1
|
Diaz-Cánova D, Moens U, Brinkmann A, Nitsche A, Okeke MI. Whole genome sequencing of recombinant viruses obtained from co-infection and superinfection of Vero cells with modified vaccinia virus ankara vectored influenza vaccine and a naturally occurring cowpox virus. Front Immunol 2024; 15:1277447. [PMID: 38633245 PMCID: PMC11021749 DOI: 10.3389/fimmu.2024.1277447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.
Collapse
Affiliation(s)
- Diana Diaz-Cánova
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Annika Brinkmann
- WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Malachy Ifeanyi Okeke
- Section of Biomedical Sciences, Department of Natural and Environmental Sciences, School of Arts and Sciences, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
2
|
Lawson CA, Titus DJ, Koehler HS. Approaches to Evaluating Necroptosis in Virus-Infected Cells. Subcell Biochem 2023; 106:37-75. [PMID: 38159223 DOI: 10.1007/978-3-031-40086-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The immune system functions to protect the host from pathogens. To counter host defense mechanisms, pathogens have developed unique strategies to evade detection or restrict host immune responses. Programmed cell death is a major contributor to the multiple host responses that help to eliminate infected cells for obligate intracellular pathogens like viruses. Initiation of programmed cell death pathways during the early stages of viral infections is critical for organismal survival as it restricts the virus from replicating and serves to drive antiviral inflammation immune recruitment through the release of damage-associated molecular patterns (DAMPs) from the dying cell. Necroptosis has been implicated as a critical programmed cell death pathway in a diverse set of diseases and pathological conditions including acute viral infections. This cell death pathway occurs when certain host sensors are triggered leading to the downstream induction of mixed-lineage kinase domain-like protein (MLKL). MLKL induction leads to cytoplasmic membrane disruption and subsequent cellular destruction with the release of DAMPs. As the role of this cell death pathway in human disease becomes apparent, methods identifying necroptosis patterns and outcomes will need to be further developed. Here, we discuss advances in our understanding of how viruses counteract necroptosis, methods to quantify the pathway, its effects on viral pathogenesis, and its impact on cellular signaling.
Collapse
Affiliation(s)
- Crystal A Lawson
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Derek J Titus
- Providence Sacred Heart, Spokane Teaching Health Center, Spokane, WA, USA
| | - Heather S Koehler
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
3
|
Iyer RF, Edwards DM, Kolb P, Raué HP, Nelson CA, Epperson ML, Slifka MK, Nolz JC, Hengel H, Fremont DH, Früh K. The secreted protein Cowpox Virus 14 contributes to viral virulence and immune evasion by engaging Fc-gamma-receptors. PLoS Pathog 2022; 18:e1010783. [PMID: 36121874 PMCID: PMC9521928 DOI: 10.1371/journal.ppat.1010783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/29/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.
Collapse
Affiliation(s)
- Ravi F. Iyer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Peter Raué
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chris A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Megan L. Epperson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Mark K. Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
4
|
Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog 2022; 18:e1010718. [PMID: 35951530 PMCID: PMC9371342 DOI: 10.1371/journal.ppat.1010718] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viruses are ubiquitous intracellular genetic parasites that heavily rely on the infected cell to complete their replication life cycle. This dependency on the host machinery forces viruses to modulate a variety of cellular processes including cell survival and cell death. Viruses are known to activate and block almost all types of programmed cell death (PCD) known so far. Modulating PCD in infected hosts has a variety of direct and indirect effects on viral pathogenesis and antiviral immunity. The mechanisms leading to apoptosis following virus infection is widely studied, but several modalities of PCD, including necroptosis, pyroptosis, ferroptosis, and paraptosis, are relatively understudied. In this review, we cover the mechanisms by which viruses activate and inhibit PCDs and suggest perspectives on how these affect viral pathogenesis and immunity.
Collapse
Affiliation(s)
- Shayla Grace Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | | | | | - Jordon Marcus Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Yi Lin Sun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Samuel Tekeste Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
5
|
Alvarez-de Miranda FJ, Alonso-Sánchez I, Alcamí A, Hernaez B. TNF Decoy Receptors Encoded by Poxviruses. Pathogens 2021; 10:pathogens10081065. [PMID: 34451529 PMCID: PMC8401223 DOI: 10.3390/pathogens10081065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Tumour necrosis factor (TNF) is an inflammatory cytokine produced in response to viral infections that promotes the recruitment and activation of leukocytes to sites of infection. This TNF-based host response is essential to limit virus spreading, thus poxviruses have evolutionarily adopted diverse molecular mechanisms to counteract TNF antiviral action. These include the expression of poxvirus-encoded soluble receptors or proteins able to bind and neutralize TNF and other members of the TNF ligand superfamily, acting as decoy receptors. This article reviews in detail the various TNF decoy receptors identified to date in the genomes from different poxvirus species, with a special focus on their impact on poxvirus pathogenesis and their potential use as therapeutic molecules.
Collapse
|
6
|
Suraweera CD, Hinds MG, Kvansakul M. Poxviral Strategies to Overcome Host Cell Apoptosis. Pathogens 2020; 10:pathogens10010006. [PMID: 33374867 PMCID: PMC7823800 DOI: 10.3390/pathogens10010006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cellular suicide initiated either via extracellular (extrinsic apoptosis) or intracellular (intrinsic apoptosis) cues. This form of programmed cell death plays a crucial role in development and tissue homeostasis in multicellular organisms and its dysregulation is an underlying cause for many diseases. Intrinsic apoptosis is regulated by members of the evolutionarily conserved B-cell lymphoma-2 (Bcl-2) family, a family that consists of pro- and anti-apoptotic members. Bcl-2 genes have also been assimilated by numerous viruses including pox viruses, in particular the sub-family of chordopoxviridae, a group of viruses known to infect almost all vertebrates. The viral Bcl-2 proteins are virulence factors and aid the evasion of host immune defenses by mimicking the activity of their cellular counterparts. Viral Bcl-2 genes have proved essential for the survival of virus infected cells and structural studies have shown that though they often share very little sequence identity with their cellular counterparts, they have near-identical 3D structures. However, their mechanisms of action are varied. In this review, we examine the structural biology, molecular interactions, and detailed mechanism of action of poxvirus encoded apoptosis inhibitors and how they impact on host–virus interactions to ultimately enable successful infection and propagation of viral infections.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
7
|
Virus-encoded cytokine and chemokine decoy receptors. Curr Opin Immunol 2020; 66:50-56. [PMID: 32408109 DOI: 10.1016/j.coi.2020.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/16/2023]
Abstract
Poxviruses and herpesviruses encode secreted versions of cytokine receptors as a unique strategy to evade the host immune response. Recent advances in the field have shown the great impact of some of these proteins in immune modulation and viral pathogenesis, and have uncovered unique properties of these viral proteins not found in the cellular counterparts. These modifications inspired by viruses lead to improved immune modulatory activity of the soluble cytokine receptors, information that has been used to develop more efficient therapeutics to treat inflammatory conditions.
Collapse
|
8
|
Ferrarini I, Rigo A, Zamò A, Vinante F. Classical Hodgkin lymphoma cells may promote an IL-17-enriched microenvironment. Leuk Lymphoma 2019; 60:3395-3405. [PMID: 31304817 DOI: 10.1080/10428194.2019.1636983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In classical Hodgkin lymphoma (cHL), the significance of the interplay between Hodgkin and Reed-Sternberg cells (HRS) and reactive T cells remains poorly defined. By immunohistochemistry on bioptic cHL specimens, we found that HRS and surrounding T lymphocytes stained positive for IL-17 in 40% of cases. IL-17 was detectable in a similar proportion of patients' sera and correlated with disease burden. Supernatants of KM-H2 and HDLM-2 cHL cell lines guided preferential chemotaxis of CCR6+ T lymphocytes. Coculture of cHL cell lines with PBMC promoted the enrichment of Th17 lymphocytes and Foxp3+/IL-17+ cells, whereas T regulatory cells slightly decreased. Soluble CD30 downmodulated membrane CD30 expression on T cells and contributed to their polarization shift by stimulating IL-17 production and reducing IFN-γ synthesis. Thus, HRS and a number of reactive CD4+ T cells, attracted by tumor-secreted chemokines, produce an IL-17 tumor-shaped inflammatory milieu in a cHL subset.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Department of Medicine, Section of Hematology, Cancer Research & Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Antonella Rigo
- Department of Medicine, Section of Hematology, Cancer Research & Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Alberto Zamò
- Department of Oncology, University of Turin, Turin, Italy
| | - Fabrizio Vinante
- Department of Medicine, Section of Hematology, Cancer Research & Cell Biology Laboratory, University of Verona, Verona, Italy
| |
Collapse
|
9
|
The Virology of Taterapox Virus In Vitro. Viruses 2018; 10:v10090463. [PMID: 30158437 PMCID: PMC6163509 DOI: 10.3390/v10090463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 11/29/2022] Open
Abstract
Taterapox virus (TATV) is phylogenetically the closest related virus to variola—the etiological agent of smallpox. Despite the similarity, few studies have evaluated the virus. In vivo, TATV can infect several animals but produces an inapparent infection in wild-type mice; however, TATV does cause morbidity and mortality in some immunocompromised strains. We employed in vitro techniques to compare TATV to ectromelia (ECTV) and vaccinia (VACV) viruses. Both ECTV and TATV replicate efficiently in primate cell lines but TATV replicates poorly in murine cells lines. Furthermore, TATV induces cytopathic effects, but to a lesser extent than ECTV, and changes cytoskeletal networks differently than both ECTV and VACV. Bioinformatic studies revealed differences in several immunomodulator open reading frames that could contribute to the reduced virulence of TATV, which were supported by in vitro cytokine assays.
Collapse
|
10
|
Alejo A, Ruiz-Argüello MB, Pontejo SM, Fernández de Marco MDM, Saraiva M, Hernáez B, Alcamí A. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation. Nat Commun 2018; 9:1790. [PMID: 29724993 PMCID: PMC5934441 DOI: 10.1038/s41467-018-04098-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.
Collapse
Affiliation(s)
- Alí Alejo
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, 28130, Spain
| | - M Begoña Ruiz-Argüello
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, 28130, Spain.,Progenika Biopharma, 48160, Derio, Spain
| | - Sergio M Pontejo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain.,National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - María Del Mar Fernández de Marco
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain.,Animal & Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Margarida Saraiva
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom.,Institute for Molecular and Cell Biology, 4200-135, Porto, Portugal
| | - Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain. .,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom.
| |
Collapse
|
11
|
Zhou AC, Snell LM, Wortzman ME, Watts TH. CD30 Is Dispensable for T-Cell Responses to Influenza Virus and Lymphocytic Choriomeningitis Virus Clone 13 but Contributes to Age-Associated T-Cell Expansion in Mice. Front Immunol 2017; 8:1156. [PMID: 28993768 PMCID: PMC5622170 DOI: 10.3389/fimmu.2017.01156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023] Open
Abstract
CD30 is a tumor necrosis factor receptor (TNFR) family member whose expression is associated with Hodgkin’s disease, anaplastic large cell lymphomas, and other T and B lymphoproliferative disorders in humans. A limited number of studies have assessed the physiological role of CD30/CD30 ligand interactions in control of infection in mice. Here, we assess the role of CD30 in T-cell immunity to acute influenza and chronic lymphocytic choriomeningitis virus (LCMV) clone 13 infection, two viral infections in which other members of the TNFR superfamily are important for T-cell responses. We show that CD30 is expressed on activated but not resting CD4 and CD8 T cells in vitro, as well as on regulatory T cells and marginally on T helper 1 cells in vivo during influenza infection. Despite this, CD4 and CD8 T-cell expansion in response to influenza virus was comparable in CD30+/+ and CD30−/− littermates, with no discernable role for the pathway in the outcome of influenza infection. Similarly, during persistent infection with LCMV clone 13, CD30 plays no obvious role in CD4 or CD8 T-cell responses, the level of T-cell exhaustion or viral control. In contrast, in the steady state, we observed increased numbers of total CD4 and CD8 T cells as well as increased numbers of regulatory T cells in unimmunized older (~8 months) CD30+/+ but not in CD30−/− age-matched littermates. Naive T-cell numbers were unchanged in the aged CD30+/+ mice compared to their CD30−/− littermate controls, rather the T-cell expansions were explained by an increase in CD4+ and CD8+ CD44mid-hiCD62L− effector memory cells, with a similar trend in the central memory T-cell compartment. In contrast, CD30 did not impact the numbers of T cells in young mice. These data suggest a role for CD30 in the homeostatic regulation of T cells during aging, contributing to memory T-cell expansions, which may have relevance for CD30 expression in human T-cell lymphoproliferative diseases.
Collapse
Affiliation(s)
- Angela C Zhou
- Faculty of Medicine, Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Laura M Snell
- Faculty of Medicine, Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michael E Wortzman
- Faculty of Medicine, Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tania H Watts
- Faculty of Medicine, Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Mechanisms of immunomodulation by mammalian and viral decoy receptors: insights from structures. Nat Rev Immunol 2016; 17:112-129. [PMID: 28028310 DOI: 10.1038/nri.2016.134] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune responses are regulated by effector cytokines and chemokines that signal through cell surface receptors. Mammalian decoy receptors - which are typically soluble or inactive versions of cell surface receptors or soluble protein modules termed binding proteins - modulate and antagonize signalling by canonical effector-receptor complexes. Viruses have developed a diverse array of molecular decoys to evade host immune responses; these include viral homologues of host cytokines, chemokines and chemokine receptors; variants of host receptors with new functions; and novel decoy receptors that do not have host counterparts. Over the past decade, the number of known mammalian and viral decoy receptors has increased considerably, yet a comprehensive curation of the corresponding structure-mechanism relationships has not been carried out. In this Review, we provide a comprehensive resource on this topic with a view to better understanding the roles and evolutionary relationships of mammalian and viral decoy receptors, and the opportunities for leveraging their therapeutic potential.
Collapse
|
13
|
Abstract
Viruses have evolved numerous mechanisms to evade the immune response, including proteins that target the function of cytokines. This article provides an overview of the different strategies used by viruses to block the induction of cytokines and immune signals triggered by cytokines. Examples of virus evasion proteins are presented, such as intracellular proteins that block signal transduction and immune activation mechanisms, secreted proteins that mimic cytokines, or viral decoy receptors that inhibit the binding of cytokines to their cognate receptors. Virus-encoded proteins that target cytokines play a major role in immune modulation, and their contributions to viral pathogenesis, promoting virus replication or preventing immunopathology, are discussed.
Collapse
|
14
|
Yi Y, Qi H, Yuan J, Wang R, Weng S, He J, Dong C. Functional characterization of viral tumor necrosis factor receptors encoded by cyprinid herpesvirus 3 (CyHV3) genome. FISH & SHELLFISH IMMUNOLOGY 2015; 45:757-770. [PMID: 26052019 DOI: 10.1016/j.fsi.2015.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/15/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV3) is a large double-stranded DNA virus of Alloherpesviridae family in the order Herpesvirales. It causes significant morbidity and mortality in common carp and its ornamental koi variety, and threatens the aquaculture industries worldwide. Mimicry of cytokines and cytokine receptors is a particular strategy for large DNA viruses in modulating the host immune response. Here, we report the identification and characterization of two novel viral homologues of tumor necrosis factor receptor (TNFR) encoded by CyHV3-ORF4 and -ORF12, respectively. CyHV3-ORF4 was identified as a homologue of HVEM and CyHV3-ORF12 as a homologue of TNFRSF1. Overexpression of ORF4 and ORF12 in zebrafish embryos results in embryonic lethality, morphological defects and increased apoptosis. Although we failed to identify any interaction between the two vTNFRs and their potential ligands in zebrafish TNF superfamily by yeast two-hybrid system, the expression of some genes in TNF superfamily or TNFR superfamily were mis-regulated in ORF4 or ORF12-overexpressing embryos, especially the death receptor zHDR and its cognate ligand DL1b. Further studies showed that the apoptosis induced by the both CyHV3 vTNFRs is mainly activated through the intrinsic apoptotic pathway and requires the crosstalk between the intrinsic and extrinsic apoptotic pathway. Additionally, using RT-qPCR and Western blot assays, the expression patterns of the both vTNFRs were also analyzed during CyHV3 productive infection. Collectively, this is the first functional study of two unique vTNFRs encoded by a herpesvirus infecting non-mammalian vertebrates, which may provide novel insights into viral immune regulation mechanism and the pathogenesis of CyHV3 infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Carps
- Cell Line
- Female
- Fish Diseases/genetics
- Fish Diseases/metabolism
- Fish Diseases/virology
- Gene Expression Regulation
- Herpesviridae/genetics
- Herpesviridae/physiology
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/veterinary
- Herpesviridae Infections/virology
- Male
- Open Reading Frames
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Sequence Alignment/veterinary
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Zebrafish
Collapse
Affiliation(s)
- Yang Yi
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Hemei Qi
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jimin Yuan
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Rui Wang
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | - Chuanfu Dong
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
15
|
Pontejo SM, Alejo A, Alcami A. Comparative Biochemical and Functional Analysis of Viral and Human Secreted Tumor Necrosis Factor (TNF) Decoy Receptors. J Biol Chem 2015; 290:15973-84. [PMID: 25940088 PMCID: PMC4481203 DOI: 10.1074/jbc.m115.650119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin β. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin β. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs.
Collapse
Affiliation(s)
- Sergio M Pontejo
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain and
| | - Ali Alejo
- Centro de Investigacion en Sanidad Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, Valdeolmos, 28130 Madrid, Spain
| | - Antonio Alcami
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain and
| |
Collapse
|
16
|
Kattlun J, Menanteau-Ledouble S, El-Matbouli M. Non-structural protein pORF 12 of cyprinid herpesvirus 3 is recognized by the immune system of the common carp Cyprinus carpio. DISEASES OF AQUATIC ORGANISMS 2014; 111:269-73. [PMID: 25320039 DOI: 10.3354/dao02793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cyprinid herpesvirus 3 is an important pathogen and the causative agent of koi herpesvirus disease, which has been associated with mass mortalities in koi and common carp Cyprinus carpio. Currently, the only available commercial vaccine is an attenuated version of the virus. This has led to concerns about its risk to reversion to virulence. Furthermore, the vaccine is currently only available in Israel and the United States. In order to investigate the antigenic profile of the virus, western blot was performed using infected cell culture supernatant and sera from carp that had survived exposure to the virus. Only one antigen could be detected, and mass spectrometry analysis identified the corresponding protein as ORF 12, a putative secreted tumour necrosis factor receptor homologue. In other herpesviruses, such proteins have been associated with the viral infectious process in a number of ways, including the entry into the host cell and the inhibition of apoptosis in infected cells. The reason why only one antigen could be detected during this study is unknown.
Collapse
Affiliation(s)
- Julia Kattlun
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | |
Collapse
|
17
|
Alzhanova D, Hammarlund E, Reed J, Meermeier E, Rawlings S, Ray CA, Edwards DM, Bimber B, Legasse A, Planer S, Sprague J, Axthelm MK, Pickup DJ, Lewinsohn DM, Gold MC, Wong SW, Sacha JB, Slifka MK, Früh K. T cell inactivation by poxviral B22 family proteins increases viral virulence. PLoS Pathog 2014; 10:e1004123. [PMID: 24832205 PMCID: PMC4022744 DOI: 10.1371/journal.ppat.1004123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 04/02/2014] [Indexed: 11/19/2022] Open
Abstract
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.
Collapse
Affiliation(s)
- Dina Alzhanova
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jason Reed
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Erin Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Stephanie Rawlings
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Caroline A. Ray
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Ben Bimber
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Alfred Legasse
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Shannon Planer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jerald Sprague
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - David J. Pickup
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Marielle C. Gold
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Mark K. Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| |
Collapse
|
18
|
Bratke KA, McLysaght A, Rothenburg S. A survey of host range genes in poxvirus genomes. INFECTION GENETICS AND EVOLUTION 2012; 14:406-25. [PMID: 23268114 DOI: 10.1016/j.meegid.2012.12.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Poxviruses are widespread pathogens, which display extremely different host ranges. Whereas some poxviruses, including variola virus, display narrow host ranges, others such as cowpox viruses naturally infect a wide range of mammals. The molecular basis for differences in host range are poorly understood but apparently depend on the successful manipulation of the host antiviral response. Some poxvirus genes have been shown to confer host tropism in experimental settings and are thus called host range factors. Identified host range genes include vaccinia virus K1L, K3L, E3L, B5R, C7L and SPI-1, cowpox virus CP77/CHOhr, ectromelia virus p28 and 022, and myxoma virus T2, T4, T5, 11L, 13L, 062R and 063R. These genes encode for ankyrin repeat-containing proteins, tumor necrosis factor receptor II homologs, apoptosis inhibitor T4-related proteins, Bcl-2-related proteins, pyrin domain-containing proteins, cellular serine protease inhibitors (serpins), short complement-like repeats containing proteins, KilA-N/RING domain-containing proteins, as well as inhibitors of the double-stranded RNA-activated protein kinase PKR. We conducted a systematic survey for the presence of known host range genes and closely related family members in poxvirus genomes, classified them into subgroups based on their phylogenetic relationship and correlated their presence with the poxvirus phylogeny. Common themes in the evolution of poxvirus host range genes are lineage-specific duplications and multiple independent inactivation events. Our analyses yield new insights into the evolution of poxvirus host range genes. Implications of our findings for poxvirus host range and virulence are discussed.
Collapse
Affiliation(s)
- Kirsten A Bratke
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
19
|
Epperson ML, Lee CA, Fremont DH. Subversion of cytokine networks by virally encoded decoy receptors. Immunol Rev 2012; 250:199-215. [PMID: 23046131 PMCID: PMC3693748 DOI: 10.1111/imr.12009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During the course of evolution, viruses have captured or created a diverse array of open reading frames, which encode for proteins that serve to evade and sabotage the host innate and adaptive immune responses that would otherwise lead to their elimination. These viral genomes are some of the best textbooks of immunology ever written. The established arsenal of immunomodulatory proteins encoded by viruses is large and growing, and includes specificities for virtually all known inflammatory pathways and targets. The focus of this review is on herpes and poxvirus-encoded cytokine and chemokine-binding proteins that serve to undermine the coordination of host immune surveillance. Structural and mechanistic studies of these decoy receptors have provided a wealth of information, not only about viral pathogenesis but also about the inner workings of cytokine signaling networks.
Collapse
Affiliation(s)
- Megan L Epperson
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
20
|
Kinjo AR, Kumagai Y, Dinh H, Takeuchi O, Standley DM. Functional characterization of protein domains common to animal viruses and mouse. BMC Genomics 2011; 12 Suppl 3:S21. [PMID: 22369715 PMCID: PMC3333181 DOI: 10.1186/1471-2164-12-s3-s21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Many viruses contain genes that originate from their hosts. Some of these acquired genes give viruses the ability to interfere with host immune responses by various mechanisms. Genes of host origin that appear commonly in viruses code for proteins that span a wide range of functions, from kinases and phosphotases, to cytokines and their receptors, to ubiquitin ligases and proteases. While many important cases of such lateral gene transfer in viruses have been documented, there has yet to be a genome-wide survey of viral-encoded genes acquired from animal hosts. Results Here we carry out such a survey in order to gain insight into the host immune system. We made the results available in the form of a web-based tool that allows viral-centered or host-centered queries to be performed (http://imm.ifrec.osaka-u.ac.jp/musvirus/). We examine the relationship between acquired genes and immune function, and compare host-virus homology with gene expression data in stimulated dendritic cells and T-cells. We found that genes whose expression changes significantly during the innate antiviral immune response had more homologs in animal virus than genes whose expression did not change or genes involved in the adaptive immune response. Conclusions Statistics gathered from the MusVirus database support earlier reports of gene transfer from host to virus and indicate that viruses are more likely to acquire genes involved in innate antiviral immune responses than those involved in acquired immune responses.
Collapse
Affiliation(s)
- Akira R Kinjo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Viruses are the most abundant and diverse pathogens challenging the host immune system, and as such are a severe threat to human health. To this end, viruses have evolved multiple strategies to evade and subvert the host immune response. Host-pathogen interactions are usually initiated via recognition of pathogen-associated molecular patterns (PAMPs) by host sensors known as pattern recognition receptors (PRRs), which include, Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs) and DNA receptors. Effective sensing of PAMPs rapidly triggers host immune responses, via activation of complex signalling pathways that culminates in the induction of inflammatory responses and the eradication of pathogens. Activation of the nuclear factor-κB (NF-κB) transcription pathway is crucial for the immediate early step of immune activation. This review discusses the recent evidence describing a variety of viral effectors that have been shown to prevent NF-κB signalling. Most of these viral effectors can be broadly classified into three categories based on the site of inhibition within the NF-κB pathway, that is, at the (i) TLRs, (ii) IKK complex or (iii) the transcriptional level.
Collapse
Affiliation(s)
- Gaëlle Le Negrate
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
22
|
Hansen SJ, Rushton J, Dekonenko A, Chand HS, Olson GK, Hutt JA, Pickup D, Lyons CR, Lipscomb MF. Cowpox virus inhibits human dendritic cell immune function by nonlethal, nonproductive infection. Virology 2011; 412:411-25. [PMID: 21334039 DOI: 10.1016/j.virol.2011.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/03/2010] [Accepted: 01/18/2011] [Indexed: 01/14/2023]
Abstract
Orthopoxviruses encode multiple proteins that modulate host immune responses. We determined whether cowpox virus (CPXV), a representative orthopoxvirus, modulated innate and acquired immune functions of human primary myeloid DCs and plasmacytoid DCs and monocyte-derived DCs (MDDCs). A CPXV infection of DCs at a multiplicity of infection of 10 was nonproductive, altered cellular morphology, and failed to reduce cell viability. A CPXV infection of DCs did not stimulate cytokine or chemokine secretion directly, but suppressed toll-like receptor (TLR) agonist-induced cytokine secretion and a DC-stimulated mixed leukocyte reaction (MLR). LPS-stimulated NF-κB nuclear translocation and host cytokine gene transcription were suppressed in CPXV-infected MDDCs. Early viral immunomodulatory genes were upregulated in MDDCs, consistent with early DC immunosuppression via synthesis of intracellular viral proteins. We conclude that a nonproductive CPXV infection suppressed DC immune function by synthesizing early intracellular viral proteins that suppressed DC signaling pathways.
Collapse
Affiliation(s)
- Spencer J Hansen
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alejo A, Pontejo SM, Alcami A. Poxviral TNFRs: properties and role in viral pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:203-10. [PMID: 21153324 DOI: 10.1007/978-1-4419-6612-4_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alí Alejo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, 28130 Madrid, Spain.
| | | | | |
Collapse
|
24
|
Modulation of the host immune response by cowpox virus. Microbes Infect 2010; 12:900-9. [PMID: 20673807 PMCID: PMC3500136 DOI: 10.1016/j.micinf.2010.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/20/2022]
Abstract
Cowpox virus, a zoonotic poxvirus endemic to Eurasia, infects a large number of host species which makes its eradication impossible. The elimination of world-wide smallpox vaccination programs renders the human population increasingly susceptible to infection by orthopoxviruses resulting in a growing number of zoonotic infections including CPXV transmitted from domestic animals to humans. The ability of CPXV to infect a wide range of mammalian host is likely due to the fact that, among the orthopoxviruses, CPXV encodes the most complete set of open reading frames expected to encode immunomodulatory proteins. This renders CPXV particularly interesting for studying poxviral strategies to evade and counteract the host immune responses.
Collapse
|
25
|
Lipscomb MF, Hutt J, Lovchik J, Wu T, Lyons CR. The pathogenesis of acute pulmonary viral and bacterial infections: investigations in animal models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:223-52. [PMID: 19824827 DOI: 10.1146/annurev-pathol-121808-102153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute viral and bacterial infections in the lower respiratory tract are major causes of morbidity and mortality worldwide. The proper study of pulmonary infections requires interdisciplinary collaboration among physicians and biomedical scientists to develop rational hypotheses based on clinical studies and to test these hypotheses in relevant animal models. Animal models for common lung infections are essential to understand pathogenic mechanisms and to clarify general mechanisms for host protection in pulmonary infections, as well as to develop vaccines and therapeutics. Animal models for uncommon pulmonary infections, such as those that can be caused by category A biothreat agents, are also very important because the infrequency of these infections in humans limits in-depth clinical studies. This review summarizes our understanding of innate and adaptive immune mechanisms in the lower respiratory tract and discusses how animal models for selected pulmonary pathogens can contribute to our understanding of the pathogenesis of lung infections and to the search for new vaccines and therapies.
Collapse
Affiliation(s)
- Mary F Lipscomb
- Departments of Pathology and University of New Mexico School of Medicine, Albuquerque, New Mexico 87131.
| | | | | | | | | |
Collapse
|
26
|
Lynch HE, Ray CA, Oie KL, Pollara JJ, Petty ITD, Sadler AJ, Williams BRG, Pickup DJ. Modified vaccinia virus Ankara can activate NF-kappaB transcription factors through a double-stranded RNA-activated protein kinase (PKR)-dependent pathway during the early phase of virus replication. Virology 2009; 391:177-86. [PMID: 19596385 PMCID: PMC2765328 DOI: 10.1016/j.virol.2009.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/09/2009] [Accepted: 06/06/2009] [Indexed: 01/09/2023]
Abstract
Modified vaccinia virus Ankara (MVA), which is a promising replication-defective vaccine vector, is unusual among the orthopoxviruses in activating NF-kappaB transcription factors in cells of several types. In human embryonic kidney (HEK 293T) cells, the MVA-induced depletion of IkappaBalpha required to activate NF-kappaB is inhibited by UV-inactivation of the virus, and begins before viral DNA replication. In HEK 293T, CHO, or RK13 cells, expression of the cowpox virus CP77 early gene, or the vaccinia virus K1L early gene suppresses MVA-induced IkappaBalpha depletion. In mouse embryonic fibroblasts (MEFs), MVA induction of IkappaBalpha depletion is dependent on the expression of mouse or human double-stranded RNA-activated protein kinase (PKR). These results demonstrate that events during the early phase of MVA replication can induce PKR-mediated processes contributing both to the activation of NF-kappaB signaling, and to processes that may restrict viral replication. This property may contribute to the efficacy of this vaccine virus.
Collapse
Affiliation(s)
- Heather E Lynch
- Department of Molecular Genetics and Microbiology, Box 3020, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Alejo A, Saraiva M, Ruiz-Argüello MB, Viejo-Borbolla A, de Marco MF, Salguero FJ, Alcami A. A method for the generation of ectromelia virus (ECTV) recombinants: in vivo analysis of ECTV vCD30 deletion mutants. PLoS One 2009; 4:e5175. [PMID: 19365546 PMCID: PMC2664468 DOI: 10.1371/journal.pone.0005175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 03/10/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo. METHODOLOGY/PRINCIPAL FINDINGS To evaluate the contribution of viral CD30 (vCD30) to virus pathogenesis in the infected host, we have adapted a novel transient dominant method for the selection of recombinant ECTVs. Using this method, we have generated an ECTV vCD30 deletion mutant, its corresponding revertant control virus as well as a virus encoding the extracellular domain of murine CD30. These viruses contain no exogenous marker DNA sequences in their genomes, as opposed to other ECTVs reported up to date. CONCLUSIONS/SIGNIFICANCE We show that the vCD30 is expressed as a secreted disulfide linked trimer and that the absence of vCD30 does not impair mousepox induced fatality in vivo. Replacement of vCD30 by a secreted version of mouse CD30 caused limited attenuation of ECTV. The recombinant viruses generated may be of use in the study of the role of the cellular CD30-CD30L interaction in the development of the immune response. The method developed might be useful for the construction of ECTV mutants for the study of additional genes.
Collapse
Affiliation(s)
- Ali Alejo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Margarida Saraiva
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Maria Begoña Ruiz-Argüello
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Abel Viejo-Borbolla
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Mar Fernández de Marco
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Francisco Javier Salguero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Antonio Alcami
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| |
Collapse
|
28
|
Alcami A, Saraiva M. Chemokine binding proteins encoded by pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:167-79. [PMID: 20054983 DOI: 10.1007/978-1-4419-1601-3_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Chemokines are chemoattractant cytokines that play an important role in immunity. The role of chemokines against invading pathogens is emphasized by the expression of chemokine inhibitors by many pathogens. A mechanims employed by poxviruses and herpesviruses is the secretion of chemokine bindingproteins unrelated to host receptors that bind chemokines with high affinity and block their activity. Soluble chemokine binding proteins have also been identified in the human parasite Schistosoma mansoni and in ticks. The binding specificity of these inhibitors of cell migration point at chemokines that contribute to host defense mechanisms against various pathogens. Chemokine binding proteins modulate the immune response and may lead to new therapeutic approaches to treat inflamatory diseases.
Collapse
Affiliation(s)
- Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones científicas, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
29
|
Rahman MM, Lucas AR, McFadden G. Viral TNF inhibitors as potential therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:64-77. [PMID: 20054975 DOI: 10.1007/978-1-4419-1601-3_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The immune system functions by maintaining a delicate balance between the activities of pro-inflammatory and anti-inflammatory pathways. Unbalanced activation of these pathways often leads to the development of serious inflammatory diseases. TNF (Tumor Necrosis Factor) is a key pro-inflammatory cytokine, which can cause several inflammatory diseases when inappropriately up-regulated. Inhibition of TNF activities by using modulatory recombinant proteins has become a successful therapeutic approach to control TNF activity levels but these anti-TNF reagents also have risks and certain limitations. Biological molecules with a different mode of action in regulating TNF biology might provide a clinically useful alternative to the current therapeutics or in some cases might be efficacious in combination with existinganti-TNF therapies. TNF is also a powerful host defense cytokine commonly induced in the host response against various invading pathogens. Many viral pathogens can block TNF function by encoding modulators of TNF, its receptors or downstream signaling pathways. Here, we review the known virus-encoded TNF inhibitors and evaluate their potential as alternative future anti-TNF therapies.
Collapse
Affiliation(s)
- Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
30
|
Tang ST, Wang M, Lamberth K, Harndahl M, Dziegiel MH, Claesson MH, Buus S, Lund O. MHC-I-restricted epitopes conserved among variola and other related orthopoxviruses are recognized by T cells 30 years after vaccination. Arch Virol 2008; 153:1833-44. [PMID: 18797815 DOI: 10.1007/s00705-008-0194-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
It is many years since the general population has been vaccinated against smallpox virus. Here, we report that human leukocyte antigen (HLA) class I restricted T cell epitopes can be recognized more than 30 years after vaccination. Using bioinformatic methods, we predicted 177 potential cytotoxic T lymphocyte epitopes. Eight epitopes were confirmed to stimulate IFN-gamma release by T cells in smallpox-vaccinated subjects. The epitopes were restricted by five supertypes (HLA-A1, -A2, -A24 -A26 and -B44). Significant T cell responses were detected against 8 of 45 peptides with an HLA class I affinity of K(D) less than or equal to 5 nM, whereas no T cell responses were detected against 60 peptides with an HLA affinity of K(D) more than 5 nM. All epitopes were fully conserved in seven variola, vaccinia and cowpox strains. Knowledge of the long-term response to smallpox vaccination may lead to a better understanding of poxvirus immunity and may aid in the development of new improved vaccines and diagnostic tools.
Collapse
Affiliation(s)
- S T Tang
- Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Graham SC, Bahar MW, Abrescia NGA, Smith GL, Stuart DI, Grimes JM. Structure of CrmE, a virus-encoded tumour necrosis factor receptor. J Mol Biol 2007; 372:660-71. [PMID: 17681535 DOI: 10.1016/j.jmb.2007.06.082] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/18/2007] [Accepted: 06/28/2007] [Indexed: 11/17/2022]
Abstract
Vaccinia virus (VACV), the smallpox vaccine, encodes many proteins that subvert the host immune response. One of these, cytokine response modifier E (CrmE), is secreted by infected cells and protects these cells from apoptotic challenge by tumour necrosis factor alpha (TNFalpha). We have expressed recombinant CrmE from VACV strain Lister in Escherichia coli, shown that the purified protein is monomeric in solution and competent to bind TNFalpha, and solved the structure to 2.0 A resolution. This is the first structure of a virus-encoded tumour necrosis factor receptor (TNFR). CrmE shares significant sequence similarity with mammalian type 2 TNF receptors (TNFSFR1B, p75; TNFR type 2). The structure confirms that CrmE adopts the canonical TNFR fold but only one of the two "ligand-binding" loops of TNFRSF1A is conserved in CrmE, suggesting a mechanism for the higher affinity of poxvirus TNFRs for TNFalpha over lymphotoxin-alpha. The roles of dimerisation and pre-ligand-assembly domains (PLADs) in poxvirus and mammalian TNFR activity are discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Crystallography, X-Ray
- Humans
- Hydrophobic and Hydrophilic Interactions
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/isolation & purification
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Tumor Necrosis Factor-alpha/isolation & purification
- Tumor Necrosis Factor-alpha/metabolism
- Vaccinia virus/chemistry
- Viral Proteins/chemistry
- Viral Proteins/isolation & purification
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Stephen C Graham
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics and Oxford Protein Production Facility Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | | | | | | | | | | |
Collapse
|
32
|
Pickup DJ. Understanding orthopoxvirus interference with host immune responses to inform novel vaccine design. Expert Rev Vaccines 2007; 6:87-95. [PMID: 17280481 DOI: 10.1586/14760584.6.1.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Jenner's original vaccine used cowpox virus. Cowpox virus and, subsequently, vaccinia virus, a closely related Orthopoxvirus, provided the means to eradicate smallpox. This history and the unique properties of the virus suggest that vaccinia virus will continue to provide a useful vaccine platform. Yet, surprisingly, it has become apparent that much of the virus genome encodes accessory proteins that interfere with host immune responses to infection. Manipulation of these genes offers the potential for new generations of orthopoxvirus vaccines in which we will have far greater control over key features of the vaccination, including the sites of virus infection, the degree of virus replication, the pathogenicity of the virus and, most importantly, the suppression or induction of immune responses of specific types.
Collapse
Affiliation(s)
- David J Pickup
- Department of Molecular Genetics and Microbiology, and Duke Human Vaccine Institute, Box 3020, Duke University Medical Center, Durham, NC 27710 USA.
| |
Collapse
|
33
|
Tulman ER, Delhon G, Afonso CL, Lu Z, Zsak L, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL. Genome of horsepox virus. J Virol 2006; 80:9244-58. [PMID: 16940536 PMCID: PMC1563943 DOI: 10.1128/jvi.00945-06] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses.
Collapse
Affiliation(s)
- E R Tulman
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rahman MM, Barrett JW, Brouckaert P, McFadden G. Variation in Ligand Binding Specificities of a Novel Class of Poxvirus-encoded Tumor Necrosis Factor-binding Protein. J Biol Chem 2006; 281:22517-26. [PMID: 16782702 DOI: 10.1074/jbc.m604645200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Yatapoxviruses encode a distinct class of secreted TNF-binding protein (TNF-BP) that resembles an MHC class I heavy chain but distinct from any other known TNF inhibitor. Characterization of these viral TNF inhibitors from Tanapox virus, Yaba monkey tumor virus (YMTV) and a closely related version from Swinepox virus revealed dramatically differential TNF binding specificities for different mammalian species. The Tanapox virus 2L protein (TPV-2L) formed inhibitory complexes with human TNF, and interacted with monkey and canine TNF with high affinity but rabbit TNF with low affinity. On the other hand, YMTV-2L bound human and monkey TNF with high affinity but rabbit TNF with only low affinity. The TNF-BP from swinepox virus (SPV003/148) only interacted with porcine TNF with high affinity. The observed TNF binding analysis mirrored the biological activity of these TNF-binding protein to block TNF-induced cellular cytolysis. TPV-2L and YMTV-2L also inhibited the human TNF-mediated signaling in cells but TPV-2L exhibited higher affinity for human TNF (KD, 43 pm) compared with monkey (KD, 120 pm) whereas for YMTV-2L, the affinities were reversed (human TNF KD, 440 pm; monkey TNF KD, 230 pm). The interaction domain of human TNF with TNF-binding proteins is significantly different from that of TNFRs, as determined using human TNF mutants. We conclude that these poxvirus TNF-binding proteins represent a new class of TNF inhibitors and are distinct from the viral TNF receptor homologues characterized to date.
Collapse
Affiliation(s)
- Masmudur M Rahman
- BioTherapeutics Research Group, Robarts Research Institute and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6G2V4, Canada
| | | | | | | |
Collapse
|
35
|
Taylor JM, Barry M. Near death experiences: poxvirus regulation of apoptotic death. Virology 2006; 344:139-50. [PMID: 16364745 DOI: 10.1016/j.virol.2005.09.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/10/2005] [Indexed: 12/25/2022]
Abstract
Apoptosis, or programmed cell death, plays a critical role in the elimination of virus-infected cells. As a result, a growing number of viruses encode numerous potent anti-apoptotic proteins to counteract apoptosis in an effort to prolong their own survival. This review describes the numerous mechanisms by which poxviruses inhibit apoptosis thereby modulating life and death of the cell.
Collapse
Affiliation(s)
- John M Taylor
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | |
Collapse
|
36
|
Abstract
In response to invasion by microbial pathogens, host defense mechanisms get activated by both the innate and adaptive arms of the immune responses. TNF (tumor necrosis factor) is a potent proinflammatory cytokine expressed by activated macrophages and lymphocytes that induces diverse cellular responses that can vary from apoptosis to the expression of genes involved in both early inflammatory and acquired immune responses. A wide spectrum of microbes has acquired elegant mechanisms to overcome or deflect the host responses mediated by TNF. For example, modulatory proteins encoded by multiple families of viruses can block TNF and TNF-mediated responses at multiple levels, such as the inhibition of the TNF ligand or its receptors, or by modulating key transduction molecules of the TNF signaling pathway. Bacteria, on the other hand, tend to modify TNF-mediated responses specifically by regulating components of the TNF signaling pathway. Investigation of these diverse strategies employed by viral and bacterial pathogens has significantly advanced our understanding of both host TNF responses and microbial pathogenesis. This review summarizes the diverse microbial strategies to regulate TNF and how such insights into TNF modulation could benefit the treatment of inflammatory or autoimmune diseases.
Collapse
|
37
|
Abstract
Ectromelia virus (ECTV) is an orthopoxvirus whose natural host is the mouse; it is related closely to Variola virus, the causative agent of smallpox, and Monkeypox virus, the cause of an emerging zoonosis. The recent sequencing of its genome, along with an effective animal model, makes ECTV an attractive model for the study of poxvirus pathogenesis, antiviral and vaccine testing and viral immune and inflammatory responses. This review discusses the pathogenesis of mousepox, modulation of the immune response by the virus and the cytokine and cellular components of the skin and systemic immune system that are critical to recovery from infection.
Collapse
Affiliation(s)
- David J Esteban
- University of Victoria, Department of Biochemistry and Microbiology, PO Box 3055 STN CSC, Victoria BC, Canada V8W 3P6
| | - R Mark L Buller
- St Louis University Health Sciences Center, Department of Molecular Microbiology and Immunology, 1402 S. Grand Blvd, St Louis, MO 63104, USA
| |
Collapse
|
38
|
Gillet L, Vanderplasschen A. Viral Subversion of the Immune System. APPLICATIONS OF GENE-BASED TECHNOLOGIES FOR IMPROVING ANIMAL PRODUCTION AND HEALTH IN DEVELOPING COUNTRIES 2005. [PMCID: PMC7121541 DOI: 10.1007/1-4020-3312-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The continuous interactions between host and viruses during their co-evolution have shaped not only the immune system but also the countermeasures used by viruses. Studies in the last decade have described the diverse arrays of pathways and molecular targets that are used by viruses to elude immune detection or destruction, or both. These include targeting of pathways for major histocompatibility complex class I and class II antigen presentation, natural killer cell recognition, apoptosis, cytokine signalling, and complement activation. This paper provides an overview of the viral immune-evasion mechanisms described to date. It highlights the contribution of this field to our understanding of the immune system, and the importance of understanding this aspect of the biology of viral infection to develop efficacious and safe vaccines.
Collapse
|
39
|
Moreno-Altamirano MMB, Romano M, Legorreta-Herrera M, Sánchez-García FJ, Colston MJ. Gene Expression in Human Macrophages Infected with Dengue Virus Serotype-2. Scand J Immunol 2004; 60:631-8. [PMID: 15584975 DOI: 10.1111/j.0300-9475.2004.01519.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infection by any of the four serotypes of dengue viruses (DEN-1, -2, -3 and -4) may result in either a relatively benign fever, called dengue fever (DF), a fatal disease, such as dengue haemorrhagic fever (DHF) or dengue shock syndrome (DSS). Several lines of evidence suggest that soluble immune response mediators may be involved in the severity of dengue infections. For instance, elevated seric levels of IL-8 are a common feature in DHF patients. Because other chemokines, cytokines, adhesion molecules, chemokine and cytokine receptors, as well as cytokine-related molecules may also be involved in dengue virus pathogenesis, we aimed at analysing the gene expression of such molecules in the course of an in vitro DEN-2 infection of human peripheral blood monocyte-derived macrophages, a cell type regarded as a primary target for DEN. Nylon membrane gene arrays containing 375 different human cytokine-related genes were used as a first step to search for differentially expressed genes upon infection. Transcripts for IL-8, IL-1beta, osteopontin, GRO-alpha, -beta and -gamma, I-309, and some other molecules showed to be upregulated upon infection, whereas others such as MIC-1, CD27L and CD30L, were downregulated. Four genes were selected for reverse transcriptase-polymerase chain reaction based gene-expression analysis as a way to partially confirm microarray results. This approach pointed out 25 macrophage-expressed cytokine-related genes that could be relevant in DEN-2 pathogenesis.
Collapse
Affiliation(s)
- M M B Moreno-Altamirano
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Soluble cytokine receptors regulate inflammatory and immune events by functioning as agonists or antagonists of cytokine signaling. As such, they act within complex receptor systems that include signaling receptors, nonsignaling decoy receptors, receptor-associated proteins, and soluble receptor antagonists. Soluble cytokine receptors can be generated by several mechanisms, which include proteolytic cleavage of receptor ectodomains, alternative splicing of mRNA transcripts, transcription of distinct genes that encode soluble cytokine-binding proteins, release of full-length receptors within the context of exosome-like vesicles, and cleavage of GPI-anchored receptors. Furthermore, the important role of soluble cytokine receptors in regulating host defense mechanisms is evidenced by viruses that encode soluble homologues of mammalian receptors and thereby evade innate host immune responses via the sequestration of essential cytokines.
Collapse
Affiliation(s)
- Stewart J Levine
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Bowie AG, Zhan J, Marshall WL. Viral appropriation of apoptotic and NF-kappaB signaling pathways. J Cell Biochem 2004; 91:1099-108. [PMID: 15048867 DOI: 10.1002/jcb.20026] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses utilize a variety of strategies to evade the host immune response and replicate in the cells they infect. The comparatively large genomes of the Orthopoxviruses and gammaherpesviruses encode several immunomodulatory proteins that are homologous to component of the innate immune system of host cells, which are reviewed here. However, the viral mechanisms used to survive host responses are quite distinct between these two virus families. Poxviruses undergo continuous lytic replication in the host cytoplasm while expressing many genes that inhibit innate immune responses. In contrast, herpesviruses persist in a latent state during much of their lifecycle while expressing only a limited number of relatively non-immunogenic viral proteins, thereby avoiding the adaptive immune response. Poxviruses suppress, whereas latent gammaherpesviruses activate, signaling by NF-kappaB, yet both viruses target similar host signaling pathways to suppress the apoptotic response. Here, modulation of apoptotic and NF-kappaB signal transduction pathways are examined as examples of common pathways appropriated in contrasting ways by herpesviruses and poxviruses.
Collapse
Affiliation(s)
- Andrew G Bowie
- Viral Immune Evasion Group, Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
42
|
Johnston JB, McFadden G. Technical knockout: understanding poxvirus pathogenesis by selectively deleting viral immunomodulatory genes. Cell Microbiol 2004; 6:695-705. [PMID: 15236637 DOI: 10.1111/j.1462-5822.2004.00423.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study of viral pathogens with genomes as large and complex as poxviruses represents a constant experimental challenge. Advances in recombinant DNA technologies have provided sophisticated methods to produce mutants defective in one or more viral genes, termed knockout (KO) viruses, thereby facilitating research into the impact of specific gene products on viral pathogenesis. Such strategies have rapidly advanced the systematic mining of many poxvirus genomes and enabled researchers to identify and characterize poxvirus genes whose functions represent the culmination of host and pathogen coevolution. Of particular interest are the multiple classes of virus-encoded immunomodulatory proteins that have evolved specifically to allow poxviruses to evade, obstruct or subvert critical elements within the host innate and acquired immune responses. Functional characterization of these viral genes by generating KO viruses and investigating the phenotypic changes that result is an important tool for understanding the molecular mechanisms underlying poxvirus replication and pathogenesis. Moreover, the insights gained have led to new developments in basic and clinical virology, provided a basis for the design of new vaccines and antivirals, and increased the potential application of poxviruses as investigative tools and sources of biotherapeutics for the treatment of human diseases.
Collapse
Affiliation(s)
- J B Johnston
- Biotherapeutics Research Group, Robarts Research Institute and Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | | |
Collapse
|
43
|
Burgess SC, Young JR, Baaten BJG, Hunt L, Ross LNJ, Parcells MS, Kumar PM, Tregaskes CA, Lee LF, Davison TF. Marek's disease is a natural model for lymphomas overexpressing Hodgkin's disease antigen (CD30). Proc Natl Acad Sci U S A 2004; 101:13879-84. [PMID: 15356338 PMCID: PMC518847 DOI: 10.1073/pnas.0305789101] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Animal models are essential for elucidating the molecular mechanisms of carcinogenesis. Hodgkin's and many diverse non-Hodgkin's lymphomas overexpress the Hodgkin's disease antigen CD30 (CD30(hi)), a tumor necrosis factor receptor II family member. Here we show that chicken Marek's disease (MD) lymphoma cells are also CD30(hi) and are a unique natural model for CD30(hi) lymphoma. Chicken CD30 resembles an ancestral form, and we identify a previously undescribed potential cytoplasmic signaling domain conserved in chicken, human, and mouse CD30. Our phylogeneic analysis defines a relationship between the structures of human and mouse CD30 and confirms that mouse CD30 represents the ancestral mammalian gene structure. CD30 expression by MD virus (MDV)-transformed lymphocytes correlates with expression of the MDV Meq putative oncogene (a c-Jun homologue) in vivo. The chicken CD30 promoter has 15 predicted high-stringency Meq-binding transcription factor recognition motifs, and Meq enhances transcription from the CD30 promoter in vitro. Plasma proteomics identified a soluble form of CD30. CD30 overexpression is evolutionarily conserved and defines one class of neoplastic transformation events, regardless of etiology. We propose that CD30 is a component of a critical intracellular signaling pathway perturbed in neoplastic transformation. Specific anti-CD30 Igs occurred after infection of genetically MD-resistant chickens with oncogenic MDV, suggesting immunity to CD30 could play a role in MD lymphoma regression.
Collapse
Affiliation(s)
- S C Burgess
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, P.O. Box 1600, Mississippi State, MS 39762-6100, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen N, Danila MI, Feng Z, Buller RML, Wang C, Han X, Lefkowitz EJ, Upton C. The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology 2004; 317:165-86. [PMID: 14675635 DOI: 10.1016/s0042-6822(03)00520-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ectromelia virus is the causative agent of mousepox, an acute exanthematous disease of mouse colonies in Europe, Japan, China, and the U.S. The Moscow, Hampstead, and NIH79 strains are the most thoroughly studied with the Moscow strain being the most infectious and virulent for the mouse. In the late 1940s mousepox was proposed as a model for the study of the pathogenesis of smallpox and generalized vaccinia in humans. Studies in the last five decades from a succession of investigators have resulted in a detailed description of the virologic and pathologic disease course in genetically susceptible and resistant inbred and out-bred mice. We report the DNA sequence of the left-hand end, the predicted right-hand terminal repeat, and central regions of the genome of the Moscow strain of ectromelia virus (approximately 177,500 bp), which together with the previously sequenced right-hand end, yields a genome of 209,771 bp. We identified 175 potential genes specifying proteins of between 53 and 1924 amino acids, and 29 regions containing sequences related to genes predicted in other poxviruses, but unlikely to encode for functional proteins in ectromelia virus. The translated protein sequences were compared with the protein database for structure/function relationships, and these analyses were used to investigate poxvirus evolution and to attempt to explain at the cellular and molecular level the well-characterized features of the ectromelia virus natural life cycle.
Collapse
Affiliation(s)
- Nanhai Chen
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Barry M, Wasilenko ST, Stewart TL, Taylor JM. Apoptosis regulator genes encoded by poxviruses. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 36:19-37. [PMID: 15171605 DOI: 10.1007/978-3-540-74264-7_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- M Barry
- Department of Medical Microbiology and Immunology, University of Alberta, 671 Heritage Medical Research Center, Edmonton, Alberta, T6G 252 Canada.
| | | | | | | |
Collapse
|
46
|
Ribas G, Rivera J, Saraiva M, Campbell RD, Alcami A. Genetic variability of immunomodulatory genes in ectromelia virus isolates detected by denaturing high-performance liquid chromatography. J Virol 2003; 77:10139-46. [PMID: 12941926 PMCID: PMC224613 DOI: 10.1128/jvi.77.18.10139-10146.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic variability of nine genes in 12 isolates and strains of ectromelia virus, which causes a smallpox-like disease (mousepox) in mice, was determined and allows for classification of ectromelia viruses. The low genetic variability suggests that evolutionary pressure maintains the activity of immunomodulatory genes in natural poxvirus infections.
Collapse
Affiliation(s)
- Gloria Ribas
- MRC UK HGMP Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SB, UK
| | | | | | | | | |
Collapse
|
47
|
Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, McFadden G. Poxviruses and immune evasion. Annu Rev Immunol 2003; 21:377-423. [PMID: 12543935 DOI: 10.1146/annurev.immunol.21.120601.141049] [Citation(s) in RCA: 488] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large DNA viruses defend against hostile assault executed by the host immune system by producing an array of gene products that systematically sabotage key components of the inflammatory response. Poxviruses target many of the primary mediators of innate immunity including interferons, tumor necrosis factors, interleukins, complement, and chemokines. Poxviruses also manipulate a variety of intracellular signal transduction pathways such as the apoptotic response. Many of the poxvirus genes that disrupt these pathways have been hijacked directly from the host immune system, while others have demonstrated no clear resemblance to any known host genes. Nonetheless, the immunological targets and the diversity of strategies used by poxviruses to disrupt these host pathways have provided important insights into diverse aspects of immunology, virology, and inflammation. Furthermore, because of their anti-inflammatory nature, many of these poxvirus proteins hold promise as potential therapeutic agents for acute or chronic inflammatory conditions.
Collapse
Affiliation(s)
- Bruce T Seet
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- J B Johnston
- Robarts Research Institute and Department of Microbiology and Immunology, The University of Western Ontario, London, Canada N6G 2V4
| | | |
Collapse
|
49
|
Abstract
Tumor necrosis factor (TNF)-related cytokines are critical effector molecules in the immune response to viral pathogens. Engagement of the TNF receptors by their cognate ligands activates apoptotic and non-apoptotic signaling pathways, both of which can mediate antiviral activity. In response, viruses have evolved mechanisms to inhibit signaling by some cytokines of the TNF superfamily. These strategies are largely unique to each class of virus, but are similar in that they all target key regulatory checkpoints of the TNF pathway. In recent years, studies directed towards dissecting the mechanisms of TNF signaling and the viral retort have led to several significant discoveries, and form the basis for this review.
Collapse
Affiliation(s)
- Chris A Benedict
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
50
|
Benedict CA, Banks TA, Ware CF. Death and survival: viral regulation of TNF signaling pathways. Curr Opin Immunol 2003; 15:59-65. [PMID: 12495734 DOI: 10.1016/s0952-7915(02)00018-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chris A Benedict
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | | | |
Collapse
|