry, Children's Hospital; Department of Electron Microscopy, Center for Molecular Neurobiology; and Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eva Tolosa
- Department of Biochemistry, Children's Hospital; Department of Electron Microscopy, Center for Molecular Neurobiology; and Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Biochemistry, Children's Hospital; Department of Electron Microscopy, Center for Molecular Neurobiology; and Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital; Department of Electron Microscopy, Center for Molecular Neurobiology; and Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
35
|
Abstract
Signal peptide (SP) domains have a common motif but also sequence specific features. This knowledge was mainly ignored by immunologists who considered SP as generic, short-lived, targeting sequences. Consequently, while SP-derived MHC class I, class II and HLA-E epitopes have been isolated, their use as antigen-specific vaccine candidates (VCs) was mostly neglected. Recently we demonstrated the rational of selecting entire SP domains as multi-epitope long peptide VCs based on their high T and B-cell epitope densities. This review summarizes preclinical and clinical results demonstrating the various advantages of human SP domain VCs derived from both bacterial and tumor antigens. Such vaccine design provides for a straightforward, yet unique immunotherapeutic means of generating robust, non-toxic, diversified, combined antigen-specific CD4+/CD8+ T/B-cell immunity, irrespective of patient HLA repertoire also in disease associated transporter-associated with antigen processing (TAP) deficiencies. Subsequent clinical trials will further assess the full potential of this approach.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- AE, adverse events
- APC, antigen presenting cells
- DC, dendritic cells
- ER, endoplasmic reticulum
- ImMucin
- LP, long peptide
- MHC
- MHC, major histocompatibility complex
- MM, multiple myeloma
- MUC1
- PBMC, peripheral blood mononuclear cells
- SP, signal peptide
- SPP, signal peptide peptidase
- SPase, signal peptidase
- T-cell
- TAA, tumor associated antigen
- TAP, transporter-associated with antigen processing
- VC, vaccine candidate
- antibodies
- cancer
- hGM-CSF, human granulocyte-macrophage colony-stimulating factor
- long peptide
- signal peptide
- tuberculosis
- vaccine
Collapse
|
36
|
A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 1-theoretical model. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e133. [PMID: 25184733 PMCID: PMC4211265 DOI: 10.1038/psp.2014.30] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/19/2014] [Indexed: 12/26/2022]
Abstract
A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins was formulated by recapitulating key biological mechanisms, including antigen presentation, activation, proliferation, and differentiation of immune cells, secretion of antidrug antibodies (ADA), as well as in vivo disposition of ADA and therapeutic proteins. This system-level model contains three scales: a subcellular level representing antigen presentation processes by dendritic cells; a cellular level accounting for cell kinetics during humoral immune response; and a whole-body level accounting for therapeutic protein in vivo disposition. The model simulations for in vivo responses against antigenic protein challenge are consistent with many known immunological observations. By simulating immune responses under various initial parameter conditions, the model suggests hypotheses for future experimental investigation and contributes to the mechanistic understanding of immunogenicity. With future experimental validation, this model may potentially provide a platform to generate and test hypotheses about immunogenicity risk assessment and ultimately aid in immunogenicity prediction.
Collapse
|
37
|
Kovjazin R, Carmon L. The use of signal peptide domains as vaccine candidates. Hum Vaccin Immunother 2014. [DOI: 10.4161/hv.29549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Valkevich E, Sanchez NA, Ge Y, Strieter ER. Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Biochemistry 2014; 53:4979-89. [PMID: 25023374 PMCID: PMC4372068 DOI: 10.1021/bi5006305] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/09/2014] [Indexed: 12/22/2022]
Abstract
Protein ubiquitylation, one of the most prevalent post-translational modifications in eukaryotes, is involved in regulating nearly every cellular signaling pathway. The vast functional range of ubiquitylation has largely been attributed to the formation of a diverse array of polymeric ubiquitin (polyUb) chains. Methods that enable the characterization of these diverse chains are necessary to fully understand how differences in structure relate to function. Here, we describe a method for the detection of enzymatically derived branched polyUb conjugates in which a single Ub subunit is modified by two Ub molecules at distinct lysine residues. Using a middle-down mass spectrometry approach in which restricted trypsin-mediated digestion is coupled with mass spectrometric analysis, we characterize the polyUb chains produced by bacterial effector E3 ligases NleL (non-Lee-encoded effector ligase from enterohemorrhagic Escherichia coli O157:H7) and IpaH9.8 (from Shigella flexneri). Because Ub is largely intact after minimal trypsinolysis, multiple modifications on a single Ub moiety can be detected. Analysis of NleL- and IpaH9.8-derived polyUb chains reveals branch points are present in approximately 10% of the overall chain population. When unanchored, well-defined polyUb chains are added to reaction mixtures containing NleL, longer chains are more likely to be modified internally, forming branch points rather than extending from the end of the chain. These results suggest that middle-down mass spectrometry can be used to assess the extent to which branched polyUb chains are formed by various enzymatic systems and potentially evaluate the presence of these atypical conjugates in cell and tissue extracts.
Collapse
Affiliation(s)
- Ellen
M. Valkevich
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicholas A. Sanchez
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin—Madison, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Eric R. Strieter
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
39
|
Liu J, He C, Zhou H, Xu Y, Zhang X, Yan J, Xie H, Cheng S. Effects of TLR4 on β2-glycoprotein I-induced bone marrow-derived dendritic cells maturation. Cell Immunol 2014; 290:226-32. [PMID: 25108557 DOI: 10.1016/j.cellimm.2014.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/16/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
Our previous study has demonstrated that Toll-like receptor 4 (TLR4) can contribute to anti-β2-glycoprotein I/β2-glycoprotein I (anti-β2GPI/β2GPI)-induced tissue factor (TF) expression in human acute monocytic leukemia cell line THP-1. However, the role of TLR4 in the activation of autoimmune response in antiphospholipid syndrome (APS) has rarely been reported. In this study, we focused on the role of TLR4 in β2GPI-induced maturation of bone marrow-derived dendritic cells (BMDCs). iDCs from C3H/HeN mice stimulated with β2GPI were more mature than that from C3H/HeJ mice, yields of CD11c(+)MHCII(+)DCs, CD11c(+)CD80(+)DCs and CD11c(+)CD86(+)DCs and production of some pro-inflammatory cytokines in iDCs from C3H/HeN were higher than those from C3H/HeJ (p<0.05). Moreover, the ability of β2GPI-treated iDCs from C3H/HeJ to stimulate proliferation of allogeneic mixed lymphocytes was lower than that of iDCs from C3H/HeN. In conclusion, our results indicate that TLR4 may play a significant role in β2-glycoprotein I-induced BMDCs maturation.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chao He
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hong Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Ya Xu
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaolei Zhang
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Hongxiang Xie
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Si Cheng
- Department of Clinical Laboratory and Hematology, School of Medical Science and Laboratory Medicine of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
40
|
Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 2014; 509:240-4. [PMID: 24695226 DOI: 10.1038/nature13133] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 02/06/2014] [Indexed: 12/24/2022]
Abstract
The detection of microbial pathogens involves the recognition of conserved microbial components by host cell sensors such as Toll-like receptors (TLRs) and NOD-like receptors (NLRs). TLRs are membrane receptors that survey the extracellular environment for microbial infections, whereas NLRs are cytosolic complexes that detect microbial products that reach the cytosol. Upon detection, both sensor classes trigger innate inflammatory responses and allow the engagement of adaptive immunity. Endo-lysosomes are the entry sites for a variety of pathogens, and therefore the sites at which the immune system first senses their presence. Pathogens internalized by endocytosis are well known to activate TLRs 3 and 7-9 that are localized to endocytic compartments and detect ligands present in the endosomal lumen. Internalized pathogens also activate sensors in the cytosol such as NOD1 and NOD2 (ref. 2), indicating that endosomes also provide for the translocation of bacterial components across the endosomal membrane. Despite the fact that NOD2 is well understood to have a key role in regulating innate immune responses and that mutations at the NOD2 locus are a common risk factor in inflammatory bowel disease and possibly other chronic inflammatory states, little is known about how its ligands escape from endosomes. Here we show that two endo-lysosomal peptide transporters, SLC15A3 and SLC15A4, are preferentially expressed by dendritic cells, especially after TLR stimulation. The transporters mediate the egress of bacterially derived components, such as the NOD2 cognate ligand muramyl dipeptide (MDP), and are selectively required for NOD2 responses to endosomally derived MDP. Enhanced expression of the transporters also generates endosomal membrane tubules characteristic of dendritic cells, which further enhanced the NOD2-dependent response to MDP. Finally, sensing required the recruitment of NOD2 and its effector kinase RIPK2 (refs 8, 9) to the endosomal membrane, possibly by forming a complex with SLC15A3 or SLC15A4. Thus, dendritic cell endosomes are specialized platforms for both the lumenal and cytosolic sensing of pathogens.
Collapse
|
41
|
ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 2013; 5:a016873. [PMID: 24296169 DOI: 10.1101/cshperspect.a016873] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the initiation of adaptive immune responses, dendritic cells present antigenic peptides in association with major histocompatibility complex class II (MHCII) to naïve CD4(+) T lymphocytes. In this review, we discuss how antigen presentation is regulated through intracellular processing and trafficking of MHCII. Newly synthesized MHCII is chaperoned by the invariant chain to endosomes, where peptides from endocytosed pathogens can bind. In nonactivated dendritic cells, peptide-loaded MHCII is ubiquitinated and consequently sorted by the ESCRT machinery to intraluminal vesicles of multivesicular bodies, ultimately leading to lysosomal degradation. Ubiquitination of newly synthesized MHCII is blocked when dendritic cells are activated, now allowing its transfer to the cell surface. This mode of regulation for MHCII is a prime example of how molecular processing and sorting at multivesicular bodies can determine the expression of signaling receptors at the plasma membrane.
Collapse
Affiliation(s)
- Toine ten Broeke
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | |
Collapse
|
42
|
De Riva A, Busch R. MHC Class II Protein Turnover In vivo and Its Relevance for Autoimmunity in Non-Obese Diabetic Mice. Front Immunol 2013; 4:399. [PMID: 24324466 PMCID: PMC3839011 DOI: 10.3389/fimmu.2013.00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/08/2013] [Indexed: 11/19/2022] Open
Abstract
Major histocompatibility complex class II (MHCII) proteins are loaded with endosomal peptides and reside at the surface of antigen-presenting cells (APCs) for a time before being degraded. In vitro, MHCII protein levels and turnover are affected by peptide loading and by rates of ubiquitin-dependent internalization from the cell surface, which is in turn affected by APC type and activation state. Prior work suggested that fast turnover of disease-associated MHCII alleles may contribute to autoimmunity. We recently developed novel stable isotope tracer techniques to test this hypothesis in vivo. In non-obese diabetic (NOD) mice, a model of type 1 diabetes (T1D), MHCII turnover was affected by APC type, but unaffected by disease-associated structural polymorphism. Differences in MHCII turnover were observed between NOD colonies with high and low T1D incidence, but fast turnover was dispensable for autoimmunity. Moreover, NOD mice with gene knockouts of peptide loading cofactors do not develop T1D. Thus, fast turnover does not appear pathogenic, and conventional antigen presentation is critical for autoimmunity in NOD mice. However, shared environmental factors may underpin colony differences in MHCII protein turnover, immune regulation, and pathogenesis.
Collapse
Affiliation(s)
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
43
|
Cho KJ, Roche PA. Regulation of MHC Class II-Peptide Complex Expression by Ubiquitination. Front Immunol 2013; 4:369. [PMID: 24312092 PMCID: PMC3826109 DOI: 10.3389/fimmu.2013.00369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023] Open
Abstract
MHC class II (MHC-II) molecules are present on antigen presenting cells (APCs) and these molecules function by binding antigenic peptides and presenting these peptides to antigen-specific CD4+ T cells. APCs continuously generate and degrade MHC-II molecules, and ubiquitination of MHC-II has recently been shown to be a key regulator of MHC-II expression in dendritic cells (DCs). In this mini-review we will examine the mechanism by which the E3 ubiquitin ligase March-I regulates MHC-II expression on APCs and will discuss the functional consequences of altering MHC-II ubiquitination.
Collapse
Affiliation(s)
- Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | | |
Collapse
|
44
|
Doyle HA, Yang ML, Raycroft MT, Gee RJ, Mamula MJ. Autoantigens: novel forms and presentation to the immune system. Autoimmunity 2013; 47:220-33. [PMID: 24191689 DOI: 10.3109/08916934.2013.850495] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is clear that lupus autoimmunity is marked by a variety of abnormalities, including those found at a macroscopic scale, cells and tissues, as well as more microenvironmental influences, originating at the individual cell surface through to the nucleus. The convergence of genetic, epigenetic, and perhaps environmental influences all lead to the overt clinical expression of disease, reflected by the presences of autoantibodies and tissue pathology. This review will address several specific areas that fall among the non-genetic factors that contribute to lupus autoimmunity and related syndromes. In particular, we will discuss the importance of understanding various protein post-translational modifications (PTMs), mechanisms that mediate the ability of "modified self" to trigger autoimmunity, and how these PTMs influence lupus diagnosis. Finally, we will discuss altered pathways of autoantigen presentation that may contribute to the perpetuation of chronic autoimmune disease.
Collapse
Affiliation(s)
- Hester A Doyle
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | | | | | | | | |
Collapse
|
45
|
|
46
|
De Riva A, Varley MC, Bluck LJ, Cooke A, Deery MJ, Busch R. Accelerated turnover of MHC class II molecules in nonobese diabetic mice is developmentally and environmentally regulated in vivo and dispensable for autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5961-71. [PMID: 23677470 PMCID: PMC3785126 DOI: 10.4049/jimmunol.1300551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The H2-A(g7) (A(g7)) MHC class II (MHCII) allele is required for type 1 diabetes (T1D) in NOD mice. A(g7) not only has a unique peptide-binding profile, it was reported to exhibit biochemical defects, including accelerated protein turnover. Such defects were proposed to impair Ag presentation and, thus, self-tolerance. Here, we report measurements of MHCII protein synthesis and turnover in vivo. NOD mice and BALB/c controls were labeled continuously with heavy water, and splenic B cells and dendritic cells were isolated. MHCII molecules were immunoprecipitated and digested with trypsin. Digests were analyzed by liquid chromatography/mass spectrometry to quantify the fraction of newly synthesized MHCII molecules and, thus, turnover. MHCII turnover was faster in dendritic cells than in B cells, varying slightly between mouse strains. Some A(g7) molecules exhibited accelerated turnover in B cells from young, but not older, prediabetic female NOD mice. This acceleration was not detected in a second NOD colony with a high incidence of T1D. Turnover rates of A(g7) and H2-A(d) were indistinguishable in (NOD × BALB/c) F1 mice. In conclusion, accelerated MHCII turnover may occur in NOD mice, but it reflects environmental and developmental regulation, rather than a structural deficit of the A(g7) allele. Moreover, this phenotype wanes before the onset of overt T1D and is dispensable for the development of autoimmune diabetes. Our observations highlight the importance of in vivo studies in understanding the role of protein turnover in genotype/phenotype relationships and offer a novel approach for addressing this fundamental research challenge.
Collapse
Affiliation(s)
| | - Mark C. Varley
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Leslie J. Bluck
- Elsie Widdowson Laboratories, Medical Research Council Human Nutrition Research, Fulbourn, Cambridge, UK
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Michael J. Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
47
|
Moffat JM, Mintern JD, Villadangos JA. Control of MHC II antigen presentation by ubiquitination. Curr Opin Immunol 2013. [DOI: 10.1016/j.coi.2012.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Abstract
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
Collapse
Affiliation(s)
- Gianna Elena Hammer
- Department of Medicine, University of California, San Francisco, California 94143
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, California 94143
| |
Collapse
|
49
|
Schneppenheim J, Dressel R, Hüttl S, Lüllmann-Rauch R, Engelke M, Dittmann K, Wienands J, Eskelinen EL, Hermans-Borgmeyer I, Fluhrer R, Saftig P, Schröder B. The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. ACTA ACUST UNITED AC 2012; 210:41-58. [PMID: 23267015 PMCID: PMC3549707 DOI: 10.1084/jem.20121069] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The intramembrane protease SPPL2a cleaves the NTF of invariant chain (CD74), which is essential for normal trafficking of MHC class II–containing endosomes and thus for B cell development and function. Regulated intramembrane proteolysis is a central cellular process involved in signal transduction and membrane protein turnover. The presenilin homologue signal-peptide-peptidase-like 2a (SPPL2a) has been implicated in the cleavage of type 2 transmembrane proteins. We show that the invariant chain (li, CD74) of the major histocompatability class II complex (MHCII) undergoes intramembrane proteolysis mediated by SPPL2a. B lymphocytes of SPPL2a−/− mice accumulate an N-terminal fragment (NTF) of CD74, which severely impairs membrane traffic within the endocytic system and leads to an altered response to B cell receptor stimulation, reduced BAFF-R surface expression, and accumulation of MHCII in transitional developmental stage T1 B cells. This results in significant loss of B cell subsets beyond the T1 stage and disrupted humoral immune responses, which can be recovered by additional ablation of CD74. Hence, we provide evidence that regulation of CD74-NTF levels by SPPL2a is indispensable for B cell development and function by maintaining trafficking and integrity of MHCII-containing endosomes, highlighting SPPL2a as a promising pharmacological target for depleting and/or modulating B cells.
Collapse
Affiliation(s)
- Janna Schneppenheim
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|