1
|
Silva RCMC, Gomes FM. Evolution of the Major Components of Innate Immunity in Animals. J Mol Evol 2024; 92:3-20. [PMID: 38281163 DOI: 10.1007/s00239-024-10155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Innate immunity is present in all animals. In this review, we explore the main conserved mechanisms of recognition and innate immune responses among animals. In this sense, we discuss the receptors, critical for binding to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs); the downstream signaling proteins; and transcription factors that govern immune responses. We also highlight conserved inflammatory mediators that are induced after the recognition of DAMPs and PAMPs. At last, we discuss the mechanisms that are involved in the regulation and/or generation of reactive oxygen species (ROS), influencing immune responses, like heme-oxygenases (HOs).
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fábio Mendonça Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Innate Immunity Mechanisms in Marine Multicellular Organisms. Mar Drugs 2022; 20:md20090549. [PMID: 36135738 PMCID: PMC9505182 DOI: 10.3390/md20090549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
The innate immune system provides an adequate response to stress factors and pathogens through pattern recognition receptors (PRRs), located on the surface of cell membranes and in the cytoplasm. Generally, the structures of PRRs are formed by several domains that are evolutionarily conserved, with a fairly high degree of homology in representatives of different species. The orthologs of TLRs, NLRs, RLRs and CLRs are widely represented, not only in marine chordates, but also in invertebrates. Study of the interactions of the most ancient marine multicellular organisms with microorganisms gives us an idea of the evolution of molecular mechanisms of protection against pathogens and reveals new functions of already known proteins in ensuring the body’s homeostasis. The review discusses innate immunity mechanisms of protection of marine invertebrate organisms against infections, using the examples of ancient multicellular hydroids, tunicates, echinoderms, and marine worms in the context of searching for analogies with vertebrate innate immunity. Due to the fact that mucous membranes first arose in marine invertebrates that have existed for several hundred million years, study of their innate immune system is both of fundamental importance in terms of understanding molecular mechanisms of host defense, and of practical application, including the search of new antimicrobial agents for subsequent use in medicine, veterinary and biotechnology.
Collapse
|
3
|
Zhang Y, Li K, Li C, Liang W, Li K, Li J, Wei X, Yang J. An atypical KLRG1 in Nile tilapia involves in adaptive immunity as a potential marker for activated T lymphocytes. FISH & SHELLFISH IMMUNOLOGY 2021; 113:51-60. [PMID: 33798718 DOI: 10.1016/j.fsi.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Killer cell lectin-like receptor G subfamily 1 (KLRG1) is a receptor generally expressed on effector CD8+ T cells or NK cells at terminal differentiation stage, and it will be highly induced for lymphocyte cytotoxicity upon pathogen infection or lymphocyte activation. However, little is known about the character or function of KLRG1 in lower vertebrates. In present study, we reappraised a molecule that previously defined as KLRG1 in the genomic sequence of Nile tilapia Oreochromis niloticus, and identified it as an atypical KLRG1-like molecule (defined as On-KLRG1-L), and illustrated its potential function serving as a marker representing effector T lymphocytes of fish species. On-KLRG1-L consists of two C-type lectin-like domains (CTLDs) without transmembrane region, and the tertiary structure of the CTLD is highly alike to that in mouse KLRG1. As a CTLD-containing protein, the recombinant On-KLRG1-L could bind PGN and several microbes in vitro. On-KLRG1-L was widely expressed in immune-associated tissues, with the highest expression level in the gill. Once Nile tilapia is infected by Aeromonas hydrophila, mRNA level of On-KLRG1-L in spleen lymphocytes were significantly up-regulated on 5 days after infection. Meanwhile, On-KLRG1-L protein was also induced on 5 or 8 days after A. hydrophila infection. Furthermore, we found both mRNA and protein levels of On-KLRG1-L were dramatically enhanced within several hours after spleen lymphocytes were activated by T cell-specific mitogen PHA in vitro. More importantly, the ratio of On-KLRG1-L+ T cells was also augmented after PHA stimulation. The observations suggested that the KLRG1-like molecule from Nile tilapia participated in lymphocyte activation and anti-bacterial adaptive immune response, and could serve as an activation marker of T lymphocytes. Our study thus provided new evidences to understand lymphocyte-mediated adaptive immunity of teleost.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
4
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
5
|
Petit J, Bailey EC, Wheeler RT, de Oliveira CAF, Forlenza M, Wiegertjes GF. Studies Into β-Glucan Recognition in Fish Suggests a Key Role for the C-Type Lectin Pathway. Front Immunol 2019; 10:280. [PMID: 30863400 PMCID: PMC6400144 DOI: 10.3389/fimmu.2019.00280] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/01/2019] [Indexed: 11/17/2022] Open
Abstract
Immune-modulatory effects of β-glucans are generally considered beneficial to fish health. Despite the frequent application of β-glucans in aquaculture practice, the exact receptors and downstream signalling remains to be described for fish. In mammals, Dectin-1 is a member of the C-type lectin receptor (CLR) family and the best-described receptor for β-glucans. In fish genomes, no clear homologue of Dectin-1 could be identified so far. Yet, in previous studies we could activate carp macrophages with curdlan, considered a Dectin-1-specific β-(1,3)-glucan ligand in mammals. It was therefore proposed that immune-modulatory effects of β-glucan in carp macrophages could be triggered by a member of the CLR family activating the classical CLR signalling pathway, different from Dectin-1. In the current study, we used primary macrophages of common carp to examine immune modulation by β-glucans using transcriptome analysis of RNA isolated 6 h after stimulation with two different β-glucan preparations. Pathway analysis of differentially expressed genes (DEGs) showed that both β-glucans regulate a comparable signalling pathway typical of CLR activation. Carp genome analysis identified 239 genes encoding for proteins with at least one C-type Lectin Domains (CTLD). Narrowing the search for candidate β-glucan receptors, based on the presence of a conserved glucan-binding motif, identified 13 genes encoding a WxH sugar-binding motif in their CTLD. These genes, however, were not expressed in macrophages. Instead, among the β-glucan-stimulated DEGs, a total of six CTLD-encoding genes were significantly regulated, all of which were down-regulated in carp macrophages. Several candidates had a protein architecture similar to Dectin-1, therefore potential conservation of synteny of the mammalian Dectin-1 region was investigated by mining the zebrafish genome. Partial conservation of synteny with a region on the zebrafish chromosome 16 highlighted two genes as candidate β-glucan receptor. Altogether, the regulation of a gene expression profile typical of a signalling pathway associated with CLR activation and, the identification of several candidate β-glucan receptors, suggest that immune-modulatory effects of β-glucan in carp macrophages could be a result of signalling mediated by a member of the CLR family.
Collapse
Affiliation(s)
- Jules Petit
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Erin C. Bailey
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | | | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Geert F. Wiegertjes
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
7
|
Bruce TJ, Brown ML. A Review of Immune System Components, Cytokines, and Immunostimulants in Cultured Finfish Species. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ojas.2017.73021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Li XP, Hu YH. CD94 of tongue sole Cynoglossus semilaevis binds a wide arrange of bacteria and possesses antibacterial activity. FISH & SHELLFISH IMMUNOLOGY 2016; 58:641-649. [PMID: 27720695 DOI: 10.1016/j.fsi.2016.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
In this study, we examined the expression patterns and the functions of the tongue sole Cynoglossus semilaevis CD94, CsCD94. CsCD94 is composed of 209 amino acid residues and shares 43.0-50.2% overall identities with known teleost CD94 sequence. CsCD94 has a C-type lectin-like domain. Expression of CsCD94 occurred in multiple tissues and was upregulated during bacterial infection. Recombinant CsCD94 (rCsCD94) exhibited apparent binding and agglutinating activities against both Gram-positive and Gram-negative bacteria in a Ca2+-dependent manner. Treatment of bacteria with rCsCD94 enhanced phagocytosis of the bacteria by peripheral blood leukocytes. Furthermore, incubation of rCsCD94 with bacteria reduced the survival of the bacteria in vitro. Taken together, these results indicate that rCsCD94 is a key factor in the bactericidal and phagocytic effects of tongue sole, and reveal for the first time an essential role of fish CD94 in antibacterial immunity, thereby adding insight into the function of CD94.
Collapse
Affiliation(s)
- Xue-Peng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
9
|
Ao J, Ding Y, Chen Y, Mu Y, Chen X. Molecular Characterization and Biological Effects of a C-Type Lectin-Like Receptor in Large Yellow Croaker (Larimichthys crocea). Int J Mol Sci 2015; 16:29631-29642. [PMID: 26690423 PMCID: PMC4691118 DOI: 10.3390/ijms161226175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 01/10/2023] Open
Abstract
The C-type lectin-like receptors (CTLRs) play important roles in innate immunity as one type of pattern recognition receptors. Here, we cloned and characterized a C-type lectin-like receptor (LycCTLR) from large yellow croaker Larimichthys crocea. The full-length cDNA of LycCTLR is 880 nucleotides long, encoding a protein of 215 amino acids. The deduced LycCTLR contains a C-terminal C-type lectin-like domain (CTLD), an N-terminal cytoplasmic tail, and a transmembrane region. The CTLD of LycCTLR possesses six highly conserved cysteine residues (C1-C6), a conserved WI/MGL motif, and two sugar binding motifs, EPD (Glu-Pro-Asp) and WYD (Trp-Tyr-Asp). Ca(2+) binding site 1 and 2 were also found in the CTLD. The LycCTLR gene consists of five exons and four introns, showing the same genomic organization as tilapia (Oreochromis niloticus) and guppy (Poecilia retitculata) CTLRs. LycCTLR was constitutively expressed in various tissues tested, and its transcripts significantly increased in the head kidney and spleen after stimulation with inactivated trivalent bacterial vaccine. Recombinant LycCTLR (rLycCTLR) protein produced in Escherichia coli BL21 exhibited not only the hemagglutinating activity and a preference for galactose, but also the agglutinating activity against two food-borne pathogenic bacteria E. coli and Bacillus cereus in a Ca(2+)-dependent manner. These results indicate that LycCTLR is a potential galactose-binding C-type lectin that may play a role in the antibacterial immunity in fish.
Collapse
Affiliation(s)
- Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
| | - Yang Ding
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
| | - Yuanyuan Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
| | - Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
10
|
Yang GJ, Lu XJ, Chen Q, Chen J. Molecular characterization and functional analysis of a novel C-type lectin receptor-like gene from a teleost fish, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2015; 44:603-610. [PMID: 25842180 DOI: 10.1016/j.fsi.2015.03.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
C-type lectin-like receptors (CLRs) are important pathogen pattern recognition molecules that recognize carbohydrate structures. However, the functions of these receptors in fish keep less known. In this study, we characterized a novel CLR from a teleost fish, Plecoglossus altivelis (ayu), tentatively named PaCD209L. The cDNA of PaCD209L is 1464 nucleotides (nts) in length, encoding a polypeptide of 281 amino acid residues with a calculated molecular weight of 31.5 kDa. Multiple alignment of the deduced amino acid sequences of PaCD209L and other related fish CLRs revealed that the PaCD209L sequence had typical characteristics of fish CLRs, but without Ca(2+)-binding sites. Sequence comparison and phylogenetic tree analysis showed that PaCD209L shared the highest amino acid identity (44%) with rainbow trout (Oncorhynchus mykiss) CD209 aE PaCD209L transcripts were detected in all of the tissues examined, mainly expressed in the brain and heart. Upon Vibrio anguillarum infection, PaCD209L transcripts were upregulated in all tested tissues and in monocytes/macrophages (MO/MΦ). We prepared recombinant PaCD209L (rPaCD209L) by prokaryotic expression and raised antiserum against PaCD209L. Western blot analysis revealed that native PaCD209L was glycosylated, and its protein expression significantly increased in ayu MO/MΦ upon V. anguillarum infection. In addition, rPaCD209L was able to bind Gram-positive and Gram-negative bacteria in the absence of Ca(2+). After PaCD209L was blocked by anti-PaCD209L IgG, the phagocytosis and bacterial killing activity of MO/MΦ significantly decreased. These results suggest that PaCD209L plays an important role in the regulation of MO/MΦ functions in ayu.
Collapse
Affiliation(s)
- Guan-Jun Yang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiang Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; The Donghai Sea Collaborative Innovation Center for Industrial Upgrading Mariculture, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; The Donghai Sea Collaborative Innovation Center for Industrial Upgrading Mariculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
Fischer U, Koppang EO, Nakanishi T. Teleost T and NK cell immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:197-206. [PMID: 23664867 DOI: 10.1016/j.fsi.2013.04.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The main function of the immune system is to maintain the organism's homeostasis when invaded by foreign material or organisms. Prior to successful elimination of the invader it is crucial to distinguish self from non-self. Most pathogens and altered cells can be recognized by immune cells through expressed pathogen- or danger-associated molecular patterns (PAMPS or DAMPS, respectively), through non-self (e.g. allogenic or xenogenic cells) or missing major histocompatibility (MHC) class I molecules (some virus-infected target cells), and by presenting foreign non-self peptides of intracellular (through MHC class I-e.g. virus-infected target cells) or extracellular (through MHC class II-e.g. from bacteria) origin. In order to eliminate invaders directly or by destroying their ability to replicate (e.g. virus-infected cells) specialized immune cells of the innate and adaptive responses appeared during evolution. The first line of defence is represented by the evolutionarily ancient macrophages and natural killer (NK) cells. These innate mechanisms are well developed in bony fish. Two types of NK cell homologues have been described in fish: non-specific cytotoxic cells and NK-like cells. Adaptive cell-mediated cytotoxicity (CMC) requires key molecules expressed on cytotoxic T lymphocytes (CTLs) and target cells. CTLs kill host cells harbouring intracellular pathogens by binding of their T cell receptor (TCR) and its co-receptor CD8 to a complex of MHC class I and bound peptide on the infected host cell. Alternatively, extracellular antigens are taken up by professional antigen presenting cells such as macrophages, dendritic cells and B cells to process those antigens and present the resulting peptides in association with MHC class II to CD4(+) T helper cells. During recent years, genes encoding MHC class I and II, TCR and its co-receptors CD8 and CD4 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. Functional assays for innate and adaptive lymphocyte responses have been developed in only a few fish species. This review summarizes and discusses recent results and developments in the field of T and NK cell responses with focus on economically important and experimental model fish species in the context of vaccination.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | |
Collapse
|
12
|
Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2012; 65:25-35. [PMID: 23007952 DOI: 10.1007/s00251-012-0643-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
Abstract
Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.
Collapse
|
13
|
Vasta GR, Ahmed H, Nita-Lazar M, Banerjee A, Pasek M, Shridhar S, Guha P, Fernández-Robledo JA. Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox. Front Immunol 2012; 3:199. [PMID: 22811679 PMCID: PMC3396283 DOI: 10.3389/fimmu.2012.00199] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/26/2012] [Indexed: 02/06/2023] Open
Abstract
Galectins are characterized by their binding affinity for β-galactosides, a unique binding site sequence motif, and wide taxonomic distribution and structural conservation in vertebrates, invertebrates, protista, and fungi. Since their initial description, galectins were considered to bind endogenous (“self”) glycans and mediate developmental processes and cancer. In the past few years, however, numerous studies have described the diverse effects of galectins on cells involved in both innate and adaptive immune responses, and the mechanistic aspects of their regulatory roles in immune homeostasis. More recently, however, evidence has accumulated to suggest that galectins also bind exogenous (“non-self”) glycans on the surface of potentially pathogenic microbes, parasites, and fungi, suggesting that galectins can function as pattern recognition receptors (PRRs) in innate immunity. Thus, a perplexing paradox arises by the fact that galectins also recognize lactosamine-containing glycans on the host cell surface during developmental processes and regulation of immune responses. According to the currently accepted model for non-self recognition, PRRs recognize pathogens via highly conserved microbial surface molecules of wide distribution such as LPS or peptidoglycan (pathogen-associated molecular patterns; PAMPs), which are absent in the host. Hence, this would not apply to galectins, which apparently bind similar self/non-self molecular patterns on host and microbial cells. This paradox underscores first, an oversimplification in the use of the PRR/PAMP terminology. Second, and most importantly, it reveals significant gaps in our knowledge about the diversity of the host galectin repertoire, and the subcellular targeting, localization, and secretion. Furthermore, our knowledge about the structural and biophysical aspects of their interactions with the host and microbial carbohydrate moieties is fragmentary, and warrants further investigation.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sattler S, Ghadially H, Hofer E. Evolution of the C-type lectin-like receptor genes of the DECTIN-1 cluster in the NK gene complex. ScientificWorldJournal 2012; 2012:931386. [PMID: 22550468 PMCID: PMC3322459 DOI: 10.1100/2012/931386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/29/2011] [Indexed: 01/24/2023] Open
Abstract
Pattern recognition receptors are crucial in initiating and shaping innate and adaptive immune responses and often belong to families of structurally and evolutionarily related proteins. The human C-type lectin-like receptors encoded in the DECTIN-1 cluster within the NK gene complex contain prominent receptors with pattern recognition function, such as DECTIN-1 and LOX-1. All members of this cluster share significant homology and are considered to have arisen from subsequent gene duplications. Recent developments in sequencing and the availability of comprehensive sequence data comprising many species showed that the receptors of the DECTIN-1 cluster are not only homologous to each other but also highly conserved between species. Even in Caenorhabditis elegans, genes displaying homology to the mammalian C-type lectin-like receptors have been detected. In this paper, we conduct a comprehensive phylogenetic survey and give an up-to-date overview of the currently available data on the evolutionary emergence of the DECTIN-1 cluster genes.
Collapse
Affiliation(s)
- Susanne Sattler
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria.
| | | | | |
Collapse
|
15
|
Identification of a chicken CLEC-2 homologue, an activating C-type lectin expressed by thrombocytes. Immunogenetics 2011; 64:389-97. [PMID: 22205394 DOI: 10.1007/s00251-011-0591-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/17/2011] [Indexed: 02/05/2023]
Abstract
Receptors on natural killer (NK) cells are classified as C-type lectins or as Ig-like molecules, and many of them are encoded by two genomic clusters designated natural killer gene complex (NKC) and leukocyte receptor complex, respectively. Here, we describe the analysis of an NKC-encoded chicken C-type lectin, previously annotated as homologue to CD94 and NKG2 and thus designated chicken CD94/NKG2. To further elucidate its potential function on NK cells, we produced a specific mab by immunizing with stably transfected HEK293 cells expressing this lectin. Staining of various chicken tissues revealed minimal reactivity with bursal, or thymus cells. In peripheral blood mononuclear cell and spleen, however, the mab reacted with virtually all thrombocytes, whereas most NK cells in organs such as embryonic spleen, lung and intestine were found to be negative. These findings indicate that the gene may not resemble CD94/NKG2, but rather a CLEC-2 homologue, a claim further supported by sequence features such as an additional extracellular cysteine residue and the presence of a cytoplasmic motif known as a hem immunoreceptor tyrosine-based activation motif, found in C-type lectins such as Dectin-1, CLEC-2, but not CD94/NKG2. The biochemical analyses demonstrated that CLEC-2 is present on the cell surface as heavily glycosylated homodimer, which upon mab crosslinking induced thrombocyte activation, as measured by CD107 expression. These analyses reveal that the chicken NKC may not encode NK cell receptor genes, in particular not CD94 or NKG2 genes, and identifies a chicken CLEC-2 homologue.
Collapse
|
16
|
Guo HZ, Zou PF, Fu JP, Guo Z, Zhu BK, Nie P, Chang MX. Characterization of two C-type lectin-like domain (CTLD)-containing proteins from the cDNA library of Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2011; 30:515-524. [PMID: 21134464 DOI: 10.1016/j.fsi.2010.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/13/2010] [Accepted: 11/28/2010] [Indexed: 05/30/2023]
Abstract
Chinese mitten crab Eriocheir sinensis is one of the most important aquaculture crustacean species in China. A cDNA library was constructed from mixed tissues of E. sinensis challenged with LPS. Eight genes involved in immune response were identified from 319 single colonies. Among them, two different C-type lectin-like domain (CTLD)-containing proteins were firstly identified in Chinese mitten crab. The full-length cDNA sequences of two C-type lectin-like domain (CTLD)-containing proteins named EsCTLDcp-1 and EsCTLDcp-2 were cloned by 5' RACE. The deduced amino acid sequences of EsCTLDcp-1 and EsCTLDcp-2 possessed several conserved features of C-type lectin subfamily. The tissue distribution of EsCTLDcp-1 and EsCTLDcp-2 was examined by Real-time PCR. In the normal Chinese mitten crab, the expression of EsCTLDcp-2 was detected in all tested tissues such as haemolymph, muscle, intestine, gill, heart, gonad and hepatopancreas, whereas in muscle, intestine, gill, heart and hepatopancreas for EsCTLDcp-1. The highest expressions of EsCTLDcp-1 and EsCTLDcp-2 were both observed in hepatopancreas. LPS significantly induced the expression of EsCTLDcp-1 and EsCTLDcp-2 in the hepatopancreas at the different time points. The induced fold change of EsCTLDcp-1 and EsCTLDcp-2 increased significantly from 2 h for EsCTLDcp-1 and 4 h for EsCTLDcp-2, and reached a maximum at 12 h, then dropped at 24 h. A differential pattern was found in Chinese mitten crab challenged with Chinese mitten crab pathogen Aeromonas hydrophila. The expression of EsCTLDcp-1 increased significantly at 2 h post-challenge crabs with A. hydrophila, then decreased at 4 h and 8 h, after that increased at 12 h and 24 h. The expression of EsCTLDcp-2 was decreased at the all time points. All these data suggest a differential role of EsCTLDcp-1 and EsCTLDcp-2 in the crab innate immune response to bacterial infection.
Collapse
Affiliation(s)
- H Z Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Laboratory of Fish Diseases, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 2010; 63:123-41. [PMID: 21191578 DOI: 10.1007/s00251-010-0506-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/16/2010] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells affect a form of innate immunity that recognizes and eliminates cells that are infected with certain viruses or have undergone malignant transformation. In mammals, this recognition can be mediated through immunoglobulin- (Ig) and/or lectin-type NK receptors (NKRs). NKR genes in mammals range from minimally polymorphic single-copy genes to complex multigene families that exhibit high levels of haplotypic complexity and exhibit significant interspecific variation. Certain single-copy NKR genes that are present in one mammal are present as expanded multigene families in other mammals. These observations highlight NKRs as one of the most rapidly evolving eukaryotic gene families and likely reflect the influence of pathogens, especially viruses, on their evolution. Although well characterized in human and mice, cytotoxic cells that are functionally similar to NK cells have been identified in species ranging from birds to reptiles, amphibians and fish. Although numerous receptors have been identified in non-mammalian vertebrates that share structural relationships with mammalian NKRs, functionally defining these lower vertebrate molecules as NKRs is confounded by methodological and interpretive complexities. Nevertheless, several lines of evidence suggest that NK-type function or its equivalent has sustained a long evolutionary history throughout vertebrate species.
Collapse
|
18
|
Xia JH, Yue GH. Identification and analysis of immune-related transcriptome in Asian seabass Lates calcarifer. BMC Genomics 2010; 11:356. [PMID: 20525308 PMCID: PMC2893601 DOI: 10.1186/1471-2164-11-356] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/04/2010] [Indexed: 01/21/2023] Open
Abstract
Background Fish diseases caused by pathogens are limiting their production and trade, affecting the economy generated by aquaculture. Innate immunity system is the first line of host defense in opposing pathogenic organisms or any other foreign material. For identification of immune-related genes in Asian seabass Lates calcarifer, an important marine foodfish species, we injected bacterial lipopolysaccharide (LPS), a commonly used elicitor of innate immune responses to eight individuals at the age of 35 days post-hatch and applied the suppression subtractive hybridization (SSH) technique to selectively amplify spleen cDNA of differentially expressed genes. Results Sequencing and bioinformatic analysis of 3351 ESTs from two SSH libraries yielded 1692 unique transcripts. Of which, 618 transcripts were unknown/novel genes and the remaining 1074 were similar to 743 known genes and 105 unannotated mRNA sequences available in public databases. A total of 161 transcripts were classified to the category "response to stimulus" and 115 to "immune system process". We identified 25 significantly up-regulated genes (including 2 unknown transcripts) and 4 down-regulated genes associated with immune-related processes upon challenge with LPS. Quantitative real-time PCR confirmed the differential expression of these genes after LPS challenge. Conclusions The present study identified 1692 unique transcripts upon LPS challenge for the first time in Asian seabass by using SSH, sequencing and bioinformatic analysis. Some of the identified transcripts are vertebrate homologues and others are hitherto unreported putative defence proteins. The obtained immune-related genes may allow for a better understanding of immunity in Asian seabass, carrying out detailed functional analysis of these genes and developing strategies for efficient immune protection against infections in Asian seabass.
Collapse
Affiliation(s)
- Jun Hong Xia
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore, 117604 Republic of Singapore
| | | |
Collapse
|
19
|
Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes. Immunogenetics 2009; 61:565-79. [PMID: 19597809 DOI: 10.1007/s00251-009-0386-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 06/24/2009] [Indexed: 02/03/2023]
Abstract
Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.
Collapse
|
20
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
21
|
Daëron M, Jaeger S, Du Pasquier L, Vivier E. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol Rev 2008; 224:11-43. [PMID: 18759918 DOI: 10.1111/j.1600-065x.2008.00666.x] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since an immunoreceptor tyrosine-based inhibition motif (ITIM) was first identified in the intracytoplasmic domain of Fc gammaRIIB, ITIMs have been found in a large number of inhibitory molecules that were shown to negatively regulate cell activation. Due to their wide tissue distribution and to the variety of their extracellular ligands, ITIM-containing molecules are involved in the control of a large spectrum of biological functions, mostly but not exclusively related to immunity. On the basis of sequence comparison, ITIMs were structurally defined as 6-amino acid sequences containing a tyrosine (Y) with loosely conserved N-terminal (Y-2) and C-terminal (Y+3) residues. Molecular analysis of signaling events demonstrated that when coaggregated with activating receptors, ITIMs are phosphorylated by Src-family tyrosine kinases, which enables them to recruit Src homology 2 domain-containing phosphatases that antagonize activation signals. Because ITIM-dependent negative regulation seems to be a fundamental regulatory mechanism, both in rodents and in humans, and because it can be used either as a target or as a powerful tool in various diseases, we undertook (i) a genome-wide search of potential novel ITIM-containing molecules in humans, mice, frogs, birds, and flies and (ii) a comparative analysis of potential ITIMs in major animal phyla, from mammals to protozoa. We found a surprisingly high number of potential ITIM-containing molecules, having a great diversity of extracellular domains, and being expressed by a variety of immune and non-immune cells. ITIMs could be traced back to the most primitive metazoa. The genes that encode ITIM-containing molecules that belong to the immunoglobulin superfamily or to the C-lectin family seem to derive from a common set of ancestor genes and to have dramatically expanded and diverged in Gnathostomata (from fish to mammals).
Collapse
Affiliation(s)
- Marc Daëron
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.
| | | | | | | |
Collapse
|
22
|
Abstract
Natural killer (NK) activity has been examined in birds for over 30 years, but evidence that avian NK activity plays crucial roles in disease is only suggestive. In chickens, NK activity is mediated by TCR0 cells in the intestinal epithelium, but elsewhere subsets of alphabeta and gammadelta T cells (NKT cells) may be more important. There are few lectin-like NK receptor genes, located in the genomic region syntenic with the natural killer complex (NKC) as well as the major histocompatibility complex (MHC). In contrast, a huge number of Ig-like receptor genes are located in a region syntenic with the leukocyte receptor complex (LRC).
Collapse
|
23
|
Brown MG, Scalzo AA. NK gene complex dynamics and selection for NK cell receptors. Semin Immunol 2008; 20:361-8. [PMID: 18640056 DOI: 10.1016/j.smim.2008.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 06/06/2008] [Indexed: 01/06/2023]
Abstract
Natural killer (NK) cells play important roles in innate defense against infectious agents particularly viruses and also tumors. They mediate their effects through direct cytolysis, release of cytokines and regulation of subsequent adaptive immune responses. NK cells are equipped with sophisticated arrays of inhibitory and activation receptors that regulate their function. In this review we illustrate some of the major evolutionary relationships between NK cell receptors among different animal species and what some of the major mechanisms are that give rise to this diversity in receptor families, including the potential roles of pathogens such as viruses in driving receptor evolution.
Collapse
Affiliation(s)
- Michael G Brown
- Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | | |
Collapse
|
24
|
Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus. Mol Immunol 2008; 45:1646-57. [DOI: 10.1016/j.molimm.2007.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/02/2007] [Indexed: 01/19/2023]
|
25
|
Zucchetti I, Marino R, Pinto MR, Lambris JD, Du Pasquier L, De Santis R. ciCD94-1, an ascidian multipurpose C-type lectin-like receptor expressed in Ciona intestinalis hemocytes and larval neural structures. Differentiation 2007; 76:267-82. [PMID: 17924966 DOI: 10.1111/j.1432-0436.2007.00214.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
C-type lectins play an important role in the immune system and are part of a large superfamily that includes C-type lectin-like domain (CTLD)-containing proteins. Divergent evolution, acting on the CTLD fold, has generated the Ca2+-dependent carbohydrate-binding lectins and molecules, as the lectin-like natural killer (NK) receptors that bind proteins, rather than sugars, in a Ca(2+)-independent manner. We have studied ciCD94-1, a CTLD-containing protein from the tunicate Ciona intestinalis, which is a homolog of the CD94 vertebrate receptor that is expressed on NK cells and modulates their cytotoxic activity by interacting with MHC class I molecules. ciCD94-1 shares structural features with the CTLD-containing molecules that recognize proteins, suggesting that it could be located along the evolutionary pathway leading to the NK receptors. ciCD94-1 was up-regulated in response to inflammation induced by lipopolysaccharide (LPS) acting on a blood cell type present in both the tunic and circulating blood. Furthermore, an anti-ciCD94-1 antibody specifically inhibited the phagocytic activity of these cells. ciCD94-1 was also expressed during development in the larva and in the early stages of metamorphosis in structures related to the nervous system, and loss of its function affected the correct differentiation of these territories. These findings suggest that ciCD94-1 has different roles in immunity and in development, thus strengthening the concept of gene co-option during evolution and of an evolutionary relationship between the nervous and the immune systems.
Collapse
Affiliation(s)
- Ivana Zucchetti
- Laboratory of Cell Biology, Stazione Zoologica "Anton Dohrn" Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Chiang HI, Zhou H, Raudsepp T, Jesudhasan PR, Zhu JJ. Chicken CD69 and CD94/NKG2-like genes in a chromosomal region syntenic to mammalian natural killer gene complex. Immunogenetics 2007; 59:603-11. [PMID: 17505822 DOI: 10.1007/s00251-007-0220-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
In mammals, natural killer (NK) cell C-type lectin receptors were encoded in a gene cluster called natural killer gene complex (NKC). The NKC is not reported in chicken yet. Instead, NK receptor genes were found in the major histocompatibility complex. In this study, two novel chicken C-type lectin-like receptor genes were identified in a region on chromosome 1 that is syntenic to mammalian NKC region. The chromosomal locations were validated with fluorescent in situ hybridization. Based on 3D structure modeling, sequence homology, chromosomal location, and phylogenetic analysis, one receptor is the orthologue of mammalian cluster of differentiation 69 (CD69), and the other is highly homologous to CD94 and NKG2. Like CD94/NKG2 gene found in teleostean fishes, chicken CD94/NKG2 has the features of both human CD94 and NKG2A. Unlike mammalian NKC, these two chicken C-type lectin receptors are not closely linked but separated by 42 million base pairs according to the chicken draft genome sequence. The arrangement of several other genes that are located outside the mammalian NKC is conserved among chicken, human, and mouse. The chicken NK C-type lectin-like receptors in the NKC syntenic region indicate that this chromosomal region existed before the divergence between mammals and aves.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/genetics
- Cattle
- Chickens/genetics
- Chromosomal Proteins, Non-Histone/genetics
- Evolution, Molecular
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Mice
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D/genetics
- Rats
- Receptors, Immunologic/genetics
- Receptors, Natural Killer Cell
- Sequence Homology, Amino Acid
- Synteny/genetics
Collapse
Affiliation(s)
- Hsin-I Chiang
- Department of Poultry Science, Texas A & M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Natural killer (NK) cells play a vital role in innate immune responses to infection; they express activation receptors that recognize virus-infected cells. Highly related to receptors recognizing tumor cells, the activation receptors trigger cytotoxicity and cytokine production. NK cells also express inhibitory receptors for major histocompatibility complex (MHC) class I molecules that block the action of the activation receptors. Although many ligands for NK cell receptors have MHC class I folds, recent studies also indicate ligands resembling the NK cell receptors themselves. A combination of immunologic, genetic, biophysical, and in vivo approaches is being employed to understand fully how these receptors contribute to NK cell activities in innate immunity to pathogens and tumors.
Collapse
Affiliation(s)
- Wayne M Yokoyama
- Howard Hughes Medical Institute, Rheumatology Division, Department of Medicine, Washington University School of Medicine St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Hao L, Klein J, Nei M. Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proc Natl Acad Sci U S A 2006; 103:3192-7. [PMID: 16492762 PMCID: PMC1413923 DOI: 10.1073/pnas.0511280103] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The natural killer (NK) receptor gene complex (NKC) encodes a large number of C-type lectin-like receptors, which are expressed on NK and other immune-related cells. These receptors play an important role in regulating NK-cell cytolytic activity, protecting cells against virus infection and tumorigenesis. To understand the evolutionary history of the NKC, we characterized the C-type lectin-like NKC genes and their organization from four major orders of placental mammals, primates (human), rodents (mouse and rat), carnivores (dog), and artiodactyls (cattle) and then conducted phylogenetic analysis of these genes. The results indicate that the NKC of placental mammals is highly heterogeneous in terms of the gene content and rates of birth and death of different gene lineages, but the NKC is also remarkably conserved in its gene organization and persistence of orthologous gene lineages. Among the 28 identified NKC gene lineages, 4, KLRA1, KLRB1, CLEC2D, and CLEC4A/B/C, have expanded rapidly in rodents only. The high birth and death rate of these 4 gene families might be due to functional differentiation driven by positive selection. Identification of putative NKC sequences in opossum and chicken genomes implies that the expansion of the NKC gene families might have occurred before the radiation of placental mammals but after the divergence of birds from mammals.
Collapse
Affiliation(s)
- Li Hao
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802
- *To whom correspondence may be addressed. E-mail:
or
| | - Jan Klein
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802
| | - Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
29
|
Panagos PG, Dobrinski KP, Chen X, Grant AW, Traver D, Djeu JY, Wei S, Yoder JA. Immune-related, lectin-like receptors are differentially expressed in the myeloid and lymphoid lineages of zebrafish. Immunogenetics 2006; 58:31-40. [PMID: 16467987 DOI: 10.1007/s00251-005-0064-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 10/25/2005] [Indexed: 12/11/2022]
Abstract
The identification of C-type lectin (Group V) natural killer (NK) cell receptors in bony fish has remained elusive. Analyses of the Fugu rubripes genome database failed to identify Group V C-type lectin domains (Zelensky and Gready, BMC Genomics 5:51, 2004) suggesting that bony fish, in general, may lack such receptors. Numerous Group II C-type lectin receptors, which are structurally similar to Group V (NK) receptors, have been characterized in bony fish. By searching the zebrafish genome database we have identified a multi-gene family of Group II immune-related, lectin-like receptors (illrs) whose members possess inhibiting and/or activating signaling motifs typical of Group V NK receptors. Illr genes are differentially expressed in the myeloid and lymphoid lineages, suggesting that they may play important roles in the immune functions of multiple hematopoietic cell lineages.
Collapse
Affiliation(s)
- Patoula G Panagos
- Department of Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fischer U, Utke K, Somamoto T, Köllner B, Ototake M, Nakanishi T. Cytotoxic activities of fish leucocytes. FISH & SHELLFISH IMMUNOLOGY 2006; 20:209-26. [PMID: 15939625 DOI: 10.1016/j.fsi.2005.03.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 05/02/2023]
Abstract
Like mammalian leucocytes, white blood cells of fish are able to kill altered (e.g. virus-infected) and foreign (allogeneic or xenogeneic) cells. The existence of natural killer (NK)-like and specific cytotoxic cells in fish was first shown using allogeneic and xenogeneic effector/target cell systems. In addition to in vivo and ex vivo studies, very important contributions were made by in vitro analysis using a number of different long-term cytotoxic cell lines established from channel catfish. In mammals, specific cell-mediated cytotoxicity (CMC) as part of the adaptive immune response requires a number of key molecules expressed on effector leucocytes and target cells. CD8+ T lymphocytes kill infected cells only, if their antigen receptor (TCR) matches the MHC class I with bound peptide of the target cell. Expression patterns of the fish gene homologues for TCR, CD8 and MHC class I, as well as related genes, are in agreement with similar function. Convenient systems for the analysis of specific CMC have only recently become available for fish with the combination of clonal fish with syngeneic or allogeneic but MHC class I matching cell lines. It was demonstrated that both, NK- and cytotoxic T (Tc) cells are involved in the killing of virus infected MHC class I matching and mismatching target cells. Analysis of these lymphocyte subsets is only starting for fish. There is also evidence that the different viral proteins trigger different subsets of killer cells. This review further discusses findings on fish CMC with regard to temperature/seasons and ontogeny.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Litman GW, Cannon JP, Dishaw LJ. Reconstructing immune phylogeny: new perspectives. Nat Rev Immunol 2005; 5:866-79. [PMID: 16261174 PMCID: PMC3683834 DOI: 10.1038/nri1712] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous studies of the mammalian immune system have begun to uncover profound interrelationships, as well as fundamental differences, between the adaptive and innate systems of immune recognition. Coincident with these investigations, the increasing experimental accessibility of non-mammalian jawed vertebrates, jawless vertebrates, protochordates and invertebrates has provided intriguing new information regarding the likely patterns of emergence of immune-related molecules during metazoan phylogeny, as well as the evolution of alternative mechanisms for receptor diversification. Such findings blur traditional distinctions between adaptive and innate immunity and emphasize that, throughout evolution, the immune system has used a remarkably extensive variety of solutions to meet fundamentally similar requirements for host protection.
Collapse
MESH Headings
- Animals
- Evolution, Molecular
- Gene Rearrangement, B-Lymphocyte/genetics
- Gene Rearrangement, B-Lymphocyte/immunology
- Gene Rearrangement, T-Lymphocyte/genetics
- Gene Rearrangement, T-Lymphocyte/immunology
- Genes, Immunoglobulin/genetics
- Genes, Immunoglobulin/immunology
- Genes, RAG-1/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Invertebrates/genetics
- Invertebrates/immunology
- Phylogeny
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Vertebrates/genetics
- Vertebrates/immunology
Collapse
Affiliation(s)
- Gary W Litman
- Department of Pediatrics, University of South Florida College of Medicine, All Children's Hospital Children's Research Institute, 830 First Street South, Saint Petersburg, Florida 33701, USA.
| | | | | |
Collapse
|
32
|
Abstract
Many receptors on natural killer (NK) cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.
Collapse
|
33
|
Plouffe DA, Hanington PC, Walsh JG, Wilson EC, Belosevic M. Comparison of select innate immune mechanisms of fish and mammals. Xenotransplantation 2005; 12:266-77. [PMID: 15943775 DOI: 10.1111/j.1399-3089.2005.00227.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study of innate immunity has become increasingly popular since the discovery of homologs of many of the innate immune system components and pathways in lower organisms including invertebrates. As fish occupy a key position in the evolution of the innate and adaptive immune responses, there has been a great deal of interest regarding similarities and differences between their defense mechanisms and those of higher vertebrates. This review focuses on describing select mechanisms of the innate immune responses of fish and the implications for evolution of immunity in higher vertebrates.
Collapse
Affiliation(s)
- Debbie A Plouffe
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
34
|
Abstract
The integrated processing of signals transduced by activating and inhibitory cell surface receptors regulates NK cell effector functions. Here, I review the structure, function, and ligand specificity of the receptors responsible for NK cell recognition.
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco School of Medicine, San Francisco, California 94143-0414, USA.
| |
Collapse
|
35
|
Vasta GR, Ahmed H, Odom EW. Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates. Curr Opin Struct Biol 2005; 14:617-30. [PMID: 15465324 DOI: 10.1016/j.sbi.2004.09.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the past few years, substantial progress has been accomplished in the elucidation of the structural diversity of the lectin repertoires of invertebrates, protochordates and ectothermic vertebrates, providing particularly valuable information on those groups that constitute the invertebrate/vertebrate 'boundary'. Although representatives of lectin families typical of mammals, such as C-type lectins, galectins and pentraxins, have been described in these taxa, the detailed study of selected model species has yielded either novel variants of the structures described for the mammalian lectin representatives or novel lectin families with unique sequence motifs, multidomain arrangements and a new structural fold. Along with the high structural diversity of the lectin repertoires in these taxa, a wide spectrum of biological roles is starting to emerge, underscoring the value of invertebrate and lower vertebrate models for gaining insight into structural, functional and evolutionary aspects of lectins.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, Maryland 21202, USA.
| | | | | |
Collapse
|
36
|
Rogers SL, Göbel TW, Viertlboeck BC, Milne S, Beck S, Kaufman J. Characterization of the Chicken C-Type Lectin-Like Receptors B-NK and B-lec Suggests That the NK Complex and the MHC Share a Common Ancestral Region. THE JOURNAL OF IMMUNOLOGY 2005; 174:3475-83. [PMID: 15749883 DOI: 10.4049/jimmunol.174.6.3475] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sequencing of the chicken MHC led to the identification of two open reading frames, designated B-NK and B-lec, that were predicted to encode C-type lectin domains. C-type lectin domains are not encoded in the MHC of any animal described to date; therefore, this observation was completely unexpected, particularly given that the chicken has a "minimal essential MHC." In this study, we describe the initial characterization of the B-NK and B-lec genes, and show that they share greatest homology with C-type lectin-like receptors encoded in the human NK complex (NKC), in particular NKR-P1 and lectin-like transcript 1 (LLT1), respectively. In common with NKR-P1 and LLT1, B-NK and B-lec are located next to each other and transcribed in opposite orientation. Like human NKR-P1, B-NK has a functional inhibitory signaling motif in the cytoplasmic tail and is expressed in NK cells. In contrast, B-lec contains an endocytosis motif in the cytoplasmic tail, and like LLT1, is an early activation Ag. Further analysis leads us to propose that there are four subgroups of C-type lectin-like receptors in the NKC, which arose as a result of duplication events. Moreover, this analysis suggests that the NKC may be considered a fifth paralogous region, and therefore shares an ancient common origin with the MHC. This provides evidence that C-type lectin-like receptors were present in the preduplication, primordial MHC region, and suggests that an original function of MHC molecules was for recognition by NK cell receptors encoded nearby.
Collapse
Affiliation(s)
- Sally L Rogers
- Institute for Animal Health, Compton, Berkshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Nylenna O, Naper C, Vaage JT, Woon PY, Gauguier D, Dissen E, Ryan JC, Fossum S. The genes and gene organization of the Ly49 region of the rat natural killer cell gene complex. Eur J Immunol 2005; 35:261-72. [PMID: 15593300 DOI: 10.1002/eji.200425429] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We here report the cDNA sequences of 11 new rat Ly49 genes with full and three with incomplete open reading frames. Although obtained from different inbred rat strains, these as well as six previously published cDNA represent non-allelic genes matching different loci in the Brown Norway (BN) rat genome, which is predicted to contain 34 Ly49 loci distributed over the distal part of the NK cell gene complex. Some of the cloned genes appear to be mutated to non-function in the BN genome, which harbors additional genes with full open reading frames, suggesting at least 26 non-allelic functional Ly49 genes in the rat. Of the encoded receptors, 13 are predicted to be inhibitory, eight to be activating, whereas five may be both ('bifunctional'). Phylogenetic analysis bears evidence of a highly dynamic genetic region, in which only the most distally localized Ly49 gene has a clear-cut mouse ortholog. In phylograms, the majority of the genes cluster into three subgroups with the genes mapping together, defining three chromosomal regions that seem to have undergone recent expansions. When comparing the lectin-like domains, the receptors form smaller subgroups, most containing at least one inhibitory and one activating or 'bifunctional' receptor, where close sequence similarities suggest recent homogenization events.
Collapse
Affiliation(s)
- Oyvind Nylenna
- Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ewart KV, Belanger JC, Williams J, Karakach T, Penny S, Tsoi SCM, Richards RC, Douglas SE. Identification of genes differentially expressed in Atlantic salmon (Salmo salar) in response to infection by Aeromonas salmonicida using cDNA microarray technology. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:333-347. [PMID: 15859237 DOI: 10.1016/j.dci.2004.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The response of Atlantic salmon, Salmo salar, to infection by the bacterial pathogen Aeromonas salmonicida (the causative agent of furunculosis), was investigated using a cohabitation model and a custom Atlantic salmon cDNA microarray consisting of over 4000 different amplicons. Pooled samples of each of three immune-relevant tissues (spleen, head kidney and liver) were obtained from fish exposed to infected salmon for 13 days. Reverse transcription-PCR assays were used to verify the differential expression of 12 candidate genes uncovered by microarray analysis. Among the differentially expressed genes were several previously revealed by suppression subtractive hybridization and EST surveys and that are recognized to encode humoral components of the innate immune system. Other genes identified in this study were not previously associated with infection. In addition, a number of genes with no known homologs were uncovered. Determination of their specific roles during infection may lead to a better understanding of innate immunity.
Collapse
Affiliation(s)
- K Vanya Ewart
- Institute for Marine Biosciences, Halifax, NS, Canada B3H 3Z1
| | | | | | | | | | | | | | | |
Collapse
|
39
|
van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, Bitter W. A star with stripes: zebrafish as an infection model. Trends Microbiol 2004; 12:451-7. [PMID: 15381194 DOI: 10.1016/j.tim.2004.08.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Astrid M van der Sar
- Department of Medical Microbiology, Vrije Universiteit Medical Centre, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Yoder JA, Litman RT, Mueller MG, Desai S, Dobrinski KP, Montgomery JS, Buzzeo MP, Ota T, Amemiya CT, Trede NS, Wei S, Djeu JY, Humphray S, Jekosch K, Hernandez Prada JA, Ostrov DA, Litman GW. Resolution of the novel immune-type receptor gene cluster in zebrafish. Proc Natl Acad Sci U S A 2004; 101:15706-11. [PMID: 15496470 PMCID: PMC524843 DOI: 10.1073/pnas.0405242101] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 09/16/2004] [Indexed: 11/18/2022] Open
Abstract
The novel immune-type receptor (NITR) genes encode a unique multigene family of leukocyte regulatory receptors, which possess an extracellular Ig variable (V) domain and may function in innate immunity. Artificial chromosomes that encode zebrafish NITRs have been assembled into a contig spanning approximately 350 kb. Resolution of the complete NITR gene cluster has led to the identification of eight previously undescribed families of NITRs and has revealed the presence of C-type lectins within the locus. A maximum haplotype of 36 NITR genes (138 gene sequences in total) can be grouped into 12 distinct families, including inhibitory and activating receptors. An extreme level of interindividual heterozygosity is reflected in allelic polymorphisms, haplotype variation, and family-specific isoform complexity. In addition, the exceptional diversity of NITR sequences among species suggests divergent evolution of this multigene family with a birth-and-death process of member genes. High-confidence modeling of Nitr V-domain structures reveals a significant shift in the spatial orientation of the Ig fold, in the region of highest interfamily variation, compared with Ig V domains. These studies resolve a complete immune gene cluster in zebrafish and indicate that the NITRs represent the most complex family of activating/inhibitory surface receptors thus far described.
Collapse
Affiliation(s)
- Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Soanes KH, Figuereido K, Richards RC, Mattatall NR, Ewart KV. Sequence and expression of C-type lectin receptors in Atlantic salmon (Salmo salar). Immunogenetics 2004; 56:572-84. [PMID: 15490154 DOI: 10.1007/s00251-004-0719-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 08/13/2004] [Accepted: 08/13/2004] [Indexed: 01/31/2023]
Abstract
The diverse receptors of the C-type lectin superfamily play key roles in innate immunity. In mammals, cell surface receptors with C-type lectin domains are involved in pathogen recognition and in immune response, and in some cases are exploited by pathogens to gain entry into cells. This study reports on sequence and expression analysis of three paralogous group II C-type lectins from the teleost fish Atlantic salmon (Salmo salar). Each of the receptors showed similarity to immune-relevant mammalian receptors in terms of amino acid sequence and overall organization within the C-type lectin-like domain (CTLD). Two of the three have cytoplasmic motifs consistent with the immunoreceptor tyrosine-based activation motifs (ITAM), which are known to modulate downstream functions in leukocytes. All three C-type lectin receptors were expressed in multiple tissues of healthy fish, including peripheral blood leukocytes and salmon head kidney cells (SHK-1). Each receptor was up-regulated in salmon liver in response to infection by Aeromonas salmonicida and one receptor was substantially up-regulated in cultured SHK-1 cells in response to lipopolysaccharide (LPS). Putative binding sites for the CAAT-enhancer-binding protein (C/EBP) family of transcription factors in the regulatory regions of these C-type lectin genes may mediate their response to bacteria and LPS in salmon leukocytes. The identification of these types of receptors in distinct populations of cells within the immune system will provide important markers for identifying and categorizing the state of differentiation or activation of these cells and lead to further understanding of the interaction between the salmon host and multiple pathogens.
Collapse
Affiliation(s)
- Kelly H Soanes
- NRC Institute for Marine Biosciences, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | | | | | | | | |
Collapse
|
42
|
Zelensky AN, Gready JE. C-type lectin-like domains in Fugu rubripes. BMC Genomics 2004; 5:51. [PMID: 15285787 PMCID: PMC514892 DOI: 10.1186/1471-2164-5-51] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 08/01/2004] [Indexed: 12/18/2022] Open
Abstract
Background Members of the C-type lectin domain (CTLD) superfamily are metazoan proteins functionally important in glycoprotein metabolism, mechanisms of multicellular integration and immunity. Three genome-level studies on human, C. elegans and D. melanogaster reported previously demonstrated almost complete divergence among invertebrate and mammalian families of CTLD-containing proteins (CTLDcps). Results We have performed an analysis of CTLD family composition in Fugu rubripes using the draft genome sequence. The results show that all but two groups of CTLDcps identified in mammals are also found in fish, and that most of the groups have the same members as in mammals. We failed to detect representatives for CTLD groups V (NK cell receptors) and VII (lithostathine), while the DC-SIGN subgroup of group II is overrepresented in Fugu. Several new CTLD-containing genes, highly conserved between Fugu and human, were discovered using the Fugu genome sequence as a reference, including a CSPG family member and an SCP-domain-containing soluble protein. A distinct group of soluble dual-CTLD proteins has been identified, which may be the first reported CTLDcp group shared by invertebrates and vertebrates. We show that CTLDcp-encoding genes are selectively duplicated in Fugu, in a manner that suggests an ancient large-scale duplication event. We have verified 32 gene structures and predicted 63 new ones, and make our annotations available through a distributed annotation system (DAS) server and their sequences as additional files with this paper. Conclusions The vertebrate CTLDcp family was essentially formed early in vertebrate evolution and is completely different from the invertebrate families. Comparison of fish and mammalian genomes revealed three groups of CTLDcps and several new members of the known groups, which are highly conserved between fish and mammals, but were not identified in the study using only mammalian genomes. Despite limitations of the draft sequence, the Fugu rubripes genome is a powerful instrument for gene discovery and vertebrate evolutionary analysis. The composition of the CTLDcp superfamily in fish and mammals suggests that large-scale duplication events played an important role in the evolution of vertebrates.
Collapse
Affiliation(s)
- Alex N Zelensky
- Computational Proteomics and Therapy Design Group, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, ACT 2601, Australia
| | - Jill E Gready
- Computational Proteomics and Therapy Design Group, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, ACT 2601, Australia
| |
Collapse
|
43
|
Yoder JA. Investigating the morphology, function and genetics of cytotoxic cells in bony fish. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:271-80. [PMID: 15533785 DOI: 10.1016/j.cca.2004.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Revised: 03/08/2004] [Accepted: 03/30/2004] [Indexed: 10/26/2022]
Abstract
Bony fish (teleosts) possess multiple cytotoxic cell lineages that recognize and destroy virally infected and transformed cells. In general, these lineages parallel their functional equivalents in mammals and include neutrophilic granulocytes, macrophages, cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. These four cell types have been morphologically identified in multiple fish species but only limited information is available about their function. In contrast, much work has gone into examining the function of a fifth cytotoxic cell lineage, termed nonspecific cytotoxic cells (NCC), that has been referred to as the bony fish equivalent of NK cells. However, evidence suggesting that NCC do not represent the NK lineage has come through the development of multiple cytotoxic catfish cell lines that are morphologically and functionally similar to human NK cells and are distinct from NCC. In addition to characterizing cytotoxic cells from fish, recent work has identified the novel immune-type receptors (NITR) and cichlid killer leukocyte receptors (cKLR) that are structurally related to mammalian NK receptors and likely play a role in cytotoxic function in fish. This review summarizes the morphological and functional evidence for cytotoxic cells within bony fish and discusses future directions for examining cytotoxicity through genomics and transgenics.
Collapse
Affiliation(s)
- Jeffrey A Yoder
- Department of Biology, University of South Florida, 4202 East Fowler Avenue-SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
44
|
Kikuno R, Sato A, Mayer WE, Shintani S, Aoki T, Klein J. Clustering of C-Type Lectin Natural Killer Receptor-Like Loci in the Bony Fish Oreochromis niloticus. Scand J Immunol 2004; 59:133-42. [PMID: 14871289 DOI: 10.1111/j.0300-9475.2004.01372.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genome of the cichlid (teleost) fish Oreochromis niloticus contains a set of genes which encode group V C-type lectin proteins homologous to the mammalian NKG2/CD94 family of natural killer (NK) cell receptors. To determine the genomic organization of these killer cell-like receptor (KLR) genes, an O. niloticus BAC library was screened with a cDNA probe derived previously from an expressed sequence tag of the related cichlid species Paralabidochromis chilotes. Four distinct KLR-bearing BAC clones were analysed, three of which could be assembled into a contig. One of the clones was sequenced in its entirety, whereas the others were partially sequenced to identify the KLR loci borne by them. Altogether, 28 distinct KLR loci were identified, of which at least 26 occupy a single chromosomal region, the KLR complex. One half of the loci appear to be occupied by pseudogenes. Compared to the human NK cell receptor complex, the Oreochromis KLR complex is more compact and, apart from transposons, appears to contain only KLR loci. The gene density of the complex is one KLR locus per 18 kb of sequence. All the KLR loci constituting the complex are derived from a single most recent common ancestor, which is estimated to have existed 7.7 million years ago. The 180 kb of the determined sequence is a mosaic of blocks of similar segments reflecting a complex history of duplications, deletions and rearrangements. The transposons found in the sequenced part belong to the TC1, Xena, CR1 and TX1 families.
Collapse
Affiliation(s)
- R Kikuno
- The First Laboratory for Human Gene Research, Department of Human Gene Research, Kazusa DNA Research Institute, Chiba, Japan
| | | | | | | | | | | |
Collapse
|