1
|
Du R, Yang Y, Yang Y, Zhang D, Xia R, Yu M, He G, Hong S, Yang S. A study of benthic habitat classification schemes in the northern equatorial Pacific based on a Gaussian mixture model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124638. [PMID: 39999755 DOI: 10.1016/j.jenvman.2025.124638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Due to the complexity and extreme environment of the deep sea, related research is limited by the level of detection technology, and the overall understanding of this topic is limited. At present, the increasing number of disturbances in the deep sea, such as those caused by deep-sea mining, necessitates the urgent formulation of scientifically informed deep-sea environmental management decisions. In response to this challenge, a data-driven, large-scale, and probability-based benthic habitat classification scheme is proposed for the northern equatorial Pacific. The dominant environmental factors were identified as topographic features (depth and slope), nutrients (particulate organic carbon flux entering the seabed and phosphate), and water mass properties (dissolved oxygen and pH), and the importance assessment indicated that nutrient played a dominant role, followed by water mass properties, with topographic features having a relatively minor influence. The multiple classification evaluation parameters determined 5 clusters of benthic habitats in the northern equatorial Pacific using the Gaussian mixture model (GMM). Furthermore, this paper provides the first discussion of ecotones at the edges of habitats and suggests that ecotones are more cost effective for environmental management. In conclusion, the benthic habitat classification scheme could provide a consistent unit for habitat mapping and representative assessment of marine protected area network design, as well as a scientific basis for the protection and management of the international seabed area.
Collapse
Affiliation(s)
- Ranran Du
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China
| | - Yong Yang
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China.
| | - Yikai Yang
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Dongsheng Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruixue Xia
- Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Miao Yu
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China.
| | - Gaowen He
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China; Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Shuang Hong
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China
| | - Shengxiong Yang
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China; Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
| |
Collapse
|
2
|
Yagi M, Anzai S, Tanaka S. Dive Deep: Bioenergetic Adaptation of Deep-Sea Animals. Zoolog Sci 2025; 42. [PMID: 39932754 DOI: 10.2108/zs240061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/07/2024] [Indexed: 05/08/2025]
Abstract
The deep sea, which encompasses the largest habitat on Earth, presents a set of extreme and unique environmental conditions, including high hydrostatic pressure, near-freezing temperatures, and perpetual darkness. These conditions pose significant challenges to the survival and energy management of its inhabitants. Deep-sea organisms have evolved a range of bioenergetic adaptations to negotiate these harsh conditions, ensuring efficient energy acquisition and utilization. This review examines the multifaceted strategies employed by deep-sea animals, focusing on three key areas: energy input, digestive and absorptive efficiency, and energy consumption. We examine the physical environment of the deep sea, highlighting vertical profiles of temperature, salinity, and dissolved oxygen, which contrast sharply with surface conditions. Physiological adaptations of deep-sea species, such as specialized digestive systems and enzyme modifications that function optimally under high pressure, are explored in detail. Furthermore, we discuss behavioral adaptations, including diurnal vertical migration, which optimize energy intake and reduce metabolic costs. Comparative analyses with shallow-water species provide insights into the evolutionary pressures that have shaped these adaptations. This review also addresses the concept of "power budgeting", in which energy expenditures for specific dynamic actions (SDAs) must be balanced with other metabolic demands. This comprehensive examination of bioenergetic adaptation in deep-sea organisms enhances our understanding of their resilience and adaptability, offering glimpses into the complex interplay between environmental constraints and biological processes in one of the most challenging habitats on the planet.
Collapse
Affiliation(s)
- Mitsuharu Yagi
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan,
| | - Sayano Anzai
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Shogo Tanaka
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
3
|
Tokumori D, Watanabe HK, Tanaka K, Ohara Y, Tomikawa KO. A new species of the genus Seba (Crustacea: Amphipoda: Sebidae) from a cold seep of Mariana Trench. Zootaxa 2025; 5570:361-370. [PMID: 40173749 DOI: 10.11646/zootaxa.5570.2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Indexed: 04/04/2025]
Abstract
A new species of sebid amphipod, Seba marianaensis sp. nov., is described from the Shinkai Seep Field, Mariana Trench, at a depth of 5689-5683 m. Seba marianaensis sp. nov. is most similar to Seba bathybia; however, it differs from S. bathybia by the setation of the mandibular palp and uropod 3 ramus and the shape of the gnathopod 1 coxa. This is the first record of Sebidae from the Mariana Trench.
Collapse
Affiliation(s)
- Daigo Tokumori
- Graduate School of Humanities and Social Sciences; Hiroshima University; Higashi-Hiroshima 739-8524; Japan.
| | - Hiromi Kayama Watanabe
- X-STAR; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); 2-15 Natsushima-cho; Yokosuka; Kanagawa 237- 0061; Japan.
| | - Katsuhiko Tanaka
- Department of Marine Biology; School of Marine Science and Technology; Tokai University; 3-20-1; Orido; Shimizu; Shizuoka; Shizuoka 424-8610; Japan.
| | - Yasuhiko Ohara
- Hydrographic and Oceanographic Department of Japan; 3-1-1 Kasumigaseki; Chiyoda-ku; Tokyo 100-8932; Japan; Research Institute for Marine Geodynamics (IMG); Japan Agency for Marine-Earth Science and Technology (JAMSTEC); 2-15 Natsushima-cho; Yokosuka; Kanagawa 237-0061; Japan; Nagoya University; Furo-cho; Chikusa-ku; Nagoya 464-8602; Japan.
| | - K O Tomikawa
- Graduate School of Humanities and Social Sciences; Hiroshima University; Higashi-Hiroshima 739-8524; Japan,.
| |
Collapse
|
4
|
Larson AG, Chajwa R, Li H, Prakash M. Inflation-induced motility for long-distance vertical migration. Curr Biol 2024; 34:5149-5163.e3. [PMID: 39423814 DOI: 10.1016/j.cub.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
The vertical migrations of pelagic organisms play a crucial role in shaping marine ecosystems and influencing global biogeochemical cycles. They also form the foundation of what might be the largest daily biomass movement on Earth. Surprisingly, among this diverse group of organisms, some single-cell protists can transit depths exceeding 50 m without employing flagella or cilia. How these non-motile cells perform large migrations remains unknown. It has been previously proposed that this capability might rely on the cell's ability to regulate its internal density relative to seawater. Here, using the dinoflagellate algae Pyrocystis noctiluca as a model system, we discover a rapid cell inflation event post cell division, during which a single plankton cell expands its volume 6-fold in less than 10 min. We demonstrate this rapid cellular inflation is the primary mechanism of density control. This self-regulated cellular inflation selectively imports fluid less dense than surrounding seawater and can thus effectively sling-shot a cell and reverse sedimentation within minutes. To accommodate its dramatic cellular expansion, Pyrocystis noctiluca possesses a unique reticulated cytoplasmic architecture that enables a rapid increase in overall cell volume without diluting its cytoplasmic content. We further present a generalized mathematical framework that unifies cell-cycle-driven density regulation, stratified ecology, and associated cell behavior in the open ocean. Our study unveils an ingenious strategy employed by a non-motile plankton to evade the gravitational sedimentation trap, highlighting how precise control of cell size and cell density can enable long-distance migration in the open ocean.
Collapse
Affiliation(s)
- Adam G Larson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rahul Chajwa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Hongquan Li
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Ocean, Stanford University, Stanford, CA 94305, USA; Woods Institute of the Environment, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Clerc C, Aumont O, Bopp L. Filter-feeding gelatinous macrozooplankton response to climate change and implications for benthic food supply and global carbon cycle. GLOBAL CHANGE BIOLOGY 2023; 29:6383-6398. [PMID: 37751177 DOI: 10.1111/gcb.16942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
It is often suggested that gelatinous zooplankton may benefit from anthropogenic pressures of all kinds and in particular from climate change. Large pelagic tunicates, for example, are likely to be favored over other types of macrozooplankton due to their filter-feeding mode, which gives them access to small preys thought to be less affected by climate change than larger preys. In this study, we provide model-based estimate of potential community changes in macrozooplankton composition and estimate for the first time their effects on benthic food supply and on the ocean carbon cycle under two 21st-century climate-change scenarios. Forced with output from an Earth System Model climate projections, our ocean biogeochemical model simulates a large reduction in macrozooplankton biomass in response to anthropogenic climate change, but shows that gelatinous macrozooplankton are less affected than nongelatinous macrozooplankton, with global biomass declines estimated at -2.8% and -3.5%, respectively, for every 1°C of warming. The inclusion of gelatinous macrozooplankon in our ocean biogeochemical model has a limited effect on anthropogenic carbon uptake in the 21st century, but impacts the projected decline in particulate organic matter fluxes in the deep ocean. In subtropical oligotrophic gyres, where gelatinous zooplankton dominate macrozooplankton, the decline in the amount of organic matter reaching the seafloor is reduced by a factor of 2 when gelatinous macrozooplankton are considered (-17.5% vs. -29.7% when gelatinous macrozooplankton are not considered, all for 2100 under RCP8.5). The shift to gelatinous macrozooplankton in the future ocean therefore buffers the decline in deep carbon fluxes and should be taken into account when assessing potential changes in deep carbon storage and the risks that deep ecosystems may face when confronted with a decline in their food source.
Collapse
Affiliation(s)
- Corentin Clerc
- LMD/IPSL, Ecole Normale Supérieure/Université PSL, CNRS, Ecole Polytechnique, Sorbonne Université, Paris, France
| | - Olivier Aumont
- LOCEAN/IPSL, IRD, CNRS, MNHN, Sorbonne Université, Paris, France
| | - Laurent Bopp
- LMD/IPSL, Ecole Normale Supérieure/Université PSL, CNRS, Ecole Polytechnique, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Simon-Lledó E, Amon DJ, Bribiesca-Contreras G, Cuvelier D, Durden JM, Ramalho SP, Uhlenkott K, Arbizu PM, Benoist N, Copley J, Dahlgren TG, Glover AG, Fleming B, Horton T, Ju SJ, Mejía-Saenz A, McQuaid K, Pape E, Park C, Smith CR, Jones DOB. Carbonate compensation depth drives abyssal biogeography in the northeast Pacific. Nat Ecol Evol 2023; 7:1388-1397. [PMID: 37488225 PMCID: PMC10482686 DOI: 10.1038/s41559-023-02122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023]
Abstract
Abyssal seafloor communities cover more than 60% of Earth's surface. Despite their great size, abyssal plains extend across modest environmental gradients compared to other marine ecosystems. However, little is known about the patterns and processes regulating biodiversity or potentially delimiting biogeographical boundaries at regional scales in the abyss. Improved macroecological understanding of remote abyssal environments is urgent as threats of widespread anthropogenic disturbance grow in the deep ocean. Here, we use a new, basin-scale dataset to show the existence of clear regional zonation in abyssal communities across the 5,000 km span of the Clarion-Clipperton Zone (northeast Pacific), an area targeted for deep-sea mining. We found two pronounced biogeographic provinces, deep and shallow-abyssal, separated by a transition zone between 4,300 and 4,800 m depth. Surprisingly, species richness was maintained across this boundary by phylum-level taxonomic replacements. These regional transitions are probably related to calcium carbonate saturation boundaries as taxa dependent on calcium carbonate structures, such as shelled molluscs, appear restricted to the shallower province. Our results suggest geochemical and climatic forcing on distributions of abyssal populations over large spatial scales and provide a potential paradigm for deep-sea macroecology, opening a new basis for regional-scale biodiversity research and conservation strategies in Earth's largest biome.
Collapse
Affiliation(s)
| | - Diva J Amon
- SpeSeas, D'Abadie, Trinidad and Tobago
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | | | - Daphne Cuvelier
- Institute of Marine Sciences-Okeanos, University of the Azores, Horta, Portugal
| | | | - Sofia P Ramalho
- Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Katja Uhlenkott
- German Centre for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Pedro Martinez Arbizu
- German Centre for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | | | - Jonathan Copley
- Ocean & Earth Science, University of Southampton, Southampton, UK
| | - Thomas G Dahlgren
- NORCE Climate and Environment, Bergen, Norway
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | | | - Bethany Fleming
- National Oceanography Centre, Southampton, UK
- Ocean & Earth Science, University of Southampton, Southampton, UK
| | | | - Se-Jong Ju
- Korea Institute of Ocean Science and Technology, Busan, South Korea
- Ocean Science Major, University of Science and Technology, Daejeon, South Korea
| | | | | | - Ellen Pape
- Marine Biology Research Group, Ghent University, Ghent, Belgium
| | - Chailinn Park
- Korea Institute of Ocean Science and Technology, Busan, South Korea
- Ocean Science Major, University of Science and Technology, Daejeon, South Korea
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at Manoa, Honolulu, HI, USA
| | | |
Collapse
|
7
|
Biogeographic boundaries and high diversity in abyssal seafloor communities. Nat Ecol Evol 2023; 7:1358-1359. [PMID: 37488226 DOI: 10.1038/s41559-023-02139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
|
8
|
Graça Aranha S, Teodósio A, Baptista V, Erzini K, Dias E. A glimpse into the trophic ecology of deep-water sharks in an important crustacean fishing ground. JOURNAL OF FISH BIOLOGY 2023; 102:655-668. [PMID: 36625079 DOI: 10.1111/jfb.15306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Deep-water sharks are among the most vulnerable deep-water taxa because of their extremely conservative life-history strategies (i.e., late maturation, slow growth, and reproductive rates), yet little is known about their biology and ecology. Thus, this study aimed at investigating the trophic ecology of five deep-water shark species, the birdbeak dogfish (Deania calcea), the arrowhead (D. profundorum), the smooth lanternshark (Etmopterus pusillus), the blackmouth catshark (Galeus melastomus) and the knifetooth dogfish (Scymnodon ringens) sampled onboard a crustacean bottom-trawler off the south-west coast of Portugal. We combined carbon and nitrogen stable isotopes with RNA and DNA (RD) ratios to investigate the main groups of prey assimilated by these species and their nutritional condition, respectively. Stable isotopes revealed overall small interspecific variability in the contribution of different taxonomic groups to sharks' tissues, as well as in the origin of their prey. S. ringens presented higher δ15 N and δ13 C values than the other species, suggesting reliance on bathyal cephalopods, crustaceans and teleosts; the remaining species likely assimilated bathy-mesopelagic prey. The RD ratios indicated that most of the individuals had an overall adequate nutritional condition and had recently eaten. This information, combined with the fact that stable isotopes indicate that sharks assimilated prey from the local or nearby food webs (including commercially important shrimps), suggests a potential overlap between this fishing area and their foraging grounds, which requires further attention.
Collapse
Affiliation(s)
- Sofia Graça Aranha
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Alexandra Teodósio
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Vânia Baptista
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Karim Erzini
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Ester Dias
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| |
Collapse
|
9
|
Good E, Holman LE, Pusceddu A, Russo T, Rius M, Iacono CL. Detection of community-wide impacts of bottom trawl fishing on deep-sea assemblages using environmental DNA metabarcoding. MARINE POLLUTION BULLETIN 2022; 183:114062. [PMID: 36075115 DOI: 10.1016/j.marpolbul.2022.114062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Although considerable research progress on the effects of anthropogenic disturbance in the deep sea has been made in recent years, our understanding of these impacts at community level remains limited. Here, we studied deep-sea assemblages of Sicily (Mediterranean Sea) subject to different intensities of benthic trawling using environmental DNA (eDNA) metabarcoding and taxonomic identification of meiofauna communities. Firstly, eDNA metabarcoding data did not detect trawling impacts using alpha diversity whereas meiofauna data detected a significant effect of trawling. Secondly, both eDNA and meiofauna data detected significantly different communities across distinct levels of trawling intensity when we examined beta diversity. Taxonomic assignment of the eDNA data revealed that Bryozoa was present only at untrawled sites, highlighting their vulnerability to trawling. Our results provide evidence for community-wide impacts of trawling, with different trawling intensities leading to distinct deep-sea communities. Finally, we highlight the need for further studies to unravel understudied deep-sea biodiversity.
Collapse
Affiliation(s)
- Edward Good
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom.
| | - Luke E Holman
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom; Section for Molecular Ecology and Evolution, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Pusceddu
- Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli, 1, 09126 Cagliari, Italy
| | - Tommaso Russo
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marc Rius
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom; Centre for Advanced Studies of Blanes - Spanish National Research Council (CEAB-CSIC), Accés a la Cala Sant Francesc 14, 17300 Blanes (Girona), Spain; Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, South Africa
| | - Claudio Lo Iacono
- Marine Sciences Institute - Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| |
Collapse
|
10
|
McClain CR, Bryant SR, Hanks G, Bowles MW. Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. ASTROBIOLOGY 2022; 22:1009-1028. [PMID: 35549348 DOI: 10.1089/ast.2021.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Humanity's search for extraterrestrial life is a modern manifestation of the exploratory and curious nature that has led us through millennia of scientific discoveries. With the ongoing exploration of extraterrestrial bodies, the potential for discovery of extraterrestrial life has expanded. We may better inform this search through an understanding of how life persists and flourishes on Earth in a myriad of environmental extremes. A significant proportion of our knowledge of extremophiles on Earth comes from studies on deep ocean life. Here, we review and synthesize the range of environmental extremes observed in the deep sea, the life that persists in these extreme conditions, and the biological adaptations utilized by these remarkable life-forms. We also review confirmed and predicted extraterrestrial oceans in our solar system and propose deep-sea sites that may serve as planetary field analog environments. We show that the clever ingenuity of evolution under deep-sea conditions suggests that the plausibility of extraterrestrial life is much greater than previously thought.
Collapse
Affiliation(s)
- Craig R McClain
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - S River Bryant
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Granger Hanks
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | |
Collapse
|
11
|
Metabolic Scaling in Birds and Mammals: How Taxon Divergence Time, Phylogeny, and Metabolic Rate Affect the Relationship between Scaling Exponents and Intercepts. BIOLOGY 2022; 11:biology11071067. [PMID: 36101445 PMCID: PMC9312277 DOI: 10.3390/biology11071067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary This study is based on a large dataset and re-evaluates data on the metabolic rate, providing new insights into the similarities and differences across different groups of birds and mammals. We compared six taxonomic groups of mammals and birds according to their energetic characteristics and the geological time of evolutionary origin. The overall metabolic rate of a taxonomic group increases with the geological time of evolutionary origin. The terrestrial mammals and flightless birds have almost equal metabolic levels. The higher the metabolic rate in a group, the less it increases within increasing body size in this group. Abstract Analysis of metabolic scaling in currently living endothermic animal species allowed us to show how the relationship between body mass and the basal metabolic rate (BMR) has evolved in the history of endothermic vertebrates. We compared six taxonomic groups according to their energetic characteristics and the time of evolutionary divergence. We transformed the slope of the regression lines to the common value and analyzed three criteria for comparing BMR of different taxa regardless of body size. Correlation between average field metabolic rate (FMR) of the group and its average BMR was shown. We evaluated the efficiency of self-maintenance in ordinary life (defined BMR/FMR) in six main groups of endotherms. Our study has shown that metabolic scaling in the main groups of endothermic animals correlates with their evolutionary age: the younger the group, the higher the metabolic rate, but the rate increases more slowly with increasing body weight. We found negative linear relationship for scaling exponents and the allometric coefficient in five groups of endotherms: in units of mL O2/h per g, in relative units of allometric coefficients, and also in level or scaling elevation. Mammals that diverged from the main vertebrate stem earlier have a higher “b” exponent than later divergent birds. A new approach using three criteria for comparing BMR of different taxa regardless of body mass will be useful for many biological size-scaling relationships that follow the power function.
Collapse
|
12
|
Nomaki H, Rastelli E, Ogawa NO, Matsui Y, Tsuchiya M, Manea E, Corinaldesi C, Hirai M, Ohkouchi N, Danovaro R, Nunoura T, Amaro T. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. GLOBAL CHANGE BIOLOGY 2021; 27:6139-6155. [PMID: 34523189 PMCID: PMC9293103 DOI: 10.1111/gcb.15882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Abyssal plains cover more than half of Earth's surface, and the main food source in these ecosystems is phytodetritus, mainly originating from primary producers in the euphotic zone of the ocean. Global climate change is influencing phytoplankton abundance, productivity, and distribution. Increasing importance of picoplankton over diatom as primary producers in surface oceans (especially projected for higher latitudes) is projected and hence altering the quantity of organic carbon supplied to the abyssal seafloor as phytodetritus, consequences of which remain largely unknown. Here, we investigated the in situ responses of abyssal biota from viruses to megafauna to different types of phytoplankton input (diatoms or cyanobacteria which were labeled with stable isotopes) at equatorial (oligotrophic) and temperate (eutrophic) benthic sites in the Pacific Ocean (1°N at 4277 m water depth and 39°N at 5260 m water depth, respectively). Our results show that meiofauna and macrofauna generally preferred diatoms as a food source and played a relatively larger role in the consumption of phytodetritus at higher latitudes (39°N). Contrarily, prokaryotes and viruses showed similar or even stronger responses to cyanobacterial than to diatom supply. Moreover, the response of prokaryotes and viruses was very rapid (within 1-2 days) at both 1°N and 39°N, with quickest responses reported in the case of cyanobacterial supply at higher latitudes. Overall, our results suggest that benthic deep-sea eukaryotes will be negatively affected by the predicted decrease in diatoms in surface oceans, especially at higher latitudes, where benthic prokaryotes and viruses will otherwise likely increase their quantitative role and organic carbon cycling rates. In turn, such changes can contribute to decrease carbon transfer from phytodetritus to higher trophic levels, with strong potential to affect oceanic food webs, their biodiversity and consequently carbon sequestration capacity at the global scale.
Collapse
Affiliation(s)
- Hidetaka Nomaki
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | - Eugenio Rastelli
- Department of Marine BiotechnologyStazione Zoologica Anton DohrnFano Marine CentreFanoItaly
| | | | - Yohei Matsui
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | | | - Elisabetta Manea
- Institute of Marine SciencesNational Research Council (ISMAR‐CNR)VeniceItaly
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban PlanningPolytechnic University of MarcheAnconaItaly
| | - Miho Hirai
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | | | - Roberto Danovaro
- Department of Environmental and Life SciencesPolytechnic University of MarcheAnconaItaly
- Stazione Zoologica Anton DohrnNaplesItaly
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN)JAMSTECYokosukaJapan
| | - Teresa Amaro
- Department of Biology & CESAMUniversity of AveiroAveiroPortugal
- Hellenic Center for Marine Research (HCMR)HeraklionGreece
| |
Collapse
|
13
|
Gaudron SM, Lefebvre S, Marques GM. Inferring functional traits in a deep-sea wood-boring bivalve using dynamic energy budget theory. Sci Rep 2021; 11:22720. [PMID: 34811447 PMCID: PMC8608800 DOI: 10.1038/s41598-021-02243-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
For species in the deep sea, there is a knowledge gap related to their functional traits at all stages of their life cycles. Dynamic energy budget (DEB) theory has been proven to be an efficient framework for estimating functional traits throughout a life cycle using simulation modelling. An abj-DEB model, which compared with the standard DEB model includes an extra juvenile stage between the embryo and the usual juvenile stages, has been successfully implemented for the deep-sea Atlantic woodeater Xylonora atlantica. Most of the core and primary parameter values of the model were in the range of those found for shallow marine bivalve species; however, in comparison to shallow marine bivalves, X. atlantica required less energy conductance and energy to reach the puberty stage for the same range of body sizes, and its maximum reserve capacity was higher. Consequently, its size at first reproduction was small, and better survival under starvation conditions was expected. A series of functional traits were simulated according to different scenarios of food density and temperature. The results showed a weak cumulative number of oocytes, a low growth rate and a small maximum body size but an extended pelagic larval duration under deep-sea environmental conditions. Moreover, DEB modelling helped explain that some male X. atlantica individuals remain dwarfs while still reproducing by changing their energy allocation during their ontogenetic development in favour of reproduction. The estimation of functional traits using DEB modelling will be useful in further deep-sea studies on the connectivity and resilience of populations.
Collapse
Affiliation(s)
- S M Gaudron
- UMR 8187, Laboratoire d'Océanologie et de Géosciences (LOG), Université de Lille, ULCO, CNRS, 59000, Lille, France.
- Sorbonne Université, UFR 927, 75005, Paris, France.
| | - S Lefebvre
- UMR 8187, Laboratoire d'Océanologie et de Géosciences (LOG), Université de Lille, ULCO, CNRS, 59000, Lille, France
| | - G M Marques
- MARETEC-Marine, Environment & Technology Center, LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
14
|
Doi H, Yasuhara M, Ushio M. Causal analysis of the temperature impact on deep-sea biodiversity. Biol Lett 2021; 17:20200666. [PMID: 34283931 DOI: 10.1098/rsbl.2020.0666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The deep sea comprises more than 90% of the ocean; therefore, understanding the controlling factors of biodiversity in the deep sea is of great importance for predicting future changes in the functioning of the ocean system. Consensus has recently been increasing on two plausible factors that have often been discussed as the drivers of deep-sea species richness in the contexts of the species-energy and physiological tolerance hypotheses: (i) seafloor particulate organic carbon (POC) derived from primary production in the euphotic zone and (ii) temperature. Nonetheless, factors that drive deep-sea biodiversity are still actively debated potentially owing to a mirage of correlations (sign and magnitude are generally time dependent), which are often found in nonlinear, complex ecological systems, making the characterization of causalities difficult. Here, we tested the causal influences of POC flux and temperature on species richness using long-term palaeoecological datasets derived from sediment core samples and convergent cross mapping, a numerical method for characterizing causal relationships in complex systems. The results showed that temperature, but not POC flux, influenced species richness over 103-104-year time scales. The temperature-richness relationship in the deep sea suggests that human-induced future climate change may, under some conditions, affect deep-sea ecosystems through deep-water circulation changes rather than surface productivity changes.
Collapse
Affiliation(s)
- Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Moriaki Yasuhara
- Division of Ecology and Biodiversity, School of Biological Sciences, Swire Institute of Marine Science, and State Key Laboratory of Marine Pollution, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Masayuki Ushio
- Hakubi Center, Kyoto University, Kyoto 606-8501, Japan.,Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| |
Collapse
|
15
|
Affiliation(s)
- Craig R. McClain
- Louisiana Universities Marine Consortium (LUMCON) Chauvin LA USA
| |
Collapse
|
16
|
Hernández-Ávila I, Pech D, Ocaña FA, Árcega-Cabrera F, Enriquez C. Shelf and deep-water benthic macrofauna assemblages from the western Gulf of Mexico: Temporal dynamics and environmental drivers. MARINE ENVIRONMENTAL RESEARCH 2021; 165:105241. [PMID: 33461108 DOI: 10.1016/j.marenvres.2020.105241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Shelf and deep-water soft-bottom macrofauna were explored in the western Gulf of Mexico in terms of species and functional trait assemblages. Their variation was analysed as functions of depth and time, and the relationship with sea-bottom environmental conditions was examined to disentangle their association with potential environmental drivers. Four consecutive cruises (two per year, at the end of the dry and rainy seasons) were performed during 2016-2017 at 27 fixed stations distributed from 42 to 3565 m depth. Changes in macrofauna composition were tested considering species and functional trait assemblages. Environmental variables associated with sediment features (i.e., grain structure, organic matter, pH, redox), oceanographic conditions (i.e., temperature, dissolved oxygen, particulate organic carbon flux) and potential contaminants (i.e., hydrocarbons and metals) were analysed to identify potential drivers that would shape the structure of macrofauna assemblages. The results suggest that the structures of both species and functional trait assemblages change according to depth and show temporal variation in composition at seasonal and interannual scales. The effect of temporal variation represented about 12% of total variation in the assemblages (11.4 for species and 12.5% for functional-traits). Different patterns of spatial and temporal variation between shelf and deep benthic communities were observed. Variation in species assemblages on the shelf were related to the variation in lead, polycyclic aromatic hydrocarbons and the fine sand ratio. In the deep benthos, particulate carbon flux showed high correlation with the spatial and temporal variation in species assemblage. In the deep benthos the changes in the species assemblage between the dry and the rainy seasons and the interannual variation were highly correlated with particulate organic carbon input in the area.
Collapse
Affiliation(s)
- Iván Hernández-Ávila
- Facultad de Ciencias Naturales, Universidad Autónoma del Carmen, Ciudad del Carmen, Campeche, Mexico.
| | - Daniel Pech
- Laboratorio de Biodiversidad Marina y Cambio Climático, El Colegio de la Frontera Sur, Campeche, Mexico.
| | - Frank A Ocaña
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico
| | - Flor Árcega-Cabrera
- Unidad Química de Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico; Laboratorio de Geoquímica Marina, CINVESTAV, Instituto Politécnico Nacional, Unidad de Mérida, Mérida, Yucatán, Mexico
| | - Cecilia Enriquez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| |
Collapse
|
17
|
Milligan RJ, Scott EM, Jones DOB, Bett BJ, Jamieson AJ, O'Brien R, Pereira Costa S, Rowe GT, Ruhl HA, Smith KL, de Susanne P, Vardaro MF, Bailey DM. Evidence for seasonal cycles in deep-sea fish abundances: A great migration in the deep SE Atlantic? J Anim Ecol 2020; 89:1593-1603. [PMID: 32198925 DOI: 10.1111/1365-2656.13215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/14/2020] [Indexed: 11/29/2022]
Abstract
Animal migrations are of global ecological significance, providing mechanisms for the transport of nutrients and energy between distant locations. In much of the deep sea (>200 m water depth), the export of nutrients from the surface ocean provides a crucial but seasonally variable energy source to seafloor ecosystems. Seasonal faunal migrations have been hypothesized to occur on the deep seafloor as a result, but have not been documented. Here, we analyse a 7.5-year record of photographic data from the Deep-ocean Environmental Long-term Observatory Systems seafloor observatories to determine whether there was evidence of seasonal (intra-annual) migratory behaviours in a deep-sea fish assemblage on the West African margin and, if so, identify potential cues for the behaviour. Our findings demonstrate a correlation between intra-annual changes in demersal fish abundance at 1,400 m depth and satellite-derived estimates of primary production off the coast of Angola. Highest fish abundances were observed in late November with a smaller peak in June, occurring approximately 4 months after corresponding peaks in primary production. Observed changes in fish abundance occurred too rapidly to be explained by recruitment or mortality, and must therefore have a behavioural driver. Given the recurrent patterns observed, and the established importance of bottom-up trophic structuring in deep-sea ecosystems, we hypothesize that a large fraction of the fish assemblage may conduct seasonal migrations in this region, and propose seasonal variability in surface ocean primary production as a plausible cause. Such trophic control could lead to changes in the abundance of fishes across the seafloor by affecting secondary production of prey species and/or carrion availability for example. In summary, we present the first evidence for seasonally recurring patterns in deep-sea demersal fish abundances over a 7-year period, and demonstrate a previously unobserved level of dynamism in the deep sea, potentially mirroring the great migrations so well characterized in terrestrial systems.
Collapse
Affiliation(s)
- Rosanna J Milligan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, USA
| | - E Marian Scott
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | | | | | - Alan J Jamieson
- School of Natural and Environmental Science, Newcastle University, Newcastle Upon Tyne, UK
| | - Robert O'Brien
- BP Exploration Operating Company Limited, Sunbury on Thames, UK
| | - Sofia Pereira Costa
- BP Angola (Block 18) BV, BP International Centre for Business & Technology, Sunbury on Thames, UK
| | | | - Henry A Ruhl
- National Oceanography Centre, Southampton, UK.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Ken L Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Philippe de Susanne
- BP Angola (Block 18) BV, BP International Centre for Business & Technology, Sunbury on Thames, UK
| | | | - David M Bailey
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Wei C, Chen M, Wicksten MK, Rowe GT. Macrofauna bivalve diversity from the deep northern Gulf of Mexico. Ecol Res 2020. [DOI: 10.1111/1440-1703.12077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Chih‐Lin Wei
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Min Chen
- ExxonMobil Research and Engineering Annandale New Jersey
| | - Mary K. Wicksten
- Department of Biology Texas A&M University College Station Texas
| | - Gilbert T. Rowe
- Department of Marine Biology Texas A&M University at Galveston Galveston Texas
| |
Collapse
|
19
|
Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat Ecol Evol 2020; 4:181-192. [PMID: 32015428 DOI: 10.1038/s41559-019-1091-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/19/2019] [Indexed: 11/09/2022]
Abstract
The deep sea (>200 m depth) encompasses >95% of the world's ocean volume and represents the largest and least explored biome on Earth (<0.0001% of ocean surface), yet is increasingly under threat from multiple direct and indirect anthropogenic pressures. Our ability to preserve both benthic and pelagic deep-sea ecosystems depends upon effective ecosystem-based management strategies and monitoring based on widely agreed deep-sea ecological variables. Here, we identify a set of deep-sea essential ecological variables among five scientific areas of the deep ocean: (1) biodiversity; (2) ecosystem functions; (3) impacts and risk assessment; (4) climate change, adaptation and evolution; and (5) ecosystem conservation. Conducting an expert elicitation (1,155 deep-sea scientists consulted and 112 respondents), our analysis indicates a wide consensus amongst deep-sea experts that monitoring should prioritize large organisms (that is, macro- and megafauna) living in deep waters and in benthic habitats, whereas monitoring of ecosystem functioning should focus on trophic structure and biomass production. Habitat degradation and recovery rates are identified as crucial features for monitoring deep-sea ecosystem health, while global climate change will likely shift bathymetric distributions and cause local extinction in deep-sea species. Finally, deep-sea conservation efforts should focus primarily on vulnerable marine ecosystems and habitat-forming species. Deep-sea observation efforts that prioritize these variables will help to support the implementation of effective management strategies on a global scale.
Collapse
|
20
|
McClain CR, Nunnally C, Dixon R, Rouse GW, Benfield M. Alligators in the abyss: The first experimental reptilian food fall in the deep ocean. PLoS One 2019; 14:e0225345. [PMID: 31860642 PMCID: PMC6924670 DOI: 10.1371/journal.pone.0225345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/01/2019] [Indexed: 11/18/2022] Open
Abstract
The high respiration rates of the deep-sea benthos cannot be sustained by known carbon supply pathways alone. Here, we investigate moderately-sized reptilian food falls as a potential alternative carbon pathway. Specifically, three individual carcasses of Alligator mississippiensis were deployed along the continental slope of the northern Gulf of Mexico at depths of ~2000m in early 2019. We posit the tough hide of alligators would impeded scavengers by limiting access to soft tissues of the alligator fall. However, the scavengers began consuming the food fall 43 hours post-deployment for one individual (198.2cm, 29.7kg), and the carcass of another individual (175.3 cm, 19.5kg) was completely devoid of soft tissue at 51 days post-deployment. A third individual (172.7cm, 18.5kg) was missing completely after 8 days, with only the deployment harness and weight remaining drug 8 meters away, suggesting a large elasmobranch scavenger. Additionally, bones recovered post-deployment reveal the first observations of the bone-eating Osedax in the Gulf of Mexico and are confirmed here as new to science. The findings of this study indicate the quick and successful utilization of terrestrial and aquatic-based carbon food sources in the deep marine environment, though outcome variability may be high.
Collapse
Affiliation(s)
- Craig Robert McClain
- Louisiana Universities Marine Consortium, Chauvin, LA, United States of America
- Department of Biology, University of Louisiana, Lafayette, LA, United States of America
| | - Clifton Nunnally
- Louisiana Universities Marine Consortium, Chauvin, LA, United States of America
| | - River Dixon
- Louisiana Universities Marine Consortium, Chauvin, LA, United States of America
- Department of Biology, University of Louisiana, Lafayette, LA, United States of America
| | - Greg W. Rouse
- Scripps Oceanography, UC San Diego, La Jolla, CA, United States of America
| | - Mark Benfield
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
21
|
Wei C, Cusson M, Archambault P, Belley R, Brown T, Burd BJ, Edinger E, Kenchington E, Gilkinson K, Lawton P, Link H, Ramey‐Balci PA, Scrosati RA, Snelgrove PVR. Seafloor biodiversity of Canada's three oceans: Patterns, hotspots and potential drivers. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.13013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Chih‐Lin Wei
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Mathieu Cusson
- Département des sciences fondamentales & Québec‐Océan Université du Québec à Chicoutimi Chicoutimi QC Canada
| | - Philippe Archambault
- Département de biologie & Québec‐Océan/Takuvik Université Laval Québec QC Canada
| | - Renald Belley
- Fisheries and Oceans Canada Maurice Lamontagne Institute Mont‐Joli QC Canada
| | - Tanya Brown
- Department of Geography Memorial University of Newfoundland St. John's NL Canada
| | - Brenda J. Burd
- Institute of Ocean Sciences Fisheries and Ocean Canada Sidney BC Canada
| | - Evan Edinger
- Department of Geography Memorial University of Newfoundland St. John's NL Canada
| | - Ellen Kenchington
- Bedford Institute of Oceanography Fisheries and Ocean Canada Dartmouth NS Canada
| | - Kent Gilkinson
- Northwest Atlantic Fisheries Centre Fisheries and Ocean Canada St. John's NL Canada
| | - Peter Lawton
- Biological Station Fisheries and Oceans Canada St. Andrews NB Canada
| | - Heike Link
- Department of Maritime Systems Faculty of Interdisciplinary Research University of Rostock Rostock Germany
| | | | | | - Paul V. R. Snelgrove
- Department of Ocean Sciences and Biology Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
22
|
Ashford OS, Kenny AJ, Barrio Froján CRS, Horton T, Rogers AD. Investigating the environmental drivers of deep-seafloor biodiversity: A case study of peracarid crustacean assemblages in the Northwest Atlantic Ocean. Ecol Evol 2019; 9:14167-14204. [PMID: 31938511 PMCID: PMC6953587 DOI: 10.1002/ece3.5852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 11/14/2022] Open
Abstract
The deep-sea benthos covers over 90% of seafloor area and hosts a great diversity of species which contribute toward essential ecosystem services. Evidence suggests that deep-seafloor assemblages are structured predominantly by their physical environment, yet knowledge of assemblage/environment relationships is limited. Here, we utilized a very large dataset of Northwest Atlantic Ocean continental slope peracarid crustacean assemblages as a case study to investigate the environmental drivers of deep-seafloor macrofaunal biodiversity. We investigated biodiversity from a phylogenetic, functional, and taxonomic perspective, and found that a wide variety of environmental drivers, including food availability, physical disturbance (bottom trawling), current speed, sediment characteristics, topographic heterogeneity, and temperature (in order of relative importance), significantly influenced peracarid biodiversity. We also found deep-water peracarid assemblages to vary seasonally and interannually. Contrary to prevailing theory on the drivers of deep-seafloor diversity, we found high topographic heterogeneity (at the hundreds to thousands of meter scale) to negatively influence assemblage diversity, while broadscale sediment characteristics (i.e., percent sand content) were found to influence assemblages more than sediment particle-size diversity. However, our results support other paradigms of deep-seafloor biodiversity, including that assemblages may vary inter- and intra-annually, and how assemblages respond to changes in current speed. We found that bottom trawling negatively affects the evenness and diversity of deep-sea soft-sediment peracarid assemblages, but that predicted changes in ocean temperature as a result of climate change may not strongly influence continental slope biodiversity over human timescales, although it may alter deep-sea community biomass. Finally, we emphasize the value of analyzing multiple metrics of biodiversity and call for researchers to consider an expanded definition of biodiversity in future investigations of deep-ocean life.
Collapse
Affiliation(s)
- Oliver S. Ashford
- Department of ZoologyUniversity of OxfordOxfordUK
- Centre for the Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
- Present address:
Scripps Institution of OceanographyLa JollaCAUSA
| | - Andrew J. Kenny
- Centre for the Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
| | | | - Tammy Horton
- National Oceanography CentreUniversity of Southampton Waterfront CampusSouthamptonUK
| | | |
Collapse
|
23
|
Saulsbury J. Crinoid respiration and the distribution of energetic strategies among marine invertebrates. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractDuring the Mesozoic, the radiation of durophagous marine predators caused the ecological and evolutionary diminution of once-successful groups, including stalked, suspension-feeding echinoderms known as crinoids. Featherstars, crinoids that shed the stalk during development and exhibit anti-predatory adaptations such as high motility, defied this trend, and today they are widespread and diverse across ocean depths. As a ‘success story’ of the Mesozoic Marine Revolution, featherstars could be used to reveal how some marine lineages succeeded in the face of increased predation over geological time. However, current limited understanding of crinoid functional anatomy has inhibited such study. Using microphotography, scanning electron microscopy and computed tomography, I characterize the structure and variation of crinoid circulatory anatomy and explore differences between featherstars and stalked forms. Contrary to previous accounts, I find support for the role of coelomic circulation in crinoid respiration. This includes a previously undocumented case of positive allometry: larger crinoids have more complex circulatory anatomy. Moreover, quantitative analysis of coelomic anatomy shows that the circulatory system is generally more complex in featherstars than in stalked crinoids. The adaptations that allowed featherstars to persist in shallow water apparently entailed an increase in the functional capacity of the circulatory system, possibly due to consistently greater metabolic rates.
Collapse
Affiliation(s)
- James Saulsbury
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Grient JMA, Rogers AD. Habitat structure as an alternative explanation for body‐size patterns in the deep sea. Ecosphere 2019. [DOI: 10.1002/ecs2.2900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- J. M. A. Grient
- School of Geography and the Environment University of Oxford Oxford UK
| | - A. D. Rogers
- REV Ocean Oksenøyveinen 10 NO‐1366 Lysaker Norway
| |
Collapse
|
25
|
Durden JM, Bett BJ, Huffard CL, Ruhl HA, Smith KL. Abyssal deposit-feeding rates consistent with the metabolic theory of ecology. Ecology 2019; 100:e02564. [PMID: 30601573 PMCID: PMC6850628 DOI: 10.1002/ecy.2564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/15/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022]
Abstract
The Metabolic Theory of Ecology (MTE) posits that metabolic rate controls ecological processes, such as the rate of resource uptake, from the individual‐ to the ecosystem‐scale. Metabolic rate has been found empirically to be an exponential function of whole organism body mass. We test a fundamental assumption of MTE, whether resource uptake scales to metabolism, by examining detritivores accessing a single common resource pool, an ideal study case. We used an existing empirical model of ingestion for aquatic deposit feeders adjusted for temperature to test whether ingestion by abyssal deposit feeders conforms to MTE‐predicted feeding rates. We estimated the sediment deposit‐feeding rates of large invertebrates from two abyssal study sites using time‐lapse photography, and related those rates to body mass, environmental temperature, and sediment organic matter content using this framework. Ingestion was significantly related to individual wet mass, with a mass‐scaling coefficient of 0.81, with 95% confidence intervals that encompass the MTE‐predicted value of 0.75, and the same pattern determined in other aquatic systems. Our results also provide insight into the potential mechanism through which this fundamental assumption operates. After temperature correction, both deep‐ and shallow‐water taxa might be summarized into a single mass‐scaled ingestion rate.
Collapse
Affiliation(s)
- Jennifer M Durden
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom.,National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Brian J Bett
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Christine L Huffard
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California, 95039, USA
| | - Henry A Ruhl
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Kenneth L Smith
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California, 95039, USA
| |
Collapse
|
26
|
McClain CR, Nunnally C, Benfield MC. Persistent and substantial impacts of the Deepwater Horizon oil spill on deep-sea megafauna. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191164. [PMID: 31598269 PMCID: PMC6731716 DOI: 10.1098/rsos.191164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 05/26/2023]
Abstract
The Deepwater Horizon spill is one of the largest environmental disasters with extensive impacts on the economic and ecological health of the Gulf of Mexico. Surface oil and coastal impacts received considerable attention, but the far larger oil spill in the deep ocean and its effects received considerably less examination. Based on 2017 ROV surveys within 500 m of the wellhead, we provide evidence of continued impacts on diversity, abundance and health of deep-sea megafauna. At locations proximal to the wellhead, megafaunal communities are more homogeneous than in unimpacted areas, lacking many taxonomic groups, and driven by high densities of arthropods. Degraded hydrocarbons at the site may be attracting arthropods. The scope of impacts may extend beyond the impacted sites with the potential for impacts to pelagic food webs and commercially important species. Overall, deep-sea ecosystem health, 7 years post spill, is recovering slowly and lingering effects may be extreme.
Collapse
Affiliation(s)
- Craig R. McClain
- Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, LA 70344, USA
- Department of Biology, University of Louisiana, Lafayette, 410 East St. Mary Boulevard, Billeaud Hall, Lafayette, LA 70503, USA
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Clifton Nunnally
- Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, LA 70344, USA
| | - Mark C. Benfield
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
27
|
Saeedi H, Costello MJ, Warren D, Brandt A. Latitudinal and bathymetrical species richness patterns in the NW Pacific and adjacent Arctic Ocean. Sci Rep 2019; 9:9303. [PMID: 31243329 PMCID: PMC6594967 DOI: 10.1038/s41598-019-45813-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/12/2019] [Indexed: 01/25/2023] Open
Abstract
Global scale analyses have recently revealed that the latitudinal gradient in marine species richness is bimodal, peaking at low-mid latitudes but with a dip at the equator; and that marine species richness decreases with depth in many taxa. However, these overall and independently studied patterns may conceal regional differences that help support or qualify the causes in these gradients. Here, we analysed both latitudinal and depth gradients of species richness in the NW Pacific and its adjacent Arctic Ocean. We analysed 324,916 distribution records of 17,414 species from 0 to 10,900 m depth, latitude 0 to 90°N, and longitude 100 to 180°N. Species richness per c. 50 000 km2 hexagonal cells was calculated as alpha (local average), gamma (regional total) and ES50 (estimated species for 50 records) per latitudinal band and depth interval. We found that average ES50 and gamma species richness decreased per 5° latitudinal bands and 100 m depth intervals. However, average ES50 per hexagon showed that the highest species richness peaked around depth 2,000 m where the highest total number of species recorded. Most (83%) species occurred in shallow depths (0 to 500 m). The area around Bohol Island in the Philippines had the highest alpha species richness (more than 8,000 species per 50,000 km2). Both alpha and gamma diversity trends increased from the equator to latitude 10°N, then further decreased, but reached another peak at higher latitudes. The latitudes 60–70°N had the lowest gamma and alpha diversity where there is almost no ocean in our study area. Model selection on Generalized Additive Models (GAMs) showed that the combined effects of all environmental predictors produced the best model driving species richness in both shallow and deep sea. The results thus support recent hypotheses that biodiversity, while highest in the tropics and coastal depths, is decreasing at the equator and decreases with depth below ~2000 m. While we do find the declines of species richness with latitude and depth that reflect temperature gradients, local scale richness proved poorly correlated with many environmental variables. This demonstrates that while regional scale patterns in species richness may be related to temperature, that local scale richness depends on a greater variety of variables.
Collapse
Affiliation(s)
- Hanieh Saeedi
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,FB 15 Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany. .,OBIS data manager, Deep-Sea Node, Frankfurt am Main, Germany.
| | - Mark J Costello
- Institute of Marine Science, University of Auckland, Auckland, 1142, New Zealand
| | - Dan Warren
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Angelika Brandt
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,FB 15 Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Vieira RP, Trueman CN, Readdy L, Kenny A, Pinnegar JK. Deep-water fisheries along the British Isles continental slopes: status, ecosystem effects and future perspectives. JOURNAL OF FISH BIOLOGY 2019; 94:981-992. [PMID: 30746699 DOI: 10.1111/jfb.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
In this paper, we revisit the state of deep-water fisheries to the west of the British Isles and aim to provide an overview on the key drivers behind community changes along continental margins. The deep-water fisheries to the west of the British Isles that extend from the shelf-slope break down to the lower slope and along banks and seamounts of the Rockall Basin, mainly target blue ling Molva dypterygia, roundnose grenadier Coryphaenoides rupestris, orange roughy Hoplostethus atlanticus, with by-catches of black scabbardfish Aphanopus carbo and tusk Brosme brosme. These fishing grounds experienced a long period of exhaustive exploitation until the early 2000s, but subsequently the implementation of management strategies has helped to relieve excessive fishing pressure. It is widely accepted that a better understanding of the long-term implications of disturbance is needed to understand patterns in deep-water communities and what sustainable use and exploitation of resources might look like in this context.
Collapse
Affiliation(s)
- Rui P Vieira
- Centre for Environment, Fisheries & Aquaculture Science, Lowestoft Laboratory, Lowestoft, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Clive N Trueman
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Lisa Readdy
- Centre for Environment, Fisheries & Aquaculture Science, Lowestoft Laboratory, Lowestoft, UK
| | - Andrew Kenny
- Centre for Environment, Fisheries & Aquaculture Science, Lowestoft Laboratory, Lowestoft, UK
| | - John K Pinnegar
- Centre for Environment, Fisheries & Aquaculture Science, Lowestoft Laboratory, Lowestoft, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
29
|
Sperling EA, Stockey RG. The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an "Explosion". Integr Comp Biol 2019; 58:605-622. [PMID: 30295813 DOI: 10.1093/icb/icy088] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Animals originated and evolved during a unique time in Earth history-the Neoproterozoic Era. This paper aims to discuss (1) when landmark events in early animal evolution occurred, and (2) the environmental context of these evolutionary milestones, and how such factors may have affected ecosystems and body plans. With respect to timing, molecular clock studies-utilizing a diversity of methodologies-agree that animal multicellularity had arisen by ∼800 million years ago (Ma) (Tonian period), the bilaterian body plan by ∼650 Ma (Cryogenian), and divergences between sister phyla occurred ∼560-540 Ma (late Ediacaran). Most purported Tonian and Cryogenian animal body fossils are unlikely to be correctly identified, but independent support for the presence of pre-Ediacaran animals is recorded by organic geochemical biomarkers produced by demosponges. This view of animal origins contrasts with data from the fossil record, and the taphonomic question of why animals were not preserved (if present) remains unresolved. Neoproterozoic environments demanding small, thin, body plans, and lower abundance/rarity in populations may have played a role. Considering environmental conditions, geochemical data suggest that animals evolved in a relatively low-oxygen ocean. Here, we present new analyses of sedimentary total organic carbon contents in shales suggesting that the Neoproterozoic ocean may also have had lower primary productivity-or at least lower quantities of organic carbon reaching the seafloor-compared with the Phanerozoic. Indeed, recent modeling efforts suggest that low primary productivity is an expected corollary of a low-O2 world. Combined with an inability to inhabit productive regions in a low-O2 ocean, earliest animal communities would likely have been more food limited than generally appreciated, impacting both ecosystem structure and organismal behavior. In light of this, we propose the "fire triangle" metaphor for environmental influences on early animal evolution. Moving toward consideration of all environmental aspects of the Cambrian radiation (fuel, heat, and oxidant) will ultimately lead to a more holistic view of the event.
Collapse
Affiliation(s)
- Erik A Sperling
- Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, CA 94305, USA
| | - Richard G Stockey
- Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Pala C, Molari M, Nizzoli D, Bartoli M, Viaroli P, Manini E. Environmental Drivers Controlling Bacterial and Archaeal Abundance in the Sediments of a Mediterranean Lagoon Ecosystem. Curr Microbiol 2018; 75:1147-1155. [PMID: 29766233 PMCID: PMC6096605 DOI: 10.1007/s00284-018-1503-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/27/2018] [Indexed: 02/02/2023]
Abstract
The environmental factors controlling the abundance of Bacteria and Archaea in lagoon ecosystems are poorly understood. Here, an integrated physico-chemical, biogeochemical, and microbiological survey was applied in the Sacca di Goro lagoon (Po River Delta, Italy) to investigate the variation of bacterial and archaeal abundance, as assessed by Fluorescence In Situ Hybridization, along winter and summer environmental gradients. We hypothesised that bacterial and archaeal cells respond differentially to physico-chemical parameters of the sediment, which can be manifested in variations of total cells number. Our results suggest that Archaea are an important component of microbial communities (up to 20%) and they are also quite constant along the sediment depth investigated, while Bacteria tend to decrease in the subsurface sediments. The abiotic (i.e. temperature, ammonium, pH) and trophic parameters (i.e. chlorophyll a) explain differentially the variations of bacterial and archaeal distribution, and raise interesting questions about the ecological significance of the microbial composition in this area.
Collapse
Affiliation(s)
- Claudia Pala
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy.
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
| | - Massimiliano Molari
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Daniele Nizzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Bartoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Pierluigi Viaroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elena Manini
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
| |
Collapse
|
31
|
Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Brown A, Hauton C, Stratmann T, Sweetman A, van Oevelen D, Jones DOB. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172162. [PMID: 29892403 PMCID: PMC5990736 DOI: 10.1098/rsos.172162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200-4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes.
Collapse
Affiliation(s)
- Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Chris Hauton
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Tanja Stratmann
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ-Yerseke), and Utrecht University, PO Box 140, 4400 AC Yerseke, The Netherlands
| | - Andrew Sweetman
- The Sir Charles Lyell Centre for Earth and Marine Science and Technology, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Dick van Oevelen
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ-Yerseke), and Utrecht University, PO Box 140, 4400 AC Yerseke, The Netherlands
| | - Daniel O. B. Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| |
Collapse
|
33
|
Wei X, Yan L, Zhao C, Zhang Y, Xu Y, Cai B, Jiang N, Huang Y. Geographic variation in body size and its relationship with environmental gradients in the Oriental Garden Lizard, Calotes versicolor. Ecol Evol 2018; 8:4443-4454. [PMID: 29760886 PMCID: PMC5938448 DOI: 10.1002/ece3.4007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 11/10/2022] Open
Abstract
Patterns of geographic variation in body size are predicted to evolve as adaptations to local environmental gradients. However, many of these clinal patterns in body size, such as Bergmann's rule, are controversial and require further investigation into ectotherms such as reptiles on a regional scale. To examine the environmental variables (temperature, precipitation, topography and primary productivity) that shaped patterns of geographic variation in body size in the reptile Calotes versicolor, we sampled 180 adult specimens (91 males and 89 females) at 40 locations across the species range in China. The MANOVA results suggest significant sexual size dimorphism in C. versicolor (F23,124 = 11.32, p < .001). Our results showed that C. versicolor failed to fit the Bergmann's rule. We found that the most important predictors of variation in body size of C. versicolor differed for males and females, but mechanisms related to heat balance and water availability hypotheses were involved in both sexes. Temperature seasonality, precipitation of the driest month, precipitation seasonality, and precipitation of the driest quarter were the most important predictors of variation in body size in males, whereas mean precipitation of the warmest quarter, mean temperature of the wettest quarter, precipitation seasonality, and precipitation of the wettest month were most important for body size variation in females. The discrepancy between patterns of association between the sexes suggested that different selection pressures may be acting in males and females.
Collapse
Affiliation(s)
- Xiaomei Wei
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China.,Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement Nanning Guangxi China
| | - Linmiao Yan
- Guangxi Dongli Mechanic School Nanning Guangxi China
| | - Chengjian Zhao
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China
| | - Yueyun Zhang
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China
| | - Yongli Xu
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China
| | - Bo Cai
- Department of Herpetology Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| | - Ni Jiang
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China
| | - Yong Huang
- Guangxi Botanical Garden of Medicinal Plants Nanning Guangxi China
| |
Collapse
|
34
|
Danovaro R, Corinaldesi C, Dell'Anno A, Rastelli E. Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiol Lett 2018; 364:4553516. [PMID: 29045616 DOI: 10.1093/femsle/fnx214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/12/2017] [Indexed: 11/12/2022] Open
Abstract
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Eugenio Rastelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
35
|
A new macrofaunal limit in the deep biosphere revealed by extreme burrow depths in ancient sediments. Sci Rep 2018; 8:261. [PMID: 29321598 PMCID: PMC5762628 DOI: 10.1038/s41598-017-18481-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/06/2017] [Indexed: 11/08/2022] Open
Abstract
Macrofauna is known to inhabit the top few 10s cm of marine sediments, with rare burrows up to two metres below the seabed. Here, we provide evidence from deep-water Permian strata for a previously unrecognised habitat up to at least 8 metres below the sediment-water interface. Infaunal organisms exploited networks of forcibly injected sand below the seabed, forming living traces and reworking sediment. This is the first record that shows sediment injections are responsible for hosting macrofaunal life metres below the contemporaneous seabed. In addition, given the widespread occurrence of thick sandy successions that accumulate in deep-water settings, macrofauna living in the deep biosphere are likely much more prevalent than considered previously. These findings should influence future sampling strategies to better constrain the depth range of infaunal animals living in modern deep-sea sands. One Sentence Summary: The living depth of infaunal macrofauna is shown to reach at least 8 metres in new habitats associated with sand injections.
Collapse
|
36
|
McClain CR, Barry JP, Webb TJ. Increased energy differentially increases richness and abundance of optimal body sizes in deep-sea wood falls. Ecology 2017; 99:184-195. [PMID: 29065227 DOI: 10.1002/ecy.2055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 11/08/2022]
Abstract
Theoretical and empirical studies suggest that the total energy available in natural communities influences body size as well as patterns of abundance and diversity. But the precise mechanisms underlying these relationships or how these three ecological properties relate remain elusive. We identify five hypotheses relating energy availability, body size distributions, abundance, and species richness within communities, and we use experimental deep-sea wood fall communities to test their predicted effects both on descriptors describing the species-richness-body-size distribution, and on trends in species richness within size classes over an energy gradient (size-class-richness relationships). Invertebrate communities were taxonomically identified, weighed, and counted from 32 Acacia sp. logs ranging in size from 0.6 to 20.6 kg (corresponding to different levels of energy available), which were deployed at 3,203 m in the Northeast Pacific Ocean for 5 and 7 yr. Trends in both the species-richness-body-size distribution and the size-class-richness distribution with increasing wood fall size provide support for the Increased Packing hypothesis: species richness increases with increasing wood fall size but only in the modal size class. Furthermore, species richness of body size classes reflected the abundance of individuals in that size class. Thus, increases in richness in the modal size class with increasing energy were concordant with increases in abundance within that size class. The results suggest that increases in species richness occurring as energy availability increases may be isolated to specific niches, e.g., the body size classes, especially in communities developing on discrete and energetically isolated resources such as deep sea wood falls.
Collapse
Affiliation(s)
- Craig R McClain
- Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, Louisiana, 70344, USA
| | - James P Barry
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California, 95039, USA
| | - Thomas J Webb
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
37
|
Yasuhara M, Doi H, Wei CL, Danovaro R, Myhre SE. Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0282. [PMID: 27114583 DOI: 10.1098/rstb.2015.0282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 11/12/2022] Open
Abstract
The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet.
Collapse
Affiliation(s)
- Moriaki Yasuhara
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China Swire Institute of Marine Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong SAR, China
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | - Chih-Lin Wei
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Sarah E Myhre
- Future of Ice Initiative, University of Washington, Johnson Hall, Room 377A, Box 351310 Seattle, WA 98195-1310, USA
| |
Collapse
|
38
|
Yool A, Martin AP, Anderson TR, Bett BJ, Jones DOB, Ruhl HA. Big in the benthos: Future change of seafloor community biomass in a global, body size-resolved model. GLOBAL CHANGE BIOLOGY 2017; 23:3554-3566. [PMID: 28317324 DOI: 10.1111/gcb.13680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 05/16/2023]
Abstract
Deep-water benthic communities in the ocean are almost wholly dependent on near-surface pelagic ecosystems for their supply of energy and material resources. Primary production in sunlit surface waters is channelled through complex food webs that extensively recycle organic material, but lose a fraction as particulate organic carbon (POC) that sinks into the ocean interior. This exported production is further rarefied by microbial breakdown in the abyssal ocean, but a residual ultimately drives diverse assemblages of seafloor heterotrophs. Advances have led to an understanding of the importance of size (body mass) in structuring these communities. Here we force a size-resolved benthic biomass model, BORIS, using seafloor POC flux from a coupled ocean-biogeochemistry model, NEMO-MEDUSA, to investigate global patterns in benthic biomass. BORIS resolves 16 size classes of metazoans, successively doubling in mass from approximately 1 μg to 28 mg. Simulations find a wide range of seasonal responses to differing patterns of POC forcing, with both a decline in seasonal variability, and an increase in peak lag times with increasing body size. However, the dominant factor for modelled benthic communities is the integrated magnitude of POC reaching the seafloor rather than its seasonal pattern. Scenarios of POC forcing under climate change and ocean acidification are then applied to investigate how benthic communities may change under different future conditions. Against a backdrop of falling surface primary production (-6.1%), and driven by changes in pelagic remineralization with depth, results show that while benthic communities in shallow seas generally show higher biomass in a warmed world (+3.2%), deep-sea communities experience a substantial decline (-32%) under a high greenhouse gas emissions scenario. Our results underscore the importance for benthic ecology of reducing uncertainty in the magnitude and seasonality of seafloor POC fluxes, as well as the importance of studying a broader range of seafloor environments for future model development.
Collapse
Affiliation(s)
- Andrew Yool
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Adrian P Martin
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Thomas R Anderson
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Brian J Bett
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Henry A Ruhl
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| |
Collapse
|
39
|
Durkin A, Fisher CR, Cordes EE. Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies. Naturwissenschaften 2017; 104:63. [PMID: 28689349 DOI: 10.1007/s00114-017-1479-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/09/2017] [Accepted: 06/11/2017] [Indexed: 11/28/2022]
Abstract
The deep sea is home to many species that have longer life spans than their shallow-water counterparts. This trend is primarily related to the decline in metabolic rates with temperature as depth increases. However, at bathyal depths, the cold-seep vestimentiferan tubeworm species Lamellibrachia luymesi and Seepiophila jonesi reach extremely old ages beyond what is predicted by the simple scaling of life span with body size and temperature. Here, we use individual-based models based on in situ growth rates to show that another species of cold-seep tubeworm found in the Gulf of Mexico, Escarpia laminata, also has an extraordinarily long life span, regularly achieving ages of 100-200 years with some individuals older than 300 years. The distribution of results from individual simulations as well as whole population simulations involving mortality and recruitment rates support these age estimates. The low 0.67% mortality rate measurements from collected populations of E. laminata are similar to mortality rates in L. luymesi and S. jonesi and play a role in evolution of the long life span of cold-seep tubeworms. These results support longevity theory, which states that in the absence of extrinsic mortality threats, natural selection will select for individuals that senesce slower and reproduce continually into their old age.
Collapse
|
40
|
Uyeda JC, Pennell MW, Miller ET, Maia R, McClain CR. The Evolution of Energetic Scaling across the Vertebrate Tree of Life. Am Nat 2017; 190:185-199. [PMID: 28731792 DOI: 10.1086/692326] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Metabolism is the link between ecology and physiology-it dictates the flow of energy through individuals and across trophic levels. Much of the predictive power of metabolic theories of ecology derives from the scaling relationship between organismal size and metabolic rate. There is growing evidence that this scaling relationship is not universal, but we have little knowledge of how it has evolved over macroevolutionary time. Here we develop a novel phylogenetic comparative method to investigate how often and in which clades the macroevolutionary dynamics of the metabolic scaling have changed. We find strong evidence that the metabolic scaling relationship has shifted multiple times across the vertebrate phylogeny. However, shifts are rare and otherwise strongly constrained. Importantly, both the estimated slope and intercept values vary widely across regimes, with slopes that spanned across theoretically predicted values such as 2/3 or 3/4. We further tested whether traits such as ecto-/endothermy, genome size, and quadratic curvature with body mass (i.e., energetic constraints at extreme body sizes) could explain the observed pattern of shifts. Though these factors help explain some of the variation in scaling parameters, much of the remaining variation remains elusive. Our results lay the groundwork for further exploration of the evolutionary and ecological drivers of major transitions in metabolic strategy and for harnessing this information to improve macroecological predictions.
Collapse
|
41
|
Jones DOB, Kaiser S, Sweetman AK, Smith CR, Menot L, Vink A, Trueblood D, Greinert J, Billett DSM, Arbizu PM, Radziejewska T, Singh R, Ingole B, Stratmann T, Simon-Lledó E, Durden JM, Clark MR. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS One 2017; 12:e0171750. [PMID: 28178346 PMCID: PMC5298332 DOI: 10.1371/journal.pone.0171750] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/25/2017] [Indexed: 11/18/2022] Open
Abstract
Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.
Collapse
Affiliation(s)
- Daniel O. B. Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, United Kingdom
- * E-mail:
| | - Stefanie Kaiser
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Andrew K. Sweetman
- The Lyell Centre for Earth and Marine Science and Technology, Heriot-Watt University, Riccarton, Edinburgh, United Kingdom
| | - Craig R. Smith
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | | | - Annemiek Vink
- Bundesanstalt für Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and Natural Resources), Geozentrum Hannover, Hannover, Germany
| | - Dwight Trueblood
- NOAA Office for Coastal Management, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Jens Greinert
- GEOMAR Helmholtz Centre For Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-University Kiel, Institute of Geosciences, Kiel, Germany
| | - David S. M. Billett
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, United Kingdom
| | - Pedro Martinez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Teresa Radziejewska
- Palaeoceanology Unit, Faculty of Geosciences, University of Szczecin, Szczecin, Poland
| | - Ravail Singh
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Baban Ingole
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Tanja Stratmann
- NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and Delta Systems, and Utrecht University, Yerseke, The Netherlands
| | - Erik Simon-Lledó
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, United Kingdom
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton, United Kingdom
| | - Jennifer M. Durden
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, United Kingdom
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton, United Kingdom
| | - Malcolm R. Clark
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
| |
Collapse
|
42
|
Brown RR, Davis CS, Leys SP. Clones or clans: the genetic structure of a deep-sea sponge,Aphrocallistes vastus,in unique sponge reefs of British Columbia, Canada. Mol Ecol 2017; 26:1045-1059. [DOI: 10.1111/mec.13982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Rachel R. Brown
- Department of Biological Sciences; University of Alberta; CW 422 Biological Sciences Building Edmonton Alberta Canada T6G 2E9
| | - Corey S. Davis
- Department of Biological Sciences; University of Alberta; CW 422 Biological Sciences Building Edmonton Alberta Canada T6G 2E9
| | - Sally P. Leys
- Department of Biological Sciences; University of Alberta; CW 422 Biological Sciences Building Edmonton Alberta Canada T6G 2E9
| |
Collapse
|
43
|
Morris KJ, Bett BJ, Durden JM, Benoist NMA, Huvenne VAI, Jones DOB, Robert K, Ichino MC, Wolff GA, Ruhl HA. Landscape-scale spatial heterogeneity in phytodetrital cover and megafauna biomass in the abyss links to modest topographic variation. Sci Rep 2016; 6:34080. [PMID: 27681937 PMCID: PMC5040962 DOI: 10.1038/srep34080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/07/2016] [Indexed: 11/09/2022] Open
Abstract
Sinking particulate organic matter (POM, phytodetritus) is the principal limiting resource for deep-sea life. However, little is known about spatial variation in POM supply to the abyssal seafloor, which is frequently assumed to be homogenous. In reality, the abyss has a highly complex landscape with millions of hills and mountains. Here, we show a significant increase in seabed POM % cover (by ~1.05 times), and a large significant increase in megafauna biomass (by ~2.5 times), on abyssal hill terrain in comparison to the surrounding plain. These differences are substantially greater than predicted by current models linking water depth to POM supply or benthic biomass. Our observed variations in POM % cover (phytodetritus), megafauna biomass, sediment total organic carbon and total nitrogen, sedimentology, and benthic boundary layer turbidity, all appear to be consistent with topographically enhanced current speeds driving these enhancements. The effects are detectable with bathymetric elevations of only 10 s of metres above the surrounding plain. These results imply considerable unquantified heterogeneity in global ecology.
Collapse
Affiliation(s)
- Kirsty J Morris
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Brian J Bett
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Jennifer M Durden
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK.,Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Noelie M A Benoist
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK.,Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Veerle A I Huvenne
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Katleen Robert
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK.,Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Matteo C Ichino
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK.,Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - George A Wolff
- School of Environmental Sciences, University of Liverpool L69 3BX, UK
| | - Henry A Ruhl
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| |
Collapse
|
44
|
Danovaro R, Molari M, Corinaldesi C, Dell’Anno A. Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems. SCIENCE ADVANCES 2016; 2:e1500961. [PMID: 27386507 PMCID: PMC4928989 DOI: 10.1126/sciadv.1500961] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/31/2016] [Indexed: 05/06/2023]
Abstract
Bacteria and archaea dominate the biomass of benthic deep-sea ecosystems at all latitudes, playing a crucial role in global biogeochemical cycles, but their macroscale patterns and macroecological drivers are still largely unknown. We show the results of the most extensive field study conducted so far to investigate patterns and drivers of the distribution and structure of benthic prokaryote assemblages from 228 samples collected at latitudes comprising 34°N to 79°N, and from ca. 400- to 5570-m depth. We provide evidence that, in deep-sea ecosystems, benthic bacterial and archaeal abundances significantly increase from middle to high latitudes, with patterns more pronounced for archaea, and particularly for Marine Group I Thaumarchaeota. Our results also reveal that different microbial components show varying sensitivities to changes in temperature conditions and food supply. We conclude that climate change will primarily affect deep-sea benthic archaea, with important consequences on global biogeochemical cycles, particularly at high latitudes.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Corresponding author.
| | - Massimiliano Molari
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- HGF MPG Joint Research for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Cinzia Corinaldesi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
45
|
Pigot AL, Tobias JA, Jetz W. Energetic Constraints on Species Coexistence in Birds. PLoS Biol 2016; 14:e1002407. [PMID: 26974194 PMCID: PMC4790906 DOI: 10.1371/journal.pbio.1002407] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
The association between species richness and ecosystem energy availability is one of the major geographic trends in biodiversity. It is often explained in terms of energetic constraints, such that coexistence among competing species is limited in low productivity environments. However, it has proven challenging to reject alternative views, including the null hypothesis that species richness has simply had more time to accumulate in productive regions, and thus the role of energetic constraints in limiting coexistence remains largely unknown. We use the phylogenetic relationships and geographic ranges of sister species (pairs of lineages who are each other's closest extant relatives) to examine the association between energy availability and coexistence across an entire vertebrate class (Aves). We show that the incidence of coexistence among sister species increases with overall species richness and is elevated in more productive ecosystems, even when accounting for differences in the evolutionary time available for coexistence to occur. Our results indicate that energy availability promotes species coexistence in closely related lineages, providing a key step toward a more mechanistic understanding of the productivity-richness relationship underlying global gradients in biodiversity.
Collapse
Affiliation(s)
- Alexander L. Pigot
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Joseph A. Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Walter Jetz
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
46
|
Zetsche EM, Baussant T, Meysman FJR, van Oevelen D. Direct Visualization of Mucus Production by the Cold-Water Coral Lophelia pertusa with Digital Holographic Microscopy. PLoS One 2016; 11:e0146766. [PMID: 26840074 PMCID: PMC4740404 DOI: 10.1371/journal.pone.0146766] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022] Open
Abstract
Lophelia pertusa is the dominant reef-building organism of cold-water coral reefs, and is known to produce significant amounts of mucus, which could involve an important metabolic cost. Mucus is involved in particle removal and feeding processes, yet the triggers and dynamics of mucus production are currently still poorly described because the existing tools to study these processes are not appropriate. Using a novel microscopic technique—digital holographic microscopy (DHM)–we studied the mucus release of L. pertusa under various experimental conditions. DHM technology permits μm-scale observations and allows the visualization of transparent mucoid substances in real time without staining. Fragments of L. pertusa were first maintained in flow-through chambers without stressors and imaged with DHM, then exposed to various stressors (suspended particles, particulate food and air exposure) and re-imaged. Under non-stressed conditions no release of mucus was observed, whilst mucus strings and sheaths were produced in response to suspended particles (activated charcoal and drill cuttings sediment) i.e. in a stressed condition. Mucus strings and so-called ‘string balls’ were also observed in response to exposure to particulate food (brine shrimp Artemia salina). Upon air-exposure, mucus production was clearly visible once the fragments were returned to the flow chamber. Distinct optical properties such as optical path length difference (OPD) were measured with DHM in response to the various stimuli suggesting that different mucus types are produced by L. pertusa. Mucus produced to reject particles is similar in refractive index to the surrounding seawater, suggesting that the energy content of this mucus is low. In contrast, mucus produced in response to either food particle addition or air exposure had a higher refractive index, suggesting a higher metabolic investment in the production of these mucoid substances. This paper shows for the first time the potential of DHM technology for the detection, characterization and quantification of mucus production through OPD measurements in L. pertusa.
Collapse
Affiliation(s)
- Eva-Maria Zetsche
- Analytical, Environmental & Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Ecosystem Studies, Royal Netherlands Institute for Sea Research (NIOZ-Yerseke), Yerseke, The Netherlands
- * E-mail:
| | - Thierry Baussant
- International Research Institute of Stavanger (IRIS), Randaberg, Norway
| | - Filip J. R. Meysman
- Analytical, Environmental & Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Ecosystem Studies, Royal Netherlands Institute for Sea Research (NIOZ-Yerseke), Yerseke, The Netherlands
| | - Dick van Oevelen
- Department of Ecosystem Studies, Royal Netherlands Institute for Sea Research (NIOZ-Yerseke), Yerseke, The Netherlands
| |
Collapse
|
47
|
McClain CR, Rex MA. Toward a Conceptual Understanding of β-Diversity in the Deep-Sea Benthos. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-120213-091640] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review patterns and causes of β-diversity in the deep-sea benthos at different spatial scales and for different body sizes. Changes in species composition occurring with depth are generally gradual, the rate of change being a function of the rate of descent. This gradual change can be interrupted by abrupt environmental shifts, such as oxygen minimum zones, and by major topographic features that alter oceanographic conditions. Changes in species composition with depth can involve both species replacement and species loss, leading to nestedness. Horizontal β-diversity is more moderate than that occurring with depth, except at upper bathyal zones impacted by coastal influences. At very large oceanic scales, both environmental filtering and dispersal limitation influence β-diversity. Although many ecological and evolutionary–historical factors must shape β-diversity in the deep sea, energy availability appears to structure community makeup at all scales examined. We recommend that standardized sampling protocols, statistical methods, and data archiving be used to direct future research.
Collapse
Affiliation(s)
- Craig R. McClain
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Michael A. Rex
- Department of Biology, University of Massachusetts, Boston, Massachusetts 02125
| |
Collapse
|
48
|
Louvado A, Gomes NCM, Simões MMQ, Almeida A, Cleary DFR, Cunha A. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:312-328. [PMID: 25965373 DOI: 10.1016/j.scitotenv.2015.04.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation. Bacteria residing in the DSSs (related mainly to α- and γ-Proteobacteria) have been shown to or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of these bacterial communities to the psychro-peizophilic conditions of the DSSs. This work summarizes some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAH degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on biodegradation of PAHs in DSSs.
Collapse
Affiliation(s)
- A Louvado
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - N C M Gomes
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - M M Q Simões
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Almeida
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Cunha
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
49
|
van der Grient JMA, Rogers AD. Body Size Versus Depth: Regional and Taxonomical Variation in Deep-Sea Meio- and Macrofaunal Organisms. ADVANCES IN MARINE BIOLOGY 2015; 71:71-108. [PMID: 26320616 DOI: 10.1016/bs.amb.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Body size (weight per individual) is an important concept in ecology. It has been studied in the deep sea where a decrease in size with increasing depth has often been found. This has been explained as an adaptation to food limitation where size reduction results in a lowered metabolic rate and a decreased energetic requirement. However, observations vary, with some studies showing an increase in size with depth, and some finding no depth correlation at all. Here, we collected data from peer-reviewed studies on macro- and meiofaunal abundance and biomass, creating two datasets allowing statistical comparison of factors expected to influence body size in meio- and macrofaunal organisms. Our analyses examined the influence of region, taxonomic group and sampling method on the body size of meiofauna and macrofauna in the deep sea with increasing depth, and the resulting models are presented. At the global scale, meio- and macrofaunal communities show a decrease in body size with increasing depth as expected with the food limitation hypothesis. However, at the regional scale there were differences in trends of body size with depth, either showing a decrease (e.g. southwest Pacific Ocean; meio- and macrofauna) or increase (e.g. Gulf of Mexico; meiofauna only) compared to a global mean. Taxonomic groups also showed differences in body size trends compared to total community average (e.g. Crustacea and Bivalvia). Care must be taken when conducting these studies, as our analyses indicated that sampling method exerts a significant influence on research results. It is possible that differences in physiology, lifestyle and life history characteristics result in different responses to an increase in depth and/or decrease in food availability. This will have implications in the future as food supply to the deep sea changes as a result of climate change (e.g. increased ocean stratification at low to mid latitudes and reduced sea ice duration at high latitudes).
Collapse
Affiliation(s)
| | - Alex D Rogers
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
McClain CR, Balk MA, Benfield MC, Branch TA, Chen C, Cosgrove J, Dove ADM, Gaskins L, Helm RR, Hochberg FG, Lee FB, Marshall A, McMurray SE, Schanche C, Stone SN, Thaler AD. Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ 2015; 3:e715. [PMID: 25649000 PMCID: PMC4304853 DOI: 10.7717/peerj.715] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022] Open
Abstract
What are the greatest sizes that the largest marine megafauna obtain? This is a simple question with a difficult and complex answer. Many of the largest-sized species occur in the world’s oceans. For many of these, rarity, remoteness, and quite simply the logistics of measuring these giants has made obtaining accurate size measurements difficult. Inaccurate reports of maximum sizes run rampant through the scientific literature and popular media. Moreover, how intraspecific variation in the body sizes of these animals relates to sex, population structure, the environment, and interactions with humans remains underappreciated. Here, we review and analyze body size for 25 ocean giants ranging across the animal kingdom. For each taxon we document body size for the largest known marine species of several clades. We also analyze intraspecific variation and identify the largest known individuals for each species. Where data allows, we analyze spatial and temporal intraspecific size variation. We also provide allometric scaling equations between different size measurements as resources to other researchers. In some cases, the lack of data prevents us from fully examining these topics and instead we specifically highlight these deficiencies and the barriers that exist for data collection. Overall, we found considerable variability in intraspecific size distributions from strongly left- to strongly right-skewed. We provide several allometric equations that allow for estimation of total lengths and weights from more easily obtained measurements. In several cases, we also quantify considerable geographic variation and decreases in size likely attributed to humans.
Collapse
Affiliation(s)
- Craig R McClain
- National Evolutionary Synthesis Center , Durham, NC , USA ; Department of Biology, Duke University , Durham, NC , USA
| | - Meghan A Balk
- Department of Biology, University of New Mexico , Albuquerque, NM , USA
| | - Mark C Benfield
- Department of Oceanography and Coastal Sciences, Louisiana State University , Baton Rouge, LA , USA
| | - Trevor A Branch
- School of Aquatic & Fishery Sciences, University of Washington , Seattle, WA , USA
| | - Catherine Chen
- Department of Biology, Duke University , Durham, NC , USA
| | - James Cosgrove
- Natural History Section, Royal British Columbia Museum , Victoria, BC , Canada
| | | | - Leo Gaskins
- Department of Biology, Duke University , Durham, NC , USA
| | - Rebecca R Helm
- Department of Ecology and Evolutionary Biology, Brown University , Providence, RI , USA
| | - Frederick G Hochberg
- Department of Invertebrate Zoology, Santa Barbara Museum of Natural History , Santa Barbara, CA , USA
| | - Frank B Lee
- Department of Biology, Duke University , Durham, NC , USA
| | | | - Steven E McMurray
- Department of Biology and Marine Biology, University of North Carolina Wilmington , Wilmington, NC , USA
| | | | - Shane N Stone
- Department of Biology, Duke University , Durham, NC , USA
| | - Andrew D Thaler
- Blackbeard Biologic: Science and Environmental Advisors , Vallejo, CA , USA
| |
Collapse
|