1
|
Kamble NS, Thomas S, Madaan T, Ehsani N, Sange S, Tucker K, Muhumure A, Kunkler S, Kotagiri N. Engineered bacteria as an orally administered anti-viral treatment and immunization system. Gut Microbes 2025; 17:2500056. [PMID: 40340796 PMCID: PMC12064065 DOI: 10.1080/19490976.2025.2500056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/05/2025] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
The emergence of new viral pathogens necessitates innovative antiviral therapies and vaccines. Traditional approaches, such as monoclonal antibodies and vaccines, are often hindered by resistance, limited effectiveness, and high costs. Here, we develop an engineered probiotic-based antiviral platform using Escherichia coli Nissle 1917 (EcN), capable of providing both mucosal and systemic immunity via oral administration. EcN was engineered to display anti-spike nanobodies or express the Spike-Receptor Binding Domain on its surface. Our findings reveal that EcN with nanobodies effectively inhibits the interaction between spike protein-expressing pseudoviruses and the ACE2 receptor. Furthermore, we observed the translocation of nanobodies to distant organs, facilitated by outer membrane vesicles (OMVs). The oral administration of EcN expressing spike proteins induced a robust immune response characterized by the production of both IgG and IgA, antibodies that blocked the pseudovirus-ACE2 interaction. While SARS-CoV-2 served as a model, this versatile probiotic platform holds potential for developing customizable biotherapeutics against a wide range of emerging pathogens such as influenza virus or respiratory syncytial virus (RSV) by engineering EcN to express viral surface protein or neutralizing nanobodies demonstrating its versatility as a next-generation mucosal vaccine strategy.
Collapse
Affiliation(s)
- Nitin S. Kamble
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Shindu Thomas
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Tushar Madaan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Nadia Ehsani
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Saqib Sange
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Kiersten Tucker
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Alexis Muhumure
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Sarah Kunkler
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Herzog MKM, Peters A, Shayya N, Cazzaniga M, Kaka Bra K, Arora T, Barthel M, Gül E, Maurer L, Kiefer P, Christen P, Endhardt K, Vorholt JA, Frankel G, Heimesaat MM, Bereswill S, Gahan CGM, Claesson MJ, Domingo-Almenara X, Hardt WD. Comparing Campylobacter jejuni to three other enteric pathogens in OligoMM 12 mice reveals pathogen-specific host and microbiota responses. Gut Microbes 2025; 17:2447832. [PMID: 39835346 DOI: 10.1080/19490976.2024.2447832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Campylobacter jejuni, non-typhoidal Salmonella spp., Listeria monocytogenes and enteropathogenic/enterohemorrhagic Escherichia coli (EPEC/EHEC) are leading causes of food-borne illness worldwide. Citrobacter rodentium has been used to model EPEC and EHEC infection in mice. The gut microbiome is well-known to affect gut colonization and host responses to many food-borne pathogens. Recent progress has established gnotobiotic mice as valuable models to study how microbiota affect the enteric infections by S. Typhimurium, C. rodentium and L. monocytogenes. However, for C. jejuni, we are still lacking a suitable gnotobiotic mouse model. Moreover, the limited comparability of data across laboratories is often negatively affected by variations between different research facilities or murine microbiotas. In this study, we applied the standardized gnotobiotic OligoMM12 microbiota mouse model and compared the infections in the same facility. We provide evidence of robust colonization and significant pathological changes in OligoMM12 mice following infection with these pathogens. Moreover, we offer insights into pathogen-specific host responses and metabolite signatures, highlighting the advantages of a standardized mouse model for direct comparisons of factors influencing the pathogenesis of major food-borne pathogens. Notably, we reveal for the first time that C. jejuni stably colonizes OligoMM12 mice, triggering inflammation. Additionally, our comparative approach successfully identifies pathogen-specific responses, including the detection of genes uniquely associated with C. jejuni infection in humans. These findings underscore the potential of the OligoMM12 model as a versatile tool for advancing our understanding of food-borne pathogen interactions.
Collapse
Affiliation(s)
- Mathias K-M Herzog
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nizar Shayya
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Kardokh Kaka Bra
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Trisha Arora
- Omic Sciences Unit, EURECAT - Technology Centre of Catalonia, Reus, Spain
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Katharina Endhardt
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Qin T, Zhang H, Zou Z. Unveiling cell-type-specific mode of evolution in comparative single-cell expression data. J Genet Genomics 2025:S1673-8527(25)00131-6. [PMID: 40345525 DOI: 10.1016/j.jgg.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
While methodology for determining the mode of evolution in coding sequences has been well established, evaluation of adaptation events in emerging types of phenotype data needs further development. Here we propose an analysis framework (expression variance decomposition, EVaDe) for comparative single-cell expression data based on phenotypic evolution theory. After decomposing the gene expression variance into separate components, we use two strategies to identify genes exhibiting large between-taxon expression divergence and small within-cell-type expression noise in certain cell types, attributing this pattern to putative adaptive evolution. In a dataset of primate prefrontal cortex, we find that such human-specific key genes enrich with neurodevelopment-related functions, while most other genes exhibit neutral evolution patterns. Specific neuron types are found to harbor more of these key genes than other cell types, thus likely to have experienced more extensive adaptation. Reassuringly, at molecular sequence level, the key genes are significantly associated with the rapidly evolving conserved non-coding elements. An additional case analysis comparing the naked mole-rat (NMR) with the mouse suggests that innate-immunity-related genes and cell types have undergone putative expression adaptation in NMR. Overall, the EVaDe framework may effectively probe adaptive evolution mode in single-cell expression data.
Collapse
Affiliation(s)
- Tian Qin
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hongjiu Zhang
- Microsoft Canada Development Centre, Vancouver, British Columbia, V5C 1G1, Canada
| | - Zhengting Zou
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
4
|
Liu Y, Ma X, Cazzaniga M, Gahan CGM, den Besten HMW, Abee T. Nano in Micro: Novel Concepts in Foodborne Pathogen Transmission and Pathogenesis. Annu Rev Food Sci Technol 2025; 16:245-268. [PMID: 39621535 DOI: 10.1146/annurev-food-111523-121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In this article, we highlight novel components of foodborne pathogens that influence their response, physiology, adaptation, and survival in the face of diverse stresses, and consequently have implications for their transmission in the food chain and their pathogenesis. Recent insights into the role of bacteriophages/prophages, bacterial extracellular vesicles, and bacterial microcompartments, which make up the emerging field we coined as "nano in micro," are presented, together with the role of understudied food-relevant substrates in pathogen fitness and virulence. These new insights also lead to reflections on generally adopted laboratory conditions in the long-standing research field of adaptive stress response in foodborne pathogens. In addition, selected examples of the impact of diet and microbiota on intestinal colonization and host invasion are discussed. A final section on risk assessment presents an overview of tools for (kinetic) data modeling and perspectives for the implementation of information derived from whole-genome sequencing, combined with advancements in dose-response models and exposure assessments.
Collapse
Affiliation(s)
- Yue Liu
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Xuchuan Ma
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| |
Collapse
|
5
|
Zhang W, Zheng L, Xie J, Su X, Zhang M, Huang H, Schmitz-Esser S, Du S, Yang Y, Xie J, Zhang Q, Yu S, Guo Q, Wang H, Zhang L, Yang K, Hou R. The giant panda gut harbors a high diversity of lactic acid bacteria revealed by a novel culturomics pipeline. mSystems 2024; 9:e0052024. [PMID: 38920380 PMCID: PMC11265448 DOI: 10.1128/msystems.00520-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Some lactic acid bacteria (LAB) can provide significant health benefits, which are critically important for the conservation of endangered animals, such as giant pandas. However, little is known about the diversity and culturability of LAB in the giant panda gut microbiota. To understand the roles of LAB in giant panda conservation, it is critical to culture bacterial strains of interest. In this study, we established a pipeline to culture bacterial strains using enrichment of target bacteria with different liquid media and growth conditions. Then, the strains were isolated in solid media to study their functions. Using 210 samples from the culture enrichment method and 138 culture-independent samples, we obtained 1120 amplicon sequencing variants (ASVs) belonging to Lactobacillales. Out of the 1120 ASVs, 812 ASVs from the culture enrichment approach were twofold more diverse than 336 ASVs from the culture-independent approach. Many ASVs of interest were not detected in the culture-independent approach. Using this pipeline, we isolated many relevant bacterial strains and established a giant panda gut bacteria strain collection that included strains with low-abundance in culture-independent samples and included most of the giant panda LAB described by other researchers. The strain collection consisted of 60 strains representing 35 species of 12 genera. Thus, our pipeline is powerful and provides guidance in culturing gut microbiota of interest in hosts such as the giant panda.IMPORTANCECultivation is necessary to screen strains to experimentally investigate microbial traits, and to confirm the activities of novel genes through functional characterization studies. In the long-term, such work can aid in the identification of potential health benefits conferred by bacteria and this could aid in the identification of bacterial candidate strains that can be applied as probiotics. In this study, we developed a pipeline with low-cost and user-friendly culture enrichment to reveal the diversity of LAB in giant pandas. We compared the difference between culture-independent and culture enrichment methods, screened strains of interest that produced high concentrations of short-chain fatty acids (SCFAs), and we investigated the catalog of virulence factors, antibiotic resistance, butyrate and lactate synthesis genes of the strains at a genomic level. This study will provide guidance for microbiota cultivation and a foundation for future research aiming to understand the functions of specific strains.
Collapse
Affiliation(s)
- Wenping Zhang
- Key Laboratory of Monitoring Biological Diversity in Minshan Mountain of National Park of Giant Pandas at Mianyang Teachers' College of Sichuan Province, College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, Sichuan, China
| | - Lijun Zheng
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Junjin Xie
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Xiaoyan Su
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Mingchun Zhang
- China Conservation and Research Center for the Giant Panda, Chengdu, Sichuan, China
| | - He Huang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | | | - Shizhang Du
- Key Laboratory of Monitoring Biological Diversity in Minshan Mountain of National Park of Giant Pandas at Mianyang Teachers' College of Sichuan Province, College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, Sichuan, China
| | - Yu Yang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Jiqin Xie
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Qinrong Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Shuran Yu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Qiang Guo
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Hairui Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Kong Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Guo L, Liu Q, Yin X. Clostridiales in the Gut Against Listeria monocytogenes Infection Through Growth Inhibition. Foodborne Pathog Dis 2024; 21:248-256. [PMID: 38150235 DOI: 10.1089/fpd.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Listeria monocytogenes (Lm) mainly infect pregnant women, children, the elderly, and other populations with low immunity causing septicemia and meningitis. Healthy people can tolerate higher doses of Lm and only cause gastrointestinal symptoms such as abdominal pain and diarrhea after infection. Compared to the above population, healthy people have a richer and more diverse gut microbiota. In this study, we show that the microbiota in the large intestine and the feces of mice can significantly inhibit the growth of Lm compared to the microbiota in the small intestine. Bacteria larger than 1 μm in the gut microbiota play an important role in inhibiting Lm growth. 16s rRNA sequencing results show that these bacteria are mainly composed of Clostridiales under the phylum Firmicutes, including Ruminiclostridium, Butyricicoccus, Lachnoclostridium, Roseburia, Coprooccus, and Blautia. Thus, we demonstrate that there are some potential functional bacteria in the gut microbiota that can increase resistance against Lm.
Collapse
Affiliation(s)
- Liang Guo
- Zaozhuang University, Shandong, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | |
Collapse
|
7
|
Keane JM, Cazzaniga M, Gahan CG. Akkermansia muciniphila in infectious disease: A new target for this next-generation probiotic? Sci Prog 2024; 107:368504241231159. [PMID: 38490164 PMCID: PMC10943722 DOI: 10.1177/00368504241231159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The common gastrointestinal commensal Akkermansia muciniphila is a mucin-degrading bacterium that is greatly reduced in individuals consuming a high-fat diet. Increasing evidence from a variety of clinical and pre-clinical studies suggests that oral supplementation with Akkermansia can improve metabolic health and moderate systemic inflammation. We and others have demonstrated a role for Akkermansia administration in protection against infectious disease and the outcome from sepsis. Very recent studies have indicated the molecular mechanisms by which A. muciniphila may interact with the host to influence systemic immune-regulation and control of microbial pathogenesis. Here we consider recent studies which demonstrate the efficacy of this potential next-generation probiotic in animal models of Salmonella Typhimurium, Listeria monocytogenes and Clostridioides difficile as well as influenza virus and phlebovirus. The potential mechanisms by which A. muciniphila may influence local and systemic immune responses are discussed.
Collapse
Affiliation(s)
- Jonathan M. Keane
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Monica Cazzaniga
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cormac G.M. Gahan
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Cossart P. Raising a Bacterium to the Rank of a Model System: The Listeria Paradigm. Annu Rev Microbiol 2023; 77:1-22. [PMID: 37713460 DOI: 10.1146/annurev-micro-110422-112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
My scientific career has resulted from key decisions and reorientations, sometimes taken rapidly but not always, guided by discussions or collaborations with amazing individuals from whom I learnt a lot scientifically and humanly. I had never anticipated that I would accomplish so much in what appeared as terra incognita when I started to interrogate the mechanisms underlying the virulence of the bacterium Listeria monocytogenes. All this has been possible thanks to a number of talented team members who ultimately became friends.
Collapse
Affiliation(s)
- Pascale Cossart
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France;
| |
Collapse
|
9
|
Garvey SM, Emami NK, Guice JL, Sriranganathan N, Penet C, Rhoads RP, Spears JL, Dalloul RA, El-Kadi SW. The Probiotic Bacillus subtilis MB40 Improves Immunity in a Porcine Model of Listeriosis. Microorganisms 2023; 11:2110. [PMID: 37630670 PMCID: PMC10458092 DOI: 10.3390/microorganisms11082110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Probiotics for humans and direct-fed microbials for livestock are increasingly popular dietary ingredients for supporting immunity. The aim of this study was to determine the effects of dietary supplementation of Bacillus subtilis MB40 (MB40) on immunity in piglets challenged with the foodborne pathogen Listeria monocytogenes (LM). Three-week-old piglets (n = 32) were randomly assigned to four groups: (1) basal diet, (2) basal diet with LM challenge, (3) MB40-supplemented diet, and (4) MB40-supplemented diet with LM challenge. Experimental diets were provided throughout a 14-day (d) period. On d8, piglets in groups 2 and 4 were intraperitoneally inoculated with LM at 108 CFU/mL per piglet. Blood samples were collected at d1, d8, and d15 for biochemical and immune response profiling. Animals were euthanized and necropsied at d15 for liver and spleen bacterial counts and intestinal morphological analysis. At d15, LM challenge was associated with increased spleen weight (p = 0.017), greater circulating populations of neutrophils (p = 0.001) and monocytes (p = 0.008), and reduced ileal villus height to crypt depth ratio (p = 0.009), compared to non-challenged controls. MB40 supplementation reduced LM bacterial counts in the liver and spleen by 67% (p < 0.001) and 49% (p < 0.001), respectively, following the LM challenge, compared to the basal diet. MB40 supplementation was also associated with decreased circulating concentrations of monocytes (p = 0.007). Altogether, these data suggest that MB40 supplementation is a safe and well-tolerated approach to enhance immunity during systemic Listeria infection.
Collapse
Affiliation(s)
- Sean M. Garvey
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | - Nima K. Emami
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Justin L. Guice
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | | | - Christopher Penet
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | - Robert P. Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jessica L. Spears
- Department of Research and Development, BIO-CAT Microbials, LLC, Shakopee, MN 55379, USA
| | - Rami A. Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Samer W. El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Xu J, Mao F, Lu Y, Liu T, Li X, Li Y. Hepatic Transcriptomics Reveals Reduced Lipogenesis in High-Salt Diet Mice. Genes (Basel) 2023; 14:genes14050966. [PMID: 37239325 DOI: 10.3390/genes14050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
It has been demonstrated that a high salt diet (HSD) increases the risk of cardiovascular disease and metabolic dysfunction. In particular, the impact and molecular mechanisms of long-term HSD on hepatic metabolism remain largely unknown. To identify differentially expressed genes (DEGs) affecting the metabolism of liver tissues from HSD and control groups, a transcriptome analysis of liver tissues was performed in this study. As a result of the transcriptome analysis, the expression of genes related to lipid and steroid biosynthesis (such as Fasn, Scd1, and Cyp7a1) was significantly reduced in the livers of HSD mice. Additionally, several gene ontology (GO) terms have been identified as associated with metabolic processes in the liver, including the lipid metabolic process (GO: 0006629) and the steroid metabolic process (GO: 0008202). An additional quantitative RT-qPCR analysis was conducted to confirm six down-regulated genes and two up-regulated genes. Our findings provide a theoretical basis for further investigation of HSD-induced metabolic disorders.
Collapse
Affiliation(s)
- Jing Xu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fei Mao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tiemin Liu
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
11
|
Guo L, Yin X, Liu Q. Fecal microbiota transplantation reduces mouse mortality from Listeria monocytogenes infection. Microb Pathog 2023; 178:106036. [PMID: 36813004 DOI: 10.1016/j.micpath.2023.106036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Listeria monocytogenes (Lm) is a food bacterium with strong pathogenicity which causes infections via the gastrointestinal tract. Mechanisms by which gut microbiota (GM) resist microbial infections have received little attention. Eight-week-old mice were orally inoculated with wild-type Lm EGD-e and fecal microbiota transplantation (FMT) employed. GM richness and diversity of infected mice changed rapidly within 24h. Firmicutes class decreased and Bacteroidetes, Tenericutes and Ruminococcaceae increased significantly. Coprococcus, Blautia and Eubacterium also increased on the 3rd day post-infection. Moreover, GM transplanted from healthy mice reduced mortality of infected mice by approximately 32%. FMT treatment decreased production of TNFα, IFN-γ, IL-1β and IL-6 relative to PBS treatment. In summary, FMT has potential as a treatment against Lm infection and may be used for bacterial resistance management. Further work is required to elucidate the key GM effector molecules.
Collapse
Affiliation(s)
- Liang Guo
- Zaozhuang University, Shandong, 277160, China; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | | | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
12
|
Allahverdy J, Rashidi N. MicroRNAs induced by Listeria monocytogenes and their role in cells. Microb Pathog 2023; 175:105997. [PMID: 36669673 DOI: 10.1016/j.micpath.2023.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Listeria monocytogenes (Lm) causes abortions at high rates and threatens newborns' lives. Also, the elderly and immunocompromised individuals are particularly vulnerable neurologically. The bacterium exerts its pathogenesis intracellularly by manipulating cell organs. It manipulates nucleus elements, microRNAs (miRNAs), in order to increase survival and evade immunity. miRNAs are small non-coding RNAs that degrade gene expression post-transcriptionally. Any alteration to the expression of miRNAs affects various cascades in cells, especially immunity-related responses. Thus, utilizing miRNAs as a novel therapeutic agent not only restricts infection but enhances immunity reactions. This review provides an overview of miRNAs in listeriosis, their role in cells, and their prospects as therapy.
Collapse
Affiliation(s)
- Javad Allahverdy
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Niloufar Rashidi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
da Silva Barreira D, Laurent J, Lourenço J, Novion Ducassou J, Couté Y, Guzzo J, Rieu A. Membrane vesicles released by Lacticaseibacillus casei BL23 inhibit the biofilm formation of Salmonella Enteritidis. Sci Rep 2023; 13:1163. [PMID: 36670157 PMCID: PMC9859808 DOI: 10.1038/s41598-023-27959-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Biofilms represent a major concern in the food industry and healthcare. The use of probiotic bacteria and their derivatives as an alternative to conventional treatments to fight biofilm development is a promising option that has provided convincing results in the last decades. Recently, membrane vesicles (MVs) produced by probiotics have generated considerable interest due to the diversity of roles they have been associated with. However, the antimicrobial activity of probiotic MVs remains to be studied. In this work, we showed that membrane vesicles produced by Lacticaseibacillus casei BL23 (LC-MVs) exhibited strong antibiofilm activity against Salmonella enterica serovar Enteritidis (S. Enteritidis) without affecting bacterial growth. Furthermore, we found that LC-MVs affected the early stages of S. Enteritidis biofilm development and prevented attachment of bacteria to polystyrene surfaces. Importantly, LC-MVs did not impact the biomass of already established biofilms. We also demonstrated that the antibiofilm activity depended on the proteins associated with the LC-MV fraction. Finally, two peptidoglycan hydrolases (PGHs) were found to be associated with the antibiofilm activity of LC-MVs. Overall, this work allowed to identify the antibiofilm properties of LC-MVs and paved the way for the use of probiotic MVs against the development of negative biofilms.
Collapse
Affiliation(s)
- David da Silva Barreira
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Julie Laurent
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Jessica Lourenço
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Julia Novion Ducassou
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, R2048, 38000, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, R2048, 38000, Grenoble, France
| | - Jean Guzzo
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Aurélie Rieu
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France.
| |
Collapse
|
14
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Listeria monocytogenes-How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts. Pathogens 2022; 11:pathogens11121491. [PMID: 36558825 PMCID: PMC9783847 DOI: 10.3390/pathogens11121491] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Listeriosis is a serious food-borne illness, especially in susceptible populations, including children, pregnant women, and elderlies. The disease can occur in two forms: non-invasive febrile gastroenteritis and severe invasive listeriosis with septicemia, meningoencephalitis, perinatal infections, and abortion. Expression of each symptom depends on various bacterial virulence factors, immunological status of the infected person, and the number of ingested bacteria. Internalins, mainly InlA and InlB, invasins (invasin A, LAP), and other surface adhesion proteins (InlP1, InlP4) are responsible for epithelial cell binding, whereas internalin C (InlC) and actin assembly-inducing protein (ActA) are involved in cell-to-cell bacterial spread. L. monocytogenes is able to disseminate through the blood and invade diverse host organs. In persons with impaired immunity, the elderly, and pregnant women, the pathogen can also cross the blood-brain and placental barriers, which results in the invasion of the central nervous system and fetus infection, respectively. The aim of this comprehensive review is to summarize the current knowledge on the epidemiology of listeriosis and L. monocytogenes virulence mechanisms that are involved in host infection, with a special focus on their molecular and cellular aspects. We believe that all this information is crucial for a better understanding of the pathogenesis of L. monocytogenes infection.
Collapse
|
16
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|
17
|
Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium Lacticaseibacillus casei BL23. mBio 2022; 13:e0237522. [PMID: 36200778 PMCID: PMC9600169 DOI: 10.1128/mbio.02375-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of membrane vesicles (MVs) by Gram-positive bacteria has gained increasing attention over the last decade. Recently, models of vesicle formation have been proposed and involve the digestion of the cell wall by prophage-encoded or stress-induced peptidoglycan (PG) hydrolases and the inhibition of PG synthesis by β-lactam antibiotics. The impact of these mechanisms on vesicle formation is largely dependent on the strain and growth conditions. To date, no information on the production of vesicles by the lactobacilli family has been reported. Here, we aimed to characterize the MVs released by the Gram-positive bacteria Lacticaseibacillus casei BL23 and also investigated the mechanisms involved in vesicle formation. Using electron microscopy, we established that the size of the majority of L. casei BL23 vesicles ranged from 50 to 100 nm. Furthermore, we showed that the vesicles were released consistently throughout the growth of the bacteria in standard culture conditions. The protein composition of the vesicles released in the supernatant was identified and a significant number of prophage proteins was detected. Moreover, using a mutant strain harboring a defective PLE2 prophage, we were able to show that the spontaneous and mitomycin-triggered induction of the prophage PLE2 contribute to the production of MVs by L. casei BL23. Finally, we also demonstrated the influence of prophages on the membrane integrity of bacteria. Overall, our results suggest a key role of the prophage PLE2 in the production of MVs by L. casei BL23 in the absence or presence of genotoxic stress.
Collapse
|
18
|
FitzGerald J, Patel S, Eckenberger J, Guillemard E, Veiga P, Schäfer F, Walter J, Claesson MJ, Derrien M. Improved gut microbiome recovery following drug therapy is linked to abundance and replication of probiotic strains. Gut Microbes 2022; 14:2094664. [PMID: 35916669 PMCID: PMC9348039 DOI: 10.1080/19490976.2022.2094664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Probiotics have been used for decades to alleviate the negative side-effects of oral antibiotics, but our mechanistic understanding on how they work is so far incomplete. Here, we performed a metagenomic analysis of the fecal microbiota in participants who underwent a 14-d Helicobacter pylori eradication therapy with or without consumption of a multi-strain probiotic intervention (L. paracasei CNCM I-1518, L. paracasei CNCM I-3689, L. rhamnosus CNCM I-3690, and four yogurt strains) in a randomized, double-blinded, controlled clinical trial. Using a strain-level analysis for detection and metagenomic determination of replication rate, ingested strains were detected and replicated transiently in fecal samples and in the gut during and following antibiotic administration. Consumption of the fermented milk product led to a significant, although modest, improvement in the recovery of microbiota composition. Stratification of participants into two groups based on the degree to which their microbiome recovered showed i) a higher fecal abundance of the probiotic L. paracasei and L. rhamnosus strains and ii) an elevated replication rate of one strain (L. paracasei CNCMI-1518) in the recovery group. Collectively, our findings show a small but measurable benefit of a fermented milk product on microbiome recovery after antibiotics, which was linked to the detection and replication of specific probiotic strains. Such functional insight can form the basis for the development of probiotic-based intervention aimed to protect gut microbiome from drug treatments.
Collapse
Affiliation(s)
- Jamie FitzGerald
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Shriram Patel
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Julia Eckenberger
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric Guillemard
- Advanced Health & Science, Danone Nutricia Research, Palaiseau, France
| | - Patrick Veiga
- Advanced Health & Science, Danone Nutricia Research, Palaiseau, France
| | - Florent Schäfer
- Advanced Health & Science, Danone Nutricia Research, Palaiseau, France
| | - Jens Walter
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland,Marcus J Claesson School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Muriel Derrien
- Advanced Health & Science, Danone Nutricia Research, Palaiseau, France,CONTACT Muriel Derrien Advanced Health & Science, Danone Nutricia Research, RD 128, Avenue de la Vauve, Palaiseau cedexF-91767, France
| |
Collapse
|
19
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
20
|
Sarr M, Tidjani Alou M, Delerce J, Khelaifia S, Diagne N, Diallo A, Bassene H, Bréchard L, Bossi V, Mbaye B, Lagier JC, Levasseur A, Sokhna C, Million M, Raoult D. A Listeria monocytogenes clone in human breast milk associated with severe acute malnutrition in West Africa: A multicentric case-controlled study. PLoS Negl Trop Dis 2021; 15:e0009555. [PMID: 34185789 PMCID: PMC8291692 DOI: 10.1371/journal.pntd.0009555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Background Severe acute malnutrition (SAM) is a major public health problem affecting children under the age of five in many low- and middle-income countries, and its resolution would contribute towards achieving the several sustainable development goals. The etiology of SAM is pluri-factorial, including delayed maturation of the gut microbiota, suboptimal feeding practices and dysfunctional breastfeeding. The recent serendipitous detection of Listeria monocytogenes in the breast milk of Malian women, in contrast to French women, suggests a possible association with SAM. Methodology/ Principal findings To investigate the possible association of L. monocytogenes carriage in breast milk and SAM, a case-control study was performed in Senegal, with subjects recruited from two areas. Using 16S amplicon sequencing, a culture independent method, 100% (152/152) of the mothers were positive for L. monocytogenes in their breast milk while qPCR analysis gave lower recovery rates. Interestingly, after enrichment in Fraser broth and seeding on PALCALM agar, all 10 isolated strains were isolated from the milk of 10 mothers who had SAM children which also had a significantly increased relative abundance of L. monocytogenes (0.34 (SD 0.35) vs 0.05 (SD 0.07) in controls, p<0.0001). The high genomic similarity between these strains and Malian breast milk strains from a previous study supports the hypothesis of endemic clone carriage in West Africa. Moreover, the in vitro growth inhibition of L. monocytogenes using breast milk samples was obtained from only 50% of the milk of mothers who had SAM children, in contrast to control samples which systematically inhibited the growth of L. monocytogenes with a higher inhibition diameter (15.7 mm (SD 2.3) in controls versus 3.5 mm (SD 4.6) in SAM, p = 0.0001). Lactobacillus and Streptococcus isolated from the breast milk of controls inhibit L. monocytogenes in a species-dependent manner. Conclusions/Significance Our study reveals a previously unsuspected carriage of L. monocytogenes in the breast milk of West African women, which is associated with SAM. The inhibitory effect of human selected lactic acid bacterial species against L. monocytogenes might provide new therapeutic and inexpensive options to prevent and treat this neglected public health issue. Severe acute malnutrition is a global public health issue which greatly impacts childhood mortality rates. Although still not fully understood, the multi-factorial pathology of severe acute malnutrition has been associated, among other factors, with sub-optimal feeding practices (including dysfunctional breastfeeding) and an altered gut microbiota. The serendipitous detection of Listeria monocytogenes in the breast milk of Malian women has raised the possibility of its involvement in the pathogenesis of severe acute malnutrition. To investigate this possibility, the presence of L. monocytogenes was assessed in a cohort of lactating Senegalese women, both mothers of healthy children as well as those of severely malnourished children using culture-dependent and independent methods. Our study confirms the previously unsuspected presence of L. monocytogenes in the breast milk of Senegalese women, which is increased in the milk of mothers of severely malnourished children. Moreover, breast milk samples from the mothers of healthy children more frequently induced a potent inhibition of L. monocytogenes than those from the mothers of severely malnourished children. An inhibition was also achieved using potential probiotics, Lactobacillus and Streptococcus species, isolated from breast milk. Our study reveals the previously unsuspected carriage of L. monocytogenes in the breast milk of West African women, which is associated with severe acute malnutrition. The inhibitory effect of human selected lactic acid bacterial species against L. monocytogenes might provide new therapeutic and inexpensive options to prevent and treat this neglected public health issue.
Collapse
Affiliation(s)
- Marièma Sarr
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- Campus Commun UCAD-IRD of Hann, Dakar, Senegal
| | - Maryam Tidjani Alou
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Jeremy Delerce
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Saber Khelaifia
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Nafissatou Diagne
- Campus Commun UCAD-IRD of Hann, Dakar, Senegal
- Aix Marseille Univ, IRD, AP-HM, VITROME, Marseille, France
| | - Aldiouma Diallo
- Campus Commun UCAD-IRD of Hann, Dakar, Senegal
- Aix Marseille Univ, IRD, AP-HM, VITROME, Marseille, France
| | - Hubert Bassene
- Campus Commun UCAD-IRD of Hann, Dakar, Senegal
- Aix Marseille Univ, IRD, AP-HM, VITROME, Marseille, France
| | - Ludivine Bréchard
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Vincent Bossi
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Babacar Mbaye
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Jean-Christophe Lagier
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Anthony Levasseur
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Cheikh Sokhna
- Campus Commun UCAD-IRD of Hann, Dakar, Senegal
- Aix Marseille Univ, IRD, AP-HM, VITROME, Marseille, France
| | - Matthieu Million
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- * E-mail:
| |
Collapse
|
21
|
Abstract
The vaginal microbiota plays an essential role in vaginal health. The vaginas of many reproductive-age women are dominated by one of the Lactobacillus species. However, the vaginas of a large number of women are characterized by the colonization of several other anaerobes. Notably, some women with the non-Lactobacillus-dominated vaginal microbiota develop bacterial vaginosis, which has been correlated with sexually transmitted infections and other adverse outcomes. However, interactions and mechanisms linking the vaginal microbiota to host response are still under investigation. There are studies suggesting a link between human microRNAs and gut microbiota, but limited analysis has been carried out on the interplay of microRNAs and vaginal microbiota. In this study, we performed a microRNA expression array profiling on 67 vaginal samples from young Swedish women. MicroRNAs were clustered into distinct groups according to vaginal microbiota composition. Interestingly, 182 microRNAs were significantly elevated in their expression in the non-Lactobacillus-dominated community, suggesting an antagonistic relationship between Lactobacillus and microRNAs. Of the elevated microRNAs, 10 microRNAs displayed excellent diagnostic potential, visualized by receiver operating characteristics analysis. We further validated our findings in 34 independent samples where expression of top microRNA candidates strongly separated the Lactobacillus-dominated community from the non-Lactobacillus-dominated community in the vaginal microbiota. Notably, the Lactobacillus crispatus-dominated community showed the most profound differential microRNA expression compared with the non-Lactobacillus-dominated community. In conclusion, we demonstrate a strong relationship between the vaginal microbiota and numerous genital microRNAs, which may facilitate a deeper mechanistic interplay in this biological niche. IMPORTANCE Vaginal microbiota is correlated with women’s health, where a non-Lactobacillus-dominated community predisposes women to a higher risk of disease, including human papillomavirus (HPV). However, the molecular relationship between the vaginal microbiota and host is largely unexplored. In this study, we investigated a link between the vaginal microbiota and host microRNAs in a group of young women. We uncovered an inverse correlation of the expression of microRNAs with the abundance of Lactobacillus species in the vaginal microbiota. Particularly, the expression of microRNA miR-23a-3p and miR-130a-3p, displaying significantly elevated levels in non-Lactobacillus-dominated communities, predicted the bacterial composition of the vaginal microbiota in an independent validation group. Since targeting of microRNAs is explored in the clinical setting, our results warrant investigation of whether microRNA modulation could be used for treating vaginosis recurrence and vaginosis-related diseases. Conversely, commensal bacteria could be used for treating diseases with microRNA aberrations.
Collapse
|
22
|
He Y, Yang Q, Tian L, Zhang Z, Qiu L, Tao X, Wei H. Protection of surface layer protein from Enterococcus faecium WEFA23 against Listeria monocytogenes CMCC54007 infection by modulating intestinal permeability and immunity. Appl Microbiol Biotechnol 2021; 105:4269-4284. [PMID: 33990856 DOI: 10.1007/s00253-021-11240-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Enterococcus faecium WEFA23 was previously found effectively against adherence and colonization of Listeria monocytogenes CMCC54007, which might be closely related to its surface layer protein (SLP). In this study, the protective of SLP of E. faecium WEFA23 against infection of L. monocytogenes CMCC54007 was systemically investigated. In vitro assay showed that SLP actively inhibited L. monocytogenes internalization into Caco-2 cell line, with decreasing mRNA level of pro-inflammation cytokines and virulence factors and restoring destroyed intestinal barrier. In vivo assay through excluding SLP of E. faecium WEFA23 by 5 M LiCl represented that SLP increased body weight, reduced mortality and cell counts of L. monocytogenes CMCC54007 in tissues of mice. Further researches showed that SLP protected against L. monocytogenes CMCC54007 infection by modulation of intestinal permeability and immunity, namely, it decreased fluorescein isothiocyanate (FITC)-Dextran in serum, ameliorated destroyed colon structure, and increased number of goblet cells and protein level of TJ protein (Claudin-1, Occludin, and ZO-1) in colon. For immunity, SLP decreased number of CD4+ and CD8+ T cells in liver, mRNA level, and content of pro-inflammatory factors IL-6, IL-1β, IFN-γ ,TNF-α, and NO, and restored the structure of liver and spleen. Key Points•SLP of E. faecium inhibited L. monocytogenes internalization and colonization•SLP of E. faecium ameliorated host intestinal barrier dysfunction•SLP of E. faecium decreased pro-inflammatory cytokines and cells.
Collapse
Affiliation(s)
- Yao He
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Qin Yang
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Linlin Tian
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Zhihong Zhang
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, People's Republic of China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Hua Wei
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China.
| |
Collapse
|
23
|
Gradaschi V, Payaslian F, Dieterle ME, Rondón Salazar L, Urdániz E, Di Paola M, Peña Cárcamo J, Zon F, Allievi M, Sosa E, Fernandez Do Porto D, Dunne M, Goeller P, Klumpp J, Raya RR, Reyes A, Piuri M. Genome Sequence and Characterization of Lactobacillus casei Phage, vB_LcaM_Lbab1 Isolated from Raw Milk. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:57-63. [PMID: 36148441 PMCID: PMC9041484 DOI: 10.1089/phage.2020.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Introduction: Only a few Lactobacillus casei phages have so far been characterized. As several L. casei strains are part of probiotic formulations, bacteriophage outbreaks targeting these strains can lead to critical losses within the dairy industry. Materials and Methods: A new L. casei phage was isolated from raw milk obtained from a milking yard from the province of Buenos Aires. The phage genome was sequenced, annotated, and analyzed. Morphology was determined by electron microscopy and the host range was established. Results: Lactobacillus phage vB_LcaM_Lbab1 is a member of the Herelleviridae family and features a host range including L. casei/Lactobacillus paracasei and Lactobacillus kefiri strains. We further analyzed the baseplate proteins in silico and found putative carbohydrate binding modules that are responsible for host recognition in other Lactobacillus phages. Conclusions: A new Lactobacillus phage was isolated and characterized. The focus was made on its host recognition mechanism, pointing toward the development of future strategies to avoid deleterious infections in the dairy industry.
Collapse
Affiliation(s)
- Victoria Gradaschi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Florencia Payaslian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Maria Eugenia Dieterle
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Liliana Rondón Salazar
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Estefanía Urdániz
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Matias Di Paola
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - José Peña Cárcamo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fabio Zon
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Allievi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ezequiel Sosa
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Darío Fernandez Do Porto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Pauline Goeller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
24
|
Bowran K, Palmer T. Extreme genetic diversity in the type VII secretion system of Listeria monocytogenes suggests a role in bacterial antagonism. MICROBIOLOGY-SGM 2021; 167. [PMID: 33599605 DOI: 10.1099/mic.0.001034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The type VII protein secretion system (T7SS) has been characterized in members of the phyla Actinobacteria and Firmicutes. In mycobacteria the T7SS is intimately linked with pathogenesis and intracellular survival, while in Firmicutes there is mounting evidence that the system plays a key role in interbacterial competition. A conserved membrane-bound ATPase protein, termed EssC in Staphylococcus aureus, is a critical component of the T7SS and is the primary receptor for substrate proteins. Genetic diversity in the essC gene of S. aureus has previously been reported, resulting in four protein variants that are linked to specific subsets of substrates. Here we have analysed the genetic diversity of the T7SS-encoding genes and substrate proteins across Listeria monocytogenes genome sequences. We find that there are seven EssC variants across the species that differ in their C-terminal region; each variant is correlated with a distinct subset of genes for likely substrate and accessory proteins. EssC1 is most common and is exclusively linked with polymorphic toxins harbouring a YeeF domain, whereas EssC5, EssC6 and EssC7 variants all code for an LXG domain protein adjacent to essC. Some essC1 variant strains encode an additional, truncated essC at their T7 gene cluster. The truncated EssC, comprising only the C-terminal half of the protein, matches the sequence of either EssC2, EssC3 or EssC4. In each case the truncated gene directly precedes a cluster of substrate/accessory protein genes acquired from the corresponding strain. Across L. monocytogenes strains we identified 40 LXG domain proteins, most of which are encoded at conserved genomic loci. These loci also harbour genes encoding immunity proteins and sometimes additional toxin fragments. Collectively our findings strongly suggest that the T7SS plays an important role in bacterial antagonism in this species.
Collapse
Affiliation(s)
- Kieran Bowran
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
25
|
Riahi Rad Z, Riahi Rad Z, Goudarzi H, Goudarzi M, Mahmoudi M, Yasbolaghi Sharahi J, Hashemi A. MicroRNAs in the interaction between host-bacterial pathogens: A new perspective. J Cell Physiol 2021; 236:6249-6270. [PMID: 33599300 DOI: 10.1002/jcp.30333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Gene expression regulation plays a critical role in host-pathogen interactions, and RNAs function is essential in this process. miRNAs are small noncoding, endogenous RNA fragments that affect stability and/or translation of mRNAs, act as major posttranscriptional regulators of gene expression. miRNA is involved in regulating many biological or pathological processes through targeting specific mRNAs, including development, differentiation, apoptosis, cell cycle, cytoskeleton organization, and autophagy. Deregulated microRNA expression is associated with many types of diseases, including cancers, immune disturbances, and infection. miRNAs are a vital section of the host immune response to bacterial-made infection. Bacterial pathogens suppress host miRNA expression for their benefit, promoting survival, replication, and persistence. The role played through miRNAs in interaction with host-bacterial pathogen has been extensively studied in the past 10 years, and knowledge about these staggering molecules' function can clarify the complicated and ambiguous interactions of the host-bacterial pathogen. Here, we review how pathogens prevent the host miRNA expression. We briefly discuss emerging themes in this field, including their role as biomarkers in identifying bacterial infections, as part of the gut microbiota, on host miRNA expression.
Collapse
Affiliation(s)
- Zohreh Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Diagnostic and Prognostic Role of miR-192 in Different Cancers: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8851035. [PMID: 33614788 PMCID: PMC7878092 DOI: 10.1155/2021/8851035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Introduction It has been shown that miR-192 is abnormally expressed in a variety of cancer types and participates in different kinds of signaling pathways. The role of miR-192 in the diagnosis and prognosis of cancer has not been verified. This article is aimed at exploring the diagnostic and prognostic value of miR-192 through a systematic review and meta-analysis. Methods A systematic search was performed through PubMed, Embase, Web of Science, and Cochrane Library databases up to June 16, 2020. A total of 16 studies were enrolled in the meta-analyses, of which 11 articles were used for diagnostic meta-analysis and 5 articles were used for prognostic meta-analysis. The values of sensitivity and specificity using miR-192 expression as a diagnostic tool were pooled in the diagnostic meta-analysis. The hazard ratios (HRs) of overall survival (OS) with 95 confidence intervals (CIs) were extracted from the studies, and pooled HRs were evaluated in the prognostic meta-analysis. Eleven studies including 667 cancer patients and 514 controls met the eligibility criteria for the diagnostic meta-analysis. Five studies including 166 patients with high miR-192 expression and 236 patients with low miR-192 expression met the eligibility criteria for the prognostic meta-analysis. Results The overall diagnostic accuracy was as follows: sensitivity 0.79 (95%CI = 0.75-0.82), specificity 0.74 (95%CI = 0.64-0.82), positive likelihood ratio 3.03 (95%CI = 2.11-4.34), negative likelihood ratio 0.29 (95%CI = 0.23-0.37), diagnostic odds ratio 10.50 (95%CI = 5.89-18.73), and area under the curve ratio (AUC) 0.82 (95%CI = 0.78-0.85). The overall prognostic analysis showed that high expression of miR-192 in patients was associated with positive survival (HR = 0.62, 95%CI : 0.41-0.93, p = 0.020). Conclusion Our results revealed that miR-192 was a potential biomarker with good sensitivity and specificity in cancers. Moreover, highly expressed miR-192 predicted a good prognosis for patients.
Collapse
|
27
|
Ryan VE, Bailey TW, Liu D, Vemulapalli T, Cooper B, Cox AD, Bhunia AK. Listeria adhesion protein-expressing bioengineered probiotics prevent fetoplacental transmission of Listeria monocytogenes in a pregnant Guinea pig model. Microb Pathog 2021; 151:104752. [PMID: 33484805 DOI: 10.1016/j.micpath.2021.104752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Pregnancy is a high-risk factor for foodborne pathogen Listeria monocytogenes (Lm), which causes abortion, premature birth, or stillbirth. The primary route of Lm transmission is oral hence intestinal epithelial barrier crossing is a prerequisite for systemic spread. Intestinal barrier crossing, in part, is attributed to the interaction of Listeria adhesion protein (LAP) with its cognate receptor, Hsp60. In a recent study, we showed that oral-dosing of bioengineered Lactobacillus caseiprobiotic (BLP) expressing the LAP protected nonpregnant mice from lethal infection; however, its ability to prevent listeriosis during pregnancy is not known. Therefore, we investigated whether BLP could prevent fetoplacental transmission of Lm in a pregnant guinea pig model. After 14 consecutive days on probiotic (~109 CFU/ml in drinking water), pregnant guinea pigs (gestational days 24-28) were orally challenged with Lm (9 × 108-2.5 × 109 CFU/animal) and were euthanized 72 h post-infection. Maternal mesenteric lymph node (MLN), liver, spleen, lungs, blood, and placenta, and fetal liver were analyzed for the presence/absence of Lm. All tissues/organs from Lm-challenged naïve dams and fetuses were Lm positive. Similar tissue distribution was also seen in guinea pigs that received wild-type Lactobacillus casei (LbcWT). Remarkably, Lm was absent in the maternal blood, kidney, lungs, and placenta, and fetal liver from the BLP-fed group even though the Lm was present in the maternal liver, spleen, and MLN. BLP feeding also suppressed Lm-induced inflammatory response in mothers. These data highlight the potential for the prevention of fetoplacental transmission of Lm by LAP-expressing BLP during pregnancy.
Collapse
Affiliation(s)
- Valerie E Ryan
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Taylor W Bailey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA
| | - Tracy Vemulapalli
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Bruce Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
28
|
Studies on host-foodborne bacteria in intestinal three-dimensional cell culture model indicate possible mechanisms of interaction. World J Microbiol Biotechnol 2021; 37:31. [PMID: 33458785 DOI: 10.1007/s11274-021-02996-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/05/2021] [Indexed: 01/09/2023]
Abstract
Spheroids of intestinal cells (Caco-2) were used to evaluate the adhesion/invasion ability of Listeria monocytogenes (pathogen) and Lactobacillus sakei 1 (potential probiotic). Besides, transcriptomic analyses of Caco-2 cells in three dimensional cultures were done, with the aim of revealing possible host-foodborne bacteria interactions. Result of adhesion assay for L. monocytogenes in Caco-2 spheroids was 22.86 ± 0.33%, but it was stimulated in acidic pH (4.5) and by the presence of 2% sucrose (respectively, 32.56 ± 1.35% and 33.25 ± 1.26%). Conversely, the invasion rate of L. monocytogenes was lower at pH 4.5, in comparison with non-stressed controls (18.89 ± 1.05% and 58.65 ± 0.30%, respectively). L. sakei 1 adhered to Caco-2 tridimensional cell culture (27.30 ± 2.64%), with no invasiveness. There were 19 and 21 genes down and upregulated, respectively, in tridimensional Caco-2 cells, upon infection with L. monocytogenes, which involved immunity, apoptosis; cytoprotective responses, cell signalling-regulatory pathways. It was evidenced despite activation or deactivation of several pathways in intestinal cells to counteract infection, the pathogen was able to hijack many host defense mechanisms. On the other hand, the probiotic candidate L. sakei 1 was correlated with decreased transcription of two genes in Caco-2 cells, though it stimulated the expression of 14 others, with diverse roles in immunity, apoptosis, cytoprotective response and cell signalling-regulatory pathways. Our data suggest the use of tridimensional cell culture to mimic the intestinal epithelium is a good model for gathering broad information on the putative mechanisms of interaction between host and bacteria of importance for food safety, which can serve as a basis for further in-depth investigation.
Collapse
|
29
|
Drolia R, Amalaradjou MAR, Ryan V, Tenguria S, Liu D, Bai X, Xu L, Singh AK, Cox AD, Bernal-Crespo V, Schaber JA, Applegate BM, Vemulapalli R, Bhunia AK. Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat Commun 2020; 11:6344. [PMID: 33311493 PMCID: PMC7732855 DOI: 10.1038/s41467-020-20200-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Probiotic bacteria reduce the intestinal colonization of pathogens. Yet, their use in preventing fatal infection caused by foodborne Listeria monocytogenes (Lm), is inconsistent. Here, we bioengineered Lactobacillus probiotics (BLP) to express the Listeria adhesion protein (LAP) from a non-pathogenic Listeria (L. innocua) and a pathogenic Listeria (Lm) on the surface of Lactobacillus casei. The BLP strains colonize the intestine, reduce Lm mucosal colonization and systemic dissemination, and protect mice from lethal infection. The BLP competitively excludes Lm by occupying the surface presented LAP receptor, heat shock protein 60 and ameliorates the Lm-induced intestinal barrier dysfunction by blocking the nuclear factor-κB and myosin light chain kinase-mediated redistribution of the major epithelial junctional proteins. Additionally, the BLP increases intestinal immunomodulatory functions by recruiting FOXP3+T cells, CD11c+ dendritic cells and natural killer cells. Engineering a probiotic strain with an adhesion protein from a non-pathogenic bacterium provides a new paradigm to exclude pathogens and amplify their inherent health benefits.
Collapse
Affiliation(s)
- Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Mary Anne Roshni Amalaradjou
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Valerie Ryan
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Atul K Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Victor Bernal-Crespo
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - James A Schaber
- Bindley Bioscience Research Center, Purdue University, West Lafayette, IN, USA
| | - Bruce M Applegate
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
30
|
Curing piglets from diarrhea and preparation of a healthy microbiome with Bacillus treatment for industrial animal breeding. Sci Rep 2020; 10:19476. [PMID: 33173074 PMCID: PMC7656456 DOI: 10.1038/s41598-020-75207-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
High-throughput farming of animals for an essential purpose such as large scale health and production of hogs is a challenge for the food industry in the modern world. The problem is that the breeding of livestock for fast growth or high yields of meat is often associated with illness and microbial infection that develop under the breeding conditions. Piglet diarrhea is most common pig disease, leading to heavy mortality and thereby economic loss. We proved that chemical drugs can relieve the symptoms of diarrhea in ill piglets, but they do not treat the underlying cause, i.e. significantly altered bacterial gut flora. Using Illumina sequencing of fecal DNA, we showed that the bacterial gut flora of piglets treated with antibiotics remain close to the ill conditions. However, using Illumina sequencing of fecal DNA from piglets treated with a specific Bacillus (Bacillus subtilis Y-15, B. amyloliquefaciens DN6502 and B. licheniformis SDZD02) demonstrated the efficiency of natural bioproducts not only on curing diarrhea, but also on beneficial bacteria to re-establish in the piglet gut. We therefore propose a new natural “medicine” to be explored by the world farm animal agriculture industry, particularly for sustainable improvement of swine livestock production and health.
Collapse
|
31
|
van Zyl WF, Deane SM, Dicks LM. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 2020; 12:1831339. [PMID: 33112695 PMCID: PMC7595611 DOI: 10.1080/19490976.2020.1831339] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) diseases, and in particular those caused by bacterial infections, are a major cause of morbidity and mortality worldwide. Treatment is becoming increasingly difficult due to the increase in number of species that have developed resistance to antibiotics. Probiotic lactic acid bacteria (LAB) have considerable potential as alternatives to antibiotics, both in prophylactic and therapeutic applications. Several studies have documented a reduction, or prevention, of GI diseases by probiotic bacteria. Since the activities of probiotic bacteria are closely linked with conditions in the host's GI-tract (GIT) and changes in the population of enteric microorganisms, a deeper understanding of gut-microbial interactions is required in the selection of the most suitable probiotic. This necessitates a deeper understanding of the molecular capabilities of probiotic bacteria. In this review, we explore how probiotic microorganisms interact with enteric pathogens in the GIT. The significance of probiotic colonization and persistence in the GIT is also addressed.
Collapse
Affiliation(s)
- Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M.T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa,CONTACT Leon M.T. Dicks; Department of Microbiology; Stellenbosch University, Stellenbosch7602, South Africa
| |
Collapse
|
32
|
Anast JM, Bobik TA, Schmitz-Esser S. The Cobalamin-Dependent Gene Cluster of Listeria monocytogenes: Implications for Virulence, Stress Response, and Food Safety. Front Microbiol 2020; 11:601816. [PMID: 33240255 PMCID: PMC7677406 DOI: 10.3389/fmicb.2020.601816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Several genes of the eut, pdu, and cob/cbi operons are responsible for the metabolism of ethanolamine (EA) and 1,2-propanediol (PD) and are essential during the pathogenic lifecycles of various enteric pathogens. Studies concerning EA and PD metabolism have primarily focused on bacterial genera from the family Enterobacteriaceae, especially the genus Salmonella. Listeria monocytogenes is a member of the Firmicutes phylum and is the causative agent of the rare but highly fatal foodborne disease listeriosis. The eut, pdu, and cob/cbi operons are organized as a single large locus collectively referred to as the cobalamin-dependent gene cluster (CDGC). The CDGC is well conserved in L. monocytogenes; however, functional characterization of the genes in this cluster and how they may contribute to Listeria virulence and stress tolerance in food production environments is highly limited. Previous work suggests that the degradation pathway of PD is essential for L. monocytogenes establishment in the gastrointestinal tract. In contrast, EA metabolism may be more important during intracellular replication. Other studies indicate that the CDGC is utilized when L. monocytogenes is exposed to food and food production relevant stress conditions. Perhaps most noteworthy, L. monocytogenes exhibits attenuated growth at cold temperatures when a key EA utilization pathway gene was deleted. This review aims to summarize the current knowledge of these pathways in L. monocytogenes and their significance in virulence and stress tolerance, especially considering recent developments.
Collapse
Affiliation(s)
- Justin M Anast
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Thomas A Bobik
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
33
|
Safety and functional enrichment of gut microbiome in healthy subjects consuming a multi-strain fermented milk product: a randomised controlled trial. Sci Rep 2020; 10:15974. [PMID: 32994487 PMCID: PMC7524715 DOI: 10.1038/s41598-020-72161-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
Many clinical studies have evaluated the effect of probiotics, but only a few have assessed their dose effects on gut microbiota and host. We conducted a randomized, double-blind, controlled intervention clinical trial to assess the safety (primary endpoint) of and gut microbiota response (secondary endpoint) to the daily ingestion for 4 weeks of two doses (1 or 3 bottles/day) of a fermented milk product (Test) in 96 healthy adults. The Test product is a multi-strain fermented milk product, combining yogurt strains and probiotic candidate strains Lactobacillus paracasei subsp. paracasei CNCM I-1518 and CNCM I-3689 and Lactobacillus rhamnosus CNCM I-3690. We assessed the safety of the Test product on the following parameters: adverse events, vital signs, hematological and metabolic profile, hepatic, kidney or thyroid function, inflammatory markers, bowel habits and digestive symptoms. We explored the longitudinal gut microbiota response to product consumption and dose, by 16S rRNA gene sequencing and functional contribution by shotgun metagenomics. Safety results did not show any significant difference between the Test and Control products whatever the parameters assessed, at the two doses ingested daily over a 4-week-period. Probiotic candidate strains were detected only during consumption period, and at a significantly higher level for the three strains in subjects who consumed 3 products bottles/day. The global structure of the gut microbiota as assessed by alpha and beta-diversity, was not altered by consumption of the product for four weeks. A zero-inflated beta regression model with random effects (ZIBR) identified a few bacterial genera with differential responses to test product consumption dose compared to control. Shotgun metagenomics analysis revealed a functional contribution to the gut microbiome of probiotic candidates.
Collapse
|
34
|
Bi K, Zhang X, Chen W, Diao H. MicroRNAs Regulate Intestinal Immunity and Gut Microbiota for Gastrointestinal Health: A Comprehensive Review. Genes (Basel) 2020; 11:genes11091075. [PMID: 32932716 PMCID: PMC7564790 DOI: 10.3390/genes11091075] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are small non-coding RNAs regulating gene expression at the post-transcriptional level. The regulation of microRNA expression in the gut intestine is gradually recognized as one of the crucial contributors of intestinal homeostasis and overall health. Recent studies indicated that both the microRNAs endogenous in the gut intestine and exogenous from diets could play influential roles in modulating microbial colonization and intestinal immunity. In this review, we discuss the biological functions of microRNAs in regulating intestinal homeostasis by modulating intestinal immune responses and gut microbiota. We particularly focus on addressing the microRNA-dependent communication and interactions among microRNA, gut microbiota, and intestinal immune system. Besides, we also summarize the roles of diet-derived microRNAs in host-microbiome homeostasis and their benefits on intestinal health. A better understanding of the relationships among intestinal disorders, microRNAs, and other factors influencing intestinal health can facilitate the application of microRNA-based therapeutics for gastrointestinal diseases.
Collapse
|
35
|
Differential Modulation of Listeria monocytogenes Fitness, In Vitro Virulence, and Transcription of Virulence-Associated Genes in Response to the Presence of Different Microorganisms. Appl Environ Microbiol 2020; 86:AEM.01165-20. [PMID: 32591377 DOI: 10.1128/aem.01165-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/20/2020] [Indexed: 02/03/2023] Open
Abstract
Interactions between Listeria monocytogenes and food-associated or environmental bacteria are critical not only for the growth but also for a number of key biological processes of the microorganism. In this regard, limited information exists on the impact of other microorganisms on the virulence of L. monocytogenes In this study, the growth of L. monocytogenes was evaluated in a single culture or in coculture with L. innocua, Bacillus subtilis, Lactobacillus plantarum, or Pseudomonas aeruginosa in tryptic soy broth (10°C/10 days and 37°C/24 h). Transcriptional levels of 9 key virulence genes (inlA, inlB, inlC, inlJ, sigB, prfA, hly, plcA, and plcB) and invasion efficiency and intracellular growth in Caco-2 cells were determined for L. monocytogenes following growth in mono- or coculture for 3 days at 10°C or 9 h at 37°C. The growth of L. monocytogenes was negatively affected by the presence of L. innocua and B. subtilis, while the effect of cell-to-cell contact on L. monocytogenes growth was dependent on the competing microorganism. Cocultivation affected the in vitro virulence properties of L. monocytogenes in a microorganism-specific manner, with L. innocua mainly enhancing and B. subtilis reducing the invasion of the pathogen in Caco-2 cells. Assessment of the mRNA levels of L. monocytogenes virulence genes in the presence of the four tested bacteria revealed a complex pattern in which the observed up- or downregulation was only partially correlated with growth or in vitro virulence and mainly suggested that L. monocytogenes may display a microorganism-specific transcriptional response.IMPORTANCE Listeria monocytogenes is the etiological agent of the severe foodborne disease listeriosis. Important insight regarding the physiology and the infection biology of this microorganism has been acquired in the past 20 years. However, despite the fact that L. monocytogenes coexists with various microorganisms throughout its life cycle and during transmission from the environment to foods and then to the host, there is still limited knowledge related to the impact of surrounding microorganisms on L. monocytogenes' biological functions. In this study, we showed that L. monocytogenes modulates specific biological activities (i.e., growth and virulence potential) as a response to coexisting microorganisms and differentially alters the expression of virulence-associated genes when confronted with different bacterial genera and species. Our work suggests that the interaction with different bacteria plays a key role in the survival strategies of L. monocytogenes and supports the need to incorporate biotic factors into the research conducted to identify mechanisms deployed by this organism for establishment in different environments.
Collapse
|
36
|
The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes. PLoS One 2020; 15:e0233945. [PMID: 32701964 PMCID: PMC7377500 DOI: 10.1371/journal.pone.0233945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
The survival of Listeria (L.) monocytogenes in foods and food production environments (FPE) is dependent on several genes that increase tolerance to stressors; this includes competing with intrinsic bacteria. We aimed to uncover genes that are differentially expressed (DE) in L. monocytogenes sequence type (ST) 121 strain 6179 when co-cultured with cheese rind bacteria. L. monocytogenes was cultivated in broth or on plates with either a Psychrobacter or Brevibacterium isolate from cheese rinds. RNA was extracted from co-cultures in broth after two or 12 hours and from plates after 24 and 72 hours. Broth co-cultivations with Brevibacterium or Psychrobacter yielded up to 392 and 601 DE genes, while plate co-cultivations significantly affected the expression of up to 190 and 485 L. monocytogenes genes, respectively. Notably, the transcription of virulence genes encoding the Listeria adhesion protein and Listeriolysin O were induced during plate and broth co-cultivations. The expression of several systems under the control of the global stress gene regulator, σB, increased during co-cultivation. A cobalamin-dependent gene cluster, responsible for the catabolism of ethanolamine and 1,2-propanediol, was upregulated in both broth and plate co-cultures conditions. Finally, a small non-coding (nc)RNA, Rli47, was induced after 72 hours of co-cultivation on plates and accounted for 50-90% of the total reads mapped to L. monocytogenes. A recent study has shown that Rli47 may contribute to L. monocytogenes stress survival by slowing growth during stress conditions through the suppression of branch-chained amino acid biosynthesis. We hypothesize that Rli47 may have an impactful role in the response of L. monocytogenes to co-cultivation by regulating a complex network of metabolic and virulence mechanisms.
Collapse
|
37
|
Denzer L, Schroten H, Schwerk C. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection. Int J Mol Sci 2020; 21:ijms21103730. [PMID: 32466312 PMCID: PMC7279228 DOI: 10.3390/ijms21103730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria evolved many strategies to survive and persist within host cells. Secretion of bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene expression to circumvent clearance by the host immune response. Some effectors were also shown to evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation, translation or protein stability, including mechanisms of protein activation and degradation. Finally, manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables bacterial intracellular persistence and survival. In this review, we want to highlight the divergent strategies applied by intracellular bacteria to evade host immune responses through subversion of host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or own novel enzymatic functions, characterizing their properties could help to understand the complex interactions between host and pathogen during infections. Additionally, these insights could propose potential targets for medical therapy.
Collapse
|
38
|
Behrouzi A, Ashrafian F, Mazaheri H, Lari A, Nouri M, Riazi Rad F, Hoseini Tavassol Z, Siadat SD. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microb Pathog 2020; 144:104200. [PMID: 32289465 DOI: 10.1016/j.micpath.2020.104200] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. Microbiota disruption affects the immune function, metabolism, and causes several diseases. Therefore, understanding how the microbiome is adjusted, and identifying methods for manipulating it is critical. Studies have found that there is an inverse association between MicroRNAs (miRNAs) abundance and microbe abundance. miRNAs are known to be engaged in post-transcription regulation of cell-autonomous gene expression. Recently, they have gained great attention for their proposed roles in cell-to-cell communication, and as biomarkers for human disease. Here, we review recent studies on the role of miRNAs as a component of outer membrane vesicles (OMVs) in the composition of gut microbiota and their significance in the human situation of health and diseases and discuss their effect on inflammatory responses and dysbiosis. Further, we explain how probiotics exert influence on the expression of miRNAs.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hoora Mazaheri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Matineh Nouri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Hoseini Tavassol
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Rolhion N, Chassaing B, Nahori MA, de Bodt J, Moura A, Lecuit M, Dussurget O, Bérard M, Marzorati M, Fehlner-Peach H, Littman DR, Gewirtz AT, Van de Wiele T, Cossart P. A Listeria monocytogenes Bacteriocin Can Target the Commensal Prevotella copri and Modulate Intestinal Infection. Cell Host Microbe 2020; 26:691-701.e5. [PMID: 31726031 PMCID: PMC6854461 DOI: 10.1016/j.chom.2019.10.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Understanding the role of the microbiota components in either preventing or favoring enteric infections is critical. Here, we report the discovery of a Listeria bacteriocin, Lmo2776, which limits Listeria intestinal colonization. Oral infection of conventional mice with a Δlmo2776 mutant leads to a thinner intestinal mucus layer and higher Listeria loads both in the intestinal content and deeper tissues compared to WT Listeria. This latter difference is microbiota dependent, as it is not observed in germ-free mice. Strikingly, it is phenocopied by pre-colonization of germ-free mice before Listeria infection with Prevotella copri, an abundant gut-commensal bacteria, but not with the other commensals tested. We further show that Lmo2776 targets P. copri and reduces its abundance. Together, these data unveil a role for P.copri in exacerbating intestinal infection, highlighting that pathogens such as Listeria may selectively deplete microbiota bacterial species to avoid excessive inflammation. L. monocytogenes secretes a bacteriocin (Lmo2776) homologous to the lactococcin 972 Lmo2776 controls Listeria intestinal colonization in a microbiota-dependent manner Lmo2776 targets the abundant gut commensal Prevotella copri Presence of P. copri exacerbates infection
Collapse
Affiliation(s)
- Nathalie Rolhion
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France
| | - Benoit Chassaing
- Neurosciences Institute, Georgia State University (GSU), Atlanta, GA 30303, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, GSU, Atlanta, GA 30303, USA
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France
| | - Jana de Bodt
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alexandra Moura
- Institut Pasteur, Unité Biologie des Infections, 75015 Paris, France; Inserm, U1117, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Unité Biologie des Infections, 75015 Paris, France; Inserm, U1117, 75015 Paris, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Institut Imagine, 75743 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France; Université de Paris, 75013 Paris, France
| | - Marion Bérard
- Animalerie Centrale, Department of Technology and Scientific Programmes, Institut Pasteur, 75015 Paris, France
| | - Massimo Marzorati
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Hannah Fehlner-Peach
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, GSU, Atlanta, GA 30303, USA
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France.
| |
Collapse
|
40
|
Yang J, Chen W, Xia P, Zhang W. Dynamic comparison of gut microbiota of mice infected with Shigella flexneri via two different infective routes. Exp Ther Med 2020; 19:2273-2281. [PMID: 32104294 PMCID: PMC7027338 DOI: 10.3892/etm.2020.8469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Shigella is one of the main pathogens causing diarrheal disease, and is associated with high morbidity and mortality in developing countries. Previous clinical data and animal studies have shown that the outcomes of oral and peritoneal infections of Shigella differ, and that the latter is more serious. Furthermore, a variety of pathogenic bacteria are known to cause changes in intestinal flora after infection, and the influence of Shigella infection on intestinal flora remains poorly understood. In the present study, the 16S rRNA high-throughput sequencing method was used to compare the changes in gut microbiota profiles in feces of mice infected with Shigella via two routes. In addition, the present study investigated the association between the differences in infection performance and bacterial communities. The present results suggested that the intraperitoneal route induced a distinct decrease in α-diversity in the fecal microbiota when compared to the control at a later time, while the effect of the oral route on α-diversity was not obvious. Oral infection of Shigella had a rapid and significant effect on gut microbiota, mainly causing a decreased abundance of Lactobacillus and an increased abundance of Prevotella and Escherichia/Shigella in the early stage of infection. By contrast, the effect of intraperitoneal infection on the gut microbiota was relatively slow and small. The principal coordinate analysis results suggested that the dynamic profile of gut microbiota between the two infective routes was consistent with the infection process. Probiotics, such as Lactobacillus reuteri and Faecalitalea exhibited significantly reduced abundance after Shigella infection. Collectively, the present results suggested that gut microbiota may play a pivotal role in the pathogenesis of Shigella infection. Future studies should investigate the effect of Shigella infection on the interaction between pathogenic bacteria and intestinal flora. The present results suggested that the use of probiotics may facilitate the prevention and treatment of shigellosis.
Collapse
Affiliation(s)
- Jinsong Yang
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Wei Chen
- Department for Viral Disease Control and Prevention, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian 350001, P.R. China
| | - Pinchang Xia
- Department for Viral Disease Control and Prevention, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian 350001, P.R. China
| | - Wenchang Zhang
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
41
|
Chakravarty S, Massé E. RNA-Dependent Regulation of Virulence in Pathogenic Bacteria. Front Cell Infect Microbiol 2019; 9:337. [PMID: 31649894 PMCID: PMC6794450 DOI: 10.3389/fcimb.2019.00337] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
During infection, bacterial pathogens successfully sense, respond and adapt to a myriad of harsh environments presented by the mammalian host. This exquisite level of adaptation requires a robust modulation of their physiological and metabolic features. Additionally, virulence determinants, which include host invasion, colonization and survival despite the host's immune responses and antimicrobial therapy, must be optimally orchestrated by the pathogen at all times during infection. This can only be achieved by tight coordination of gene expression. A large body of evidence implicate the prolific roles played by bacterial regulatory RNAs in mediating gene expression both at the transcriptional and post-transcriptional levels. This review describes mechanistic and regulatory aspects of bacterial regulatory RNAs and highlights how these molecules increase virulence efficiency in human pathogens. As illustrative examples, Staphylococcus aureus, Listeria monocytogenes, the uropathogenic strain of Escherichia coli, Helicobacter pylori, and Pseudomonas aeruginosa have been selected.
Collapse
Affiliation(s)
- Shubham Chakravarty
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
42
|
Wang Y, Li A, Zhang L, Waqas M, Mehmood K, Iqbal M, Muyou C, Li Z, Lian Y, Sizhu S, Li J. Probiotic potential of Lactobacillus on the intestinal microflora against Escherichia coli induced mice model through high-throughput sequencing. Microb Pathog 2019; 137:103760. [PMID: 31562897 DOI: 10.1016/j.micpath.2019.103760] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/29/2022]
Abstract
The aim of this study was to evaluate the antibacterial potential of Lactobacillus screened from Tibetan yaks on clinical symptoms and intestinal microflora in enteroinvasive Escherichia coli (EIEC) induced mice model. In vitro study, Lactobacillus reuteri (LR1) exhibited stronger resistance to acid and bile and inhibited the growth of EIEC than Lactobacillus mucosae (LM1). The mice were randomly divided into four groups i.e. the LR1 group (LR1 1 × 109 CFU/day), LM1 group (LM1 1 × 109 CFU/day), blank control group and control group. Mice in control, LR1, and LM1 groups were challenged with EIEC on day 23. The body weight in the control and LM1 groups were significantly decreased after the infection with EIEC (P < 0.05), whereas the body weight of mice in the LR1 group did not change significantly (P > 0.05). The lowest diarrhea rate was recorded in the LR1 group after infection with EIEC. The results showed that the number of pathogens in the control group was higher than that in the experimental groups. The sequence analysis and OTU classification showed that the duodenum, ileum, and cecum of mice in the LR1 group had the highest number of OTUs compared with other groups. Whereas, the diversity analysis showed that in duodenum, ileum and cecum of mice in the LR1 group had the highest abundance and diversity. The composition of intestinal microbes indicated the presence of high proportions of Firmicutes, Proteobacteria and Bacteroidetes. Heat map analysis indicated high abundance of Bdello vibrio in the duodenum of mice in the LR1 group, while many pathogens were found in the different part of intestines in the control group, such as Streptococcus, Clostridium and Pseudomonas. In conclusion, pre-supplementation of LR1 alleviate the clinical symptoms caused by E. coli, and promote a healthy gut flora.
Collapse
Affiliation(s)
- Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, 61100, Pakistan
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, 61100, Pakistan
| | - Can Muyou
- Institute of Grass Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet, 860000, PR China
| | - Zhixing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yi Lian
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Suolang Sizhu
- College of Animals Husbandry and Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, PR China.
| |
Collapse
|
43
|
Liu Q, Ni X, Wang Q, Peng Z, Niu L, Xie M, Lin Y, Zhou Y, Sun H, Pan K, Jing B, Zeng D. Investigation of Lactic Acid Bacteria Isolated from Giant Panda Feces for Potential Probiotics In Vitro. Probiotics Antimicrob Proteins 2019; 11:85-91. [PMID: 29353415 DOI: 10.1007/s12602-017-9381-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study aimed to isolate an optimal lactic acid bacterial strain from the feces of healthy giant pandas. The strain exhibited good stability at low pH and high bile salt concentrations, activity against pathogens relevant to pandas, and antibiotic susceptibility. In the current study, 25 isolates were obtained from de Man, Rogosa, and Sharpe agar. Two (E21 and G83) and eight (E1, E2, E16, E18, E21, E69, E70, and G83) isolates demonstrated good performance at pH 2.0 and bile 2% (w/v), respectively. Three isolates (G83, G88, and G90) possessed better antimicrobial effect on enterotoxigenic Escherichia coli CVCC196 (ETEC) than the rest. One isolate (G83) strongly affected Salmonella, whereas three (G83, G87, and G88) exhibited inhibitory activity against Staphylococcus aureus. All isolates were multi-drug resistant. These isolates were identified as Lactobacillus (5 isolates) and Enterococcus (20 isolates) by 16S rRNA sequencing. Virulence genes were detected in Enterococcus isolates. Isolate G83 was identified as Lactobacillus plantarum and was considered as the best probiotic candidate among all of the experimental isolates. This study provided necessary and important theoretical guidance for further experiments on G83 in vivo.
Collapse
Affiliation(s)
- Qian Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, China
| | - Zhirong Peng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, China
| | - Meiling Xie
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yicen Lin
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
44
|
Drolia R, Bhunia AK. Crossing the Intestinal Barrier via Listeria Adhesion Protein and Internalin A. Trends Microbiol 2019; 27:408-425. [PMID: 30661918 DOI: 10.1016/j.tim.2018.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/11/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022]
Abstract
The intestinal epithelial cell lining provides the first line of defense, yet foodborne pathogens such as Listeria monocytogenes can overcome this barrier; however, the underlying mechanism is not well understood. Though the host M cells in Peyer's patch and the bacterial invasion protein internalin A (InlA) are involved, L. monocytogenes can cross the gut barrier in their absence. The interaction of Listeria adhesion protein (LAP) with the host cell receptor (heat shock protein 60) disrupts the epithelial barrier, promoting bacterial translocation. InlA aids L. monocytogenes transcytosis via interaction with the E-cadherin receptor, which is facilitated by epithelial cell extrusion and goblet cell exocytosis; however, LAP-induced cell junction opening may be an alternative bacterial strategy for InlA access to E-cadherin and its translocation. Here, we summarize the strategies that L. monocytogenes employs to circumvent the intestinal epithelial barrier and compare and contrast these strategies with other enteric bacterial pathogens. Additionally, we provide implications of recent findings for food safety regulations.
Collapse
Affiliation(s)
- Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
45
|
Aguilar C, Mano M, Eulalio A. Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0002-2019. [PMID: 31152522 PMCID: PMC11026079 DOI: 10.1128/microbiolspec.bai-0002-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a well-characterized class of small noncoding RNAs that act as major posttranscriptional regulators of gene expression. Accordingly, miRNAs have been associated with a wide range of fundamental biological processes and implicated in human diseases. During the past decade, miRNAs have also been recognized for their role in the complex interplay between the host and bacterial pathogens, either as part of the host response to counteract infection or as a molecular strategy employed by bacteria to subvert host pathways for their own benefit. Importantly, the characterization of downstream miRNA targets and their underlying mechanisms of action has uncovered novel molecular factors and pathways relevant to infection. In this article, we review the current knowledge of the miRNA response to bacterial infection, focusing on different bacterial pathogens, including Salmonella enterica, Listeria monocytogenes, Mycobacterium spp., and Helicobacter pylori, among others.
Collapse
Affiliation(s)
- Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-Based Therapeutics Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- RNA & Infection Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
46
|
Allen J, Sears CL. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med 2019; 11:11. [PMID: 30803449 PMCID: PMC6388476 DOI: 10.1186/s13073-019-0621-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, the number of studies investigating the impact of the gut microbiome in colorectal cancer (CRC) has risen sharply. As a result, we now know that various microbes (and microbial communities) are found more frequently in the stool and mucosa of individuals with CRC than healthy controls, including in the primary tumors themselves, and even in distant metastases. We also know that these microbes induce tumors in various mouse models, but we know little about how they impact colon epithelial cells (CECs) directly, or about how these interactions might lead to modifications at the genetic and epigenetic levels that trigger and propagate tumor growth. Rates of CRC are increasing in younger individuals, and CRC remains the second most frequent cause of cancer-related deaths globally. Hence, a more in-depth understanding of the role that gut microbes play in CRC is needed. Here, we review recent advances in understanding the impact of gut microbes on the genome and epigenome of CECs, as it relates to CRC. Overall, numerous studies in the past few years have definitively shown that gut microbes exert distinct impacts on DNA damage, DNA methylation, chromatin structure and non-coding RNA expression in CECs. Some of the genes and pathways that are altered by gut microbes relate to CRC development, particularly those involved in cell proliferation and WNT signaling. We need to implement more standardized analysis strategies, collate data from multiple studies, and utilize CRC mouse models to better assess these effects, understand their functional relevance, and leverage this information to improve patient care.
Collapse
Affiliation(s)
- Jawara Allen
- Department of Medicine, Johns Hopkins University School of Medicine, Orleans Street, Baltimore, MD, 21231, USA
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Orleans Street, Baltimore, MD, 21231, USA. .,Bloomberg-Kimmel Institute for Immunotherapy and Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, North Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
47
|
van Zyl WF, Deane SM, Dicks LMT. Bacteriocin production and adhesion properties as mechanisms for the anti-listerial activity of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA. Benef Microbes 2019; 10:329-349. [PMID: 30773929 DOI: 10.3920/bm2018.0141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Probiotics play an important role in maintaining a healthy and stable intestinal microbiota, primarily by preventing infection. Probiotic lactic acid bacteria (LAB) are known to be inhibitory to many bacterial enteric pathogens, including antibiotic-resistant strains. Whilst the positive role that probiotics have on human physiology, specifically in the treatment or prevention of specific infectious diseases of the gastro-intestinal tract (GIT) is known, the precise mechanistic basis of these effects remains a major research goal. In this study, molecular evidence to underpin the protective and anti-listerial effect of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA against orally administered Listeria monocytogenes EGDe in the GIT of mice is provided. Bacteriocins plantaricin 423 and mundticin ST4SA, produced by L. plantarum 423 and E. mundtii ST4SA, respectively, inhibited the growth of L. monocytogenes in vitro and in vivo. Bacteriocin-negative mutants of L. plantarum 423 and E. mundtii ST4SA failed to exclude L. monocytogenes EGDe from the gastrointestinal tract (GIT) of mice. Furthermore, L. plantarum 423 and E. mundtii ST4SA failed to inhibit recombinant strains of L. monocytogenes EGDe in vivo that expressed the immunity proteins of the two bacteriocins. These results confirmed that bacteriocins plantaricin 423 and mundticin ST4SA acted as anti-infective mediators in vivo. Compared to wild type strains, mutants of L. plantarum 423 and E. mundtii ST4SA, in which the adhesion genes were knocked out, were less effective in the exclusion of L. monocytogenes EGDe from the GIT of mice. This work demonstrates the importance of bacteriocin and adhesion genes as probiotic anti-infective mechanisms.
Collapse
Affiliation(s)
- W F van Zyl
- 1 Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch 7600, South Africa
| | - S M Deane
- 1 Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch 7600, South Africa
| | - L M T Dicks
- 1 Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch 7600, South Africa
| |
Collapse
|
48
|
Riaz A, Noureen S, Liqat I, Arshad M, Arshad N. Antilisterial efficacy of Lactobacillus brevis MF179529 from cow: an in vivo evidence. Altern Ther Health Med 2019; 19:37. [PMID: 30709347 PMCID: PMC6359795 DOI: 10.1186/s12906-019-2444-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/18/2019] [Indexed: 01/14/2023]
Abstract
Background Listeria monocytogenes is an opportunistic foodborne pathogen that causes human Listeriosis and high mortality particularly in immunocompromised individuals. Pregnant women are more prone to L. monocytogenes infection resulting in abortions. In the present study, antilisterial activity of Lactobacillus brevis (LB) MF179529, a probiotic bacterial strain, was investigated in a murine model. Methods Initially a pilot study was conducted to determine the dose of L. monocytogenes required to cause symptomatic listeriosis. In the main trial, mice were divided into 4 groups. Group I was kept as negative control, group II was exposed to L. monocytogenes and maintained as positive control. Group III was fed with L. brevis only, while group IV received L. brevis for 3 days prior to L. monocytogenes infection. A volume of 200 μl of L. monocytogenes ATCC 19115 and L. brevis MF179529 bacterial suspension corresponding to cell density of 109CFU/ml were given to respective groups by intragastric route. Progress of infection was monitored for 7 days including general health scoring, listeria dispersion in organs, bacterial load in intestine and blood biochemistry were recorded on 3rd, 5th and 7th days post infection (dpi). Results Clinical listeriosis was induced by 109CFU/ml of L. monocytogenes ATCC 19115 in mice. Animals of group IV displayed minor signs of infection. L. brevis supplementation resulted in significant reduction in dispersion and propagation of L. monocytogenes in liver, spleen and intestine. L. brevis MF179529 consumption led to a significant elevation of number of lactic acid bacteria and reduction of total plate count, anaerobic count and coliform population in intestine. Moreover, total leukocyte and neutrophil counts of treated animals were similar to the negative control while positive control group displayed higher number. Safety evaluation of L. brevis was performed by monitoring general health, hematological and serological parameters of L. brevis fed and negative control group (group III and I). No significant difference in feed intake, body temperature, body weight and blood picture could be detected in L. brevis supplemented and control groups. Conclusion Our results indicate ameliorative role of L. brevis in L. monocytogenes infection and suggest that L. brevis could be used for prophylactic measure. Electronic supplementary material The online version of this article (10.1186/s12906-019-2444-5) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Las Heras V, Clooney AG, Ryan FJ, Cabrera-Rubio R, Casey PG, Hueston CM, Pinheiro J, Rudkin JK, Melgar S, Cotter PD, Hill C, Gahan CGM. Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. MICROBIOME 2019; 7:7. [PMID: 30658700 PMCID: PMC6339339 DOI: 10.1186/s40168-019-0621-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/04/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND A westernized diet comprising a high caloric intake from animal fats is known to influence the development of pathological inflammatory conditions. However, there has been relatively little focus upon the implications of such diets for the progression of infectious disease. Here, we investigated the influence of a high-fat (HF) diet upon parameters that influence Listeria monocytogenes infection in mice. RESULTS We determined that short-term administration of a HF diet increases the number of goblet cells, a known binding site for the pathogen, in the gut and also induces profound changes to the microbiota and promotes a pro-inflammatory gene expression profile in the host. Host physiological changes were concordant with significantly increased susceptibility to oral L. monocytogenes infection in mice fed a HF diet relative to low fat (LF)- or chow-fed animals. Prior to Listeria infection, short-term consumption of HF diet elevated levels of Firmicutes including Coprococcus, Butyricicoccus, Turicibacter and Clostridium XIVa species. During active infection with L. monocytogenes, microbiota changes were further exaggerated but host inflammatory responses were significantly downregulated relative to Listeria-infected LF- or chow-fed groups, suggestive of a profound tempering of the host response influenced by infection in the context of a HF diet. The effects of diet were seen beyond the gut, as a HF diet also increased the sensitivity of mice to systemic infection and altered gene expression profiles in the liver. CONCLUSIONS We adopted a systems approach to identify the effects of HF diet upon L. monocytogenes infection through analysis of host responses and microbiota changes (both pre- and post-infection). Overall, the results indicate that short-term consumption of a westernized diet has the capacity to significantly alter host susceptibility to L. monocytogenes infection concomitant with changes to the host physiological landscape. The findings suggest that diet should be a consideration when developing models that reflect human infectious disease.
Collapse
Affiliation(s)
- Vanessa Las Heras
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Feargal J Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Pat G Casey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cara M Hueston
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jorge Pinheiro
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Justine K Rudkin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
- School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
50
|
Wang Y, Li A, Jiang X, Zhang H, Mehmood K, Zhang L, Jiang J, Waqas M, Iqbal M, Li J. Probiotic Potential of Leuconostoc pseudomesenteroides and Lactobacillus Strains Isolated From Yaks. Front Microbiol 2018; 9:2987. [PMID: 30564222 PMCID: PMC6289064 DOI: 10.3389/fmicb.2018.02987] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to evaluate the antibacterial activity and safety of bacterias with probiotic potential isolated from free-ranging Tibetan yaks in high altitude regions of Tibet. For this purpose, one Leuconostoc pseudomesenteroides strain (named P1) and two Lactobacillus johnsonii and Lactobacillus mucosae strains (named LY1 and LY2), respectively, were isolated from fecal samples of Tibetan yaks. The antibacterial activity of the isolates was studied using Escherichia coli (E. coli ATCC 25922), Staphylococcus aureus (S. aureus ATCC 26112), and Salmonella enteritidis (S. enteritidis NCTC 13349) as indicator pathogens. The results showed that LY1 had high antibacterial efficacy against E. coli and S. enteritidis, while P1 had the most powerful bacteriostatic ability against S. aureus. PCR amplification showed that all the isolated strains were positive for Ent P2 (enterocin P-like bacteriocin) and exhibited a high tolerance to bile and low pH. Moreover, the safety of P1, LY1, and LY2 was determined through antibiotic resistance experiments, resistance gene testing, and hemolytic analysis while the antibacterial activity was assessed by in vitro and in vivo experiments. The LY2 strain was abandoned as a potential probiotic due to the detection of the vanA gene. The mice were fed from days 1 to 30 in six groups, the P1-1 (gavaged with P1 1 × 108 CFU/day), P1-2 (gavaged with P1 1 × 109 CFU/day), LY1-1 (gavaged with LY1 1 × 108 CFU/day), LY1-2 (gavaged with LY1 1 × 109 CFU/day), control (gavaged with an equal volume of vehicle), and blank control (gavaged with an equal volume of vehicle) groups. After 30 days, mice in the P1-1, P1-2, LY1-1, LY1-2, and control groups were intraperitoneal challenged with 1 × 108 CFU of E. coli (n = 10) in the abdomen. After 2 days of infection, the mice in the control group showed more severe damage in the liver, spleen and intestine than the mice in the P1-2 and LY1-2 groups. The mice in the P1-2 and LY1-2 groups had lower rates of diarrhea and mortality than other groups. In conclusion, bacteria with probiotic potential isolated from yaks may possibly be effective and safe antibacterial substances, providing a new treatment method to reduce the incidence of diarrhea associated with bacterial diseases in yaks.
Collapse
Affiliation(s)
- Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Three Gorges Polytechnic, Yichang, China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinhuan Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mujahid Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|