1
|
Mitra A, Gioukakis E, Mul W, Peterman EJG. Delivery of intraflagellar transport proteins to the ciliary base and assembly into trains. SCIENCE ADVANCES 2025; 11:eadr1716. [PMID: 40184459 PMCID: PMC11970479 DOI: 10.1126/sciadv.adr1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/03/2025] [Indexed: 04/06/2025]
Abstract
Anterograde intraflagellar transport (IFT) trains, composed of IFT-B, IFT-A, and BBSome subcomplexes, are responsible for transporting ciliary proteins into the cilium. How IFT subcomplexes reach the ciliary base and assemble into IFT trains is poorly understood. Here, we perform quantitative single-molecule imaging in Caenorhabditis elegans chemosensory cilia to uncover how IFT subcomplexes arrive at the base, organize in IFT trains, and enter the cilium. We find that BBSomes reach the base via diffusion where they either associate with assembling IFT trains or with the membrane surrounding the base. In contrast, IFT-B and IFT-A reach the base via directed transport most likely on vesicles that stop at distinct locations near the base. Individual subcomplexes detach from the vesicles into a diffusive pool and associate to assembling trains. Our results show that IFT-B is first incorporated into IFT trains, followed by IFT-A, and finally BBSomes, indicating that the assembly of IFT trains is a highly regulated, step-wise process.
Collapse
Affiliation(s)
| | - Evangelos Gioukakis
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wouter Mul
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Erwin J. G. Peterman
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Lacey SE, Pigino G. The intraflagellar transport cycle. Nat Rev Mol Cell Biol 2025; 26:175-192. [PMID: 39537792 DOI: 10.1038/s41580-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.
Collapse
|
3
|
Li W, Niu C, Yap YT, Li T, Zheng C, Goswami M, Kandiraju S, Dhikhirullahi O, Xu J, Zhang J, Kelly CV, Zhang Z. Two-directional trafficking of the IFT25 protein in the developing mouse sperm flagella. Biol Reprod 2025; 112:309-318. [PMID: 39561113 PMCID: PMC12032603 DOI: 10.1093/biolre/ioae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/02/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
Intraflagellar transport 25 is a component of the intraflagellar transport 25-B complex. In mice, even though this intraflagellar transport component is not required for cilia formation in somatic cells, it is essential for sperm formation. However, the intracellular localization of this protein in male germ cells is not known given no reliable antibodies are available for histologic studies, and the dynamic trafficking in the developing sperm flagella is not clear. To examine localization of the protein in male germ cells and further investigate the mechanism of intraflagellar transport in sperm formation, particularly to look into the dynamic trafficking of the protein, we generated a mouse intraflagellar transport 25-green fluorescent protein knock-in mouse model using the clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats associated protein 9 system, with the mouse intraflagellar transport 25 protein fused with a green fluorescent protein tag in the C-terminus. Three independent lines were analyzed. Western blotting using both anti-intraflagellar transport 25 and anti-green fluorescent protein antibodies showed that the intraflagellar transport 25-green fluorescent protein fusion protein was highly abundant only in the testis, which is consistent with the endogenous intraflagellar transport 25 protein. Examination of localization of the intraflagellar transport 25-green fluorescent protein in isolated germ cells revealed that the fusion protein was present in the cytoplasm of spermatocytes and round spermatids and a strong signal was present in the developing sperm flagellar. The homozygous knock-in mice had normal spermatogenesis, fertility and sperm parameters. Diffusion analysis of intraflagellar transport 25 within the developing flagellar revealed the presence of both mobile and immobile fractions as revealed by fluorescence recovery after photobleaching. Kymograph and fluorescence recovery after photobleaching analyses demonstrate the transport of intraflagellar transport 25-green fluorescent protein within the developing tail demonstrate no apparent preference for trafficking toward and away from the cell body. The speed of trafficking depends on the stage of sperm development, ranging from highly mobile unrestricted diffusion initially, mobile punctate structures in developing sperm, and immobile punctate structures in mature sperm. Our studies demonstrate that mouse intraflagellar transport 25 travels along the developing sperm flagella in two directions that might be essential for functional sperm formation.
Collapse
Affiliation(s)
- Wei Li
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Changmin Niu
- Department of Physiology, Wayne State University, Detroit, MI, USA
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Tao Li
- Department of Physiology, Wayne State University, Detroit, MI, USA
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cheng Zheng
- Department of Physiology, Wayne State University, Detroit, MI, USA
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
4
|
Barolo L, Abbriano RM, Commault AS, Padula MP, Pernice M. Proteomic analysis reveals molecular changes following genetic engineering in Chlamydomonas reinhardtii. BMC Microbiol 2024; 24:392. [PMID: 39379820 PMCID: PMC11460192 DOI: 10.1186/s12866-024-03554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Chlamydomonas reinhardtii is gaining recognition as a promising expression system for the production of recombinant proteins. However, its performance as a cellular biofactory remains suboptimal, especially with respect to consistent expression of heterologous genes. Gene silencing mechanisms, position effect, and low nuclear transgene expression are major drawbacks for recombinant protein production in this model system. To unveil the molecular changes following transgene insertion, retention, and expression in this species, we genetically engineered C. reinhardtii wild type strain 137c (strain cc-125 mt+) to express the fluorescent protein mVenus and subsequently analysed its intracellular proteome. RESULTS The obtained transgenic cell lines showed differences in abundance in more than 400 proteins, with multiple pathways altered post-transformation. Proteins involved in chromatin remodelling, translation initiation and elongation, and protein quality control and transport were found in lower abundance. On the other hand, ribosomal proteins showed higher abundance, a signal of ribosomal stress response. CONCLUSIONS These results provide new insights into the modifications of C. reinhardtii proteome after transformation, highlighting possible pathways involved in gene silencing. Moreover, this study identifies multiple protein targets for future genetic engineering approaches to improve the prospective use of C. reinhardtii as cell biofactory for industrial applications.
Collapse
Affiliation(s)
- Lorenzo Barolo
- University of Technology Sydney, Climate Change Cluster, Broadway Campus, Ultimo, Sydney, NSW, 2007, Australia.
| | - Raffaela M Abbriano
- University of Technology Sydney, Climate Change Cluster, Broadway Campus, Ultimo, Sydney, NSW, 2007, Australia
| | - Audrey S Commault
- University of Technology Sydney, Climate Change Cluster, Broadway Campus, Ultimo, Sydney, NSW, 2007, Australia
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Mathieu Pernice
- University of Technology Sydney, Climate Change Cluster, Broadway Campus, Ultimo, Sydney, NSW, 2007, Australia.
| |
Collapse
|
5
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
6
|
Rossier V, Train C, Nevers Y, Robinson-Rechavi M, Dessimoz C. Matreex: Compact and Interactive Visualization for Scalable Studies of Large Gene Families. Genome Biol Evol 2024; 16:evae100. [PMID: 38742690 PMCID: PMC11149776 DOI: 10.1093/gbe/evae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Studying gene family evolution strongly benefits from insightful visualizations. However, the ever-growing number of sequenced genomes is leading to increasingly larger gene families, which challenges existing gene tree visualizations. Indeed, most of them present users with a dilemma: display complete but intractable gene trees, or collapse subtrees, thereby hiding their children's information. Here, we introduce Matreex, a new dynamic tool to scale up the visualization of gene families. Matreex's key idea is to use "phylogenetic" profiles, which are dense representations of gene repertoires, to minimize the information loss when collapsing subtrees. We illustrate Matreex's usefulness with three biological applications. First, we demonstrate on the MutS family the power of combining gene trees and phylogenetic profiles to delve into precise evolutionary analyses of large multicopy gene families. Second, by displaying 22 intraflagellar transport gene families across 622 species cumulating 5,500 representatives, we show how Matreex can be used to automate large-scale analyses of gene presence-absence. Notably, we report for the first time the complete loss of intraflagellar transport in the myxozoan Thelohanellus kitauei. Finally, using the textbook example of visual opsins, we show Matreex's potential to create easily interpretable figures for teaching and outreach. Matreex is available from the Python Package Index (pip install Matreex) with the source code and documentation available at https://github.com/DessimozLab/matreex.
Collapse
Affiliation(s)
- Victor Rossier
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Comparative Genomics, Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Clement Train
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Yannis Nevers
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Comparative Genomics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- SIB Swiss Institute of Bioinformatics, Comparative Genomics, Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Comparative Genomics, Lausanne, Switzerland
| |
Collapse
|
7
|
Shoemaker A. Bardet-Biedl syndrome: A clinical overview focusing on diagnosis, outcomes and best-practice management. Diabetes Obes Metab 2024; 26 Suppl 2:25-33. [PMID: 38383825 DOI: 10.1111/dom.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a genetic disorder characterized by early-onset obesity, polydactyly, genital and kidney anomalies, developmental delay and vision loss due to rod-cone dystrophy. BBS is an autosomal recessive disorder with >20 implicated genes. The genotype-phenotype relationship in BBS is not clear, and there may be additional modifying factors. The underlying mechanism is dysfunction of primary cilia. In BBS, receptor trafficking in and out of the cilia is compromised, affecting multiple organ systems. Along with early-onset obesity, hyperphagia is a prominent symptom and contributes significantly to clinical morbidity and caregiver burden. While there is no cure for BBS, setmelanotide is a new pharmacotherapy approved for treatment of obesity in BBS. The differential diagnosis for BBS includes other ciliopathies, such as Alstrom syndrome, and other genetic obesity syndromes, such as Prader-Willi syndrome. Careful clinical history and genetic testing can help determine the diagnosis and a multidisciplinary team is necessary to guide clinical management.
Collapse
Affiliation(s)
- Ashley Shoemaker
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Moran AL, Louzao-Martinez L, Norris DP, Peters DJM, Blacque OE. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 2024; 20:83-100. [PMID: 37872350 DOI: 10.1038/s41581-023-00773-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Collapse
Affiliation(s)
- Ailis L Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Laura Louzao-Martinez
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Kretschmer V, Schneider S, Matthiessen PA, Reichert D, Hotaling N, Glasßer G, Lieberwirth I, Bharti K, De Cegli R, Conte I, Nandrot EF, May-Simera HL. Deletion of IFT20 exclusively in the RPE ablates primary cilia and leads to retinal degeneration. PLoS Biol 2023; 21:e3002402. [PMID: 38048369 PMCID: PMC10721183 DOI: 10.1371/journal.pbio.3002402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/14/2023] [Accepted: 10/26/2023] [Indexed: 12/06/2023] Open
Abstract
Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins.
Collapse
Affiliation(s)
- Viola Kretschmer
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Sandra Schneider
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Peter Andreas Matthiessen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Reichert
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathan Hotaling
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gunnar Glasßer
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- University of Naples “Federico II”, Naples, Italy
| | | | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
10
|
Boegholm N, Petriman NA, Loureiro‐López M, Wang J, Vela MIS, Liu B, Kanie T, Ng R, Jackson PK, Andersen JS, Lorentzen E. The IFT81-IFT74 complex acts as an unconventional RabL2 GTPase-activating protein during intraflagellar transport. EMBO J 2023; 42:e111807. [PMID: 37606072 PMCID: PMC10505919 DOI: 10.15252/embj.2022111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Cilia are important cellular organelles for signaling and motility and are constructed via intraflagellar transport (IFT). RabL2 is a small GTPase that localizes to the basal body of cilia via an interaction with the centriolar protein CEP19 before downstream association with the IFT machinery, which is followed by initiation of IFT. We reconstituted and purified RabL2 with CEP19 or IFT proteins to show that a reconstituted pentameric IFT complex containing IFT81/74 enhances the GTP hydrolysis rate of RabL2. The binding site on IFT81/74 that promotes GTP hydrolysis in RabL2 was mapped to a 70-amino-acid-long coiled-coil region of IFT81/74. We present structural models for RabL2-containing IFT complexes that we validate in vitro and in cellulo and demonstrate that Chlamydomonas IFT81/74 enhances GTP hydrolysis of human RabL2, suggesting an ancient evolutionarily conserved activity. Our results provide an architectural understanding of how RabL2 is incorporated into the IFT complex and a molecular rationale for why RabL2 dissociates from anterograde IFT trains soon after departure from the ciliary base.
Collapse
Affiliation(s)
- Niels Boegholm
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Narcis A Petriman
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Marta Loureiro‐López
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Jiaolong Wang
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | | | - Beibei Liu
- Department of Cell BiologyUniversity of Oklahoma Health Science CenterOklahomaOKUSA
| | - Tomoharu Kanie
- Department of Cell BiologyUniversity of Oklahoma Health Science CenterOklahomaOKUSA
- Baxter Laboratory, Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Jens S Andersen
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Esben Lorentzen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| |
Collapse
|
11
|
Tian X, Zhao H, Zhou J. Organization, functions, and mechanisms of the BBSome in development, ciliopathies, and beyond. eLife 2023; 12:e87623. [PMID: 37466224 DOI: 10.7554/elife.87623] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The BBSome is an octameric protein complex that regulates ciliary transport and signaling. Mutations in BBSome subunits are closely associated with ciliary defects and lead to ciliopathies, notably Bardet-Biedl syndrome. Over the past few years, there has been significant progress in elucidating the molecular organization and functions of the BBSome complex. An improved understanding of BBSome-mediated biological events and molecular mechanisms is expected to help advance the development of diagnostic and therapeutic approaches for BBSome-related diseases. Here, we review the current literature on the structural assembly, transport regulation, and molecular functions of the BBSome, emphasizing its roles in cilium-related processes. We also provide perspectives on the pathological role of the BBSome in ciliopathies as well as how these can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Ban H, Sato S, Yoshikawa S, Yamada K, Nakamura Y, Ichinomiya M, Sato N, Blanc-Mathieu R, Endo H, Kuwata A, Ogata H. Genome analysis of Parmales, the sister group of diatoms, reveals the evolutionary specialization of diatoms from phago-mixotrophs to photoautotrophs. Commun Biol 2023; 6:697. [PMID: 37420035 PMCID: PMC10328945 DOI: 10.1038/s42003-023-05002-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/31/2023] [Indexed: 07/09/2023] Open
Abstract
The order Parmales (class Bolidophyceae) is a minor group of pico-sized eukaryotic marine phytoplankton that contains species with cells surrounded by silica plates. Previous studies revealed that Parmales is a member of ochrophytes and sister to diatoms (phylum Bacillariophyta), the most successful phytoplankton group in the modern ocean. Therefore, parmalean genomes can serve as a reference to elucidate both the evolutionary events that differentiated these two lineages and the genomic basis for the ecological success of diatoms vs. the more cryptic lifestyle of parmaleans. Here, we compare the genomes of eight parmaleans and five diatoms to explore their physiological and evolutionary differences. Parmaleans are predicted to be phago-mixotrophs. By contrast, diatoms have lost genes related to phagocytosis, indicating the ecological specialization from phago-mixotrophy to photoautotrophy in their early evolution. Furthermore, diatoms show significant enrichment in gene sets involved in nutrient uptake and metabolism, including iron and silica, in comparison with parmaleans. Overall, our results suggest a strong evolutionary link between the loss of phago-mixotrophy and specialization to a silicified photoautotrophic life stage early in diatom evolution after diverging from the Parmales lineage.
Collapse
Affiliation(s)
- Hiroki Ban
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinya Sato
- Department of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-cho, Obama City, Fukui, 917-0003, Japan
| | - Shinya Yoshikawa
- Department of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-cho, Obama City, Fukui, 917-0003, Japan
| | - Kazumasa Yamada
- Department of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-cho, Obama City, Fukui, 917-0003, Japan
| | - Yoji Nakamura
- Bioinformatics and Biosciences Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fuku-ura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Mutsuo Ichinomiya
- Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto, 862-8502, Japan
| | - Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Romain Blanc-Mathieu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, IRIG, Grenoble, France
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Akira Kuwata
- Shiogama field station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 3-27-5 Shinhama-cho, Shiogama, Miyagi, Japan.
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
13
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Záhonová K, Low RS, Warren CJ, Cantoni D, Herman EK, Yiangou L, Ribeiro CA, Phanprasert Y, Brown IR, Rueckert S, Baker NL, Tachezy J, Betts EL, Gentekaki E, van der Giezen M, Clark CG, Jackson AP, Dacks JB, Tsaousis AD. Evolutionary analysis of cellular reduction and anaerobicity in the hyper-prevalent gut microbe Blastocystis. Curr Biol 2023:S0960-9822(23)00620-6. [PMID: 37267944 DOI: 10.1016/j.cub.2023.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.
Collapse
Affiliation(s)
- Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic; Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava 710 00, Czech Republic
| | - Ross S Low
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Christopher J Warren
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Diego Cantoni
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Emily K Herman
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, 2-31 General Services Building, Edmonton, AB T6G 2H1, Canada
| | - Lyto Yiangou
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Cláudia A Ribeiro
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Yasinee Phanprasert
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; School of Science, Mae Fah Luang Universit, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand
| | - Ian R Brown
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Sonja Rueckert
- School of Applied Sciences, Sighthill Campus, Room 3.B.36, Edinburgh EH11 4BN, Scotland; Faculty of Biology, AG Eukaryotische Mikrobiologie, Universitätsstrasse 5, S05 R04 H83, Essen 45141, Germany
| | - Nicola L Baker
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic
| | - Emma L Betts
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK; School of Applied Sciences, Sighthill Campus, Room 3.B.36, Edinburgh EH11 4BN, Scotland
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang Universit, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand; Gut Microbiome Research Group, Mae Fah Luang University, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand
| | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger Richard Johnsens Gate 4, 4021 Stavanger, Norway; Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - C Graham Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Andrew P Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Centre for Life's Origin and Evolution, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
15
|
Ishikawa T. Architecture of intraflagellar transport complexes. Nat Struct Mol Biol 2023; 30:570-573. [PMID: 37198269 DOI: 10.1038/s41594-023-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute Villigen, Villigen, Switzerland.
- Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Ewerling A, Maissl V, Wickstead B, May-Simera HL. Neofunctionalization of ciliary BBS proteins to nuclear roles is likely a frequent innovation across eukaryotes. iScience 2023; 26:106410. [PMID: 37034981 PMCID: PMC10074162 DOI: 10.1016/j.isci.2023.106410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The eukaryotic BBSome is a transport complex within cilia and assembled by chaperonin-like BBS proteins. Recent work indicates nuclear functions for BBS proteins in mammals, but it is unclear how common these are in extant proteins or when they evolved. We screened for BBS orthologues across a diverse set of eukaryotes, consolidated nuclear association via signal sequence predictions and permutation analysis, and validated nuclear localization in mammalian cells via fractionation and immunocytochemistry. BBS proteins are-with exceptions-conserved as a set in ciliated species. Predictions highlight five most likely nuclear proteins and suggest that nuclear roles evolved independently of nuclear access during mitosis. Nuclear localization was confirmed in human cells. These findings suggest that nuclear BBS functions are potentially not restricted to mammals, but may be a common frequently co-opted eukaryotic feature. Understanding the functional spectrum of BBS proteins will help elucidating their role in gene regulation, development, and disease.
Collapse
Affiliation(s)
- Alexander Ewerling
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vanessa Maissl
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Helen Louise May-Simera
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
17
|
Fisher WW, Hammonds AS, Weiszmann R, Booth BW, Gevirtzman L, Patton JEJ, Kubo CA, Waterston RH, Celniker SE. A modERN resource: identification of Drosophila transcription factor candidate target genes using RNAi. Genetics 2023; 223:iyad004. [PMID: 36652461 PMCID: PMC10078917 DOI: 10.1093/genetics/iyad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Transcription factors (TFs) play a key role in development and in cellular responses to the environment by activating or repressing the transcription of target genes in precise spatial and temporal patterns. In order to develop a catalog of target genes of Drosophila melanogaster TFs, the modERN consortium systematically knocked down the expression of TFs using RNAi in whole embryos followed by RNA-seq. We generated data for 45 TFs which have 18 different DNA-binding domains and are expressed in 15 of the 16 organ systems. The range of inactivation of the targeted TFs by RNAi ranged from log2fold change -3.52 to +0.49. The TFs also showed remarkable heterogeneity in the numbers of candidate target genes identified, with some generating thousands of candidates and others only tens. We present detailed analysis from five experiments, including those for three TFs that have been the focus of previous functional studies (ERR, sens, and zfh2) and two previously uncharacterized TFs (sens-2 and CG32006), as well as short vignettes for selected additional experiments to illustrate the utility of this resource. The RNA-seq datasets are available through the ENCODE DCC (http://encodeproject.org) and the Sequence Read Archive (SRA). TF and target gene expression patterns can be found here: https://insitu.fruitfly.org. These studies provide data that facilitate scientific inquiries into the functions of individual TFs in key developmental, metabolic, defensive, and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks during embryogenesis.
Collapse
Affiliation(s)
- William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ann S Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard Weiszmann
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin W Booth
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jaeda E J Patton
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Connor A Kubo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Ishikawa T. Mass-Spec, Cryo-EM and AI join forces for a close look at the transporter complex in cilia. EMBO J 2023; 42:e113010. [PMID: 36519407 PMCID: PMC9841323 DOI: 10.15252/embj.2022113010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The intraflagellar transport (IFT) complex transports components between the cytoplasm and the ciliary tip. Two studies now report on the atomic structure of IFT-B, the core of IFT, using cutting-edge technology, such as cross-linking mass spectrometry (MS), cryo-electron tomography (cryo-ET) and Alphafold2-enabled AI-based folding prediction. The 3D structure of IFT-B reveals how the 15 component proteins are arranged to stabilize this gigantic complex and suggests a dynamic interplay between the proteins.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Department of Biology and ChemistryPaul Scherrer InstituteVilligen PSISwitzerland
- Department of BiologyETH ZurichVilligen PSISwitzerland
| |
Collapse
|
19
|
Hesketh SJ, Mukhopadhyay AG, Nakamura D, Toropova K, Roberts AJ. IFT-A structure reveals carriages for membrane protein transport into cilia. Cell 2022; 185:4971-4985.e16. [PMID: 36462505 DOI: 10.1016/j.cell.2022.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
Intraflagellar transport (IFT) trains are massive molecular machines that traffic proteins between cilia and the cell body. Each IFT train is a dynamic polymer of two large complexes (IFT-A and -B) and motor proteins, posing a formidable challenge to mechanistic understanding. Here, we reconstituted the complete human IFT-A complex and obtained its structure using cryo-EM. Combined with AlphaFold prediction and genome-editing studies, our results illuminate how IFT-A polymerizes, interacts with IFT-B, and uses an array of β-propeller and TPR domains to create "carriages" of the IFT train that engage TULP adaptor proteins. We show that IFT-A⋅TULP carriages are essential for cilia localization of diverse membrane proteins, as well as ICK-the key kinase regulating IFT train turnaround. These data establish a structural link between IFT-A's distinct functions, provide a blueprint for IFT-A in the train, and shed light on how IFT evolved from a proto-coatomer ancestor.
Collapse
Affiliation(s)
- Sophie J Hesketh
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Aakash G Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Dai Nakamura
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Katerina Toropova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK.
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK.
| |
Collapse
|
20
|
Meleppattu S, Zhou H, Dai J, Gui M, Brown A. Mechanism of IFT-A polymerization into trains for ciliary transport. Cell 2022; 185:4986-4998.e12. [PMID: 36563665 PMCID: PMC9794116 DOI: 10.1016/j.cell.2022.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Intraflagellar transport (IFT) is the highly conserved process by which proteins are transported along ciliary microtubules by a train-like polymeric assembly of IFT-A and IFT-B complexes. IFT-A is sandwiched between IFT-B and the ciliary membrane, consistent with its putative role in transporting transmembrane and membrane-associated cargoes. Here, we have used single-particle analysis electron cryomicroscopy (cryo-EM) to determine structures of native IFT-A complexes. We show that subcomplex rearrangements enable IFT-A to polymerize laterally on anterograde IFT trains, revealing a cooperative assembly mechanism. Surprisingly, we discover that binding of IFT-A to IFT-B shields the preferred lipid-binding interface from the ciliary membrane but orients an interconnected network of β-propeller domains with the capacity to accommodate diverse cargoes toward the ciliary membrane. This work provides a mechanistic basis for understanding IFT-train assembly and cargo interactions.
Collapse
Affiliation(s)
- Shimi Meleppattu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Haixia Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Jin Dai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Abstract
The assembly and maintenance of most cilia and eukaryotic flagella depends on intraflagellar transport (IFT), the bidirectional movement of multi-megadalton IFT trains along the axonemal microtubules. These IFT trains function as carriers, moving ciliary proteins between the cell body and the organelle. Whereas tubulin, the principal protein of cilia, binds directly to IFT particle proteins, the transport of other ciliary proteins and complexes requires adapters that link them to the trains. Large axonemal substructures, such as radial spokes, outer dynein arms and inner dynein arms, assemble in the cell body before attaching to IFT trains, using the adapters ARMC2, ODA16 and IDA3, respectively. Ciliary import of several membrane proteins involves the putative adapter tubby-like protein 3 (TULP3), whereas membrane protein export involves the BBSome, an octameric complex that co-migrates with IFT particles. Thus, cells employ a variety of adapters, each of which is substoichiometric to the core IFT machinery, to expand the cargo range of the IFT trains. This Review summarizes the individual and shared features of the known cargo adapters and discusses their possible role in regulating the transport capacity of the IFT pathway.
Collapse
Affiliation(s)
- Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
23
|
Abstract
Eukaryotic cells possess considerable internal complexity, differentiating them from prokaryotes. Eukaryogenesis, an evolutionary transitional period culminating in the last eukaryotic common ancestor (LECA), marked the origin of the eukaryotic endomembrane system. LECA is reconstructed as possessing intracellular complexity akin to modern eukaryotes. Construction of endomembrane compartments involved three key gene families: coatomer, BAR-domain proteins, and ESCRT. Each has a distinct evolutionary origin, but of these coatomer and BAR proteins are eukaryote specific, while ESCRT has more ancient origins. We discuss the structural motifs defining these three membrane-coating complexes and suggest that compared with BAR and ESCRT, the coatomer architecture had a unique ability to be readily and considerably modified, unlocking functional diversity and enabling the development of the eukaryotic cell.
Collapse
Affiliation(s)
- Mark C. Field
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK,Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 Ceske Budejovice, Czechia,*Address corresponding to: Mark C. Field (); Michael P. Rout ()
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY10021,*Address corresponding to: Mark C. Field (); Michael P. Rout ()
| |
Collapse
|
24
|
McCafferty CL, Papoulas O, Jordan MA, Hoogerbrugge G, Nichols C, Pigino G, Taylor DW, Wallingford JB, Marcotte EM. Integrative modeling reveals the molecular architecture of the intraflagellar transport A (IFT-A) complex. eLife 2022; 11:e81977. [PMID: 36346217 PMCID: PMC9674347 DOI: 10.7554/elife.81977] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Intraflagellar transport (IFT) is a conserved process of cargo transport in cilia that is essential for development and homeostasis in organisms ranging from algae to vertebrates. In humans, variants in genes encoding subunits of the cargo-adapting IFT-A and IFT-B protein complexes are a common cause of genetic diseases known as ciliopathies. While recent progress has been made in determining the atomic structure of IFT-B, little is known of the structural biology of IFT-A. Here, we combined chemical cross-linking mass spectrometry and cryo-electron tomography with AlphaFold2-based prediction of both protein structures and interaction interfaces to model the overall architecture of the monomeric six-subunit IFT-A complex, as well as its polymeric assembly within cilia. We define monomer-monomer contacts and membrane-associated regions available for association with transported cargo, and we also use this model to provide insights into the pleiotropic nature of human ciliopathy-associated genetic variants in genes encoding IFT-A subunits. Our work demonstrates the power of integration of experimental and computational strategies both for multi-protein structure determination and for understanding the etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Gabriel Hoogerbrugge
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Candice Nichols
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | | | - David W Taylor
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| |
Collapse
|
25
|
Hou YN, Zhang YY, Wang YR, Wu ZM, Luan YX, Wei Q. IFT52 plays an essential role in sensory cilia formation and neuronal sensory function in Drosophila. INSECT SCIENCE 2022. [PMID: 36326027 DOI: 10.1111/1744-7917.13140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cilia are microtubule-based, hair-like organelles involved in sensory function or motility, playing critical roles in many physiological processes such as reproduction, organ development, and sensory perception. In insects, cilia are restricted to certain sensory neurons and sperms, being important for chemical and mechanical sensing, and fertility. Although great progress has been made regarding the mechanism of cilia assembly, the formation of insect cilia remains poorly understand, even in the insect model organism Drosophila. Intraflagellar transport (IFT) is a cilia-specific complex that traffics protein cargos bidirectionally along the ciliary axoneme and is essential for most cilia. Here we investigated the role of IFT52, a core component of IFT-B, in cilia/flagellar formation in Drosophila. We show that Drosophila IFT52 is distributed along the sensory neuronal cilia, and is essential for sensory cilia formation. Deletion of Ift52 results in severe defects in cilia-related sensory behaviors. It should be noted that IFT52 is not detected in spermatocyte cilia or sperm flagella of Drosophila. Accordingly, ift52 mutants can produce sperms with normal motility, supporting a dispensable role of IFT in Drosophila sperm flagella formation. Altogether, IFT52 is a conserved protein essential for sensory cilia formation and sensory neuronal function in insects.
Collapse
Affiliation(s)
- Ya-Nan Hou
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| | - Ying-Ying Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| | - Ya-Ru Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Zhi-Mao Wu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| | - Yun-Xia Luan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| |
Collapse
|
26
|
Deutekom ES, van Dam TJP, Snel B. Phylogenetic profiling in eukaryotes: The effect of species, orthologous group, and interactome selection on protein interaction prediction. PLoS One 2022; 17:e0251833. [PMID: 35421089 PMCID: PMC9009711 DOI: 10.1371/journal.pone.0251833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Phylogenetic profiling in eukaryotes is of continued interest to study and predict the functional relationships between proteins. This interest is likely driven by the increased number of available diverse genomes and computational methods to infer orthologies. The evaluation of phylogenetic profiles has mainly focussed on reference genome selection in prokaryotes. However, it has been proven to be challenging to obtain high prediction accuracies in eukaryotes. As part of our recent comparison of orthology inference methods for eukaryotic genomes, we observed a surprisingly high performance for predicting interacting orthologous groups. This high performance, in turn, prompted the question of what factors influence the success of phylogenetic profiling when applied to eukaryotic genomes. Here we analyse the effect of species, orthologous group and interactome selection on protein interaction prediction using phylogenetic profiles. We select species based on the diversity and quality of the genomes and compare this supervised selection with randomly generated genome subsets. We also analyse the effect on the performance of orthologous groups defined to be in the last eukaryotic common ancestor of eukaryotes to that of orthologous groups that are not. Finally, we consider the effects of reference interactome set filtering and reference interactome species. In agreement with other studies, we find an effect of genome selection based on quality, less of an effect based on genome diversity, but a more notable effect based on the amount of information contained within the genomes. Most importantly, we find it is not merely selecting the correct genomes that is important for high prediction performance. Other choices in meta parameters such as orthologous group selection, the reference species of the interaction set, and the quality of the interaction set have a much larger impact on the performance when predicting protein interactions using phylogenetic profiles. These findings shed light on the differences in reported performance amongst phylogenetic profiles approaches, and reveal on a more fundamental level for which types of protein interactions this method has most promise when applied to eukaryotes.
Collapse
Affiliation(s)
- Eva S. Deutekom
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Berend Snel
- Department of Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Lindemann CB. The flagellar germ-line hypothesis: How flagellate and ciliate gametes significantly shaped the evolution of organismal complexity. Bioessays 2021; 44:e2100143. [PMID: 34967029 DOI: 10.1002/bies.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This essay presents a hypothesis which contends that the development of organismic complexity in the eukaryotes depended extensively on propagation via flagellated and ciliated gametes. Organisms utilizing flagellate and ciliate gametes to propagate their germ line have contributed most of the organismic complexity found in the higher animals. The genes of the flagellum and the flagellar assembly system (intraflagellar transport) have played a disproportionately important role in the construction of complex tissues and organs. The hypothesis also proposes that competition between large numbers of haploid flagellated male gametes rigorously conserved the functionality of a key set of flagellar genes for more than 700 million years. This in turn has insured that a large set (>600) of highly functional cytoskeletal and signal pathway genes is always present in the lineage of organisms with flagellated or ciliated gametes to act as a dependable resource, or "toolkit," for organ elaboration.
Collapse
|
28
|
Quidwai T, Wang J, Hall EA, Petriman NA, Leng W, Kiesel P, Wells JN, Murphy LC, Keighren MA, Marsh JA, Lorentzen E, Pigino G, Mill P. A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. eLife 2021; 10:e69786. [PMID: 34734804 PMCID: PMC8754431 DOI: 10.7554/elife.69786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
Collapse
Affiliation(s)
- Tooba Quidwai
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Emma A Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Narcis A Petriman
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Human TechnopoleMilanItaly
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
29
|
Hammond M, Zoltner M, Garrigan J, Butterfield E, Varga V, Lukeš J, Field MC. The distinctive flagellar proteome of Euglena gracilis illuminates the complexities of protistan flagella adaptation. THE NEW PHYTOLOGIST 2021; 232:1323-1336. [PMID: 34292600 DOI: 10.1111/nph.17638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The eukaryotic flagellum/cilium is a prominent organelle with conserved structure and diverse functions. Euglena gracilis, a photosynthetic and highly adaptable protist, employs its flagella for both locomotion and environmental sensing. Using proteomics of isolated E. gracilis flagella we identify nearly 1700 protein groups, which challenges previous estimates of the protein complexity of motile eukaryotic flagella. We not only identified several unexpected similarities shared with mammalian flagella, including an entire glycolytic pathway and proteasome, but also document a vast array of flagella-based signal transduction components that coordinate gravitaxis and phototactic motility. By contrast, the pellicle was found to consist of > 900 protein groups, containing additional structural and signalling components. Our data identify significant adaptations within the E. gracilis flagellum, many of which are clearly linked to the highly flexible lifestyle.
Collapse
Affiliation(s)
- Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, Vestec, 252 50, Czech Republic
| | - Jack Garrigan
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Erin Butterfield
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Mark C Field
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
30
|
Baldi P, Alhassen W, Chen S, Nguyen H, Khoudari M, Alachkar A. Large-scale analysis reveals spatiotemporal circadian patterns of cilia transcriptomes in the primate brain. J Neurosci Res 2021; 99:2610-2624. [PMID: 34310750 PMCID: PMC11391745 DOI: 10.1002/jnr.24919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023]
Abstract
Cilia are dynamic subcellular systems, with core structural and functional components operating in a highly coordinated manner. Since many environmental stimuli sensed by cilia are circadian in nature, it is reasonable to speculate that genes encoding cilia structural and functional components follow rhythmic circadian patterns of expression. Using computational methods and the largest spatiotemporal gene expression atlas of primates, we identified and analyzed the circadian rhythmic expression of cilia genes across 22 primate brain areas. We found that around 73% of cilia transcripts exhibited circadian rhythmicity across at least one of 22 brain regions. In 12 brain regions, cilia transcriptomes were significantly enriched with circadian oscillating transcripts, as compared to the rest of the transcriptome. The phase of the cilia circadian transcripts deviated from the phase of the majority of the background circadian transcripts, and transcripts coding for cilia basal body components accounted for the majority of cilia circadian transcripts. In addition, adjacent or functionally connected brain nuclei had large overlapping complements of circadian cilia genes. Most remarkably, cilia circadian transcripts shared across the basal ganglia nuclei and the prefrontal cortex peaked in these structures in sequential fashion that is similar to the sequential order of activation of the basal ganglia-cortical circuitry in connection with movement coordination, albeit on completely different timescales. These findings support a role for the circadian spatiotemporal orchestration of cilia gene expression in the normal physiology of the basal ganglia-cortical circuit and motor control. Studying orchestrated cilia rhythmicity in the basal ganglia-cortical circuits and other brain circuits may help develop better functional models, and shed light on the causal effects cilia functions have on these circuits and on the regulation of movement and other behaviors.
Collapse
Affiliation(s)
- Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA, USA
| | - Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
| | - Henry Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA, USA
| | - Mohammad Khoudari
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA, USA
| | - Amal Alachkar
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
31
|
Chen S, Alhassen W, Vakil Monfared R, Vachirakorntong B, Nauli SM, Baldi P, Alachkar A. Dynamic Changes of Brain Cilia Transcriptomes across the Human Lifespan. Int J Mol Sci 2021; 22:10387. [PMID: 34638726 PMCID: PMC8509004 DOI: 10.3390/ijms221910387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
Almost all brain cells contain primary cilia, antennae-like microtubule sensory organelles, on their surface, which play critical roles in brain functions. During neurodevelopmental stages, cilia are essential for brain formation and maturation. In the adult brain, cilia play vital roles as signaling hubs that receive and transduce various signals and regulate cell-to-cell communications. These distinct roles suggest that cilia functions, and probably structures, change throughout the human lifespan. To further understand the age-dependent changes in cilia roles, we identified and analyzed age-dependent patterns of expression of cilia's structural and functional components across the human lifespan. We acquired cilia transcriptomic data for 16 brain regions from the BrainSpan Atlas and analyzed the age-dependent expression patterns using a linear regression model by calculating the regression coefficient. We found that 67% of cilia transcripts were differentially expressed genes with age (DEGAs) in at least one brain region. The age-dependent expression was region-specific, with the highest and lowest numbers of DEGAs expressed in the ventrolateral prefrontal cortex and hippocampus, respectively. The majority of cilia DEGAs displayed upregulation with age in most of the brain regions. The transcripts encoding cilia basal body components formed the majority of cilia DEGAs, and adjacent cerebral cortices exhibited large overlapping pairs of cilia DEGAs. Most remarkably, specific α/β-tubulin subunits (TUBA1A, TUBB2A, and TUBB2B) and SNAP-25 exhibited the highest rates of downregulation and upregulation, respectively, across age in almost all brain regions. α/β-tubulins and SNAP-25 expressions are known to be dysregulated in age-related neurodevelopmental and neurodegenerative disorders. Our results support a role for the high dynamics of cilia structural and functional components across the lifespan in the normal physiology of brain circuits. Furthermore, they suggest a crucial role for cilia signaling in the pathophysiological mechanisms of age-related psychiatric/neurological disorders.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Benjamin Vachirakorntong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
| | - Amal Alachkar
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| |
Collapse
|
32
|
Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat Commun 2021; 12:4973. [PMID: 34404788 PMCID: PMC8371127 DOI: 10.1038/s41467-021-25308-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living flagellated stages (zoospores) remain poorly known and their phylogenetic position is often unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and Sanchytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchytrids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids' phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages.
Collapse
|
33
|
Kops GJPL, Snel B, Tromer EC. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr Biol 2021; 30:R589-R602. [PMID: 32428500 DOI: 10.1016/j.cub.2020.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous diversity in eukaryotic life forms can ultimately be traced back to evolutionary modifications at the level of molecular networks. Deep understanding of these modifications will not only explain cellular diversity, but will also uncover different ways to execute similar processes and expose the evolutionary 'rules' that shape the molecular networks. Here, we review the evolutionary dynamics of the spindle assembly checkpoint (SAC), a signaling network that guards fidelity of chromosome segregation. We illustrate how the interpretation of divergent SAC systems in eukaryotic species is facilitated by combining detailed molecular knowledge of the SAC and extensive comparative genome analyses. Ultimately, expanding this to other core cellular systems and experimentally interrogating such systems in organisms from all major lineages may start outlining the routes to and eventual manifestation of the cellular diversity of eukaryotic life.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Diwan GD, Carlos Gonzalez-Sanchez J, Apic G, Russell RB. Next generation protein structure predictions and genetic variant interpretation. J Mol Biol 2021; 433:167180. [PMID: 34358547 DOI: 10.1016/j.jmb.2021.167180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The need to make sense of the thousands of genetic variants uncovered every day in terms of pathology or biological mechanism is acute. Many insights into how genetic changes impact protein function can be gleaned if three-dimensional structures of the associated proteins are available. The availability of a highly accurate method of predicting structures from amino acid sequences is thus potentially a great boost to those wanting to understand genetic changes. In this paper we discuss the current state of protein structures known for the human and other proteomes and how better structure predictions might impact on variant interpretation efforts. For the human proteome in particular, the state of the available structural data suggests that the impact on variant interpretation might be less than anticipated. We also discuss additional efforts in structure prediction that could further aid the understanding of genetic variants.
Collapse
Affiliation(s)
- Gaurav D Diwan
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany; Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld
| | - Juan Carlos Gonzalez-Sanchez
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany; Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld
| | - Gordana Apic
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany; Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld
| | - Robert B Russell
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany; Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld.
| |
Collapse
|
35
|
Alhassen W, Chen S, Vawter M, Robbins BK, Nguyen H, Myint TN, Saito Y, Schulmann A, Nauli SM, Civelli O, Baldi P, Alachkar A. Patterns of cilia gene dysregulations in major psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110255. [PMID: 33508383 PMCID: PMC9121176 DOI: 10.1016/j.pnpbp.2021.110255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
Primary cilia function as cells' antennas to detect and transduce external stimuli and play crucial roles in cell signaling and communication. The vast majority of cilia genes that are causally linked with ciliopathies are also associated with neurological deficits, such as cognitive impairments. Yet, the roles of cilia dysfunctions in the pathogenesis of psychiatric disorders have not been studied. Our aim is to identify patterns of cilia gene dysregulation in the four major psychiatric disorders: schizophrenia (SCZ), autism spectrum disorder (ASD), bipolar disorder (BP), and major depressive disorder (MDD). For this purpose, we acquired differentially expressed genes (DEGs) from the largest and most recent publicly available databases. We found that 42%, 24%, 17%, and 15% of brain-expressed cilia genes were significantly differentially expressed in SCZ, ASD, BP, and MDD, respectively. Several genes exhibited cross-disorder overlap, suggesting that typical cilia signaling pathways' dysfunctions determine susceptibility to more than one psychiatric disorder or may partially underlie their pathophysiology. Our study revealed that genes encoding proteins of almost all sub-cilia structural and functional compartments were dysregulated in the four psychiatric disorders. Strikingly, the genes of 75% of cilia GPCRs and 50% of the transition zone proteins were differentially expressed in SCZ. The present study is the first to draw associations between cilia and major psychiatric disorders, and is the first step toward understanding the role that cilia components play in their pathophysiological processes, which may lead to novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Wedad Alhassen
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697, USA,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, CA 92697, USA
| | - Marquis Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, USA
| | - Brianna Kay Robbins
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Henry Nguyen
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Thant Nyi Myint
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences for Life, Hiroshima University, Japan
| | - Anton Schulmann
- Human Genetics Branch, National Institute of Mental Health, BETHESDA MD 20814, USA
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Health Science Campus, Chapman University, Irvine, California 92618, USA
| | - Olivier Civelli
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA,Department of Developmental and Cell Biology, School of Biological Sciences, University of California-Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697, USA,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, CA 92697, USA
| | - Amal Alachkar
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-, Irvine, CA 92697, USA; Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
36
|
Labat-de-Hoz L, Rubio-Ramos A, Casares-Arias J, Bernabé-Rubio M, Correas I, Alonso MA. A Model for Primary Cilium Biogenesis by Polarized Epithelial Cells: Role of the Midbody Remnant and Associated Specialized Membranes. Front Cell Dev Biol 2021; 8:622918. [PMID: 33585461 PMCID: PMC7873843 DOI: 10.3389/fcell.2020.622918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are solitary, microtubule-based protrusions surrounded by a ciliary membrane equipped with selected receptors that orchestrate important signaling pathways that control cell growth, differentiation, development and homeostasis. Depending on the cell type, primary cilium assembly takes place intracellularly or at the cell surface. The intracellular route has been the focus of research on primary cilium biogenesis, whereas the route that occurs at the cell surface, which we call the "alternative" route, has been much less thoroughly characterized. In this review, based on recent experimental evidence, we present a model of primary ciliogenesis by the alternative route in which the remnant of the midbody generated upon cytokinesis acquires compact membranes, that are involved in compartmentalization of biological membranes. The midbody remnant delivers part of those membranes to the centrosome in order to assemble the ciliary membrane, thereby licensing primary cilium formation. The midbody remnant's involvement in primary cilium formation, the regulation of its inheritance by the ESCRT machinery, and the assembly of the ciliary membrane from the membranes originally associated with the remnant are discussed in the context of the literature concerning the ciliary membrane, the emerging roles of the midbody remnant, the regulation of cytokinesis, and the role of membrane compartmentalization. We also present a model of cilium emergence during evolution, and summarize the directions for future research.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Casares-Arias
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Bernabé-Rubio
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A. Alonso
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
37
|
Webb S, Mukhopadhyay AG, Roberts AJ. Intraflagellar transport trains and motors: Insights from structure. Semin Cell Dev Biol 2020; 107:82-90. [PMID: 32684327 PMCID: PMC7561706 DOI: 10.1016/j.semcdb.2020.05.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
Intraflagellar transport (IFT) sculpts the proteome of cilia and flagella; the antenna-like organelles found on the surface of virtually all human cell types. By delivering proteins to the growing ciliary tip, recycling turnover products, and selectively transporting signalling molecules, IFT has critical roles in cilia biogenesis, quality control, and signal transduction. IFT involves long polymeric arrays, termed IFT trains, which move to and from the ciliary tip under the power of the microtubule-based motor proteins kinesin-II and dynein-2. Recent top-down and bottom-up structural biology approaches are converging on the molecular architecture of the IFT train machinery. Here we review these studies, with a focus on how kinesin-II and dynein-2 assemble, attach to IFT trains, and undergo precise regulation to mediate bidirectional transport.
Collapse
Affiliation(s)
- Stephanie Webb
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Aakash G Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom.
| |
Collapse
|
38
|
Vitre B, Guesdon A, Delaval B. Non-ciliary Roles of IFT Proteins in Cell Division and Polycystic Kidney Diseases. Front Cell Dev Biol 2020; 8:578239. [PMID: 33072760 PMCID: PMC7536321 DOI: 10.3389/fcell.2020.578239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Cilia are small organelles present at the surface of most differentiated cells where they act as sensors for mechanical or biochemical stimuli. Cilia assembly and function require the Intraflagellar Transport (IFT) machinery, an intracellular transport system that functions in association with microtubules and motors. If IFT proteins have long been studied for their ciliary roles, recent evidences indicate that their functions are not restricted to the cilium. Indeed, IFT proteins are found outside the ciliary compartment where they are involved in a variety of cellular processes in association with non-ciliary motors. Recent works also provide evidence that non-ciliary roles of IFT proteins could be responsible for the development of ciliopathies related phenotypes including polycystic kidney diseases. In this review, we will discuss the interactions of IFT proteins with microtubules and motors as well as newly identified non-ciliary functions of IFT proteins, focusing on their roles in cell division. We will also discuss the potential contribution of non-ciliary IFT proteins functions to the etiology of kidney diseases.
Collapse
|
39
|
Deutekom ES, Snel B, van Dam TJP. Benchmarking orthology methods using phylogenetic patterns defined at the base of Eukaryotes. Brief Bioinform 2020; 22:5906198. [PMID: 32935832 PMCID: PMC8138875 DOI: 10.1093/bib/bbaa206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Insights into the evolution of ancestral complexes and pathways are generally achieved through careful and time-intensive manual analysis often using phylogenetic profiles of the constituent proteins. This manual analysis limits the possibility of including more protein-complex components, repeating the analyses for updated genome sets or expanding the analyses to larger scales. Automated orthology inference should allow such large-scale analyses, but substantial differences between orthologous groups generated by different approaches are observed. We evaluate orthology methods for their ability to recapitulate a number of observations that have been made with regard to genome evolution in eukaryotes. Specifically, we investigate phylogenetic profile similarity (co-occurrence of complexes), the last eukaryotic common ancestor’s gene content, pervasiveness of gene loss and the overlap with manually determined orthologous groups. Moreover, we compare the inferred orthologies to each other. We find that most orthology methods reconstruct a large last eukaryotic common ancestor, with substantial gene loss, and can predict interacting proteins reasonably well when applying phylogenetic co-occurrence. At the same time, derived orthologous groups show imperfect overlap with manually curated orthologous groups. There is no strong indication of which orthology method performs better than another on individual or all of these aspects. Counterintuitively, despite the orthology methods behaving similarly regarding large-scale evaluation, the obtained orthologous groups differ vastly from one another. Availability and implementation The data and code underlying this article are available in github and/or upon reasonable request to the corresponding author: https://github.com/ESDeutekom/ComparingOrthologies.
Collapse
Affiliation(s)
| | - Berend Snel
- Corresponding author: Berend Snel, Padualaan 8, 358CH Utrecht, The Netherlands. Tel.: +31(0)30 253 8102; E-mail:
| | | |
Collapse
|
40
|
Craft Van De Weghe J, Harris JA, Kubo T, Witman GB, Lechtreck KF. Diffusion rather than intraflagellar transport likely provides most of the tubulin required for axonemal assembly in Chlamydomonas. J Cell Sci 2020; 133:jcs.249805. [PMID: 32801124 DOI: 10.1242/jcs.249805] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Tubulin enters the cilium by diffusion and motor-based intraflagellar transport (IFT). However, the respective contribution of each route in providing tubulin for axonemal assembly remains unknown. Using Chlamydomonas, we attenuated IFT-based tubulin transport of GFP-β-tubulin by altering the IFT74N-IFT81N tubulin-binding module and the C-terminal E-hook of tubulin. E-hook-deficient GFP-β-tubulin was incorporated into the axonemal microtubules, but its transport frequency by IFT was reduced by ∼90% in control cells and essentially abolished when the tubulin-binding site of IFT81 was incapacitated. Despite the strong reduction in IFT, the proportion of E-hook-deficient GFP-β-tubulin in the axoneme was only moderately reduced. In vivo imaging showed more GFP-β-tubulin particles entering cilia by diffusion than by IFT. Extrapolated to endogenous tubulin, the data indicate that diffusion provides most of the tubulin required for axonemal assembly. We propose that IFT of tubulin is nevertheless needed for ciliogenesis, because it augments the tubulin pool supplied to the ciliary tip by diffusion, thus ensuring that free tubulin there is maintained at the critical concentration for plus-end microtubule assembly during rapid ciliary growth.
Collapse
Affiliation(s)
| | - J Aaron Harris
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Tomohiro Kubo
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
41
|
Douglas RL, Haltiwanger BM, Albisetti A, Wu H, Jeng RL, Mancuso J, Cande WZ, Welch MD. Trypanosomes have divergent kinesin-2 proteins that function differentially in flagellum biosynthesis and cell viability. J Cell Sci 2020; 133:jcs129213. [PMID: 32503938 DOI: 10.1242/jcs.129213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, has a flagellum that is crucial for motility, pathogenicity, and viability. In most eukaryotes, the intraflagellar transport (IFT) machinery drives flagellum biogenesis, and anterograde IFT requires kinesin-2 motor proteins. In this study, we investigated the function of the two T. brucei kinesin-2 proteins, TbKin2a and TbKin2b, in bloodstream form trypanosomes. We found that, compared to kinesin-2 proteins across other phyla, TbKin2a and TbKin2b show greater variation in neck, stalk and tail domain sequences. Both kinesins contributed additively to flagellar lengthening. Silencing TbKin2a inhibited cell proliferation, cytokinesis and motility, whereas silencing TbKin2b did not. TbKin2a was localized on the flagellum and colocalized with IFT components near the basal body, consistent with it performing a role in IFT. TbKin2a was also detected on the flagellar attachment zone, a specialized structure that connects the flagellum to the cell body. Our results indicate that kinesin-2 proteins in trypanosomes play conserved roles in flagellar biosynthesis and exhibit a specialized localization, emphasizing the evolutionary flexibility of motor protein function in an organism with a large complement of kinesins.
Collapse
Affiliation(s)
- Robert L Douglas
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Brett M Haltiwanger
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Anna Albisetti
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Haiming Wu
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Robert L Jeng
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Joel Mancuso
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - W Zacheus Cande
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
42
|
Hiltpold M, Niu G, Kadri NK, Crysnanto D, Fang ZH, Spengeler M, Schmitz-Hsu F, Fuerst C, Schwarzenbacher H, Seefried FR, Seehusen F, Witschi U, Schnieke A, Fries R, Bollwein H, Flisikowski K, Pausch H. Activation of cryptic splicing in bovine WDR19 is associated with reduced semen quality and male fertility. PLoS Genet 2020; 16:e1008804. [PMID: 32407316 PMCID: PMC7252675 DOI: 10.1371/journal.pgen.1008804] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/27/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Cattle are ideally suited to investigate the genetics of male reproduction, because semen quality and fertility are recorded for all ejaculates of artificial insemination bulls. We analysed 26,090 ejaculates of 794 Brown Swiss bulls to assess ejaculate volume, sperm concentration, sperm motility, sperm head and tail anomalies and insemination success. The heritability of the six semen traits was between 0 and 0.26. Genome-wide association testing on 607,511 SNPs revealed a QTL on bovine chromosome 6 that was associated with sperm motility (P = 2.5 x 10−27), head (P = 2.0 x 10−44) and tail anomalies (P = 7.2 x 10−49) and insemination success (P = 9.9 x 10−13). The QTL harbors a recessive allele that compromises semen quality and male fertility. We replicated the effect of the QTL on fertility (P = 7.1 x 10−32) in an independent cohort of 2481 Brown Swiss bulls. The analysis of whole-genome sequencing data revealed that a synonymous variant (BTA6:58373887C>T, rs474302732) in WDR19 encoding WD repeat-containing protein 19 was in linkage disequilibrium with the fertility-associated haplotype. WD repeat-containing protein 19 is a constituent of the intraflagellar transport complex that is essential for the physiological function of motile cilia and flagella. Bioinformatic and transcription analyses revealed that the BTA6:58373887 T-allele activates a cryptic exonic splice site that eliminates three evolutionarily conserved amino acids from WDR19. Western blot analysis demonstrated that the BTA6:58373887 T-allele decreases protein expression. We make the remarkable observation that, in spite of negative effects on semen quality and bull fertility, the BTA6:58373887 T-allele has a frequency of 24% in the Brown Swiss population. Our findings are the first to uncover a variant that is associated with quantitative variation in semen quality and male fertility in cattle. In cattle farming, artificial insemination is the most common method of breeding. To ensure high fertilization rates, ejaculate quality and insemination success are closely monitored in artificial insemination bulls. We analyse semen quality, insemination success and microarray-called genotypes at more than 600,000 genome-wide SNP markers of 794 bulls to identify a recessive allele that compromises semen quality. We take advantage of whole-genome sequencing to pinpoint a variant in the coding sequence of WDR19 encoding WD repeat-containing protein 19 that activates a novel exonic splice site. Our results indicate that cryptic splicing in WDR19 is associated with reduced male reproductive performance. This is the first report of a variant that contributes to quantitative variation in bovine semen quality.
Collapse
Affiliation(s)
| | - Guanglin Niu
- Livestock Biotechnology, TU München, Freising, Germany
| | | | | | - Zih-Hua Fang
- Animal Genomics, ETH Zürich, Lindau, Switzerland
| | | | | | | | | | | | - Frauke Seehusen
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | | | | | - Ruedi Fries
- Animal Breeding, TU München, Freising, Germany
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, University of Zurich, Zürich, Switzerland
| | | | - Hubert Pausch
- Animal Genomics, ETH Zürich, Lindau, Switzerland
- * E-mail:
| |
Collapse
|
43
|
Sánchez-Caballero L, Elurbe DM, Baertling F, Guerrero-Castillo S, van den Brand M, van Strien J, van Dam TJP, Rodenburg R, Brandt U, Huynen MA, Nijtmans LGJ. TMEM70 functions in the assembly of complexes I and V. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148202. [PMID: 32275929 DOI: 10.1016/j.bbabio.2020.148202] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Protein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both complexes the loss of TMEM70 results in the accumulation of an assembly intermediate followed by a reduction of the next assembly intermediate in the pathway. This indicates that TMEM70 has a role in the stability of membrane-bound subassemblies or in the membrane recruitment of subunits into the forming complex. Independent evidence for a role of TMEM70 in OXPHOS assembly comes from evolutionary analyses. The TMEM70/TMEM186/TMEM223 protein family, of which we show that TMEM186 and TMEM223 are mitochondrial in human as well, only occurs in species with OXPHOS complexes. Our results validate the use of combining complexome profiling with BioID and evolutionary analyses in elucidating congenital defects in protein complex assembly.
Collapse
Affiliation(s)
- Laura Sánchez-Caballero
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Dei M Elurbe
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Fabian Baertling
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sergio Guerrero-Castillo
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mariel van den Brand
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Joeri van Strien
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Teunis J P van Dam
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Richard Rodenburg
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Leo G J Nijtmans
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
44
|
Qu W, Yuan S, Quan C, Huang Q, Zhou Q, Yap Y, Shi L, Zhang D, Guest T, Li W, Yee SP, Zhang L, Cazin C, Hess RA, Ray PF, Kherraf ZE, Zhang Z. The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. Am J Physiol Cell Physiol 2020; 318:C1092-C1106. [PMID: 32233951 DOI: 10.1152/ajpcell.00450.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intraflagellar transport (IFT) is an evolutionarily conserved mechanism that is indispensable for the formation and maintenance of cilia and flagella; however, the implications and functions of IFT81 remain unknown. In this study, we disrupted IFT81 expression in male germ cells starting from the spermatocyte stage. As a result, homozygous mutant males were completely infertile and displayed abnormal sperm parameters. In addition to oligozoospermia, spermatozoa presented dysmorphic and nonfunctional flagella. Histological examination of testes from homozygous mutant mice revealed abnormal spermiogenesis associated with sloughing of germ cells and the presence of numerous multinucleated giant germ cells (symblasts) in the lumen of seminiferous tubules and epididymis. Moreover, only few elongated spermatids and spermatozoa were seen in analyzed cross sections. Transmission electron microscopy showed a complete disorganization of the axoneme and para-axonemal structures such as the mitochondrial sheath, fibrous sheath, and outer dense fibers. In addition, numerous vesicles that contain unassembled microtubules were observed within developing spermatids. Acrosome structure analysis showed normal appearance, thus excluding a crucial role of IFT81 in acrosome biogenesis. These observations showed that IFT81 is an important member of the IFT process during spermatogenesis and that its absence is associated with abnormal flagellum formation leading to male infertility. The expression levels of several IFT components in testes, including IFT20, IFT25, IFT27, IFT57, IFT74, and IFT88, but not IFT140, were significantly reduced in homozygous mutant mice. Overall, our study demonstrates that IFT81 plays an essential role during spermatogenesis by modulating the assembly and elongation of the sperm flagella.
Collapse
Affiliation(s)
- Wei Qu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Shuo Yuan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Chao Quan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Qi Zhou
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yitian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Lin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - David Zhang
- College of William & Mary, Williamsburg, Virginia
| | - Tamia Guest
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Caroline Cazin
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Pierre F Ray
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
45
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
46
|
Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 2020; 20:389-405. [PMID: 30948801 DOI: 10.1038/s41580-019-0116-4] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.
Collapse
|
47
|
Yang H, Huang K. Dissecting the Vesicular Trafficking Function of IFT Subunits. Front Cell Dev Biol 2020; 7:352. [PMID: 32010685 PMCID: PMC6974671 DOI: 10.3389/fcell.2019.00352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Intraflagellar transport (IFT) was initially identified as a transport machine with multiple protein subunits, and it is essential for the assembly, disassembly, and maintenance of cilium/flagellum, which serves as the nexus of extracellular-to-intracellular signal integration. To date, in addition to its well-established and indispensable roles in ciliated cells, most IFT subunits have presented more general functions of vesicular trafficking in the non-ciliated cells. Thus, this review aims to summarize the recent progress on the vesicular trafficking functions of the IFT subunits and to highlight the issues that may arise in future research.
Collapse
Affiliation(s)
- Huihui Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute of Hydrobiology, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
48
|
Singh SK, Gui M, Koh F, Yip MC, Brown A. Structure and activation mechanism of the BBSome membrane protein trafficking complex. eLife 2020; 9:53322. [PMID: 31939736 PMCID: PMC7018513 DOI: 10.7554/elife.53322] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a currently incurable ciliopathy caused by the failure to correctly establish or maintain cilia-dependent signaling pathways. Eight proteins associated with BBS assemble into the BBSome, a key regulator of the ciliary membrane proteome. We report the electron cryomicroscopy (cryo-EM) structures of the native bovine BBSome in inactive and active states at 3.1 and 3.5 Å resolution, respectively. In the active state, the BBSome is bound to an Arf-family GTPase (ARL6/BBS3) that recruits the BBSome to ciliary membranes. ARL6 recognizes a composite binding site formed by BBS1 and BBS7 that is occluded in the inactive state. Activation requires an unexpected swiveling of the β-propeller domain of BBS1, the subunit most frequently implicated in substrate recognition, which widens a central cavity of the BBSome. Structural mapping of disease-causing mutations suggests that pathogenesis results from folding defects and the disruption of autoinhibition and activation.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Fujiet Koh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Matthew Cj Yip
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
49
|
Intraflagellar transport 20: New target for the treatment of ciliopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118641. [PMID: 31893523 DOI: 10.1016/j.bbamcr.2019.118641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 11/22/2022]
Abstract
Cilia are ubiquitous in mammalian cells. The formation and assembly of cilia depend on the normal functioning of the ciliary transport system. In recent years, various proteins involved in the intracellular transport of the cilium have attracted attention, as many diseases are caused by disorders in cilia formation. Intraflagellar transport 20 (IFT20) is a subunit of IFT complex B, which contains approximately 20 protein particles. Studies have shown that defects in IFT20 are associated with numerous system -related diseases, such as those of the urinary system, cardiovascular system, skeletal system, nervous system, immune system, reproductive system, and respiratory system. This review summarizes current research on IFT20.We describe studies related to the role of IFT20 in cilia formation and discuss new targets for treating diseases associated with ciliary dysplasia.
Collapse
|
50
|
Lorès P, Dacheux D, Kherraf ZE, Nsota Mbango JF, Coutton C, Stouvenel L, Ialy-Radio C, Amiri-Yekta A, Whitfield M, Schmitt A, Cazin C, Givelet M, Ferreux L, Fourati Ben Mustapha S, Halouani L, Marrakchi O, Daneshipour A, El Khouri E, Do Cruzeiro M, Favier M, Guillonneau F, Chaudhry M, Sakheli Z, Wolf JP, Patrat C, Gacon G, Savinov SN, Hosseini SH, Robinson DR, Zouari R, Ziyyat A, Arnoult C, Dulioust E, Bonhivers M, Ray PF, Touré A. Mutations in TTC29, Encoding an Evolutionarily Conserved Axonemal Protein, Result in Asthenozoospermia and Male Infertility. Am J Hum Genet 2019; 105:1148-1167. [PMID: 31735292 DOI: 10.1016/j.ajhg.2019.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
In humans, structural or functional defects of the sperm flagellum induce asthenozoospermia, which accounts for the main sperm defect encountered in infertile men. Herein we focused on morphological abnormalities of the sperm flagellum (MMAF), a phenotype also termed "short tails," which constitutes one of the most severe sperm morphological defects resulting in asthenozoospermia. In previous work based on whole-exome sequencing of a cohort of 167 MMAF-affected individuals, we identified bi-allelic loss-of-function mutations in more than 30% of the tested subjects. In this study, we further analyzed this cohort and identified five individuals with homozygous truncating variants in TTC29, a gene preferentially and highly expressed in the testis, and encoding a tetratricopeptide repeat-containing protein related to the intraflagellar transport (IFT). One individual carried a frameshift variant, another one carried a homozygous stop-gain variant, and three carried the same splicing variant affecting a consensus donor site. The deleterious effect of this last variant was confirmed on the corresponding transcript and protein product. In addition, we produced and analyzed TTC29 loss-of-function models in the flagellated protist T. brucei and in M. musculus. Both models confirmed the importance of TTC29 for flagellar beating. We showed that in T. brucei the TPR structural motifs, highly conserved between the studied orthologs, are critical for TTC29 axonemal localization and flagellar beating. Overall our work demonstrates that TTC29 is a conserved axonemal protein required for flagellar structure and beating and that TTC29 mutations are a cause of male sterility due to MMAF.
Collapse
Affiliation(s)
- Patrick Lorès
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Denis Dacheux
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France; Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, 33000 Bordeaux, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble 38000, France
| | - Jean-Fabrice Nsota Mbango
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Laurence Stouvenel
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Come Ialy-Radio
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjorie Whitfield
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Alain Schmitt
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Maëlle Givelet
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Lucile Ferreux
- Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Selima Fourati Ben Mustapha
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Lazhar Halouani
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Ouafi Marrakchi
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elma El Khouri
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marcio Do Cruzeiro
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Maryline Favier
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - François Guillonneau
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marhaba Chaudhry
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Zeinab Sakheli
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Jean-Philippe Wolf
- INSERM U1016, Institut Cochin, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Catherine Patrat
- INSERM U1016, Institut Cochin, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Sergey N Savinov
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Seyedeh Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institutefor Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Derrick R Robinson
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Raoudha Zouari
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Ahmed Ziyyat
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Emmanuel Dulioust
- INSERM U1016, Institut Cochin, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Mélanie Bonhivers
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble 38000, France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
| |
Collapse
|