1
|
Datta S, Gupta A, Jagetiya KM, Tiwari V, Yamashita M, Ammann S, Shahrooei M, Yande AR, Sowdhamini R, Dani A, Prakriya M, Vig M. Syntaxin11 Deficiency Inhibits CRAC Channel Priming To Suppress Cytotoxicity And Gene Expression In FHLH4 Patient T Lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620144. [PMID: 39484379 PMCID: PMC11527129 DOI: 10.1101/2024.10.25.620144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
CRAC channels enable calcium entry from the extracellular space in response to a variety of stimuli and are crucial for gene expression and granule exocytosis in lymphocytes. Here we find that Syntaxin11, a Q-SNARE, associated with FHLH4 disease in human patients, directly binds Orai1, the pore forming subunit of CRAC channels. Syntaxin11 depletion strongly inhibited SOCE, CRAC currents, IL-2 expression and cytotoxicity in cell lines and FHLH4 patient T lymphocytes. Constitutively active H134 Orai1 mutant completely reconstituted calcium entry in Syntaxin11 depleted cells and the defects of granule exocytosis as well as gene expression could be bypassed by ionomycin induced calcium influx in FHLH4 T lymphocytes. Our data reveal a Syntaxin11 induced pre-activation state of Orai which is necessary for its subsequent coupling and gating by the endoplasmic reticulum resident Stim protein. We propose that ion channel regulation by specific SNAREs is a primary and conserved function which may have preceded their role in vesicle fusion.
Collapse
Affiliation(s)
- Sritama Datta
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | | | - Vikas Tiwari
- National Centre for Biological Sciences, Bangalore, India
| | - Megumi Yamashita
- Northwestern University, Feinberg School of Medicine, Chicago, USA
| | - Sandra Ammann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mohammad Shahrooei
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | | | | | - Adish Dani
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Murali Prakriya
- Northwestern University, Feinberg School of Medicine, Chicago, USA
| | - Monika Vig
- Tata Institute of Fundamental Research, Hyderabad, India
| |
Collapse
|
2
|
Kaji I, Thiagarajah JR, Goldenring JR. Modeling the cell biology of monogenetic intestinal epithelial disorders. J Cell Biol 2024; 223:e202310118. [PMID: 38683247 PMCID: PMC11058565 DOI: 10.1083/jcb.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Monogenetic variants are responsible for a range of congenital human diseases. Variants in genes that are important for intestinal epithelial function cause a group of disorders characterized by severe diarrhea and loss of nutrient absorption called congenital diarrheas and enteropathies (CODEs). CODE-causing genes include nutrient transporters, enzymes, structural proteins, and vesicular trafficking proteins in intestinal epithelial cells. Several severe CODE disorders result from the loss-of-function in key regulators of polarized endocytic trafficking such as the motor protein, Myosin VB (MYO5B), as well as STX3, STXBP2, and UNC45A. Investigations of the cell biology and pathophysiology following loss-of-function in these genes have led to an increased understanding of both homeostatic and pathological vesicular trafficking in intestinal epithelial cells. Modeling different CODEs through investigation of changes in patient tissues, coupled with the development of animal models and patient-derived enteroids, has provided critical insights into the enterocyte differentiation and function. Linking basic knowledge of cell biology with the phenotype of specific patient variants is a key step in developing effective treatments for rare monogenetic diseases. This knowledge can also be applied more broadly to our understanding of common epithelial disorders.
Collapse
Affiliation(s)
- Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Digestive Disease Center, Boston, MA, USA
| | - James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Nashville VA Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Sun M, Pylypenko O, Zhou Z, Xu M, Li Q, Houdusse A, van IJzendoorn SCD. Uncovering the Relationship Between Genes and Phenotypes Beyond the Gut in Microvillus Inclusion Disease. Cell Mol Gastroenterol Hepatol 2024; 17:983-1005. [PMID: 38307491 PMCID: PMC11041842 DOI: 10.1016/j.jcmgh.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Microvillus inclusion disease (MVID) is a rare condition that is present from birth and affects the digestive system. People with MVID experience severe diarrhea that is difficult to control, cannot absorb dietary nutrients, and struggle to grow and thrive. In addition, diverse clinical manifestations, some of which are life-threatening, have been reported in cases of MVID. MVID can be caused by variants in the MYO5B, STX3, STXBP2, or UNC45A gene. These genes produce proteins that have been functionally linked to each other in intestinal epithelial cells. MVID associated with STXBP2 variants presents in a subset of patients diagnosed with familial hemophagocytic lymphohistiocytosis type 5. MVID associated with UNC45A variants presents in most patients diagnosed with osteo-oto-hepato-enteric syndrome. Furthermore, variants in MYO5B or STX3 can also cause other diseases that are characterized by phenotypes that can co-occur in subsets of patients diagnosed with MVID. Recent studies involving clinical data and experiments with cells and animals revealed connections between specific phenotypes occurring outside of the digestive system and the type of gene variants that cause MVID. Here, we have reviewed these patterns and correlations, which are expected to be valuable for healthcare professionals in managing the disease and providing personalized care for patients and their families.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Olena Pylypenko
- Dynamics of Intra-Cellular Organization, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Zhe Zhou
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mingqian Xu
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Qinghong Li
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne Houdusse
- Structural Motility, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
5
|
Stefani I, Iwaszkiewicz J, Fasshauer D. Exploring the conformational changes of the Munc18-1/syntaxin 1a complex. Protein Sci 2023; 33:e4870. [PMID: 38109275 PMCID: PMC10895456 DOI: 10.1002/pro.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Neurotransmitters are released from synaptic vesicles, the membrane of which fuses with the plasma membrane upon calcium influx. This membrane fusion reaction is driven by the formation of a tight complex comprising the plasma membrane N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins syntaxin-1a and SNAP-25 with the vesicle SNARE protein synaptobrevin. The neuronal protein Munc18-1 forms a stable complex with syntaxin-1a. Biochemically, syntaxin-1a cannot escape the tight grip of Munc18-1, so formation of the SNARE complex is inhibited. However, Munc18-1 is essential for the release of neurotransmitters in vivo. It has therefore been assumed that Munc18-1 makes the bound syntaxin-1a available for SNARE complex formation. Exactly how this occurs is still unclear, but it is assumed that structural rearrangements occur. Here, we used a series of mutations to specifically weaken the complex at different positions in order to induce these rearrangements biochemically. Our approach was guided through sequence and structural analysis and supported by molecular dynamics simulations. Subsequently, we created a homology model showing the complex in an altered conformation. This conformation presumably represents a more open arrangement of syntaxin-1a that permits the formation of a SNARE complex to be initiated while still bound to Munc18-1. In the future, research should investigate how this central reaction for neuronal communication is controlled by other proteins.
Collapse
Affiliation(s)
- Ioanna Stefani
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | | | - Dirk Fasshauer
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
6
|
Cuche C, Mastrogiovanni M, Juzans M, Laude H, Ungeheuer MN, Krentzel D, Gariboldi MI, Scott-Algara D, Madec M, Goyard S, Floch C, Chauveau-Le Friec G, Lafaye P, Renaudat C, Le Bidan M, Micallef C, Schmutz S, Mella S, Novault S, Hasan M, Duffy D, Di Bartolo V, Alcover A. T cell migration and effector function differences in familial adenomatous polyposis patients with APC gene mutations. Front Immunol 2023; 14:1163466. [PMID: 37533857 PMCID: PMC10393261 DOI: 10.3389/fimmu.2023.1163466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 08/04/2023] Open
Abstract
Familial adenomatous polyposis (FAP) is an inherited disease characterized by the development of large number of colorectal adenomas with high risk of evolving into colorectal tumors. Mutations of the Adenomatous polyposis coli (APC) gene is often at the origin of this disease, as well as of a high percentage of spontaneous colorectal tumors. APC is therefore considered a tumor suppressor gene. While the role of APC in intestinal epithelium homeostasis is well characterized, its importance in immune responses remains ill defined. Our recent work indicates that the APC protein is involved in various phases of both CD4 and CD8 T cells responses. This prompted us to investigate an array of immune cell features in FAP subjects carrying APC mutations. A group of 12 FAP subjects and age and sex-matched healthy controls were studied. We characterized the immune cell repertoire in peripheral blood and the capacity of immune cells to respond ex vivo to different stimuli either in whole blood or in purified T cells. A variety of experimental approaches were used, including, pultiparamater flow cytometry, NanosString gene expression profiling, Multiplex and regular ELISA, confocal microscopy and computer-based image analyis methods. We found that the percentage of several T and natural killer (NK) cell populations, the expression of several genes induced upon innate or adaptive immune stimulation and the production of several cytokines and chemokines was different. Moreover, the capacity of T cells to migrate in response to chemokine was consistently altered. Finally, immunological synapses between FAP cytotoxic T cells and tumor target cells were more poorly structured. Our findings of this pilot study suggest that mild but multiple immune cell dysfunctions, together with intestinal epithelial dysplasia in FAP subjects, may facilitate the long-term polyposis and colorectal tumor development. Although at an initial discovery phase due to the limited sample size of this rare disease cohort, our findings open new perspectives to consider immune cell abnormalities into polyposis pathology.
Collapse
Affiliation(s)
- Céline Cuche
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
| | - Marta Mastrogiovanni
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Marie Juzans
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Hélène Laude
- Institut Pasteur, Université Paris Cité, ICAReB-Clin, Paris, France
| | | | - Daniel Krentzel
- Institut Pasteur, Université Paris Cité, CNRS-UMR3691, Unité Imagerie et Modélisation, Paris, France
| | - Maria Isabella Gariboldi
- Institut Pasteur, Université Paris Cité, CNRS-UMR3691, Unité Imagerie et Modélisation, Paris, France
| | - Daniel Scott-Algara
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
| | - Marianne Madec
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
| | - Sophie Goyard
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
- Institut Pasteur, Université Paris Cité, Plateforme d’Innovation et de Développement de Tests Diagnostiques, Paris, France
| | - Camille Floch
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
- Institut Pasteur, Université Paris Cité, Plateforme d’Innovation et de Développement de Tests Diagnostiques, Paris, France
| | - Gaëlle Chauveau-Le Friec
- Institut Pasteur, Université Paris Cité, CNRS-UMR3528, Plateforme d’Ingénierie des Anticorps, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS-UMR3528, Plateforme d’Ingénierie des Anticorps, Paris, France
| | | | | | | | - Sandrine Schmutz
- Institut Pasteur, Université Paris Cité, Unité de Technologie et Service Cytométrie et Biomarqueurs, Paris, France
| | - Sébastien Mella
- Institut Pasteur, Université Paris Cité, Unité de Technologie et Service Cytométrie et Biomarqueurs, Paris, France
- Institut Pasteur, Université Paris Cité, Hub Bioinformatique et Biostatistique, Paris, France
| | - Sophie Novault
- Institut Pasteur, Université Paris Cité, Unité de Technologie et Service Cytométrie et Biomarqueurs, Paris, France
| | - Milena Hasan
- Institut Pasteur, Université Paris Cité, Unité de Technologie et Service Cytométrie et Biomarqueurs, Paris, France
| | - Darragh Duffy
- Institut Pasteur, Université Paris Cité, Unité Immunologie Translationnelle, Paris, France
| | - Vincenzo Di Bartolo
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
| | - Andrés Alcover
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
| |
Collapse
|
7
|
Wang X, Gong J, Zhu L, Chen H, Jin Z, Mo X, Wang S, Yang X, Ma C. Identification of residues critical for the extension of Munc18-1 domain 3a. BMC Biol 2023; 21:158. [PMID: 37443000 PMCID: PMC10347870 DOI: 10.1186/s12915-023-01655-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Neurotransmitter release depends on the fusion of synaptic vesicles with the presynaptic membrane and is mainly mediated by SNARE complex assembly. During the transition of Munc18-1/Syntaxin-1 to the SNARE complex, the opening of the Syntaxin-1 linker region catalyzed by Munc13-1 leads to the extension of the domain 3a hinge loop, which enables domain 3a to bind SNARE motifs in Synaptobrevin-2 and Syntaxin-1 and template the SNARE complex assembly. However, the exact mechanism of domain 3a extension remains elusive. RESULTS Here, we characterized residues on the domain 3a hinge loop that are crucial for the extension of domain 3a by using biophysical and biochemical approaches and electrophysiological recordings. We showed that the mutation of residues T323/M324/R325 disrupted Munc13-1-mediated SNARE complex assembly and membrane fusion starting from Munc18-1/Syntaxin-1 in vitro and caused severe defects in the synaptic exocytosis of mouse cortex neurons in vivo. Moreover, the mutation had no effect on the binding of Synaptobrevin-2 to isolated Munc18-1 or the conformational change of the Syntaxin-1 linker region catalyzed by the Munc13-1 MUN domain. However, the extension of the domain 3a hinge loop in Munc18-1/Syntaxin-1 was completely disrupted by the mutation, leading to the failure of Synaptobrevin-2 binding to Munc18-1/Syntaxin-1. CONCLUSIONS Together with previous results, our data further support the model that the template function of Munc18-1 in SNARE complex assembly requires the extension of domain 3a, and particular residues in the domain 3a hinge loop are crucial for the autoinhibitory release of domain 3a after the MUN domain opens the Syntaxin-1 linker region.
Collapse
Affiliation(s)
- Xianping Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Jihong Gong
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huidan Chen
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Ziqi Jin
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Xiaoqiang Mo
- Youjiang Medical University for Nationalities, Baise, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Chang HF, Schirra C, Pattu V, Krause E, Becherer U. Lytic granule exocytosis at immune synapses: lessons from neuronal synapses. Front Immunol 2023; 14:1177670. [PMID: 37275872 PMCID: PMC10233144 DOI: 10.3389/fimmu.2023.1177670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Regulated exocytosis is a central mechanism of cellular communication. It is not only the basis for neurotransmission and hormone release, but also plays an important role in the immune system for the release of cytokines and cytotoxic molecules. In cytotoxic T lymphocytes (CTLs), the formation of the immunological synapse is required for the delivery of the cytotoxic substances such as granzymes and perforin, which are stored in lytic granules and released via exocytosis. The molecular mechanisms of their fusion with the plasma membrane are only partially understood. In this review, we discuss the molecular players involved in the regulated exocytosis of CTL, highlighting the parallels and differences to neuronal synaptic transmission. Additionally, we examine the strengths and weaknesses of both systems to study exocytosis.
Collapse
|
9
|
Li W, Xing Y, Wang Y, Xu T, Song E, Feng W. A non-canonical target-binding site in Munc18-1 domain 3b for assembling the Mint1-Munc18-1-syntaxin-1 complex. Structure 2023; 31:68-77.e5. [PMID: 36608665 DOI: 10.1016/j.str.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
As the prototype of Sec1/Munc18 (SM) family proteins, Munc18-1 can manipulate the distinct conformations of syntaxin-1 for controlling intracellular membrane fusion. The Munc18-1-interacting domain of Mint1 (Mint1-MID) binds to Munc18-1 together with syntaxin-1 to form a Mint1-Munc18-1-syntaxin-1 complex, but the mechanism underlying the complex assembly remains unclear. Here, we determine the structure of the Mint1-MID-Munc18-1-syntaxin-1 complex. Unexpectedly, Munc18-1 recognizes Mint1-MID and syntaxin-1 simultaneously via two opposite sites. The canonical central cavity between domains 1 and 3a of Munc18-1 embraces closed syntaxin-1, whereas the non-canonical basic pocket in domain 3b captures the acidic Mint1-MID helix. The domain 3b-mediated recognition of an acidic-helical motif is distinct from other target-recognition modes of Munc18-1. Mutations in the interface between domain 3b and Mint1-MID disrupt the assembly of the Mint1-Munc18-1-syntaxin-1 complex. This work reveals a non-canonical target-binding site in Munc18-1 domain 3b for assembling the Mint1-Munc18-1-syntaxin-1 complex.
Collapse
Affiliation(s)
- Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Ying Xing
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Huang H, Ouyang Q, Mei K, Liu T, Sun Q, Liu W, Liu R. Acetylation of SCFD1 regulates SNARE complex formation and autophagosome-lysosome fusion. Autophagy 2023; 19:189-203. [PMID: 35465820 PMCID: PMC9809933 DOI: 10.1080/15548627.2022.2064624] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
SCFD1 (sec1 family domain containing 1) was recently shown to function in autophagosome-lysosome fusion, and multiple studies have demonstrated the regulatory impacts of acetylation (a post-translational modification) on macroautophagy/autophagy. Here, we demonstrate that both acetylation- and phosphorylation-dependent mechanisms control SCFD1's function in autophagosome-lysosome fusion. After detecting a decrease in the extent of SCFD1 acetylation under autophagy-stimulated conditions, we found that KAT2B/PCAF catalyzes the acetylation of residues K126 and K515 of SCFD1; we also showed that these two residues are deacetylated by SIRT4. Importantly, we showed that AMPK-controlled SCFD1 phosphorylation strongly disrupts the capacity of SCFD1 to interact with KAT2B, thus ensuring that the SCFD1 acetylation level remains low. Finally, we demonstrated that SCFD1 acetylation inhibits autophagic flux, specifically by blocking STX17-SNAP29-VAMP8 SNARE complex formation. Thus, our study reveals a mechanism through which phosphorylation and acetylation modifications of SCFD1 mediate SNARE complex formation to regulate autophagosome maturation.ACLY: ATP citrate lyase; CREB: cAMP responsive element binding protein; EBSS: nutrient-deprivation medium; EP300: E1A binding protein p300; KAT5/TIP60: lysine acetyltransferase 5; HOPS: homotypic fusion and protein sorting; MS: mass spectroscopy; SCFD1: sec1 family domain containing 1; SM: Sec1/Munc18; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Hong Huang
- College of Food Science and Technology, School of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qinqin Ouyang
- College of Food Science and Technology, School of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjing, Tianjing, China
| | - Ting Liu
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Liu
- Department of Biochemistry, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang University School of Medicine, Joint Institute of Genetics and Genomics Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China
| | - Rong Liu
- College of Food Science and Technology, School of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China,Zhejiang University School of Medicine, Lead Contact, Nanjing, China,CONTACT Rong Liu College of Food Science and Technology, School of Life Sciences, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
12
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
13
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
14
|
Puntman DC, Arora S, Farina M, Toonen RF, Verhage M. Munc18-1 Is Essential for Neuropeptide Secretion in Neurons. J Neurosci 2021; 41:5980-5993. [PMID: 34103363 PMCID: PMC8276746 DOI: 10.1523/jneurosci.3150-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide secretion from dense-core vesicles (DCVs) controls many brain functions. Several components of the DCV exocytosis machinery have recently been identified, but the participation of a SEC1/MUNC18 (SM) protein has remained elusive. Here, we tested the ability of the three exocytic SM proteins expressed in the mammalian brain, MUNC18-1/2/3, to support neuropeptide secretion. We quantified DCV exocytosis at a single vesicle resolution on action potential (AP) train-stimulation in mouse CNS neurons (of unknown sex) using pHluorin-tagged and/or mCherry-tagged neuropeptide Y (NPY) or brain-derived neurotrophic factor (BDNF). Conditional inactivation of Munc18-1 abolished all DCV exocytosis. Expression of MUNC18-1, but not MUNC18-2 or MUNC18-3, supported DCV exocytosis in Munc18-1 null neurons. Heterozygous (HZ) inactivation of Munc18-1, as a model for reduced MUNC18-1 expression, impaired DCV exocytosis, especially during the initial phase of train-stimulation, when the release was maximal. These data show that neurons critically and selectively depend on MUNC18-1 for neuropeptide secretion. Impaired neuropeptide secretion may explain aspects of the behavioral and neurodevelopmental phenotypes that were observed in Munc18-1 HZ mice.SIGNIFICANCE STATEMENT Neuropeptide secretion from dense-core vesicles (DCVs) modulates synaptic transmission, sleep, appetite, cognition and mood. However, the mechanisms of DCV exocytosis are poorly characterized. Here, we identify MUNC18-1 as an essential component for neuropeptide secretion from DCVs. Paralogs MUNC18-2 or MUNC18-3 cannot compensate for MUNC18-1. MUNC18-1 is the first protein identified to be essential for both neuropeptide secretion and synaptic transmission. In heterozygous (HZ) Munc18-1 neurons, that have a 50% reduced MUNC18-1expression and model the human STXBP1 syndrome, DCV exocytosis is impaired, especially during the initial phase of train-stimulation, when the release is maximal. These data show that MUNC18-1 is essential for neuropeptide secretion and that impaired neuropeptide secretion on reduced MUNC18-1expression may contribute to the symptoms of STXBP1 syndrome.
Collapse
Affiliation(s)
- Daniël C Puntman
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
| | - Swati Arora
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Margherita Farina
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Matthijs Verhage
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| |
Collapse
|
15
|
Abstract
SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE-SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
16
|
Benavides N, Spessott WA, Sanmillan ML, Vargas M, Livingston MS, Erickson N, Pozos TC, McCormick ME, Scharrig E, Messinger YH, Giraudo CG. STXBP2-R190C Variant in a Patient With Neonatal Hemophagocytic Lymphohistiocytosis (HLH) and G6PD Deficiency Reveals a Critical Role of STXBP2 Domain 2 on Granule Exocytosis. Front Immunol 2020; 11:545414. [PMID: 33162974 PMCID: PMC7580532 DOI: 10.3389/fimmu.2020.545414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
Neonatal hemophagocytic lymphohistiocytosis (HLH) is a medical emergency that can be associated with significant morbidity and mortality. Often these patients present with familial HLH (f-HLH), which is caused by gene mutations interfering with the cytolytic pathway of cytotoxic T-lymphocytes (CTLs) and natural killer cells. Here we describe a male newborn who met the HLH diagnostic criteria, presented with profound cholestasis, and carried a maternally inherited heterozygous mutation in syntaxin-binding protein-2 [STXBP2, c.568C>T (p.Arg190Cys)] in addition to a severe pathogenic variant in glucose 6-phosphate dehydrogenase [G6PD, hemizygous c.1153T>C (Cys385Arg)]. Although mutations in STXBP2 gene are associated with f-HLH type 5, the clinical and biological relevance of the p.Arg190Cys mutation identified in this patient was uncertain. To assess its role in disease pathogenesis, we performed functional assays and biochemical and microscopic studies. We found that p.Arg190Cys mutation did not alter the expression or subcellular localization of STXBP2 or STX11, neither impaired the STXBP2/STX11 interaction. In contrast, forced expression of the mutated protein into normal CTLs strongly inhibited degranulation and reduced the cytolytic activity outcompeting the effect of endogenous wild-type STXBP2. Interestingly, arginine 190 is located in a structurally conserved region of STXBP2 where other f-HLH-5 mutations have been identified. Collectively, data strongly suggest that STXBP2-R190C is a deleterious variant that may act in a dominant-negative manner by probably stabilizing non-productive interactions between STXBP2/STX11 complex and other still unknown factors such as the membrane surface or Munc13-4 protein and thus impairing the release of cytolytic granules. In addition to the contribution of STXBP2-R190C to f-HLH, the accompanied G6PD mutation may have compounded the clinical symptoms; however, the extent by which G6PD deficiency has contributed to HLH in our patient remains unclear.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Amino Acid Substitution
- Apoptosis/genetics
- Apoptosis/immunology
- Biomarkers
- Cytotoxicity, Immunologic
- Disease Susceptibility
- Exocytosis/genetics
- Gene Expression
- Genetic Association Studies
- Glucosephosphate Dehydrogenase Deficiency/complications
- Glucosephosphate Dehydrogenase Deficiency/diagnosis
- Glucosephosphate Dehydrogenase Deficiency/genetics
- Humans
- Infant, Newborn
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphohistiocytosis, Hemophagocytic/complications
- Lymphohistiocytosis, Hemophagocytic/diagnosis
- Lymphohistiocytosis, Hemophagocytic/genetics
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Models, Molecular
- Munc18 Proteins/chemistry
- Munc18 Proteins/genetics
- Munc18 Proteins/metabolism
- Mutation
- Protein Conformation
- Qa-SNARE Proteins/genetics
- Qa-SNARE Proteins/metabolism
- Structure-Activity Relationship
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Nathalia Benavides
- Department of Microbiology and Immunology- Sydney Kimmel Medical College- Thomas Jefferson University, Philadelphia, PA, United States
| | - Waldo A. Spessott
- Department of Microbiology and Immunology- Sydney Kimmel Medical College- Thomas Jefferson University, Philadelphia, PA, United States
| | - Maria L. Sanmillan
- Department of Microbiology and Immunology- Sydney Kimmel Medical College- Thomas Jefferson University, Philadelphia, PA, United States
| | - Marcelo Vargas
- Department of Medical Genetics and Genomics, Children's Minnesota, Minneapolis, MN, United States
| | - Mylynda S. Livingston
- Department of Pediatric Hematology–Oncology, Children's Minnesota, Minneapolis, MN, United States
| | - Nissa Erickson
- Minnesota Gastroenterology, P.A., Minneapolis, MN, United States
| | - Tamara C. Pozos
- Department of Immunology, Children's Minnesota, Minneapolis, MN, United States
| | - Margaret E. McCormick
- Department of Microbiology and Immunology- Sydney Kimmel Medical College- Thomas Jefferson University, Philadelphia, PA, United States
| | - Emilia Scharrig
- Department of Microbiology and Immunology- Sydney Kimmel Medical College- Thomas Jefferson University, Philadelphia, PA, United States
| | - Yoav H. Messinger
- Department of Pediatric Hematology–Oncology, Children's Minnesota, Minneapolis, MN, United States
| | - Claudio G. Giraudo
- Department of Microbiology and Immunology- Sydney Kimmel Medical College- Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Eisemann TJ, Allen F, Lau K, Shimamura GR, Jeffrey PD, Hughson FM. The Sec1/Munc18 protein Vps45 holds the Qa-SNARE Tlg2 in an open conformation. eLife 2020; 9:e60724. [PMID: 32804076 PMCID: PMC7470827 DOI: 10.7554/elife.60724] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/15/2020] [Indexed: 01/17/2023] Open
Abstract
Fusion of intracellular trafficking vesicles is mediated by the assembly of SNARE proteins into membrane-bridging complexes. SNARE-mediated membrane fusion requires Sec1/Munc18-family (SM) proteins, SNARE chaperones that can function as templates to catalyze SNARE complex assembly. Paradoxically, the SM protein Munc18-1 traps the Qa-SNARE protein syntaxin-1 in an autoinhibited closed conformation. Here we present the structure of a second SM-Qa-SNARE complex, Vps45-Tlg2. Strikingly, Vps45 holds Tlg2 in an open conformation, with its SNARE motif disengaged from its Habc domain and its linker region unfolded. The domain 3a helical hairpin of Vps45 is unfurled, exposing the presumptive R-SNARE binding site to allow template complex formation. Although Tlg2 has a pronounced tendency to form homo-tetramers, Vps45 can rescue Tlg2 tetramers into stoichiometric Vps45-Tlg2 complexes. Our findings demonstrate that SM proteins can engage Qa-SNAREs using at least two different modes, one in which the SNARE is closed and one in which it is open.
Collapse
Affiliation(s)
- Travis J Eisemann
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Frederick Allen
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Kelly Lau
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | | | - Philip D Jeffrey
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | | |
Collapse
|
18
|
Gerien KS, Zhang S, Russell AC, Zhu YH, Purde V, Wu JQ. Roles of Mso1 and the SM protein Sec1 in efficient vesicle fusion during fission yeast cytokinesis. Mol Biol Cell 2020; 31:1570-1583. [PMID: 32432970 PMCID: PMC7521796 DOI: 10.1091/mbc.e20-01-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane trafficking during cytokinesis is essential for the delivery of membrane lipids and cargoes to the division site. However, the molecular mechanisms are still incompletely understood. In this study, we demonstrate the importance of uncharacterized fission yeast proteins Mso1 and Sec1 in membrane trafficking during cytokinesis. Fission yeast Mso1 shares homology with budding yeast Mso1 and human Mint1, proteins that interact with Sec1/Munc18 family proteins during vesicle fusion. Sec1/Munc18 proteins and their interactors are important regulators of SNARE complex formation during vesicle fusion. The roles of these proteins in vesicle trafficking during cytokinesis have been barely studied. Here, we show that fission yeast Mso1 is also a Sec1-binding protein and Mso1 and Sec1 localize to the division site interdependently during cytokinesis. The loss of Sec1 localization in mso1Δ cells results in a decrease in vesicle fusion and cytokinesis defects such as slow ring constriction, defective ring disassembly, and delayed plasma membrane closure. We also find that Mso1 and Sec1 may have functions independent of the exocyst tethering complex on the plasma membrane at the division site. Together, Mso1 and Sec1 play essential roles in regulating vesicle fusion and cargo delivery at the division site during cytokinesis.
Collapse
Affiliation(s)
- Kenneth S Gerien
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Sha Zhang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Alexandra C Russell
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Vedud Purde
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
19
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Lam MT, Mace EM, Orange JS. A research-driven approach to the identification of novel natural killer cell deficiencies affecting cytotoxic function. Blood 2020; 135:629-637. [PMID: 31945148 PMCID: PMC7046607 DOI: 10.1182/blood.2019000925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Natural killer cell deficiencies (NKDs) are an emerging phenotypic subtype of primary immune deficiency. NK cells provide a defense against virally infected cells using a variety of cytotoxic mechanisms, and patients who have defective NK cell development or function can present with atypical, recurrent, or severe herpesviral infections. The current pipeline for investigating NKDs involves the acquisition and clinical assessment of patients with a suspected NKD followed by subsequent in silico, in vitro, and in vivo laboratory research. Evaluation involves initially quantifying NK cells and measuring NK cell cytotoxicity and expression of certain NK cell receptors involved in NK cell development and function. Subsequent studies using genomic methods to identify the potential causative variant are conducted along with variant impact testing to make genotype-phenotype connections. Identification of novel genes contributing to the NKD phenotype can also be facilitated by applying the expanding knowledge of NK cell biology. In this review, we discuss how NKDs that affect NK cell cytotoxicity can be approached in the clinic and laboratory for the discovery of novel gene variants.
Collapse
Affiliation(s)
- Michael T Lam
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
- Medical Scientist Training Program, and
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
| | - Emily M Mace
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
| |
Collapse
|
21
|
Phatarpekar PV, Billadeau DD. Molecular regulation of the plasma membrane-proximal cellular steps involved in NK cell cytolytic function. J Cell Sci 2020; 133:133/5/jcs240424. [PMID: 32086255 DOI: 10.1242/jcs.240424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells, cytolytic lymphocytes of the innate immune system, play a crucial role in the immune response against infection and cancer. NK cells kill target cells through exocytosis of lytic granules that contain cytotoxic proteins, such as perforin and granzymes. Formation of a functional immune synapse, i.e. the interface between the NK cell and its target cell enhances lysis through accumulation of polymerized F-actin at the NK cell synapse, leading to convergence of lytic granules to the microtubule organizing center (MTOC) and its subsequent polarization along microtubules to deliver the lytic granules to the synapse. In this review, we focus on the molecular mechanisms regulating the cellular processes that occur after the lytic granules are delivered to the cytotoxic synapse. We outline how - once near the synapse - the granules traverse the clearings created by F-actin remodeling to dock, tether and fuse with the plasma membrane in order to secrete their lytic content into the synaptic cleft through exocytosis. Further emphasis is given to the role of Ca2+ mobilization during degranulation and, whenever applicable, we compare these mechanisms in NK cells and cytotoxic T lymphocytes (CTLs) as adaptive immune system effectors.
Collapse
Affiliation(s)
- Prasad V Phatarpekar
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Pournami F, Upadhyay S, Nandakumar A, Prabhakar J, Jain N. Familial Hemophagocytic Lymphohistiocytosis: A Rare Mutation of STXBP2 in Exon 19. J Pediatr Genet 2020; 9:66-68. [PMID: 31976148 DOI: 10.1055/s-0039-1694778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Familial hemophagocytic lymphohistiocytosis (FHLH) is a fulminant rapidly progressive disorder characterized by uncontrolled immune system activation. Over the last decade, STXBP2 mutations have been reported as causative. We report a baby with typical clinical features and supportive laboratory findings, who had a homozygous missense variation in exon 19 of STXBP2 that results in an amino acid substitution of aspartic acid for glycine. Adding to the currently scant literature on this variation may contribute to the database pool and help to confirm assertion of pathogenicity in FHLH.
Collapse
Affiliation(s)
- Femitha Pournami
- Department of Neonatology, Kerala Institute of Medical Sciences, Trivandrum, Kerala, India
| | - Swati Upadhyay
- Department of Neonatology, Kerala Institute of Medical Sciences, Trivandrum, Kerala, India
| | - Anand Nandakumar
- Department of Neonatology, Kerala Institute of Medical Sciences, Trivandrum, Kerala, India
| | - Jyothi Prabhakar
- Department of Neonatology, Kerala Institute of Medical Sciences, Trivandrum, Kerala, India
| | - Naveen Jain
- Department of Neonatology, Kerala Institute of Medical Sciences, Trivandrum, Kerala, India
| |
Collapse
|
23
|
Viñas-Giménez L, Donadeu L, Alsina L, Rincón R, de la Campa EÁ, Esteve-Sole A, Català A, Colobran R, de la Cruz X, Sayós J, Martínez-Gallo M. Molecular analysis of the novel L243R mutation in STXBP2 reveals impairment of degranulation activity. Int J Hematol 2019; 111:440-450. [PMID: 31865540 DOI: 10.1007/s12185-019-02796-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/26/2022]
Abstract
The presence of mutations in PRF1, UNC13D, STX11 and STXBP2 genes in homozygosis or compound heterozygosis results in immune deregulation. Most such cases lead to clinical manifestations of haemophagocytic lymphohistiocytosis (HLH). In the present study, we analyzed degranulation and cytotoxicity in a pediatric patient with a late presentation of HLH associated with Epstein-Barr virus infection. Remarkably, the results of the degranulation assay showed reduction of CD107a median fluorescence intensity (MFI) and absent cytotoxicity. Genetic analysis identified compound heterozygous mutations in STXBP2 gene: a previously reported splicing defect in exon 15 (c.1247-1G>C, p.V417LfsX126) and a novel missense mutation in exon 9 (c.728T>G, p.L243R). Transfection experiments of STXBP2-L243R or STXBP2-WT constructs showed an undetectable protein expression of the STXBP2-L243R mutation. The residue L243 is highly preserved evolutionarily; moreover, computational analysis of its structure revealed its participation in the rich network of interactions that stabilizes domains 2 and 3 of the protein. Altogether, we demonstrated by molecular and in silico analysis that the new L243R mutation in STXBP2 plays a pathogenic role that, together with the p.Val417Leufsc mutation, shows the synergistic negative effect of these two mutations on STXBP2 function, leading to a decrease of degranulatory activity in vivo.
Collapse
Affiliation(s)
- Laura Viñas-Giménez
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
| | - Laura Donadeu
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Laia Alsina
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - Rafael Rincón
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Elena Álvarez de la Campa
- Research Unit in Translational Bioinformatics in Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Esteve-Sole
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - Albert Català
- Hematology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
- Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Genetics Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Catalonia, Spain
| | - Xavier de la Cruz
- Research Unit in Translational Bioinformatics in Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut Catala per la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Joan Sayós
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain.
- Institut de Recerca Vall hebron (VHIR), Immune Regulation and Immunotherapy Group, Edifici Mediterrania, Lab 09, Planta baixa, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain.
- Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain.
| |
Collapse
|
24
|
Randzavola LO, Strege K, Juzans M, Asano Y, Stinchcombe JC, Gawden-Bone CM, Seaman MN, Kuijpers TW, Griffiths GM. Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity. J Clin Invest 2019. [PMID: 31710310 DOI: 10.1172/jci129388)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
CD8 cytotoxic T lymphocytes (CTLs) rely on rapid reorganization of the branched F-actin network to drive the polarized secretion of lytic granules, initiating target cell death during the adaptive immune response. Branched F-actin is generated by the nucleation factor actin-related protein 2/3 (Arp2/3) complex. Patients with mutations in the actin-related protein complex 1B (ARPC1B) subunit of Arp2/3 show combined immunodeficiency, with symptoms of immune dysregulation, including recurrent viral infections and reduced CD8+ T cell count. Here, we show that loss of ARPC1B led to loss of CTL cytotoxicity, with the defect arising at 2 different levels. First, ARPC1B is required for lamellipodia formation, cell migration, and actin reorganization across the immune synapse. Second, we found that ARPC1B is indispensable for the maintenance of TCR, CD8, and GLUT1 membrane proteins at the plasma membrane of CTLs, as recycling via the retromer and WASH complexes was impaired in the absence of ARPC1B. Loss of TCR, CD8, and GLUT1 gave rise to defects in T cell signaling and proliferation upon antigen stimulation of ARPC1B-deficient CTLs, leading to a progressive loss of CD8+ T cells. This triggered an activation-induced immunodeficiency of CTL activity in ARPC1B-deficient patients, which could explain the susceptibility to severe and prolonged viral infections.
Collapse
Affiliation(s)
- Lyra O Randzavola
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Katharina Strege
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Marie Juzans
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Yukako Asano
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Christian M Gawden-Bone
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Nj Seaman
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Medical Center Amsterdam University, Amsterdam, Netherlands
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Randzavola LO, Strege K, Juzans M, Asano Y, Stinchcombe JC, Gawden-Bone CM, Seaman MN, Kuijpers TW, Griffiths GM. Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity. J Clin Invest 2019; 129:5600-5614. [PMID: 31710310 PMCID: PMC6877333 DOI: 10.1172/jci129388] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
CD8 cytotoxic T lymphocytes (CTLs) rely on rapid reorganization of the branched F-actin network to drive the polarized secretion of lytic granules, initiating target cell death during the adaptive immune response. Branched F-actin is generated by the nucleation factor actin-related protein 2/3 (Arp2/3) complex. Patients with mutations in the actin-related protein complex 1B (ARPC1B) subunit of Arp2/3 show combined immunodeficiency, with symptoms of immune dysregulation, including recurrent viral infections and reduced CD8+ T cell count. Here, we show that loss of ARPC1B led to loss of CTL cytotoxicity, with the defect arising at 2 different levels. First, ARPC1B is required for lamellipodia formation, cell migration, and actin reorganization across the immune synapse. Second, we found that ARPC1B is indispensable for the maintenance of TCR, CD8, and GLUT1 membrane proteins at the plasma membrane of CTLs, as recycling via the retromer and WASH complexes was impaired in the absence of ARPC1B. Loss of TCR, CD8, and GLUT1 gave rise to defects in T cell signaling and proliferation upon antigen stimulation of ARPC1B-deficient CTLs, leading to a progressive loss of CD8+ T cells. This triggered an activation-induced immunodeficiency of CTL activity in ARPC1B-deficient patients, which could explain the susceptibility to severe and prolonged viral infections.
Collapse
Affiliation(s)
- Lyra O. Randzavola
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Katharina Strege
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Marie Juzans
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Yukako Asano
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jane C. Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Matthew N.J. Seaman
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Taco W. Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Medical Center Amsterdam University, Amsterdam, Netherlands
| | - Gillian M. Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Guo X, Jiang M, Tang X, Li Q. Familial hemophagocytic lymphohistiocytosis in a girl with a novel homozygous mutation of STX11: A case report. Medicine (Baltimore) 2019; 98:e18107. [PMID: 31770233 PMCID: PMC6890335 DOI: 10.1097/md.0000000000018107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Familial hemophagocytic lymphohistiocytosis (FHL) is a rare fatal autosomal recessively inherited disease and can be divided into five types. The mortality of untreated patients is up to 95% and it can be healed only after immunochemotherapy for disease control and hematopoietic stem cell transplantation. Clinical data of a girl with late-onset and recurrent hemophagocytic lymphohistiocytosis (HLH) was retrospectively analyzed to determine the etiology and potential pathogenic gene. PATIENT CONCERNS AND CLINICAL FINDINGS The proband was a female child patient from a consanguineous marriage family who was 11 years old, and clinically manifested delayed (onset at the age of 4 years and 6 months) and recrudescent HLH. Both of her elder brothers died at the ages of 4 and 5 years, respectively. The patient had a degranulation function defect of CD107a in natural killer (NK) cells, and the degranulation function of cytotoxic T lymphocytes (CTL) obviously declined (ΔMFI: 1.4%, normal ≧2.8%); the degranulation function of NK cells and CTL of her father was also obviously reduced. To identify possible underlying genetic causes, gene mutation analysis was undertaken. A novel homozygous nonsense mutation in STX11 (c.49C>T, p.Q17X) was documented, arising from both her parents. DIAGNOSIS According to the clinical manifestations and detection results of STX11, the diagnosis of FHL-type 4 was confirmed and her parents were heterozygotic carriers. INTERVENTIONS AND OUTCOMES Good responses to HLH-2004 chemotherapy had been achieved for each onset, and the maximum remission duration (without taking any drug) was 23 months. The patient has been alive for 82 months since the onset, and has stopped taking dexamethasone and etoposide, but is still on oral cyclosporine to maintain the treatment. She has performed HLA matching and now is actively looking for a donor to prepare hematopoietic stem cell transplantation. CONCLUSIONS Relevant gene detections should be implemented at the earliest for young patients from consanguineous marriages and with a family history of HLH so as to provide a basis for etiological diagnosis and radical treatment by hematopoietic stem cell transplantation and provide accurate genetic counseling for family members.
Collapse
|
27
|
Molecular Docking and Dynamics Simulation Studies Predict Munc18b as a Target of Mycolactone: A Plausible Mechanism for Granule Exocytosis Impairment in Buruli Ulcer Pathogenesis. Toxins (Basel) 2019; 11:toxins11030181. [PMID: 30934618 PMCID: PMC6468854 DOI: 10.3390/toxins11030181] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022] Open
Abstract
Ulcers due to infections with Mycobacterium ulcerans are characterized by complete lack of wound healing processes, painless, an underlying bed of host dead cells and undermined edges due to necrosis. Mycolactone, a macrolide produced by the mycobacterium, is believed to be the toxin responsible. Of interest and relevance is the knowledge that Buruli ulcer (BU) patients remember experiencing trauma previously at the site of the ulcers, suggesting an impairment of wound healing processes, the plausible effect due to the toxin. Wound healing processes involve activation of the blood platelets to release the contents of the dense granules mainly serotonin, calcium ions, and ADP/ATP by exocytosis into the bloodstream. The serotonin release results in attracting more platelets and mast cells to the wound site, with the mast cells also undergoing degranulation, releasing compounds into the bloodstream by exocytosis. Recent work has identified interference in the co-translational translocation of many secreted proteins via the endoplasmic reticulum and cell death involving Wiskott-Aldrich syndrome protein (WASP), Sec61, and angiotensin II receptors (AT2R). We hypothesized that mycolactone by being lipophilic, passively crosses cell membranes and binds to key proteins that are involved in exocytosis by platelets and mast cells, thus inhibiting the initiation of wound healing processes. Based on this, molecular docking studies were performed with mycolactone against key soluble n-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and regulators, namely Vesicle-associated membrane protein (VAMP8), Synaptosomal-associated protein (SNAP23, syntaxin 11, Munc13-4 (its isoform Munc13-1 was used), and Munc18b; and also against known mycolactone targets (Sec61, AT2R, and WASP). Munc18b was shown to be a plausible mycolactone target after the molecular docking studies with binding affinity of -8.5 kcal/mol. Structural studies and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding energy calculations of the mycolactone and Munc18b complex was done with 100 ns molecular dynamics simulations using GROMACS. Mycolactone binds strongly to Munc18b with an average binding energy of -247.571 ± 37.471 kJ/mol, and its presence elicits changes in the structural conformation of the protein. Analysis of the binding interactions also shows that mycolactone interacts with Arg405, which is an important residue of Munc18b, whose mutation could result in impaired granule exocytosis. These findings consolidate the possibility that Munc18b could be a target of mycolactone. The implication of the interaction can be experimentally evaluated to further understand its role in granule exocytosis impairment in Buruli ulcer.
Collapse
|
28
|
Sanchez E, Gonzalez EA, Moreno DS, Cardenas RA, Ramos MA, Davalos AJ, Manllo J, Rodarte AI, Petrova Y, Moreira DC, Chavez MA, Tortoriello A, Lara A, Gutierrez BA, Burns AR, Heidelberger R, Adachi R. Syntaxin 3, but not syntaxin 4, is required for mast cell-regulated exocytosis, where it plays a primary role mediating compound exocytosis. J Biol Chem 2019; 294:3012-3023. [PMID: 30563839 PMCID: PMC6398129 DOI: 10.1074/jbc.ra118.005532] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/30/2018] [Indexed: 11/06/2022] Open
Abstract
Mast cells (MCs) participate in allergy, inflammation, and defense against pathogens. They release multiple immune mediators via exocytosis, a process that requires SNARE proteins, including syntaxins (Stxs). The identity of the Stxs involved in MC exocytosis remains controversial. Here, we studied the roles of Stx3 and -4 in fully developed MCs from conditional knockout mice by electrophysiology and EM, and found that Stx3, and not Stx4, is crucial for MC exocytosis. The main defect seen in Stx3-deficient MCs was their inability to engage multigranular compound exocytosis, while leaving most single-vesicle fusion events intact. We used this defect to show that this form of exocytosis is not only required to accelerate MC degranulation but also essential to achieve full degranulation. The exocytic defect was severe but not absolute, indicating that an Stx other than Stx3 and -4 is also required for exocytosis in MCs. The removal of Stx3 affected only regulated exocytosis, leaving other MC effector responses intact, including the secretion of cytokines via constitutive exocytosis. Our in vivo model of passive systemic anaphylaxis showed that the residual exocytic function of Stx3-deficient MCs was sufficient to drive a full anaphylactic response in mice.
Collapse
Affiliation(s)
- Elizabeth Sanchez
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Erika A Gonzalez
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - David S Moreno
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Rodolfo A Cardenas
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Marco A Ramos
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Alfredo J Davalos
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - John Manllo
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Alejandro I Rodarte
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Youlia Petrova
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Daniel C Moreira
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Miguel A Chavez
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Alejandro Tortoriello
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Adolfo Lara
- the Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas 77030, and
| | - Berenice A Gutierrez
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Alan R Burns
- the College of Optometry, University of Houston, Houston, Texas 77204
| | - Ruth Heidelberger
- the Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas 77030, and
| | - Roberto Adachi
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030,
| |
Collapse
|
29
|
Lopez JA, Noori T, Minson A, Li Jovanoska L, Thia K, Hildebrand MS, Akhlaghi H, Darcy PK, Kershaw MH, Brown NJ, Grigg A, Trapani JA, Voskoboinik I. Bi-Allelic Mutations in STXBP2 Reveal a Complementary Role for STXBP1 in Cytotoxic Lymphocyte Killing. Front Immunol 2018; 9:529. [PMID: 29599780 PMCID: PMC5862791 DOI: 10.3389/fimmu.2018.00529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
The ability of cytotoxic lymphocytes (CL) to eliminate virus-infected or cancerous target cells through the granule exocytosis death pathway is critical to immune homeostasis. Congenital loss of CL function due to bi-allelic mutations in PRF1, UNC13D, STX11, or STXBP2 leads to a potentially fatal immune dysregulation, familial haemophagocytic lymphohistiocytosis (FHL). This occurs due to the failure of CLs to release functional pore-forming protein perforin and, therefore, inability to kill the target cell. Bi-allelic mutations in partner proteins STXBP2 or STX11 impair CL cytotoxicity due to failed docking/fusion of cytotoxic secretory granules with the plasma membrane. One unique feature of STXBP2- and STX11-deficient patient CLs is that their short-term in vitro treatment with a low concentration of IL-2 partially or completely restores natural killer (NK) cell degranulation and cytotoxicity, suggesting the existence of a secondary, yet unknown, pathway for secretory granule exocytosis. In the current report, we studied NK and T-cell function in an individual with late presentation of FHL due to hypomorphic bi-allelic mutations in STXBP2. Intriguingly, in addition to the expected alterations in the STXBP2 and STX11 proteins, we also observed a concomitant significant reduction in the expression of homologous STXBP1 protein and its partner STX1, which had never been implicated in CL function. Further analysis of human NK and T cells demonstrated a functional role for the STXBP1/STX1 axis in NK and CD8+ T-cell cytotoxicity, where it appears to be responsible for as much as 50% of their cytotoxic activity. This discovery suggests a unique and previously unappreciated interplay between STXBP/Munc proteins regulating the same essential granule exocytosis pathway.
Collapse
Affiliation(s)
- Jamie A Lopez
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Tahereh Noori
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Adrian Minson
- Department of Clinical Haematology, Austin Health, Heidelberg, VIC, Australia
| | - Lu Li Jovanoska
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kevin Thia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Hedieh Akhlaghi
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Natasha J Brown
- Department of Clinical Genetics, Austin Health, Heidelberg, VIC, Australia
| | - Andrew Grigg
- Department of Clinical Haematology, Austin Health, Heidelberg, VIC, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Kabanova A, Zurli V, Baldari CT. Signals Controlling Lytic Granule Polarization at the Cytotoxic Immune Synapse. Front Immunol 2018. [PMID: 29515593 PMCID: PMC5826174 DOI: 10.3389/fimmu.2018.00307] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cytotoxic immunity relies on specialized effector T cells, the cytotoxic T cells, which are endowed with specialized cytolytic machinery that permits them to induce death of their targets. Upon recognition of a target cell, cytotoxic T cells form a lytic immune synapse and by docking the microtubule-organizing center at the synaptic membrane get prepared to deliver a lethal hit of enzymes contained in lytic granules. New insights suggest that the directionality of lytic granule trafficking along the microtubules represents a fine means to tune the functional outcome of the encounter between a T cell and its target. Thus, mechanisms regulating the directionality of granule transport may have a major impact in settings characterized by evasion from the cytotoxic response, such as chronic infection and cancer. Here, we review our current knowledge on the signaling pathways implicated in the polarized trafficking at the immune synapse of cytotoxic T cells, complementing it with information on the regulation of this process in natural killer cells. Furthermore, we highlight some of the parameters which we consider critical in studying the polarized trafficking of lytic granules, including the use of freshly isolated cytotoxic T cells, and discuss some of the major open questions.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Vanessa Zurli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
31
|
Dhekne HS, Pylypenko O, Overeem AW, Zibouche M, Ferreira RJ, van der Velde KJ, Rings EHHM, Posovszky C, van der Sluijs P, Swertz MA, Houdusse A, van IJzendoorn SCD. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Hum Mutat 2018; 39:333-344. [PMID: 29266534 PMCID: PMC5838515 DOI: 10.1002/humu.23386] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open‐access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non‐MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno‐/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID‐associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.
Collapse
Affiliation(s)
- Herschel S Dhekne
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olena Pylypenko
- Structural Motility, Institute Curie, Centre de Reserche, Paris, France
| | - Arend W Overeem
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Malik Zibouche
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rosaria J Ferreira
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - K Joeri van der Velde
- Genomics Coordination Center, Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Edmond H H M Rings
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peter van der Sluijs
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Morris A Swertz
- Genomics Coordination Center, Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Anne Houdusse
- Structural Motility, Institute Curie, Centre de Reserche, Paris, France
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Morey C, Kienle CN, Klöpper TH, Burkhardt P, Fasshauer D. Evidence for a conserved inhibitory binding mode between the membrane fusion assembly factors Munc18 and syntaxin in animals. J Biol Chem 2017; 292:20449-20460. [PMID: 29046354 DOI: 10.1074/jbc.m117.811182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
The membrane fusion necessary for vesicle trafficking is driven by the assembly of heterologous SNARE proteins orchestrated by the binding of Sec1/Munc18 (SM) proteins to specific syntaxin SNARE proteins. However, the precise mode of interaction between SM proteins and SNAREs is debated, as contrasting binding modes have been found for different members of the SM protein family, including the three vertebrate Munc18 isoforms. While different binding modes could be necessary, given their roles in different secretory processes in different tissues, the structural similarity of the three isoforms makes this divergence perplexing. Although the neuronal isoform Munc18a is well-established to bind tightly to both the closed conformation and the N-peptide of syntaxin 1a, thereby inhibiting SNARE complex formation, Munc18b and -c, which have a more widespread distribution, are reported to mainly interact with the N-peptide of their partnering syntaxins and are thought to instead promote SNARE complex formation. We have reinvestigated the interaction between Munc18c and syntaxin 4 (Syx4). Using isothermal titration calorimetry, we found that Munc18c, like Munc18a, binds to both the closed conformation and the N-peptide of Syx4. Furthermore, using a novel kinetic approach, we found that Munc18c, like Munc18a, slows down SNARE complex formation through high-affinity binding to syntaxin. This strongly suggests that secretory Munc18s in general control the accessibility of the bound syntaxin, probably preparing it for SNARE complex assembly.
Collapse
Affiliation(s)
- Czuee Morey
- From the Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - C Nickias Kienle
- From the Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Tobias H Klöpper
- Whitehat Life Sciences Ltd., 20 Wenlock Road, N1 7GU London, United Kingdom, and
| | - Pawel Burkhardt
- the Marine Biological Association, Citadel Hill Marine Laboratory, Plymouth PL1 2PB, United Kingdom
| | - Dirk Fasshauer
- From the Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland,
| |
Collapse
|
33
|
Dieckmann NMG, Frazer GL, Asano Y, Stinchcombe JC, Griffiths GM. The cytotoxic T lymphocyte immune synapse at a glance. J Cell Sci 2017; 129:2881-6. [PMID: 27505426 DOI: 10.1242/jcs.186205] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers.
Collapse
Affiliation(s)
- Nele M G Dieckmann
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge CB2 0XY, UK
| | - Gordon L Frazer
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge CB2 0XY, UK
| | - Yukako Asano
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge CB2 0XY, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge CB2 0XY, UK
| |
Collapse
|
34
|
Vogel GF, van Rijn JM, Krainer IM, Janecke AR, Posovszky C, Cohen M, Searle C, Jantchou P, Escher JC, Patey N, Cutz E, Müller T, Middendorp S, Hess MW, Huber LA. Disrupted apical exocytosis of cargo vesicles causes enteropathy in FHL5 patients with Munc18-2 mutations. JCI Insight 2017; 2:94564. [PMID: 28724787 DOI: 10.1172/jci.insight.94564] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Familial hemophagocytic lymphohistiocytosis 5 (FHL5) is an autosomal recessive disease caused by mutations in STXBP2, coding for Munc18-2, which is required for SNARE-mediated membrane fusion. FHL5 causes hematologic and gastrointestinal symptoms characterized by chronic enteropathy that is reminiscent of microvillus inclusion disease (MVID). However, the molecular pathophysiology of FHL5-associated diarrhea is poorly understood. Five FHL5 patients, including four previously unreported patients, were studied. Morphology of duodenal sections was analyzed by electron and fluorescence microscopy. Small intestinal enterocytes and organoid-derived monolayers displayed the subcellular characteristics of MVID. For the analyses of Munc18-2-dependent SNARE-protein interactions, a Munc18-2 CaCo2-KO model cell line was generated by applying CRISPR/Cas9 technology. Munc18-2 is required for Slp4a/Stx3 interaction in fusion of cargo vesicles with the apical plasma membrane. Cargo trafficking was investigated in patient biopsies, patient-derived organoids, and the genome-edited model cell line. Loss of Munc18-2 selectively disrupts trafficking of certain apical brush-border proteins (NHE3 and GLUT5), while transport of DPPIV remained unaffected. Here, we describe the molecular mechanism how the loss of function of Munc18-2 leads to cargo-selective mislocalization of brush-border components and a subapical accumulation of cargo vesicles, as it is known from the loss of polarity phenotype in MVID.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I and.,Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jorik M van Rijn
- Division of Paediatrics, Department of Paediatric Gastroenterology and Regenerative Medicine Center Utrecht, Wilhelmina Children's Hospital, University Medical Centre (UMC) Utrecht, Utrecht, The Netherlands
| | - Iris M Krainer
- Department of Paediatrics I and.,Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Marta Cohen
- Sheffield Children's Hospital NHS Trust, Western Bank, Sheffield, United Kingdom
| | - Claire Searle
- Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Prevost Jantchou
- Gastroentérologie Hépatologie et Nutrition Pédiatrique Hôpital Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
| | - Natalie Patey
- Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Ernest Cutz
- The Hospital for Sick Children, Toronto, Canada
| | | | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology and Regenerative Medicine Center Utrecht, Wilhelmina Children's Hospital, University Medical Centre (UMC) Utrecht, Utrecht, The Netherlands
| | - Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
Spessott WA, Sanmillan ML, Kulkarni VV, McCormick ME, Giraudo CG. Syntaxin 4 mediates endosome recycling for lytic granule exocytosis in cytotoxic T-lymphocytes. Traffic 2017; 18:442-452. [PMID: 28471021 PMCID: PMC5513838 DOI: 10.1111/tra.12490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022]
Abstract
Adaptive and innate immunity utilize the perforin-killing pathway to eliminate virus-infected or cancer cells. Cytotoxic T-lymphocytes (CTLs) and natural killer cells mediate this process by releasing toxic proteins at the contact area with target cells known as immunological synapse (IS). Formation of a stable IS and exocytosis of toxic proteins requires persistent fusion of Rab11a recycling endosomes with the plasma membrane (PM) that may assure the delivery of key effector proteins. Despite the importance of the recycling endosomal compartment, the membrane fusion proteins that control this process at the IS remain elusive. Here, by performing knockdown experiments we found that syntaxin 4 (STX4) is necessary for cytotoxic activity and CD107a degranulation against target cells in a similar fashion to syntaxin 11, which is involved in lytic granule (LG) exocytosis and immunodeficiency when it is mutated. Using total internal reflection fluorescent microscopy we identified that STX4 mediates fusion of EGFP-Rab11a vesicles at the IS. Immunoprecipitation experiments in lysates of activated CTLs indicate that endogenous STX4 may drive this fusion step by interacting with cognate proteins: Munc18-3/SNAP23/VAMP7 and/or VAMP8. These results reveal the role of STX4 in mediating fusion of Rab11a endosomes upstream of lytic granules (LGs) exocytosis and further demonstrate the importance of this pathway in controlling CTL-mediated cytotoxicity.
Collapse
Affiliation(s)
- Waldo A. Spessott
- Department of Pathology and Laboratory Medicine, University of Pennsylvania – The Children’s Hospital of Philadelphia - 3615 Civic Center Blvd, Philadelphia PA, 19104
| | - Maria L. Sanmillan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania – The Children’s Hospital of Philadelphia - 3615 Civic Center Blvd, Philadelphia PA, 19104
| | - Vineet V. Kulkarni
- Department of Pathology and Laboratory Medicine, University of Pennsylvania – The Children’s Hospital of Philadelphia - 3615 Civic Center Blvd, Philadelphia PA, 19104
- Biomedical Graduate Studies- University of Pennsylvania
| | - Margaret E. McCormick
- Department of Pathology and Laboratory Medicine, University of Pennsylvania – The Children’s Hospital of Philadelphia - 3615 Civic Center Blvd, Philadelphia PA, 19104
| | - Claudio G. Giraudo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania – The Children’s Hospital of Philadelphia - 3615 Civic Center Blvd, Philadelphia PA, 19104
| |
Collapse
|
36
|
SM protein Munc18-2 facilitates transition of Syntaxin 11-mediated lipid mixing to complete fusion for T-lymphocyte cytotoxicity. Proc Natl Acad Sci U S A 2017; 114:E2176-E2185. [PMID: 28265073 DOI: 10.1073/pnas.1617981114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atypical lipid-anchored Syntaxin 11 (STX11) and its binding partner, the Sec/Munc (SM) protein Munc18-2, facilitate cytolytic granule release by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Patients carrying mutations in these genes develop familial hemophagocytic lymphohistiocytosis, a primary immunodeficiency characterized by impaired lytic granule exocytosis. However, whether a SNARE such as STX11, which lacks a transmembrane domain, can support membrane fusion in vivo is uncertain, as is the precise role of Munc18-2 during lytic granule exocytosis. Here, using a reconstituted "flipped" cell-cell fusion assay, we show that lipid-anchored STX11 and its cognate SNARE proteins mainly support exchange of lipids but not cytoplasmic content between cells, resembling hemifusion. Strikingly, complete fusion is stimulated by addition of wild-type Munc18-2 to the assay, but not of Munc18-2 mutants with abnormal STX11 binding. Our data reveal that Munc18-2 is not just a chaperone of STX11 but also directly contributes to complete membrane merging by promoting SNARE complex assembly. These results further support the concept that SM proteins in general are part of the core fusion machinery. This fusion mechanism likely contributes to other cell-type-specific exocytic processes such as platelet secretion.
Collapse
|
37
|
Weaver LK, Behrens EM. Weathering the storm: Improving therapeutic interventions for cytokine storm syndromes by targeting disease pathogenesis. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2017; 3:33-48. [PMID: 28944163 DOI: 10.1007/s40674-017-0059-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytokine storm syndromes require rapid diagnosis and treatment to limit the morbidity and mortality caused by the hyperinflammatory state that characterizes these devastating conditions. Herein, we discuss the current knowledge that guides our therapeutic decision-making and personalization of treatment for patients with cytokine storm syndromes. Firstly, ICU-level supportive care is often required to stabilize patients with fulminant disease while additional diagnostic evaluations proceed to determine the underlying cause of cytokine storm. Pharmacologic interventions should be focused on removing the inciting trigger of inflammation and initiation of an individualized immunosuppressive regimen when immune activation is central to the underlying disease pathophysiology. Monitoring for a clinical response is required to ensure that changes in the therapeutic regimen can be made as clinically warranted. Escalation of immunosuppression may be required if patients respond poorly to the initial therapeutic interventions, while a slow wean of immunosuppression in patients who improve can limit medication-related toxicities. In certain scenarios, a decision must be made whether an individual patient requires hematopoietic cell transplantation to prevent recurrence of disease. Despite these interventions, significant morbidity and mortality remains for cytokine storm patients. Therefore, we use this review to propose a clinical schema to guide current and future attempts to design rational therapeutic interventions for patients suffering from these devastating conditions, which we believe speeds the diagnosis of disease, limits medication-related toxicities, and improves clinical outcomes by targeting the heterogeneous and dynamic mechanisms driving disease in each individual patient.
Collapse
Affiliation(s)
- Lehn K Weaver
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Edward M Behrens
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Nath S, Christian L, Tan SY, Ki S, Ehrlich LIR, Poenie M. Dynein Separately Partners with NDE1 and Dynactin To Orchestrate T Cell Focused Secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2090-101. [PMID: 27534551 PMCID: PMC5010990 DOI: 10.4049/jimmunol.1600180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022]
Abstract
Helper and cytotoxic T cells accomplish focused secretion through the movement of vesicles toward the microtubule organizing center (MTOC) and translocation of the MTOC to the target contact site. In this study, using Jurkat cells and OT-I TCR transgenic primary murine CTLs, we show that the dynein-binding proteins nuclear distribution E homolog 1 (NDE1) and dynactin (as represented by p150(Glued)) form mutually exclusive complexes with dynein, exhibit nonoverlapping distributions in target-stimulated cells, and mediate different transport events. When Jurkat cells expressing a dominant negative form of NDE1 (NDE1-enhanced GFP fusion) were activated by Staphylococcus enterotoxin E-coated Raji cells, NDE1 and dynein failed to accumulate at the immunological synapse (IS) and MTOC translocation was inhibited. Knockdown of NDE1 in Jurkat cells or primary mouse CTLs also inhibited MTOC translocation and CTL-mediated killing. In contrast to NDE1, knockdown of p150(Glued), which depleted the alternative dynein/dynactin complex, resulted in impaired accumulation of CTLA4 and granzyme B-containing intracellular vesicles at the IS, whereas MTOC translocation was not affected. Depletion of p150(Glued) in CTLs also inhibited CTL-mediated lysis. We conclude that the NDE1/Lissencephaly 1 and dynactin complexes separately mediate two key components of T cell-focused secretion, namely translocation of the MTOC and lytic granules to the IS, respectively.
Collapse
Affiliation(s)
- Shubhankar Nath
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| | - Laura Christian
- Department of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712
| | - Sarah Youngsun Tan
- Department of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712
| | - Sanghee Ki
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| | - Martin Poenie
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| |
Collapse
|
39
|
Chang HF, Bzeih H, Chitirala P, Ravichandran K, Sleiman M, Krause E, Hahn U, Pattu V, Rettig J. Preparing the lethal hit: interplay between exo- and endocytic pathways in cytotoxic T lymphocytes. Cell Mol Life Sci 2016; 74:399-408. [PMID: 27585956 PMCID: PMC5241346 DOI: 10.1007/s00018-016-2350-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
Abstract
Cytotoxic T lymphocytes patrol our body in search for infected cells which they kill through the release of cytotoxic substances contained in cytotoxic granules. The fusion of cytotoxic granules occurs at a specially formed contact site, the immunological synapse, and is tightly controlled to ensure specificity. In this review, we discuss the contribution of two intracellular compartments, endosomes and cytotoxic granules, to the formation, function and disassembly of the immunological synapse. We highlight a recently proposed sequential process of fusion events at the IS upon target cell recognition. First, recycling endosomes fuse with the plasma membrane to deliver cargo required for the docking of cytotoxic granules. Second, cytotoxic granules arrive and fuse upon docking in a SNARE-dependent manner. Following fusion, membrane components of the cytotoxic granule are retrieved through endocytosis to ensure the fast, efficient serial killing of target cells that is characteristic of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Hawraa Bzeih
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Praneeth Chitirala
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Marwa Sleiman
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Ulrike Hahn
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Varsha Pattu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
40
|
Abstract
Many cells of the myeloid lineage use an unusual secretory organelle to deliver their effector mechanisms. In these cells, the lysosomal compartment is often modified not only to fulfill the degradative functions of a lysosome but also as a mechanism for secreting additional proteins that are found in the lysosomes of each specialized cell type. These extra proteins vary from one cell type to another according to the specialized function of the cell. For example, mast cells package histamine; cytotoxic T cells express perforin; azurophilic granules in neutrophils express antimicrobial peptides, and platelets von Willebrand factor. Upon release, these very different proteins can trigger inflammation, cell lysis, microbial death, and clotting, respectively, and hence deliver the very different effector mechanisms of these different myeloid cells.
Collapse
|
41
|
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells target infected or transformed cells with perforin-containing cytotoxic granules through immune synapses, while platelets secrete several types of granules which contents are essential for thrombosis and hemostasis. Recent work has culminated in the notion that an exocytic SNARE complex, based on a very similar set of components, is primarily responsible for exocytosis of the diverse granules in these different cell types. Granule exocytosis is, in particular, uniquely dependent on the atypical Q-SNARE syntaxin 11, its interacting partners of the Sec/Munc (SM) family, and is regulated by Rab27a. Mutations in these exocytic components underlie disease manifestations of familial hemophagocytic lymphohistiocytosis (FHL) subtypes, characterized by hyperactivation of the immune system, as well as platelet granule secretion defects. Here we discuss the key discoveries that led to the converging notion of the syntaxin 11-based exocytosis machinery for cytotoxic granules and platelet-derived granules.
Collapse
Affiliation(s)
- Bor Luen Tang
- a Department of Biochemistry , Yong Loo Lin School of Medicine, National University of Singapore , Singapore and.,b NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore
| |
Collapse
|
42
|
Lou J, Rossy J, Deng Q, Pageon SV, Gaus K. New Insights into How Trafficking Regulates T Cell Receptor Signaling. Front Cell Dev Biol 2016; 4:77. [PMID: 27508206 PMCID: PMC4960267 DOI: 10.3389/fcell.2016.00077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/11/2016] [Indexed: 02/04/2023] Open
Abstract
There is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion in cytotoxic T lymphocytes (CTL) have been well-studied due to the immune disorder known as familial hemophagocytic lymphohistiocytosis (FHLH). However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions.
Collapse
Affiliation(s)
- Jieqiong Lou
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Jérémie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Qiji Deng
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Sophie V Pageon
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
43
|
Brisse E, Wouters CH, Matthys P. Advances in the pathogenesis of primary and secondary haemophagocytic lymphohistiocytosis: differences and similarities. Br J Haematol 2016; 174:203-17. [PMID: 27264204 DOI: 10.1111/bjh.14147] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) comprises a heterogeneous spectrum of hyperinflammatory conditions that are inherited (primary HLH) or acquired in a context of infections, malignancies or autoimmune/autoinflammatory disorders (secondary HLH). Genetic defects in the cytotoxic machinery of natural killer and CD8(+) T cells underlie primary HLH, with residual cytotoxicity determining disease severity. Improved sequencing techniques have expanded the range of causal mutations and have redefined many cases of secondary HLH as primary HLH and vice versa, blurring the distinction between both subtypes. These insights allow HLH to be conceptualized as a threshold disease, in which interplay between various genetic and environmental factors causes progressive inflammation into a critical point, beyond which uncontrolled activation of immune cells and excessive cytokine production give rise to the cardinal symptoms of HLH. Various pathogenic pathways may thus converge to a common end stage of fulminant HLH.
Collapse
Affiliation(s)
- Ellen Brisse
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carine H Wouters
- Laboratory of Paediatric Immunology, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Kabanova A, Sanseviero F, Candi V, Gamberucci A, Gozzetti A, Campoccia G, Bocchia M, Baldari CT. Human Cytotoxic T Lymphocytes Form Dysfunctional Immune Synapses with B Cells Characterized by Non-Polarized Lytic Granule Release. Cell Rep 2016; 15:9-18. [PMID: 27052167 DOI: 10.1016/j.celrep.2016.02.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/18/2015] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
Abstract
Suppression of the cytotoxic T cell (CTL) immune response has been proposed as one mechanism for immune evasion in cancer. In this study, we have explored the underlying basis for CTL suppression in the context of B cell malignancies. We document that human B cells have an intrinsic ability to resist killing by freshly isolated cytotoxic T cells (CTLs), but are susceptible to lysis by IL-2 activated CTL blasts and CTLs isolated from immunotherapy-treated patients with chronic lymphocytic leukemia (CLL). Impaired killing was associated with the formation of dysfunctional non-lytic immune synapses characterized by the presence of defective linker for activation of T cells (LAT) signaling and non-polarized release of the lytic granules transported by ADP-ribosylation factor-like protein 8 (Arl8). We propose that non-lytic degranulation of CTLs are a key regulatory mechanism of evasion through which B cells may interfere with the formation of functional immune synapses by CTLs.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Life Sciences, University of Siena, via Aldo Moro 2, Siena 53100, Italy.
| | - Francesca Sanseviero
- Department of Life Sciences, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Veronica Candi
- Hematology Unit, University of Siena, viale Bracci 16, Siena 53100, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | | | - Giuseppe Campoccia
- Department of Immune Haematology and Transfusion Medicine, University Hospital of Siena, viale Bracci 16, Siena 53100, Italy
| | - Monica Bocchia
- Hematology Unit, University of Siena, viale Bracci 16, Siena 53100, Italy
| | | |
Collapse
|
45
|
Cetica V, Sieni E, Pende D, Danesino C, De Fusco C, Locatelli F, Micalizzi C, Putti MC, Biondi A, Fagioli F, Moretta L, Griffiths GM, Luzzatto L, Aricò M. Genetic predisposition to hemophagocytic lymphohistiocytosis: Report on 500 patients from the Italian registry. J Allergy Clin Immunol 2016; 137:188-196.e4. [PMID: 26342526 PMCID: PMC4699615 DOI: 10.1016/j.jaci.2015.06.048] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hemophagocytic lymphohistiocytosis (HLH) is a rare life-threatening disease affecting mostly children but also adults and characterized by hyperinflammatory features. A subset of patients, referred to as having familial hemophagocytic lymphohistiocytosis (FHL), have various underlying genetic abnormalities, the frequencies of which have not been systematically determined previously. OBJECTIVE This work aims to further our understanding of the pathogenic bases of this rare condition based on an analysis of our 25 years of experience. METHODS From our registry, we have analyzed a total of 500 unselected patients with HLH. RESULTS Biallelic pathogenic mutations defining FHL were found in 171 (34%) patients; the proportion of FHL was much higher (64%) in patients given a diagnosis during the first year of life. Taken together, mutations of the genes PRF1 (FHL2) and UNC13D (FHL3) accounted for 70% of cases of FHL. Overall, a genetic diagnosis was possible in more than 90% of our patients with FHL. Perforin expression and the extent of degranulation have been more useful for diagnosing FHL than hemophagocytosis and the cytotoxicity assay. Of 281 (56%) patients classified as having "sporadic" HLH, 43 had monoallelic mutations in one of the FHL-defining genes. Given this gene dosage effect, FHL is not strictly recessive. CONCLUSION We suggest that the clinical syndrome HLH generally results from the combined effects of an exogenous trigger and genetic predisposition. Within this combination, different weights of exogenous and genetic factors account for the wide disease spectrum that ranges from HLH secondary to severe infection to FHL.
Collapse
Affiliation(s)
- Valentina Cetica
- Department Pediatric Hematology Oncology, Azienda Ospedaliero-Universitaria Meyer Children Hospital, Florence, Italy
| | - Elena Sieni
- Department Pediatric Hematology Oncology, Azienda Ospedaliero-Universitaria Meyer Children Hospital, Florence, Italy
| | - Daniela Pende
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Cesare Danesino
- Medical Genetics, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carmen De Fusco
- Pediatric Hematology and Oncology, Pausilipon Hospital, Naples, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, and the University of Pavia, Pavia, Italy
| | | | | | - Andrea Biondi
- Pediatric Clinic, University of Milan Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
| | | | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Maurizio Aricò
- Istituto Toscano Tumori (I.T.T.), Florence, Italy; Azienda Sanitaria Provinciale, Ragusa, Italy.
| |
Collapse
|
46
|
Voss M, Bryceson YT. Natural killer cell biology illuminated by primary immunodeficiency syndromes in humans. Clin Immunol 2015; 177:29-42. [PMID: 26592356 DOI: 10.1016/j.clim.2015.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/22/2015] [Accepted: 11/14/2015] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells are innate immune cytotoxic effector cells well known for their role in antiviral immunity and tumor immunosurveillance. In parts, this knowledge stems from rare inherited immunodeficiency disorders in humans that abrogate NK cell function leading to immune impairments, most notably associated with a high susceptibility to viral infections. Phenotypically, these disorders range from deficiencies selectively affecting NK cells to complex general immune defects that affect NK cells but also other immune cell subsets. Moreover, deficiencies may be associated with reduced NK cell numbers or rather impair specific NK cell effector functions. In recent years, genetic defects underlying the various NK cell deficiencies have been uncovered and have triggered investigative efforts to decipher the molecular mechanisms underlying these disorders. Here we review the associations between inherited human diseases and NK cell development as well as function, with a particular focus on defects in NK cell exocytosis and cytotoxicity. Furthermore we outline how reports of diverse genetic defects have shaped our understanding of NK cell biology.
Collapse
Affiliation(s)
- Matthias Voss
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Broegelmann Research Laboratory, Institute of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
47
|
Dieckmann NMG, Hackmann Y, Aricò M, Griffiths GM. Munc18-2 is required for Syntaxin 11 Localization on the Plasma Membrane in Cytotoxic T-Lymphocytes. Traffic 2015; 16:1330-41. [PMID: 26771955 PMCID: PMC4791091 DOI: 10.1111/tra.12337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/21/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
Abstract
Cytotoxic T‐lymphocytes (CTL) kill their targets by cytolytic granule secretion at the immunological synapse. The Sec/Munc protein, Munc18‐2, and its binding partner Syntaxin 11 (STX11) are both required for granule secretion, with mutations in either leading to the primary immunodeficiency, Familial Haemophagocytic Lymphohistiocytosis (FHL4 and 5). Understanding how Munc18‐2 and STX11 function in CTL has been hampered by not knowing the endogenous localization of these proteins. Using a novel FHL5 Munc18‐2 mutation that results in loss of protein, cytotoxicity and degranulation together with CTL from an FHL4 patient lacking STX11, enabled us to localize endogenous STX11 and Munc18‐2 in CTL. Munc18‐2 localized predominantly to cytolytic granules with low levels associated with the plasma membrane where STX11 localized. Importantly, while Munc18‐2 localization is unaffected by the absence of STX11 in FHL4 CTL, STX11 is lost from the plasma membrane in FHL5 CTL lacking Munc18‐2. These findings support a role for Munc18‐2 in chaperoning STX11 to the plasma membrane where the final fusion events involved in secretion occur.
Collapse
Affiliation(s)
- Nele M G Dieckmann
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Yvonne Hackmann
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, United Kingdom.,Current address: Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Maurizio Aricò
- Azienda Sanitaria Provinciale 7, Piazza Igea 1, I-97100, Ragusa, Italy
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
48
|
Hyperinflammation, rather than hemophagocytosis, is the common link between macrophage activation syndrome and hemophagocytic lymphohistiocytosis. Curr Opin Rheumatol 2015; 26:562-9. [PMID: 25022357 DOI: 10.1097/bor.0000000000000093] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Macrophage activation syndrome is the rheumatic disease-associated member of a group of hyperinflammatory syndromes characterized by uncontrolled cytokine storm. In this review, we highlight recent publications related to the pathoetiology of hyperinflammatory syndromes with an emphasis on how this new knowledge will guide our diagnosis, treatment, and future research efforts to better understand these deadly conditions. RECENT FINDINGS The heterogeneity of clinical manifestations seen in patients with hyperinflammatory syndromes continues to grow as novel genetic and immunotherapeutic triggers of cytokine storm have been identified. Recent studies characterize unique cytokine and gene expression profiles from patients with different hyperinflammatory syndromes, whereas novel murine models begin to define networks of immune dysregulation thought to drive excessive inflammation in cytokine storm. SUMMARY Emerging evidence suggests hypercytokinemia is the driving cause of immunopathology and morbidity/mortality in hyperinflammatory syndromes. Therefore, approaches to block cytokine function may be fruitful in treating hyperinflammatory syndromes with less toxicity than current therapies. However, not all hyperinflammatory syndromes result in the same pathogenic cytokine profile, implying that a personalized approach will be required for effective use of anticytokine therapies in the treatment of hyperinflammatory syndromes.
Collapse
|
49
|
Late-onset severe chronic active EBV in a patient for five years with mutations in STXBP2 (MUNC18-2) and PRF1 (perforin 1). J Clin Immunol 2015; 35:445-8. [PMID: 25947952 DOI: 10.1007/s10875-015-0168-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
Severe chronic active Epstein-Barr virus (CAEBV) disease is defined as a severe progressive illness lasting 6 months or longer with infiltration of tissues with EBV-positive lymphocytes, markedly elevated levels of EBV DNA in the blood, and no known immunodeficiency such as HIV. These patients usually have fever, splenomegaly, lymphadenopathy, and may have markedly elevated EBV antibody titers to viral capsid antigen. Although the cause of most cases of severe CAEBV is unknown, one well-documented case was associated with compound heterozygous mutations in PRF1 (perforin 1). Here we report a patient with prolonged severe CAEBV who underwent bone marrow transplant for his disease and subsequently was found to have compound heterozygous mutations in STXBP2 (MUNC18-2) as well as a heterozygous mutation in PRF1 (perforin 1).
Collapse
|
50
|
Bin NR, Jung CH, Kim B, Chandrasegram P, Turlova E, Zhu D, Gaisano HY, Sun HS, Sugita S. Chaperoning of closed syntaxin-3 through Lys46 and Glu59 in domain 1 of Munc18 proteins is indispensable for mast cell exocytosis. J Cell Sci 2015; 128:1946-60. [PMID: 25795302 DOI: 10.1242/jcs.165662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/16/2015] [Indexed: 11/20/2022] Open
Abstract
Understanding how Munc18 proteins govern exocytosis is crucial because mutations of this protein cause severe secretion deficits in neuronal and immune cells. Munc18-2 has indispensable roles in the degranulation of mast cell, partly by binding and chaperoning a subset of syntaxin isoforms. However, the key syntaxin that, crucially, participates in the degranulation – whose levels and intracellular localization are regulated by Munc18-2 – remains unknown. Here, we demonstrate that double knockdown of Munc18-1 and Munc-2 in mast cells results in greatly reduced degranulation accompanied with strikingly compromised expression levels and localization of syntaxin-3. This phenotype is fully rescued by wild-type Munc18 proteins but not by the K46E, E59K and K46E/E59K mutants of Munc-18 domain 1, each of which exhibits completely abolished binding to 'closed' syntaxin-3. Furthermore, knockdown of syntaxin-3 strongly impairs degranulation. Collectively, our data argue that residues Lys46 and Glu59 of Munc18 proteins are indispensable for mediating the interaction between Munc18 and closed syntaxin-3, which is essential for degranulation by chaperoning syntaxin-3. Our results also indicate that the functional contribution of these residues differs between immune cell degranulation and neuronal secretion.
Collapse
Affiliation(s)
- Na-Ryum Bin
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chang Hun Jung
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Byungjin Kim
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada
| | - Prashanth Chandrasegram
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada
| | - Ekaterina Turlova
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dan Zhu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Herbert Y Gaisano
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuzo Sugita
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|