1
|
Tian Y, Ortiz Moreno AR, Chipaux M, Wu K, Perona Martinez FP, Shirzad H, Hamoh T, Mzyk A, van Rijn P, Schirhagl R. Diamond Surfaces with Lateral Gradients for Systematic Optimization of Surface Chemistry for Relaxometry - a Low-Pressure Plasma-Based Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23007-23017. [PMID: 39421905 PMCID: PMC11526373 DOI: 10.1021/acs.langmuir.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Diamond is increasingly popular because of its unique material properties. Diamond defects called nitrogen vacancy (NV) centers allow for measurements with unprecedented sensitivity. However, to achieve ideal sensing performance, NV centers need to be within nanometers from the surface and are thus strongly dependent on the local surface chemistry. Several attempts have been made to compare diamond surfaces. However, due to the high price of diamond crystals with shallow NV centers, a limited number of chemical modifications have been studied. Here, we developed a systematic method to investigate the continuity of different local environments with varying densities and natures of surface groups in a single experiment on a single diamond plate. To achieve this goal, we used diamonds with a shallow ensemble of NV centers and introduced a chemical gradient across the surface. More specifically, we used air and hydrogen plasma. The gradients were formed by a low-pressure plasma treatment after masking with a right-angled triangular prism shield. As a result, the surface contained gradually more oxygen/hydrogen toward the open end of the shield. We then performed wide-field relaxometry to determine the effect of surface chemistry on the sensing performance. As expected, relaxation times and thus sensing performance indeed vary along the gradient.
Collapse
Affiliation(s)
- Yuchen Tian
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Ari R. Ortiz Moreno
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Mayeul Chipaux
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
- Institute
of Physics, École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne CH-1015, Switzerland
| | - Kaiqi Wu
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Felipe P. Perona Martinez
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Hoda Shirzad
- Institute
of Physics, École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne CH-1015, Switzerland
| | - Thamir Hamoh
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Aldona Mzyk
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Patrick van Rijn
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| |
Collapse
|
2
|
Zhang Y, Sigaeva A, Elías-Llumbet A, Fan S, Woudstra W, de Boer R, Escobar E, Reyes-San-Martin C, Kisabacak R, Oosterhuis D, Gorter AR, Coenen B, Perona Martinez FP, van den Bogaart G, Olinga P, Schirhagl R. Free radical detection in precision-cut mouse liver slices with diamond-based quantum sensing. Proc Natl Acad Sci U S A 2024; 121:e2317921121. [PMID: 39401360 PMCID: PMC11513939 DOI: 10.1073/pnas.2317921121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Free radical generation plays a key role in many biological processes including cell communication, maturation, and aging. In addition, free radical generation is usually elevated in cells under stress as is the case for many different pathological conditions. In liver tissue, cells produce radicals when exposed to toxic substances but also, for instance, in cancer, alcoholic liver disease and liver cirrhosis. However, free radicals are small, short-lived, and occur in low abundance making them challenging to detect and especially to time resolve, leading to a lack of nanoscale information. Recently, our group has demonstrated that diamond-based quantum sensing offers a solution to measure free radical generation in single living cells. The method is based on defects in diamonds, the so-called nitrogen-vacancy centers, which change their optical properties based on their magnetic surrounding. As a result, this technique reveals magnetic resonance signals by optical means offering high sensitivity. However, compared to cells, there are several challenges that we resolved here: Tissues are more fragile, have a higher background fluorescence, have less particle uptake, and do not adhere to microscopy slides. Here, we overcame those challenges and adapted the method to perform measurements in living tissues. More specifically, we used precision-cut liver slices and were able to detect free radical generation during a stress response to ethanol, as well as the reduction in the radical load after adding an antioxidant.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Alina Sigaeva
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Arturo Elías-Llumbet
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia Santiago1027, Chile
| | - Siyu Fan
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Willem Woudstra
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Rinse de Boer
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Elkin Escobar
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Molecular Genetics Group, Max Planck Tandem Group in Nanobioengineering, Faculty of Natural and Exacts Sciences, University of Antioquia, Medellin1226, Colombia
| | - Claudia Reyes-San-Martin
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Robin Kisabacak
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Dorenda Oosterhuis
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Alan R. Gorter
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Britt Coenen
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Felipe P. Perona Martinez
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Peter Olinga
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Romana Schirhagl
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| |
Collapse
|
3
|
Lu Q, Vosberg B, Wang Z, Balasubramanian P, Sow M, Volkert C, Gonzalez Brouwer R, Lieberwirth I, Graf R, Jelezko F, Plenio MB, Wu Y, Weil T. Unraveling Eumelanin Radical Formation by Nanodiamond Optical Relaxometry in a Living Cell. J Am Chem Soc 2024; 146:7222-7232. [PMID: 38469853 PMCID: PMC10958502 DOI: 10.1021/jacs.3c07720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
Defect centers in a nanodiamond (ND) allow the detection of tiny magnetic fields in their direct surroundings, rendering them as an emerging tool for nanoscale sensing applications. Eumelanin, an abundant pigment, plays an important role in biology and material science. Here, for the first time, we evaluate the comproportionation reaction in eumelanin by detecting and quantifying semiquinone radicals through the nitrogen-vacancy color center. A thin layer of eumelanin is polymerized on the surface of nanodiamonds (NDs), and depending on the environmental conditions, such as the local pH value, near-infrared, and ultraviolet light irradiation, the radicals form and react in situ. By combining experiments and theoretical simulations, we quantify the local number and kinetics of free radicals in the eumelanin layer. Next, the ND sensor enters the cells via endosomal vesicles. We quantify the number of radicals formed within the eumelanin layer in these acidic compartments by applying optical relaxometry measurements. In the future, we believe that the ND quantum sensor could provide valuable insights into the chemistry of eumelanin, which could contribute to the understanding and treatment of eumelanin- and melanin-related diseases.
Collapse
Affiliation(s)
- Qi Lu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Berlind Vosberg
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zhenyu Wang
- Institute
of Theoretical Physics and Center for Integrated Quantum Science and
Technology (IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Key
Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry
of Education), and School of Physics, South
China Normal University, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Quantum Engineering and Quantum Materials,
and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Priyadharshini Balasubramanian
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maabur Sow
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carla Volkert
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Raul Gonzalez Brouwer
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ingo Lieberwirth
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Robert Graf
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fedor Jelezko
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Martin B. Plenio
- Institute
of Theoretical Physics and Center for Integrated Quantum Science and
Technology (IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yingke Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
4
|
Qin Z, Wang Z, Kong F, Su J, Huang Z, Zhao P, Chen S, Zhang Q, Shi F, Du J. In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors. Nat Commun 2023; 14:6278. [PMID: 37805509 PMCID: PMC10560202 DOI: 10.1038/s41467-023-41903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
An ultimate goal of electron paramagnetic resonance (EPR) spectroscopy is to analyze molecular dynamics in place where it occurs, such as in a living cell. The nanodiamond (ND) hosting nitrogen-vacancy (NV) centers will be a promising EPR sensor to achieve this goal. However, ND-based EPR spectroscopy remains elusive, due to the challenge of controlling NV centers without well-defined orientations inside a flexible ND. Here, we show a generalized zero-field EPR technique with spectra robust to the sensor's orientation. The key is applying an amplitude modulation on the control field, which generates a series of equidistant Floquet states with energy splitting being the orientation-independent modulation frequency. We acquire the zero-field EPR spectrum of vanadyl ions in aqueous glycerol solution with embedded single NDs, paving the way towards in vivo EPR.
Collapse
Affiliation(s)
- Zhuoyang Qin
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhecheng Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Fei Kong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Jia Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhehua Huang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Pengju Zhao
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Sanyou Chen
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Qi Zhang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Fazhan Shi
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
- School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China.
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
- School of Physics, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
5
|
Lyu T, Archambault CM, Hathaway E, Zhu X, King C, Abu-Amara L, Wang S, Kunz M, Kim MJ, Cui J, Yao Y, Yu T, Officer T, Xu M, Wang Y, Yan H. Self-Limiting Sub-5 nm Nanodiamonds by Geochemistry-Inspired Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300659. [PMID: 37072896 DOI: 10.1002/smll.202300659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Controlling diamond structures with nanometer precision is fundamentally challenging owing to their extreme and far-from-equilibrium synthetic conditions. State-of-the-art techniques, including detonation, chemical vapor deposition, mechanical grinding, and high-pressure-high-temperature synthesis, yield nanodiamond particles with a broad distribution of sizes. Despite many efforts, the direct synthesis of nanodiamonds with precisely controlled diameters remains elusive. Here the geochemistry-inspired synthesis of sub-5 nm nanodiamonds with sub-nanometer size deviation is described. High-pressure-high-temperature treatment of uniform iron carbide nanoparticles embedded in iron oxide matrices yields nanodiamonds with tunable diameters down to 2.13 and 0.22 nm standard deviation. A self-limiting, redox-driven, and diffusion-controlled solid-state reaction mechanism is proposed and supported by in situ X-ray diffraction, ex situ characterizations, and computational modeling. This work provides a unique mechanism for the precise control of nanostructured diamonds under extreme conditions and paves the road for the full realization of their potential in emerging technologies.
Collapse
Affiliation(s)
- Tengteng Lyu
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | | | - Evan Hathaway
- Department of Physics, University of North Texas, Denton, TX, 76205, USA
| | - Xiangyu Zhu
- Department of Materials Science and Engineering, University of Texas Dallas, Richardson, TX, 75080, USA
| | - Carol King
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | - Lama Abu-Amara
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | - Sicheng Wang
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | - Martin Kunz
- Lawrence Berkeley National Laboratory, Berkely, CA, 94720, USA
| | - Moon J Kim
- Department of Materials Science and Engineering, University of Texas Dallas, Richardson, TX, 75080, USA
| | - Jingbiao Cui
- Department of Physics, University of North Texas, Denton, TX, 76205, USA
| | - Yansun Yao
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Tony Yu
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Timothy Officer
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Man Xu
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Yanbin Wang
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Hao Yan
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| |
Collapse
|
6
|
Robertson IO, Scholten SC, Singh P, Healey AJ, Meneses F, Reineck P, Abe H, Ohshima T, Kianinia M, Aharonovich I, Tetienne JP. Detection of Paramagnetic Spins with an Ultrathin van der Waals Quantum Sensor. ACS NANO 2023. [PMID: 37406158 DOI: 10.1021/acsnano.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Detecting magnetic noise from small quantities of paramagnetic spins is a powerful capability for chemical, biochemical, and medical analysis. Quantum sensors based on optically addressable spin defects in bulk semiconductors are typically employed for such purposes, but the 3D crystal structure of the sensor inhibits sensitivity by limiting the proximity of the defects to the target spins. Here we demonstrate the detection of paramagnetic spins using spin defects hosted in hexagonal boron nitride (hBN), a van der Waals material that can be exfoliated into the 2D regime. We first create negatively charged boron vacancy (VB-) defects in a powder of ultrathin hBN nanoflakes (<10 atomic monolayers thick on average) and measure the longitudinal spin relaxation time (T1) of this system. We then decorate the dry hBN nanopowder with paramagnetic Gd3+ ions and observe a clear T1 quenching under ambient conditions, consistent with the added magnetic noise. Finally, we demonstrate the possibility of performing spin measurements, including T1 relaxometry using solution-suspended hBN nanopowder. Our results highlight the potential and versatility of the hBN quantum sensor for a range of sensing applications and make steps toward the realization of a truly 2D, ultrasensitive quantum sensor.
Collapse
Affiliation(s)
- Islay O Robertson
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sam C Scholten
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Priya Singh
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Alexander J Healey
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fernando Meneses
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philipp Reineck
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, Victoria 3001, Australia
| | - Hiroshi Abe
- National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
- Department of Materials Science, Tohoku University, Sendai, 980-8579, Japan
| | - Mehran Kianinia
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | | |
Collapse
|
7
|
Gorrini F, Bifone A. Advances in Stabilization and Enrichment of Shallow Nitrogen-Vacancy Centers in Diamond for Biosensing and Spin-Polarization Transfer. BIOSENSORS 2023; 13:691. [PMID: 37504090 PMCID: PMC10377017 DOI: 10.3390/bios13070691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Negatively charged nitrogen-vacancy (NV-) centers in diamond have unique magneto-optical properties, such as high fluorescence, single-photon generation, millisecond-long coherence times, and the ability to initialize and read the spin state using purely optical means. This makes NV- centers a powerful sensing tool for a range of applications, including magnetometry, electrometry, and thermometry. Biocompatible NV-rich nanodiamonds find application in cellular microscopy, nanoscopy, and in vivo imaging. NV- centers can also detect electron spins, paramagnetic agents, and nuclear spins. Techniques have been developed to hyperpolarize 14N, 15N, and 13C nuclear spins, which could open up new perspectives in NMR and MRI. However, defects on the diamond surface, such as hydrogen, vacancies, and trapping states, can reduce the stability of NV- in favor of the neutral form (NV0), which lacks the same properties. Laser irradiation can also lead to charge-state switching and a reduction in the number of NV- centers. Efforts have been made to improve stability through diamond substrate doping, proper annealing and surface termination, laser irradiation, and electric or electrochemical tuning of the surface potential. This article discusses advances in the stabilization and enrichment of shallow NV- ensembles, describing strategies for improving the quality of diamond devices for sensing and spin-polarization transfer applications. Selected applications in the field of biosensing are discussed in more depth.
Collapse
Affiliation(s)
- Federico Gorrini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, TO, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, TO, Italy
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, TO, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, TO, Italy
| |
Collapse
|
8
|
Ortiz Moreno AR, Li R, Wu K, Schirhagl R. Lipid peroxidation in diamond supported bilayers. NANOSCALE 2023; 15:7920-7928. [PMID: 37067002 DOI: 10.1039/d3nr01167d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lipid peroxidation is a process that occurs in cells when they are exposed to oxidative stress. During the process reactive oxygen species attack lipids within the lipid bilayers of cells. Since the products of lipid peroxidation are toxic and carcinogenic, it is important to understand where and how it occurs with nanoscale resolution. The radical intermediates of this process are particularly interesting since they are causing chain reactions damaging large parts of the lipid membranes in cells. However, they are also difficult to measure for the state of the art because they are short lived and reactive. Here, we study the lipid peroxidation of three artificial lipid bilayers on a diamonds substrate that can be used to study lipid peroxidation. In particular, we present a diamond quantum sensing method called T1-relaxometry that allows for in situ measurements and imaging of radical intermediates of lipid peroxidation in these membranes.
Collapse
Affiliation(s)
- A R Ortiz Moreno
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, the Netherlands.
| | - R Li
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, the Netherlands.
| | - K Wu
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, the Netherlands.
| | - R Schirhagl
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, the Netherlands.
| |
Collapse
|
9
|
Segawa TF, Igarashi R. Nanoscale quantum sensing with Nitrogen-Vacancy centers in nanodiamonds - A magnetic resonance perspective. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:20-38. [PMID: 37321756 DOI: 10.1016/j.pnmrs.2022.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Nanodiamonds containing fluorescent Nitrogen-Vacancy (NV) centers are the smallest single particles, of which a magnetic resonance spectrum can be recorded at room temperature using optically-detected magnetic resonance (ODMR). By recording spectral shift or changes in relaxation rates, various physical and chemical quantities can be measured such as the magnetic field, orientation, temperature, radical concentration, pH or even NMR. This turns NV-nanodiamonds into nanoscale quantum sensors, which can be read out by a sensitive fluorescence microscope equipped with an additional magnetic resonance upgrade. In this review, we introduce the field of ODMR spectroscopy of NV-nanodiamonds and how it can be used to sense different quantities. Thereby we highlight both, the pioneering contributions and the latest results (covered until 2021) with a focus on biological applications.
Collapse
Affiliation(s)
- Takuya F Segawa
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland; Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan; Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan; JST, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
10
|
Aslam N, Zhou H, Urbach EK, Turner MJ, Walsworth RL, Lukin MD, Park H. Quantum sensors for biomedical applications. NATURE REVIEWS. PHYSICS 2023; 5:157-169. [PMID: 36776813 PMCID: PMC9896461 DOI: 10.1038/s42254-023-00558-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 05/09/2023]
Abstract
Quantum sensors are finding their way from laboratories to the real world, as witnessed by the increasing number of start-ups in this field. The atomic length scale of quantum sensors and their coherence properties enable unprecedented spatial resolution and sensitivity. Biomedical applications could benefit from these quantum technologies, but it is often difficult to evaluate the potential impact of the techniques. This Review sheds light on these questions, presenting the status of quantum sensing applications and discussing their path towards commercialization. The focus is on two promising quantum sensing platforms: optically pumped atomic magnetometers, and nitrogen-vacancy centres in diamond. The broad spectrum of biomedical applications is highlighted by four case studies ranging from brain imaging to single-cell spectroscopy.
Collapse
Affiliation(s)
- Nabeel Aslam
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
- Institute of Condensed Matter Physics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Elana K. Urbach
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Matthew J. Turner
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
| | - Ronald L. Walsworth
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
- Department of Physics, University of Maryland, College Park, MD USA
| | | | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
11
|
Grant ES, Hall LT, Hollenberg LCL, McColl G, Simpson DA. Nonmonotonic Superparamagnetic Behavior of the Ferritin Iron Core Revealed via Quantum Spin Relaxometry. ACS NANO 2023; 17:372-381. [PMID: 36534782 DOI: 10.1021/acsnano.2c08698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ferritin is the primary storage protein in our body and is of significant interest in biochemistry, nanotechnology, and condensed matter physics. More specifically within this sphere of interest are the magnetic properties of the iron core of ferritin, which have been utilized as a contrast agent in applications such as magnetic resonance imaging. This magnetism depends on both the number of iron atoms present, L, and the nature of the magnetic ordering of their electron spins. In this work, we create a series of ferritin samples containing homogeneous iron loads and apply diamond-based quantum spin relaxometry to systematically study their room temperature magnetic properties. We observe anomalous magnetic behavior that can be explained using a theoretical model detailing a morphological change to the iron core occurring at relatively low iron loads. This model provides an L0.35±0.06 scaling of the uncompensated Fe spins, in agreement with previous theoretical predictions. The necessary inclusion of this morphological change within the model is also supported by electron microscopy studies of ferritin with low iron content. This provides evidence for a magnetic consequence of this morphological change and positions diamond-based quantum spin relaxometry as an effective, noninvasive tool for probing the magnetic properties of metalloproteins. The low detection limit (ferritin 2% loaded at a concentration of 7.5 ± 0.4 μg/mL) also makes this a promising method for precision applications where low analyte concentrations are unavoidable, such as in biological research or even clinical analysis.
Collapse
Affiliation(s)
- Erin S Grant
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Liam T Hall
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
- School of Chemistry, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Lloyd C L Hollenberg
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Gawain McColl
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria3010, Australia
| | - David A Simpson
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
| |
Collapse
|
12
|
Qureshi SA, Hsiao WWW, Hussain L, Aman H, Le TN, Rafique M. Recent Development of Fluorescent Nanodiamonds for Optical Biosensing and Disease Diagnosis. BIOSENSORS 2022; 12:1181. [PMID: 36551148 PMCID: PMC9775945 DOI: 10.3390/bios12121181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 05/24/2023]
Abstract
The ability to precisely monitor the intracellular temperature directly contributes to the essential understanding of biological metabolism, intracellular signaling, thermogenesis, and respiration. The intracellular heat generation and its measurement can also assist in the prediction of the pathogenesis of chronic diseases. However, intracellular thermometry without altering the biochemical reactions and cellular membrane damage is challenging, requiring appropriately biocompatible, nontoxic, and efficient biosensors. Bright, photostable, and functionalized fluorescent nanodiamonds (FNDs) have emerged as excellent probes for intracellular thermometry and magnetometry with the spatial resolution on a nanometer scale. The temperature and magnetic field-dependent luminescence of naturally occurring defects in diamonds are key to high-sensitivity biosensing applications. Alterations in the surface chemistry of FNDs and conjugation with polymer, metallic, and magnetic nanoparticles have opened vast possibilities for drug delivery, diagnosis, nanomedicine, and magnetic hyperthermia. This study covers some recently reported research focusing on intracellular thermometry, magnetic sensing, and emerging applications of artificial intelligence (AI) in biomedical imaging. We extend the application of FNDs as biosensors toward disease diagnosis by using intracellular, stationary, and time-dependent information. Furthermore, the potential of machine learning (ML) and AI algorithms for developing biosensors can revolutionize any future outbreak.
Collapse
Affiliation(s)
- Shahzad Ahmad Qureshi
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Lal Hussain
- Department of Computer Science and Information Technology, King Abdullah Campus Chatter Kalas, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
- Department of Computer Science and Information Technology, Neelum Campus, University of Azad Jammu and Kashmir, Athmuqam 13230, Pakistan
| | - Haroon Aman
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia
- National Institute of Lasers and Optronics College, PIEAS, Islamabad 45650, Pakistan
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Muhammad Rafique
- Department of Physics, King Abdullah Campus Chatter Kalas, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| |
Collapse
|
13
|
Sigaeva A, Shirzad H, Martinez FP, Nusantara AC, Mougios N, Chipaux M, Schirhagl R. Diamond-Based Nanoscale Quantum Relaxometry for Sensing Free Radical Production in Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105750. [PMID: 36169083 DOI: 10.1002/smll.202105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Diamond magnetometry makes use of fluorescent defects in diamonds to convert magnetic resonance signals into fluorescence. Because optical photons can be detected much more sensitively, this technique currently holds several sensitivity world records for room temperature magnetic measurements. It is orders of magnitude more sensitive than conventional magnetic resonance imaging (MRI) for detecting magnetic resonances. Here, the use of diamond magnetometry to detect free radical production in single living cells with nanometer resolution is experimentally demonstrated. This measuring system is first optimized and calibrated with chemicals at known concentrations. These measurements serve as benchmarks for future experiments. While conventional MRI typically has millimeter resolution, measurements are performed on individual cells to detect nitric oxide signaling at the nanoscale, within 10-20 nm from the internalized particles localized with a diffraction limited optical resolution. This level of detail is inaccessible to the state-of-the-art techniques. Nitric oxide is detected and the dynamics of its production and inhibition in the intra- and extracellular environment are followed.
Collapse
Affiliation(s)
- Alina Sigaeva
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Hoda Shirzad
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Felipe Perona Martinez
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Anggrek Citra Nusantara
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Nikos Mougios
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Mayeul Chipaux
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Romana Schirhagl
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| |
Collapse
|
14
|
Tan Y, Hu X, Hou Y, Chu Z. Emerging Diamond Quantum Sensing in Bio-Membranes. MEMBRANES 2022; 12:957. [PMID: 36295716 PMCID: PMC9609316 DOI: 10.3390/membranes12100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Bio-membranes exhibit complex but unique mechanical properties as communicative regulators in various physiological and pathological processes. Exposed to a dynamic micro-environment, bio-membranes can be seen as an intricate and delicate system. The systematical modeling and detection of their local physical properties are often difficult to achieve, both quantitatively and precisely. The recent emerging diamonds hosting quantum defects (i.e., nitrogen-vacancy (NV) center) demonstrate intriguing optical and spin properties, together with their outstanding photostability and biocompatibility, rendering them ideal candidates for biological applications. Notably, the extraordinary spin-based sensing enable the measurements of localized nanoscale physical quantities such as magnetic fields, electrical fields, temperature, and strain. These nanoscale signals can be optically read out precisely by simple optical microscopy systems. Given these exclusive properties, NV-center-based quantum sensors can be widely applied in exploring bio-membrane-related features and the communicative chemical reaction processes. This review mainly focuses on NV-based quantum sensing in bio-membrane fields. The attempts of applying NV-based quantum sensors in bio-membranes to investigate diverse physical and chemical events such as membrane elasticity, phase change, nanoscale bio-physical signals, and free radical formation are fully overviewed. We also discuss the challenges and future directions of this novel technology to be utilized in bio-membranes.
Collapse
Affiliation(s)
- Yayin Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xinhao Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
- Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
15
|
Wu Y, Weil T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200059. [PMID: 35343101 PMCID: PMC9259730 DOI: 10.1002/advs.202200059] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Indexed: 05/09/2023]
Abstract
Measuring certain quantities at the nanoscale is often limited to strict conditions such as low temperature or vacuum. However, the recently developed nanodiamond (ND) quantum sensing technology shows great promise for ultrasensitive diagnosis and probing subcellular parameters at ambient conditions. Atom defects (i.e., N, Si) within the ND lattice provide stable emissions and sometimes spin-dependent photoluminescence. These unique properties endow ND quantum sensors with the capacity to detect local temperature, magnetic fields, electric fields, or strain. In this review, some of the recent, most exciting developments in the preparation and application of ND sensors to solve current challenges in biology and medicine including ultrasensitive detection of virions and local sensing of pH, radical species, magnetic fields, temperature, and rotational movements, are discussed.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
16
|
Wu Y, Balasubramanian P, Wang Z, Coelho JAS, Prslja M, Siebert R, Plenio MB, Jelezko F, Weil T. Detection of Few Hydrogen Peroxide Molecules Using Self-Reporting Fluorescent Nanodiamond Quantum Sensors. J Am Chem Soc 2022; 144:12642-12651. [PMID: 35737900 PMCID: PMC9305977 DOI: 10.1021/jacs.2c01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Hydrogen peroxide
(H2O2) plays an important
role in various signal transduction pathways and regulates important
cellular processes. However, monitoring and quantitatively assessing
the distribution of H2O2 molecules inside living
cells requires a nanoscale sensor with molecular-level sensitivity.
Herein, we show the first demonstration of sub-10 nm-sized fluorescent
nanodiamonds (NDs) as catalysts for the decomposition of H2O2 and the production of radical intermediates at the
nanoscale. Furthermore, the nitrogen-vacancy quantum sensors inside
the NDs are employed to quantify the aforementioned radicals. We believe
that our method of combining the peroxidase-mimicking activities of
the NDs with their intrinsic quantum sensor showcases their application
as self-reporting H2O2 sensors with molecular-level
sensitivity and nanoscale spatial resolution. Given the robustness
and the specificity of the sensor, our results promise a new platform
for elucidating the role of H2O2 at the cellular
level.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Priyadharshini Balasubramanian
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Zhenyu Wang
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.,Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Mateja Prslja
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
17
|
Hsiao WW, Le T, Chang H. Applications of Fluorescent Nanodiamond in Biology. ENCYCLOPEDIA OF ANALYTICAL CHEMISTRY 2022:1-43. [DOI: 10.1002/9780470027318.a9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abstract
Fluorescent nanodiamond (FND) has emerged as a promising material in several multidisciplinary areas, including biology, chemistry, physics, and materials science. Composed of sp
3
‐carbon atoms, FND offers superior biocompatibility, chemical inertness, a large surface area, tunable surface structure, and excellent mechanical characteristics. The nanoparticle is unique in that it comprises a high‐density ensemble of negatively charged nitrogen‐vacancy (NV
−
) centers that act as built‐in fluorophores and exhibit a number of remarkable optical and magnetic properties. These properties make FND particularly well suited for a wide range of applications, including cell labeling, long‐term cell tracking, super‐resolution imaging, nanoscale sensing, and drug delivery. This article discusses recent applications of FND‐enabled developments in biology.
Collapse
|
18
|
Li R, Vedelaar T, Mzyk A, Morita A, Padamati SK, Schirhagl R. Following Polymer Degradation with Nanodiamond Magnetometry. ACS Sens 2022; 7:123-130. [PMID: 34982542 PMCID: PMC8809337 DOI: 10.1021/acssensors.1c01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
Degradable polymers are widely used in the biomedical fields due to non-toxicity and great biocompatibility and biodegradability, and it is crucial to understand how they degrade. These polymers are exposed to various biochemical media in medical practice. Hence, it is important to precisely follow the degradation of the polymer in real time. In this study, we made use of diamond magnetometry for the first time to track polymer degradation with nanoscale precision. The method is based on a fluorescent defect in nanodiamonds, which changes its optical properties based on its magnetic surrounding. Since optical signals can be read out more sensitively than magnetic signals, this method allows unprecedented sensitivity. We used a specific mode of diamond magnetometry called relaxometry or T1 measurements. These are sensitive to magnetic noise and thus can detect paramagnetic species (gadolinium in this case). Nanodiamonds were incorporated into polylactic acid (PLA) films and PLA nanoparticles in order to follow polymer degradation. However, in principle, they can be incorporated into other polymers too. We found that T1 constants decreased gradually with the erosion of the film exposed to an alkaline condition. In addition, the mobility of nanodiamonds increased, which allows us to estimate polymer viscosity. The degradation rates obtained using this approach were in good agreement with data obtained by quartz crystal microbalance, Fourier-transform infrared spectroscopy, and atomic force microscopy.
Collapse
Affiliation(s)
- Runrun Li
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Thea Vedelaar
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Aldona Mzyk
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
- Institute
of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Krakow 30-059, Poland
| | - Aryan Morita
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
- Dept.
Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta 1, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Sandeep Kumar Padamati
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| |
Collapse
|
19
|
Akther A, Walsh EP, Reineck P, Gibson BC, Ohshima T, Abe H, McColl G, Jenkins NL, Hall LT, Simpson DA, Rezk AR, Yeo LY. Acoustomicrofluidic Concentration and Signal Enhancement of Fluorescent Nanodiamond Sensors. Anal Chem 2021; 93:16133-16141. [PMID: 34813284 DOI: 10.1021/acs.analchem.1c03893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diamond nitrogen-vacancy (NV) centers constitute a promising class of quantum nanosensors owing to the unique magneto-optic properties associated with their spin states. The large surface area and photostability of diamond nanoparticles, together with their relatively low synthesis costs, make them a suitable platform for the detection of biologically relevant quantities such as paramagnetic ions and molecules in solution. Nevertheless, their sensing performance in solution is often hampered by poor signal-to-noise ratios and long acquisition times due to distribution inhomogeneities throughout the analyte sample. By concentrating the diamond nanoparticles through an intense microcentrifugation effect in an acoustomicrofluidic device, we show that the resultant dense NV ensembles within the diamond nanoparticles give rise to an order-of-magnitude improvement in the measured acquisition time. The ability to concentrate nanoparticles under surface acoustic wave (SAW) microcentrifugation in a sessile droplet is, in itself, surprising given the well-documented challenge of achieving such an effect for particles below 1 μm in dimension. In addition to a demonstration of their sensing performance, we thus reveal in this work that the reason why the diamond nanoparticles readily concentrate under the SAW-driven recirculatory flow can be attributed to their considerably higher density and hence larger acoustic contrast compared to those for typical particles and cells for which the SAW microcentrifugation flow has been shown to date.
Collapse
Affiliation(s)
- Asma Akther
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ella P Walsh
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Hiroshi Abe
- National Institutes for Quantum Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Gawain McColl
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Victoria 3010, Australia
| | - Nicole L Jenkins
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Victoria 3010, Australia
| | - Liam T Hall
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David A Simpson
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
20
|
Quantum magnetic imaging of iron organelles within the pigeon cochlea. Proc Natl Acad Sci U S A 2021; 118:2112749118. [PMID: 34782471 PMCID: PMC8617482 DOI: 10.1073/pnas.2112749118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 11/18/2022] Open
Abstract
The ability of pigeons to sense geomagnetic fields has been conclusively established despite a notable lack of determination of the underlying biophysical mechanisms. Quasi-spherical iron organelles previously termed "cuticulosomes" in the cochlea of pigeons have potential relevance to magnetoreception due to their location and iron composition; however, data regarding the magnetic susceptibility of these structures are currently limited. Here quantum magnetic imaging techniques are applied to characterize the magnetic properties of individual iron cuticulosomes in situ. The stray magnetic fields emanating from cuticulosomes are mapped and compared to a detailed analytical model to provide an estimate of the magnetic susceptibility of the individual particles. The images reveal the presence of superparamagnetic and ferrimagnetic domains within individual cuticulosomes and magnetic susceptibilities within the range 0.029 to 0.22. These results provide insights into the elusive physiological roles of cuticulosomes. The susceptibilities measured are not consistent with a torque-based model of magnetoreception, placing iron storage and stereocilia stabilization as the two leading putative cuticulosome functions. This work establishes quantum magnetic imaging as an important tool to complement the existing array of techniques used to screen for potential magnetic particle-based magnetoreceptor candidates.
Collapse
|
21
|
Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, Chu Z. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS Sens 2021; 6:2077-2107. [PMID: 34038091 DOI: 10.1021/acssensors.1c00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Goutam Pramanik
- UGC DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700106, India
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Michal Gulka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065 Chengdu, China
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
22
|
Storterboom J, Barbiero M, Castelletto S, Gu M. Ground-State Depletion Nanoscopy of Nitrogen-Vacancy Centres in Nanodiamonds. NANOSCALE RESEARCH LETTERS 2021; 16:44. [PMID: 33689036 PMCID: PMC7947094 DOI: 10.1186/s11671-021-03503-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 05/05/2023]
Abstract
The negatively charged nitrogen-vacancy ([Formula: see text]) centre in nanodiamonds (NDs) has been recently studied for applications in cellular imaging due to its better photo-stability and biocompatibility if compared to other fluorophores. Super-resolution imaging achieving 20-nm resolution of [Formula: see text] in NDs has been proved over the years using sub-diffraction limited imaging approaches such as single molecule stochastic localisation microscopy and stimulated emission depletion microscopy. Here we show the first demonstration of ground-state depletion (GSD) nanoscopy of these centres in NDs using three beams, a probe beam, a depletion beam and a reset beam. The depletion beam at 638 nm forces the [Formula: see text] centres to the metastable dark state everywhere but in the local minimum, while a Gaussian beam at 594 nm probes the [Formula: see text] centres and a 488-nm reset beam is used to repopulate the excited state. Super-resolution imaging of a single [Formula: see text] centre with a full width at half maximum of 36 nm is demonstrated, and two adjacent [Formula: see text] centres separated by 72 nm are resolved. GSD microscopy is here applied to [Formula: see text] in NDs with a much lower optical power compared to bulk diamond. This work demonstrates the need to control the NDs nitrogen concentration to tailor their application in super-resolution imaging methods and paves the way for studies of [Formula: see text] in NDs' nanoscale interactions.
Collapse
Affiliation(s)
- Jelle Storterboom
- Optical Sciences Centre, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | | | - Stefania Castelletto
- Optical Sciences Centre, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
- School of Engineering RMIT University, Bundoora, Australia
| | - Min Gu
- Optical Sciences Centre, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia.
- Laboratory for Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC, Australia.
- Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, The University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
23
|
Perona Martínez F, Nusantara AC, Chipaux M, Padamati SK, Schirhagl R. Nanodiamond Relaxometry-Based Detection of Free-Radical Species When Produced in Chemical Reactions in Biologically Relevant Conditions. ACS Sens 2020; 5:3862-3869. [PMID: 33269596 PMCID: PMC8651177 DOI: 10.1021/acssensors.0c01037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Diamond
magnetometry is a quantum sensing method involving detection
of magnetic resonances with nanoscale resolution. For instance, T1
relaxation measurements, inspired by equivalent concepts in magnetic
resonance imaging (MRI), provide a signal that is equivalent to T1
in conventional MRI but in a nanoscale environment. We use nanodiamonds
(between 40 and 120 nm) containing ensembles of specific defects called
nitrogen vacancy (NV) centers. To perform a T1 relaxation measurement,
we pump the NV center in the ground state (using a laser at 532 nm)
and observe how long the NV center can remain in this state. Here,
we use this method to provide real-time measurements of free radicals
when they are generated in a chemical reaction. Specifically, we focus
on the photolysis of H2O2 as well as the so-called
Haber–Weiss reaction. Both of these processes are important
reactions in biological environments. Unlike other fluorescent probes,
diamonds are able to determine spin noise from different species in
real time. We also investigate different diamond probes and their
ability to sense gadolinium spin labels. Although this study was performed
in a clean environment, we take into account the effects of salts
and proteins that are present in a biological environment. We conduct
our experiments with nanodiamonds, which are compatible with intracellular
measurements. We perform measurements between 0 and 108 nM, and we are able to reach detection limits down to the nanomolar
range and typically find T1 times of a few 100 μs. This is an
important step toward label-free nano-MRI signal quantification in
biological environments.
Collapse
Affiliation(s)
- Felipe Perona Martínez
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Anggrek Citra Nusantara
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Mayeul Chipaux
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandeep Kumar Padamati
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
24
|
Sow M, Steuer H, Adekanye S, Ginés L, Mandal S, Gilboa B, Williams OA, Smith JM, Kapanidis AN. High-throughput nitrogen-vacancy center imaging for nanodiamond photophysical characterization and pH nanosensing. NANOSCALE 2020; 12:21821-21831. [PMID: 33103692 PMCID: PMC8329943 DOI: 10.1039/d0nr05931e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The fluorescent nitrogen-vacancy (NV) defect in diamond has remarkable photophysical properties, including high photostability which allows stable fluorescence emission for hours; as a result, there has been much interest in using nanodiamonds (NDs) for applications in quantum optics and biological imaging. Such applications have been limited by the heterogeneity of NDs and our limited understanding of NV photophysics in NDs, which is partially due to the lack of sensitive and high-throughput methods for photophysical analysis of NDs. Here, we report a systematic analysis of NDs using two-color wide-field epifluorescence imaging coupled to high-throughput single-particle detection of single NVs in NDs with sizes down to 5-10 nm. By using fluorescence intensity ratios, we observe directly the charge conversion of single NV center (NV- or NV0) and measure the lifetimes of different NV charge states in NDs. We also show that we can use changes in pH to control the main NV charge states in a direct and reversible fashion, a discovery that paves the way for performing pH nanosensing with a non-photobleachable probe.
Collapse
Affiliation(s)
- Maabur Sow
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | - Horst Steuer
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | - Sanmi Adekanye
- Department of Materials, University of OxfordParks RoadOxford OX1 3PHUK
| | - Laia Ginés
- School of Physics and Astronomy, Cardiff UniversityCardiff CF24 3AAUK
| | - Soumen Mandal
- School of Physics and Astronomy, Cardiff UniversityCardiff CF24 3AAUK
| | - Barak Gilboa
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | | | - Jason M. Smith
- Department of Materials, University of OxfordParks RoadOxford OX1 3PHUK
| | - Achillefs N. Kapanidis
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| |
Collapse
|
25
|
Barton J, Gulka M, Tarabek J, Mindarava Y, Wang Z, Schimer J, Raabova H, Bednar J, Plenio MB, Jelezko F, Nesladek M, Cigler P. Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds. ACS NANO 2020; 14:12938-12950. [PMID: 32790348 DOI: 10.1021/acsnano.0c04010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biocompatible nanoscale probes for sensitive detection of paramagnetic species and molecules associated with their (bio)chemical transformations would provide a desirable tool for a better understanding of cellular redox processes. Here, we describe an analytical tool based on quantum sensing techniques. We magnetically coupled negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) with nitroxide radicals present in a bioinert polymer coating of the NDs. We demonstrated that the T1 spin relaxation time of the NV centers is very sensitive to the number of nitroxide radicals, with a resolution down to ∼10 spins per ND (detection of approximately 10-23 mol in a localized volume). The detection is based on T1 shortening upon the radical attachment, and we propose a theoretical model describing this phenomenon. We further show that this colloidally stable, water-soluble system can be used dynamically for spatiotemporal readout of a redox chemical process (oxidation of ascorbic acid) occurring near the ND surface in an aqueous environment under ambient conditions.
Collapse
Affiliation(s)
- Jan Barton
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Michal Gulka
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 27201 Kladno, Czechia
- IMOMEC Division, IMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Jan Tarabek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Yuliya Mindarava
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Zhenyu Wang
- Institute of Theoretical Physics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Helena Raabova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Jan Bednar
- Institute for Advanced Biosciences, UMR 5309, Allée des Alpes, 38700 la Tronche, France
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czechia
| | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Milos Nesladek
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 27201 Kladno, Czechia
- IMOMEC Division, IMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| |
Collapse
|
26
|
Broadband multi-magnon relaxometry using a quantum spin sensor for high frequency ferromagnetic dynamics sensing. Nat Commun 2020; 11:5229. [PMID: 33067420 PMCID: PMC7568545 DOI: 10.1038/s41467-020-19121-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/15/2020] [Indexed: 11/08/2022] Open
Abstract
Development of sensitive local probes of magnon dynamics is essential to further understand the physical processes that govern magnon generation, propagation, scattering, and relaxation. Quantum spin sensors like the NV center in diamond have long spin lifetimes and their relaxation can be used to sense magnetic field noise at gigahertz frequencies. Thus far, NV sensing of ferromagnetic dynamics has been constrained to the case where the NV spin is resonant with a magnon mode in the sample meaning that the NV frequency provides an upper bound to detection. In this work we demonstrate ensemble NV detection of spinwaves generated via a nonlinear instability process where spinwaves of nonzero wavevector are parametrically driven by a high amplitude microwave field. NV relaxation caused by these driven spinwaves can be divided into two regimes; one- and multi-magnon NV relaxometry. In the one-magnon NV relaxometry regime the driven spinwave frequency is below the NV frequencies. The driven spinwave undergoes four-magnon scattering resulting in an increase in the population of magnons which are frequency matched to the NVs. The dipole magnetic fields of the NV-resonant magnons couple to and relax nearby NV spins. The amplitude of the NV relaxation increases with the wavevector of the driven spinwave mode which we are able to vary up to 3 × 106 m-1, well into the part of the spinwave spectrum dominated by the exchange interaction. Increasing the strength of the applied magnetic field brings all spinwave modes to higher frequencies than the NV frequencies. We find that the NVs are relaxed by the driven spinwave instability despite the absence of any individual NV-resonant magnons, suggesting that multiple magnons participate in creating magnetic field noise below the ferromagnetic gap frequency which causes NV spin relaxation.
Collapse
|
27
|
Reineck P, Abraham AN, Poddar A, Shukla R, Abe H, Ohshima T, Gibson BC, Dekiwadia C, Conesa JJ, Pereiro E, Gelmi A, Bryant G. Multimodal Imaging and Soft X-Ray Tomography of Fluorescent Nanodiamonds in Cancer Cells. Biotechnol J 2020; 16:e2000289. [PMID: 32975037 DOI: 10.1002/biot.202000289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Multimodal imaging promises to revolutionize the understanding of biological processes across scales in space and time by combining the strengths of multiple imaging techniques. Fluorescent nanodiamonds (FNDs) are biocompatible, chemically inert, provide high contrast in light- and electron-based microscopy, and are versatile optical quantum sensors. Here it is demonstrated that FNDs also provide high absorption contrast in nanoscale 3D soft X-ray tomograms with a resolution of 28 nm in all dimensions. Confocal fluorescence, atomic force, and scanning electron microscopy images of FNDs inside and on the surface of PC3 cancer cells with sub-micrometer precision are correlated. FNDs are found inside ≈1 µm sized vesicles present in the cytoplasm, providing direct evidence of the active uptake of bare FNDs by cancer cells. Imaging artefacts are quantified and separated from changes in cell morphology caused by sample preparation. These results demonstrate the utility of FNDs in multimodal imaging, contribute to the understanding of the fate of FNDs in cells, and open up new possibilities for biological imaging and sensing across the nano- and microscale.
Collapse
Affiliation(s)
- Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Amanda N Abraham
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Arpita Poddar
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Hiroshi Abe
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Takeshi Ohshima
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria, 3001, Australia
| | - José J Conesa
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments division, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments division, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Amy Gelmi
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
28
|
Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124094] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The relationship between the unique characteristics of nanodiamonds (NDs) and the fluorescence properties of nitrogen-vacancy (NV) centers has lead to a tool with quantum sensing capabilities and nanometric spatial resolution; this tool is able to operate in a wide range of temperatures and pressures and in harsh chemical conditions. For the development of devices based on NDs, a great effort has been invested in researching cheap and easily scalable synthesis techniques for NDs and NV-NDs. In this review, we discuss the common fluorescent NDs synthesis techniques as well as the laser-assisted production methods. Then, we report recent results regarding the applications of fluorescent NDs, focusing in particular on sensing of the environmental parameters as well as in catalysis. Finally, we underline that the highly non-equilibrium processes occurring in the interactions of laser-materials in controlled laboratory conditions for NDs synthesis present unique opportunities for investigation of the phenomena occurring under extreme thermodynamic conditions in planetary cores or under warm dense matter conditions.
Collapse
|
29
|
Terada D, Genjo T, Segawa TF, Igarashi R, Shirakawa M. Nanodiamonds for bioapplications–specific targeting strategies. Biochim Biophys Acta Gen Subj 2020; 1864:129354. [DOI: 10.1016/j.bbagen.2019.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
|
30
|
Fujisaku T, Tanabe R, Onoda S, Kubota R, Segawa TF, So FTK, Ohshima T, Hamachi I, Shirakawa M, Igarashi R. pH Nanosensor Using Electronic Spins in Diamond. ACS NANO 2019; 13:11726-11732. [PMID: 31538479 DOI: 10.1021/acsnano.9b05342] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoscale measurements provide insight into the nano world. For instance, nanometric spatiotemporal distribution of intracellular pH is regulated by and regulates a variety of biological processes. However, there is no general method to fabricate nanoscale pH sensors. Here, we, to endow pH-sensing functions, tailor the surface properties of a fluorescent nanodiamond (FND) containing nitrogen-vacancy centers (NV centers) by coating the FND with an ionic chemical layer. The longitudinal relaxation time T1 of the electron spins in the NV centers inside a nanodiamond modified by carboxyl groups on the particle surface was found to depend on ambient pH between pH 3 and pH 7, but not between pH 7 and pH 11. Therefore, a single particle of the carboxylated nanodiamond works as a nanometer-sized pH meter within a microscopic image and directly measures the nanometric local pH environment. Moreover, the pH dependence of an FND was changed by coating it with a polycysteine layer, which contains a multitude of thiol groups with higher pKa. The polycysteine-coated nanodiamond obtained a pH dependence between pH 7 and pH 11. The pH dependence of the FND was also observed in heavy water (D2O) buffers. This indicates that the pH dependence is not caused by magnetic noise induced by 1H nuclear spin fluctuations, but by electric noise induced by ion exchanges. Via our method, the sensitive pH range of the nanodiamond pH sensor can potentially be controlled by changing the ionic layer appropriately according to the target biological phenomena.
Collapse
Affiliation(s)
- Takahiro Fujisaku
- Department of Molecular Engineering, Graduate School of Engineering , Kyoto University , Nishikyo-Ku, Kyoto 615-8510 , Japan
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
| | - Ryotaro Tanabe
- Department of Molecular Engineering, Graduate School of Engineering , Kyoto University , Nishikyo-Ku, Kyoto 615-8510 , Japan
| | - Shinobu Onoda
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
- Takasaki Advanced Radiation Research Institute , National Institutes for Quantum and Radiological Science and Technology , 1233 Watanuki , Takasaki , Gunma 370-1292 , Japan
| | - Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Takuya F Segawa
- Department of Molecular Engineering, Graduate School of Engineering , Kyoto University , Nishikyo-Ku, Kyoto 615-8510 , Japan
- Laboratory for Solid State Physics , ETH Zurich , Otto-Stern-Weg 1 , 8093 Zürich , Switzerland
| | - Frederick T-K So
- Department of Molecular Engineering, Graduate School of Engineering , Kyoto University , Nishikyo-Ku, Kyoto 615-8510 , Japan
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
| | - Takeshi Ohshima
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
- Takasaki Advanced Radiation Research Institute , National Institutes for Quantum and Radiological Science and Technology , 1233 Watanuki , Takasaki , Gunma 370-1292 , Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering , Kyoto University , Nishikyo-Ku, Kyoto 615-8510 , Japan
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
- National Institute for Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
- JST , PRESTO, 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
31
|
Li C, Chen M, Lyzwa D, Cappellaro P. All-Optical Quantum Sensing of Rotational Brownian Motion of Magnetic Molecules. NANO LETTERS 2019; 19:7342-7348. [PMID: 31549847 DOI: 10.1021/acs.nanolett.9b02960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sensing the local environment through the motional response of small molecules lays the foundation of many fundamental technologies. The information on local viscosity, for example, is contained in the random rotational Brownian motions of molecules. However, detection of the motions is challenging for molecules with sub-nanometer scale or high motional rates. Here we propose and experimentally demonstrate a novel method of detecting fast rotational Brownian motions of small magnetic molecules. With electronic spins as sensors, we are able to detect changes in motional rates, which yield different noise spectra and therefore different relaxation signals of the sensors. As a proof-of-principle demonstration, we experimentally implemented this method to detect the motions of gadolinium (Gd) complex molecules with nitrogen-vacancy (NV) centers in nanodiamonds. With all-optical measurements of the NV centers' longitudinal relaxation, we distinguished binary solutions with varying viscosities. Our method paves a new way for detecting fast motions of sub-nanometer sized magnetic molecules with better spatial resolution than conventional optical methods. It also provides a new tool in designing better contrast agents in magnetic resonance imaging.
Collapse
Affiliation(s)
- Changhao Li
- Research Laboratory of Electronics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Department of Nuclear Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Mo Chen
- Research Laboratory of Electronics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Dominika Lyzwa
- Research Laboratory of Electronics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Paola Cappellaro
- Research Laboratory of Electronics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Department of Nuclear Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
32
|
Gorrini F, Giri R, Avalos CE, Tambalo S, Mannucci S, Basso L, Bazzanella N, Dorigoni C, Cazzanelli M, Marzola P, Miotello A, Bifone A. Fast and Sensitive Detection of Paramagnetic Species Using Coupled Charge and Spin Dynamics in Strongly Fluorescent Nanodiamonds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24412-24422. [PMID: 31199615 DOI: 10.1021/acsami.9b05779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sensing of a few unpaired electron spins, such as in metal ions and radicals, is a useful but difficult task in nanoscale physics, biology, and chemistry. Single negatively charged nitrogen-vacancy (NV-) centers in diamond offer high sensitivity and spatial resolution in the optical detection of weak magnetic fields produced by a spin bath but often require long acquisition times on the order of seconds. Here, we present an approach based on coupled spin and charge dynamics in dense NV ensembles in strongly fluorescent nanodiamonds (NDs) to sense external magnetic dipoles. We apply this approach to various paramagnetic species, including gadolinium complexes, magnetite nanoparticles, and hemoglobin in whole blood. Taking advantage of the high NV density, we demonstrate a dramatic reduction in acquisition time (down to tens of milliseconds) while maintaining high sensitivity to paramagnetic centers. Strong luminescence, high sensitivity, and short acquisition time make dense NV- ensembles in NDs a potentially promising tool for biosensing and bioimaging applications.
Collapse
Affiliation(s)
- F Gorrini
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
| | - R Giri
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
| | - C E Avalos
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime , CH-1015 Lausanne , Switzerland
| | - S Tambalo
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
| | - S Mannucci
- Department of Neuroscience, Biomedicine and Movement Sciences , University of Verona , Strada Le Grazie 8 , 37134 Verona , Italy
| | - L Basso
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
- Department of Physics , University of Trento , via Sommarive 14, Povo , 38123 Trento , Italy
| | - N Bazzanella
- Department of Physics , University of Trento , via Sommarive 14, Povo , 38123 Trento , Italy
| | - C Dorigoni
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
| | - M Cazzanelli
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
- Department of Physics , University of Trento , via Sommarive 14, Povo , 38123 Trento , Italy
| | - P Marzola
- Department of Computer Science , University of Verona , Strada Le Grazie 15 , 37134 Verona , Italy
| | - A Miotello
- Department of Physics , University of Trento , via Sommarive 14, Povo , 38123 Trento , Italy
| | - A Bifone
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino 10126 , Italy
| |
Collapse
|
33
|
Peng Z, Biktagirov T, Cho FH, Gerstmann U, Takahashi S. Investigation of near-surface defects of nanodiamonds by high-frequency EPR and DFT calculation. J Chem Phys 2019; 150:134702. [DOI: 10.1063/1.5085351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Z. Peng
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - T. Biktagirov
- Lehrstuhl für Theoretische Physik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
| | - F. H. Cho
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - U. Gerstmann
- Lehrstuhl für Theoretische Physik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
| | - S. Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
34
|
Complex formation equilibria between cholesterol and diosgenin analogues in monolayers determined by the Langmuir method. Biointerphases 2018; 13:061001. [PMID: 30408964 DOI: 10.1116/1.5054064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to investigate the interaction between diosgenin analogues [DioA: diosgenin acetate (DAc) and (25R)-5α,6β-dihydroxyspirostan-3β-ol acetate (DSol)] and cholesterol (Ch) monolayers at the air/water interface. The surface tension of pure and mixed lipid monolayers at 22 °C was measured by using the Langmuir method with a Teflon trough and a Nima 9002 tensiometer. The surface tension values were used to calculate the π-A isotherms and to determine the molecular surface areas. The interactions between Ch and each DioA resulted in significant deviations from the additivity rule. The theory described in this work was used to determine the stability constants, the areas occupied by one molecule of Ch-DAc or Ch-DSol, and the complex formation energy (Gibbs free energy) values.
Collapse
|
35
|
Chipaux M, van der Laan KJ, Hemelaar SR, Hasani M, Zheng T, Schirhagl R. Nanodiamonds and Their Applications in Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704263. [PMID: 29573338 DOI: 10.1002/smll.201704263] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/25/2018] [Indexed: 05/21/2023]
Abstract
Diamonds owe their fame to a unique set of outstanding properties. They combine a high refractive index, hardness, great stability and inertness, and low electrical but high thermal conductivity. Diamond defects have recently attracted a lot of attention. Given this unique list of properties, it is not surprising that diamond nanoparticles are utilized for numerous applications. Due to their hardness, they are routinely used as abrasives. Their small and uniform size qualifies them as attractive carriers for drug delivery. The stable fluorescence of diamond defects allows their use as stable single photon sources or biolabels. The magnetic properties of the defects make them stable spin qubits in quantum information. This property also allows their use as a sensor for temperature, magnetic fields, electric fields, or strain. This Review focuses on applications in cells. Different diamond materials and the special requirements for the respective applications are discussed. Methods to chemically modify the surface of diamonds and the different hurdles one has to overcome when working with cells, such as entering the cells and biocompatibility, are described. Finally, the recent developments and applications in labeling, sensing, drug delivery, theranostics, antibiotics, and tissue engineering are critically discussed.
Collapse
Affiliation(s)
- Mayeul Chipaux
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Kiran J van der Laan
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Simon R Hemelaar
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, 518036, Shenzhen, China
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| |
Collapse
|
36
|
Claveau S, Bertrand JR, Treussart F. Fluorescent Nanodiamond Applications for Cellular Process Sensing and Cell Tracking. MICROMACHINES 2018; 9:mi9050247. [PMID: 30424180 PMCID: PMC6187705 DOI: 10.3390/mi9050247] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
Abstract
Diamond nanocrystals smaller than 100 nm (nanodiamonds) are now recognized to be highly biocompatible. They can be made fluorescent with perfect photostability by creating nitrogen-vacancy (NV) color centers in the diamond lattice. The resulting fluorescent nanodiamonds (FND) have been used since the late 2000s as fluorescent probes for short- or long-term analysis. FND can be used both at the subcellular scale and the single cell scale. Their limited sub-diffraction size allows them to track intracellular processes with high spatio-temporal resolution and high contrast from the surrounding environment. FND can also track the fate of therapeutic compounds or whole cells in the organs of an organism. This review presents examples of FND applications (1) for intra and intercellular molecular processes sensing, also introducing the different potential biosensing applications based on the optically detectable electron spin resonance of NV- centers; and (2) for tracking, firstly, FND themselves to determine their biodistribution, and secondly, using FND as cell tracking probes for diagnosis or follow-up purposes in oncology and regenerative medicine.
Collapse
Affiliation(s)
- Sandra Claveau
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
- Laboratoire Aimé Cotton, CNRS, Univ. Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France.
| | - Jean-Rémi Bertrand
- Laboratoire Aimé Cotton, CNRS, Univ. Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France.
| | - François Treussart
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
37
|
Ryan RG, Stacey A, O'Donnell KM, Ohshima T, Johnson BC, Hollenberg LCL, Mulvaney P, Simpson DA. Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13143-13149. [PMID: 29557161 DOI: 10.1021/acsami.7b19238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoscale quantum probes such as the nitrogen-vacancy (NV) center in diamonds have demonstrated remarkable sensing capabilities over the past decade as control over fabrication and manipulation of these systems has evolved. The biocompatibility and rich surface chemistry of diamonds has added to the utility of these probes but, as the size of these nanoscale systems is reduced, the surface chemistry of diamond begins to impact the quantum properties of the NV center. In this work, we systematically study the effect of the diamond surface chemistry on the quantum coherence of the NV center in nanodiamonds (NDs) 50 nm in size. Our results show that a borane-reduced diamond surface can on average double the spin relaxation time of individual NV centers in nanodiamonds when compared to thermally oxidized surfaces. Using a combination of infrared and X-ray absorption spectroscopy techniques, we correlate the changes in quantum relaxation rates with the conversion of sp2 carbon to C-O and C-H bonds on the diamond surface. These findings implicate double-bonded carbon species as a dominant source of spin noise for near surface NV centers. The link between the surface chemistry and quantum coherence indicates that through tailored engineering of the surface, the quantum properties and magnetic sensitivity of these nanoscale systems may approach that observed in bulk diamond.
Collapse
Affiliation(s)
- Robert G Ryan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Alastair Stacey
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Kane M O'Donnell
- Department of Physics, Astronomy and Medical Radiation Science , Curtin University , Bentley , Western Australia 6102 , Australia
| | - Takeshi Ohshima
- National Institutes for Quantum and Radiological Science and Technology (QST) , Takasaki , Gunma 370-1292 , Japan
| | | | - Lloyd C L Hollenberg
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Paul Mulvaney
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | | |
Collapse
|
38
|
Simpson DA, Morrisroe E, McCoey JM, Lombard AH, Mendis DC, Treussart F, Hall LT, Petrou S, Hollenberg LCL. Non-Neurotoxic Nanodiamond Probes for Intraneuronal Temperature Mapping. ACS NANO 2017; 11:12077-12086. [PMID: 29111670 DOI: 10.1021/acsnano.7b04850] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Optical biomarkers have been used extensively for intracellular imaging with high spatial and temporal resolution. Extending the modality of these probes is a key driver in cell biology. In recent years, the nitrogen-vacancy (NV) center in nanodiamond has emerged as a promising candidate for bioimaging and biosensing with low cytotoxicity and stable photoluminescence. Here we study the electrophysiological effects of this quantum probe in primary cortical neurons. Multielectrode array recordings across five replicate studies showed no statistically significant difference in 25 network parameters when nanodiamonds are added at varying concentrations over various time periods, 12-36 h. The physiological validation motivates the second part of the study, which demonstrates how the quantum properties of these biomarkers can be used to report intracellular information beyond their location and movement. Using the optically detected magnetic resonance from the nitrogen-vacancy defects within the nanodiamonds we demonstrate enhanced signal-to-noise imaging and temperature mapping from thousands of nanodiamond probes simultaneously. This work establishes nanodiamonds as viable multifunctional intraneuronal sensors with nanoscale resolution, which may ultimately be used to detect magnetic and electrical activity at the membrane level in excitable cellular systems.
Collapse
Affiliation(s)
- David A Simpson
- School of Physics, University of Melbourne , Parkville, 3010, Australia
- Centre for Neural Engineering, University of Melbourne , Parkville, 3010, Australia
| | - Emma Morrisroe
- Florey Neuroscience Institute, University of Melbourne , Parkville, 3010, Australia
| | - Julia M McCoey
- School of Physics, University of Melbourne , Parkville, 3010, Australia
| | - Alain H Lombard
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay , 91405 Orsay, France
| | - Dulini C Mendis
- Department of Mechanical Engineering, University of Melbourne , Parkville, VIC 3010, Australia
| | - François Treussart
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay , 91405 Orsay, France
| | - Liam T Hall
- School of Physics, University of Melbourne , Parkville, 3010, Australia
| | - Steven Petrou
- Centre for Neural Engineering, University of Melbourne , Parkville, 3010, Australia
- Florey Neuroscience Institute, University of Melbourne , Parkville, 3010, Australia
- Centre for Integrated Brain Function, University of Melbourne , Parkville, 3010, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne , Parkville, 3010, Australia
| | - Lloyd C L Hollenberg
- School of Physics, University of Melbourne , Parkville, 3010, Australia
- Centre for Neural Engineering, University of Melbourne , Parkville, 3010, Australia
- Centre for Quantum Computation and Communication Technology, University of Melbourne , Parkville, 3052, Australia
| |
Collapse
|
39
|
Zheng T, Perona Martínez F, Storm IM, Rombouts W, Sprakel J, Schirhagl R, de Vries R. Recombinant Protein Polymers for Colloidal Stabilization and Improvement of Cellular Uptake of Diamond Nanosensors. Anal Chem 2017; 89:12812-12820. [PMID: 29111679 DOI: 10.1021/acs.analchem.7b03236] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fluorescent nanodiamonds are gaining increasing attention as fluorescent labels in biology in view of the fact that they are essentially nontoxic, do not bleach, and can be used as nanoscale sensors for various physical and chemical properties. To fully realize the nanosensing potential of nanodiamonds in biological applications, two problems need to be addressed: their limited colloidal stability, especially in the presence of salts, and their limited ability to be taken up by cells. We show that the physical adsorption of a suitably designed recombinant polypeptide can address both the colloidal stability problem and the problem of the limited uptake of nanodiamonds by cells in a very straightforward way, while preserving both their spectroscopic properties and their excellent biocompatibility.
Collapse
Affiliation(s)
- Tingting Zheng
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center , 518036 Shenzhen, China
| | - Felipe Perona Martínez
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University , Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ingeborg Maria Storm
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Wolf Rombouts
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University , Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
40
|
Wendin G. Quantum information processing with superconducting circuits: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:106001. [PMID: 28682303 DOI: 10.1088/1361-6633/aa7e1a] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.
Collapse
Affiliation(s)
- G Wendin
- Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
41
|
Electron paramagnetic resonance microscopy using spins in diamond under ambient conditions. Nat Commun 2017; 8:458. [PMID: 28878240 PMCID: PMC5587709 DOI: 10.1038/s41467-017-00466-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/30/2017] [Indexed: 11/08/2022] Open
Abstract
Magnetic resonance spectroscopy is one of the most important tools in chemical and bio-medical research. However, sensitivity limitations typically restrict imaging resolution to ~ 10 µm. Here we bring quantum control to the detection of chemical systems to demonstrate high-resolution electron spin imaging using the quantum properties of an array of nitrogen-vacancy centres in diamond. Our electron paramagnetic resonance microscope selectively images electronic spin species by precisely tuning a magnetic field to bring the quantum probes into resonance with the external target spins. This provides diffraction limited spatial resolution of the target spin species over a field of view of 50 × 50 µm2 with a spin sensitivity of 104 spins per voxel or ∼100 zmol. The ability to perform spectroscopy and dynamically monitor spin-dependent redox reactions at these scales enables the development of electron spin resonance and zepto-chemistry in the physical and life sciences.Electron paramagnetic resonance spectroscopy has important scientific and medical uses but improving the resolution of conventional methods requires cryogenic, vacuum environments. Simpson et al. show nitrogen vacancy centres can be used for sub-micronmetre imaging with improved sensitivity in ambient conditions.
Collapse
|
42
|
Chen Q, Schwarz I, Plenio MB. Dissipatively Stabilized Quantum Sensor Based on Indirect Nuclear-Nuclear Interactions. PHYSICAL REVIEW LETTERS 2017; 119:010801. [PMID: 28731761 DOI: 10.1103/physrevlett.119.010801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 06/07/2023]
Abstract
We propose to use a dissipatively stabilized nitrogen vacancy (NV) center as a mediator of interaction between two nuclear spins that are protected from decoherence and relaxation of the NV due to the periodical resets of the NV center. Under ambient conditions this scheme achieves highly selective high-fidelity quantum gates between nuclear spins in a quantum register even at large NV-nuclear distances. Importantly, this method allows for the use of nuclear spins as a sensor rather than a memory, while the NV spin acts as an ancillary system for the initialization and readout of the sensor. The immunity to the decoherence and relaxation of the NV center leads to a tunable sharp frequency filter while allowing at the same time the continuous collection of the signal to achieve simultaneously high spectral selectivity and high signal-to-noise ratio.
Collapse
Affiliation(s)
- Q Chen
- Institut für Theoretische Physik & IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - I Schwarz
- Institut für Theoretische Physik & IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - M B Plenio
- Institut für Theoretische Physik & IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
43
|
Microwave-free nuclear magnetic resonance at molecular scales. Nat Commun 2017; 8:15950. [PMID: 28671183 PMCID: PMC5500877 DOI: 10.1038/ncomms15950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022] Open
Abstract
The implementation of nuclear magnetic resonance (NMR) at the nanoscale is a major challenge, as the resolution of conventional methods is limited to mesoscopic scales. Approaches based on quantum spin probes, such as the nitrogen-vacancy (NV) centre in diamond, have achieved nano-NMR under ambient conditions. However, the measurement protocols require application of complex microwave pulse sequences of high precision and relatively high power, placing limitations on the design and scalability of these techniques. Here we demonstrate NMR on a nanoscale organic environment of proton spins using the NV centre while eliminating the need for microwave manipulation of either the NV or the environmental spin states. We also show that the sensitivity of our significantly simplified approach matches that of existing techniques using the NV centre. Removing the requirement for coherent manipulation while maintaining measurement sensitivity represents a significant step towards the development of robust, non-invasive nanoscale NMR probes. Nitrogen vacancy centres can be used for nanoscale nuclear magnetic resonance detection but this typically involves strong microwave control pulses, making practical realizations difficult. Here the authors demonstrate a microwave-free spectroscopic protocol that can detect spins in external samples.
Collapse
|
44
|
Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, Fávaro de Oliveira F, Denisenko A, Sumiya H, Onoda S, Isoya J, Wrachtrup J. Nanoscale nuclear magnetic resonance with chemical resolution. Science 2017; 357:67-71. [DOI: 10.1126/science.aam8697] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/17/2017] [Indexed: 01/24/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in 1H and 19F NMR spectroscopy of 20-zeptoliter sample volumes. We demonstrate the application of NMR pulse sequences to achieve homonuclear decoupling and spin diffusion measurements. The best measured NMR linewidth of a liquid sample was ~1 part per million, mainly limited by molecular diffusion. To mitigate the influence of diffusion, we performed high-resolution solid-state NMR by applying homonuclear decoupling and achieved a 20-fold narrowing of the NMR linewidth.
Collapse
|
45
|
Rendler T, Neburkova J, Zemek O, Kotek J, Zappe A, Chu Z, Cigler P, Wrachtrup J. Optical imaging of localized chemical events using programmable diamond quantum nanosensors. Nat Commun 2017; 8:14701. [PMID: 28317922 PMCID: PMC5364376 DOI: 10.1038/ncomms14701] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
Development of multifunctional nanoscale sensors working under physiological conditions enables monitoring of intracellular processes that are important for various biological and medical applications. By attaching paramagnetic gadolinium complexes to nanodiamonds (NDs) with nitrogen-vacancy (NV) centres through surface engineering, we developed a hybrid nanoscale sensor that can be adjusted to directly monitor physiological species through a proposed sensing scheme based on NV spin relaxometry. We adopt a single-step method to measure spin relaxation rates enabling time-dependent measurements on changes in pH or redox potential at a submicrometre-length scale in a microfluidic channel that mimics cellular environments. Our experimental data are reproduced by numerical simulations of the NV spin interaction with gadolinium complexes covering the NDs. Considering the versatile engineering options provided by polymer chemistry, the underlying mechanism can be expanded to detect a variety of physiologically relevant species and variables.
Collapse
Affiliation(s)
- Torsten Rendler
- 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- First Faculty of Medicine, Charles University, Katerinska 32, 121 08 Prague 2, Czech Republic
| | - Ondrej Zemek
- Faculty of Science, Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 43, Prague 2, Czech Republic
| | - Jan Kotek
- Faculty of Science, Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 43, Prague 2, Czech Republic
| | - Andrea Zappe
- 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Zhiqin Chu
- 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jörg Wrachtrup
- 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
46
|
Jakobi I, Neumann P, Wang Y, Dasari DBR, El Hallak F, Bashir MA, Markham M, Edmonds A, Twitchen D, Wrachtrup J. Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. NATURE NANOTECHNOLOGY 2017; 12:67-72. [PMID: 27618258 DOI: 10.1038/nnano.2016.163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
The generation and control of fast switchable magnetic fields with large gradients on the nanoscale is of fundamental interest in material science and for a wide range of applications. However, it has not yet been possible to characterize those fields at high bandwidth with arbitrary orientations. Here, we measure the magnetic field generated by a hard-disk-drive write head with high spatial resolution and large bandwidth by coherent control of single electron and nuclear spins. We are able to derive field profiles from coherent spin Rabi oscillations close to the gigahertz range, measure magnetic field gradients on the order of 1 mT nm-1 and quantify axial and radial components of a static and dynamic magnetic field independent of its orientation. Our method paves the way for precision measurement of the magnetic fields of nanoscale write heads, which is important for future miniaturization of these devices.
Collapse
Affiliation(s)
- Ingmar Jakobi
- 3. Physikalisches Institut, Universität Stuttgart and Institute for Integrated Quantum Science and Technology IQST, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Philipp Neumann
- 3. Physikalisches Institut, Universität Stuttgart and Institute for Integrated Quantum Science and Technology IQST, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Ya Wang
- 3. Physikalisches Institut, Universität Stuttgart and Institute for Integrated Quantum Science and Technology IQST, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Durga Bhaktavatsala Rao Dasari
- 3. Physikalisches Institut, Universität Stuttgart and Institute for Integrated Quantum Science and Technology IQST, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Fadi El Hallak
- Seagate Technology, 1 Disc Drive, Springtown Industrial Estate, Londonderry BT48 0BF, UK
| | - Muhammad Asif Bashir
- Seagate Technology, 1 Disc Drive, Springtown Industrial Estate, Londonderry BT48 0BF, UK
| | - Matthew Markham
- Element Six, Fermi Avenue, Harwell Oxford, Didcot, Oxfordshire OX11 0QR, UK
| | - Andrew Edmonds
- Element Six, Fermi Avenue, Harwell Oxford, Didcot, Oxfordshire OX11 0QR, UK
| | - Daniel Twitchen
- Element Six, Fermi Avenue, Harwell Oxford, Didcot, Oxfordshire OX11 0QR, UK
| | - Jörg Wrachtrup
- 3. Physikalisches Institut, Universität Stuttgart and Institute for Integrated Quantum Science and Technology IQST, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
47
|
Chen X, Zhang W. Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem Soc Rev 2017; 46:734-760. [DOI: 10.1039/c6cs00109b] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the superior properties of diamond nanoparticles and vertically aligned diamond nanoneedles and their applications in biosensing, bioimaging and drug delivery.
Collapse
Affiliation(s)
- Xianfeng Chen
- Institute for Bioengineering
- School of Engineering
- The University of Edinburgh
- Edinburgh EH9 3JL
- UK
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science
- City University of Hong Kong
- China
| |
Collapse
|
48
|
Perunicic VS, Hill CD, Hall LT, Hollenberg LCL. A quantum spin-probe molecular microscope. Nat Commun 2016; 7:12667. [PMID: 27725630 PMCID: PMC5062573 DOI: 10.1038/ncomms12667] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Abstract
Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy. Single spin defects can allow high-resolution sensing of molecules under an applied magnetic field. Here, the authors propose a protocol for three-dimensional magnetic resonance imaging with angstrom-level resolution exploiting the dipolar field of a spin qubit, such as a diamond nitrogen-vacancy.
Collapse
Affiliation(s)
- V S Perunicic
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - C D Hill
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - L T Hall
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - L C L Hollenberg
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia.,School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
49
|
Bonato C, Blok MS, Dinani HT, Berry DW, Markham ML, Twitchen DJ, Hanson R. Optimized quantum sensing with a single electron spin using real-time adaptive measurements. NATURE NANOTECHNOLOGY 2016; 11:247-252. [PMID: 26571007 DOI: 10.1038/nnano.2015.261] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Collapse
Affiliation(s)
- C Bonato
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, GA Delft 2600, The Netherlands
| | - M S Blok
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, GA Delft 2600, The Netherlands
| | - H T Dinani
- Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
- Center for Engineered Quantum Systems, Macquarie University, Sydney, New South Wales 2109, Australia
| | - D W Berry
- Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - M L Markham
- Element Six Ltd, Kings Ride Park, Ascot, Berkshire SL5 8BP, UK
| | - D J Twitchen
- Element Six Ltd, Kings Ride Park, Ascot, Berkshire SL5 8BP, UK
| | - R Hanson
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, GA Delft 2600, The Netherlands
| |
Collapse
|
50
|
Tetienne JP, Lombard A, Simpson DA, Ritchie C, Lu J, Mulvaney P, Hollenberg LCL. Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging. NANO LETTERS 2016; 16:326-33. [PMID: 26709529 DOI: 10.1021/acs.nanolett.5b03877] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress toward this goal, but generalization of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here, we report on a scanning quantum probe microscope which solves both issues by employing a nanospin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time while preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nanospin ensemble is used as a thermometer. We use this technique to map the photoinduced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way toward new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.
Collapse
Affiliation(s)
- Jean-Philippe Tetienne
- Centre for Quantum Computation and Communication Technology, The University of Melbourne , Melbourne Victoria 3010, Australia
- Bio21 Institute and School of Chemistry, The University of Melbourne , Melbourne Victoria 3010, Australia
| | - Alain Lombard
- Centre for Quantum Computation and Communication Technology, The University of Melbourne , Melbourne Victoria 3010, Australia
- Département de Physique, Ecole Normale Supérieure de Cachan , 94235 Cachan, France
| | - David A Simpson
- School of Physics, The University of Melbourne , Melbourne Victoria 3010, Australia
| | - Cameron Ritchie
- Bio21 Institute and School of Chemistry, The University of Melbourne , Melbourne Victoria 3010, Australia
| | - Jianing Lu
- Bio21 Institute and School of Chemistry, The University of Melbourne , Melbourne Victoria 3010, Australia
| | - Paul Mulvaney
- Bio21 Institute and School of Chemistry, The University of Melbourne , Melbourne Victoria 3010, Australia
| | - Lloyd C L Hollenberg
- Centre for Quantum Computation and Communication Technology, The University of Melbourne , Melbourne Victoria 3010, Australia
- Bio21 Institute and School of Chemistry, The University of Melbourne , Melbourne Victoria 3010, Australia
- School of Physics, The University of Melbourne , Melbourne Victoria 3010, Australia
| |
Collapse
|