1
|
Hintze J, Fraumeni R, de Haan N, Miller RL, Saraswat M, Yang Z, Clausen H, Marth JD. Compositional and topological determinants of a physiological Ashwell-Morell receptor ligand. Proc Natl Acad Sci U S A 2025; 122:e2427129122. [PMID: 40208943 PMCID: PMC12012520 DOI: 10.1073/pnas.2427129122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
The hepatocyte Ashwell-Morell receptor (AMR) is the prototypical mammalian lectin and the first cell receptor isolated. This recycling endocytic receptor of the plasma membrane determines the concentrations of hundreds of circulating glycoproteins in the blood and plays important roles in host responses to and outcomes of infection. The compositional and topological determinants of a physiological AMR ligand have remained unclear with contradictory findings reported. Previous studies established that the AMR binds multivalent galactose on desialylated triantennary or higher-branched N-glycans with little to no binding to galactose on biantennary forms. However, the vast majority of circulating blood glycoproteins are modified by biantennary N-glycans, rendering them unlikely to be ligands bound and eliminated by the AMR. Separately, other studies reported that AMR ligands include sialylated N-glycans, and specifically α2-6, but not α2-3, sialic acid linkages. Herein, we investigated the composition and topology of AMR ligands using a known physiological AMR ligand, intestinal alkaline phosphatase (IAP). Recombinant active IAP was produced in glycoengineered cells with either biantennary or higher valency triantennary and tetra-antennary N-glycan structures, and further with and without either α2-6 or α2-3 sialic acid linkages. These closely homogenous IAP monomer glycoforms assemble as dimers with similar enzymatic activity and were compared in AMR binding and clearance assays. Our results indicate that the AMR does not significantly bind IAP when its N-glycans are predominantly sialylated with either α2-6 or α2-3 sialic acid linkages. Multivalent desialylated AMR ligands may, however, appear when IAP monomers dimerize, resulting in the close proximation of biantennary N-glycans.
Collapse
Affiliation(s)
- John Hintze
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA92037
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, CopenhagenN 2200, Denmark
| | - Robert Fraumeni
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, CopenhagenN 2200, Denmark
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden2300, The Netherlands
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, CopenhagenN 2200, Denmark
| | - Mayank Saraswat
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, CopenhagenN 2200, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, CopenhagenN 2200, Denmark
| | - Jamey D. Marth
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA92037
| |
Collapse
|
2
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
3
|
Chao Y, Mørch M, Håkansson AP, Shannon O. Biofilm-dispersed pneumococci induce elevated leukocyte and platelet activation. Front Cell Infect Microbiol 2024; 14:1405333. [PMID: 39149421 PMCID: PMC11324597 DOI: 10.3389/fcimb.2024.1405333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Streptococcus pneumoniae (the pneumococcus) effectively colonizes the human nasopharynx, but can migrate to other host sites, causing infections such as pneumonia and sepsis. Previous studies indicate that pneumococci grown as biofilms have phenotypes of bacteria associated with colonization whereas bacteria released from biofilms in response to changes in the local environment (i.e., dispersed bacteria) represent populations with phenotypes associated with disease. How these niche-adapted populations interact with immune cells upon reaching the vascular compartment has not previously been studied. Here, we investigated neutrophil, monocyte, and platelet activation using ex vivo stimulation of whole blood and platelet-rich plasma with pneumococcal populations representing distinct stages of the infectious process (biofilm bacteria and dispersed bacteria) as well as conventional broth-grown culture (planktonic bacteria). Methods Flow cytometry and ELISA were used to assess surface and soluble activation markers for neutrophil and monocyte activation, platelet-neutrophil complex and platelet-monocyte complex formation, and platelet activation and responsiveness. Results Overall, we found that biofilm-derived bacteria (biofilm bacteria and dispersed bacteria) induced significant activation of neutrophils, monocytes, and platelets. In contrast, little to no activation was induced by planktonic bacteria. Platelets remained functional after stimulation with bacterial populations and the degree of responsiveness was inversely related to initial activation. Bacterial association with immune cells followed a similar pattern as activation. Discussion Differences in activation of and association with immune cells by biofilm-derived populations could be an important consideration for other pathogens that have a biofilm state. Gaining insight into how these bacterial populations interact with the host immune response may reveal immunomodulatory targets to interfere with disease development.
Collapse
Affiliation(s)
- Yashuan Chao
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Martina Mørch
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Anders P Håkansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
4
|
Tiemeyer KH, Kuter DJ, Cairo CW, Hollenhorst MA. New insights into the glycobiology of immune thrombocytopenia. Curr Opin Hematol 2023; 30:210-218. [PMID: 37526945 DOI: 10.1097/moh.0000000000000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
PURPOSE OF REVIEW The platelet surface harbors a lush forest of glycans (carbohydrate polymers) attached to membrane proteins and lipids. Accumulating evidence suggests that these glycans may be relevant to the pathophysiology of immune thrombocytopenia (ITP). Here, we critically evaluate data that point to a possible role for loss of sialic acid in driving platelet clearance in ITP, comment on the potential use of neuraminidase inhibitors for treatment of ITP, and highlight open questions in this area. RECENT FINDINGS Multiple lines of evidence suggest a role for loss of platelet sialic acid in the pathophysiology of thrombocytopenia. Recent work has tested the hypothesis that neuraminidase-mediated cleavage of platelet sialic acid may trigger clearance of platelets in ITP. Some clinical evidence supports efficacy of the viral neuraminidase inhibitor oseltamivir in ITP, which is surprising given its lack of activity against human neuraminidases. SUMMARY Further study of platelet glycobiology in ITP is necessary to fill key knowledge gaps. A deeper understanding of the roles of platelet glycans in ITP pathophysiology will help to guide development of novel therapies.
Collapse
Affiliation(s)
| | - David J Kuter
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Marie A Hollenhorst
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Li J, Karakas D, Xue F, Chen Y, Zhu G, Yucel YH, MacParland SA, Zhang H, Semple JW, Freedman J, Shi Q, Ni H. Desialylated Platelet Clearance in the Liver is a Novel Mechanism of Systemic Immunosuppression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0236. [PMID: 37808178 PMCID: PMC10551749 DOI: 10.34133/research.0236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 10/10/2023]
Abstract
Platelets are small, versatile blood cells that are critical for hemostasis/thrombosis. Local platelet accumulation is a known contributor to proinflammation in various disease states. However, the anti-inflammatory/immunosuppressive potential of platelets has been poorly explored. Here, we uncovered, unexpectedly, desialylated platelets (dPLTs) down-regulated immune responses against both platelet-associated and -independent antigen challenges. Utilizing multispectral photoacoustic tomography, we tracked dPLT trafficking to gut vasculature and an exclusive Kupffer cell-mediated dPLT clearance in the liver, a process that we identified to be synergistically dependent on platelet glycoprotein Ibα and hepatic Ashwell-Morell receptor. Mechanistically, Kupffer cell clearance of dPLT potentiated a systemic immunosuppressive state with increased anti-inflammatory cytokines and circulating CD4+ regulatory T cells, abolishable by Kupffer cell depletion. Last, in a clinically relevant model of hemophilia A, presensitization with dPLT attenuated anti-factor VIII antibody production after factor VIII ( infusion. As platelet desialylation commonly occurs in daily-aged and activated platelets, these findings open new avenues toward understanding immune homeostasis and potentiate the therapeutic potential of dPLT and engineered dPLT transfusions in controlling autoimmune and alloimmune diseases.
Collapse
Affiliation(s)
- June Li
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Feng Xue
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yingyu Chen
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Guangheng Zhu
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Yeni H. Yucel
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Departments of Ophthalmology and Vision Sciences Medicine,
University of Toronto, Toronto, ON, Canada
- Faculty of Engineering and Architectural Science,
Ryerson University, Toronto, ON, Canada
| | - Sonya A. MacParland
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Multi-Organ Transplant Program,
Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology,
University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Critical Care Medicine, Department of Anesthesiology and Pain,
University of Toronto, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - John W. Semple
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Pharmacology,
University of Toronto, Toronto, ON, Canada
- Division of Hematology and Transfusion Medicine,
Lund University, Lund, Sweden
- Clinical Immunology and Transfusion Medicine,
Office of Medical Services, Region Skåne, Lund, Sweden
| | - John Freedman
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| | - Qizhen Shi
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Wisconsin, Wauwatosa, WI, USA
- Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI, USA
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Li SZ, Liu SH, Hao M, Yu T, Hu S, Liu L, Liu ZL. Thrombocytopenia as an important determinant of poor prognosis in patients with pyogenic liver abscess: a retrospective case series. Front Surg 2023; 10:1192523. [PMID: 37560317 PMCID: PMC10407093 DOI: 10.3389/fsurg.2023.1192523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Thrombocytopenia and poor prognosis in severe conditions are associated. However, the clinical significance of thrombocytopenia in pyogenic liver abscess (PLA) has not been evaluated. OBJECTIVE To evaluate the association between thrombocytopenia and the prognosis of patients with PLA. METHODS A consecutive case series of 458 adult patients with PLA hospitalized at Tongji Hospital (Wuhan, China) between October 2011 and June 2021 was included in this cross-sectional analysis. Patient data were compared between the thrombocytopenia and non-thrombocytopenia groups. Multivariate logistic regression, receiver operating characteristic (ROC) curve and propensity score -matched analyses (PSM) were performed. RESULTS Of the 458 patients with PLA, 94 (20.5%) developed thrombocytopenia, 19 (4.1%) developed septic shock, 14 (3.1%) were admitted to the ICU, and 15 (3.3%) died during hospitalization. Thrombocytopenia was independently associated with shock (95%CI = 3.529-57.944, P < 0.001), ICU admission (95%CI = 1.286-25.733, P = 0.022), and mortality (95%CI = 1.947-34.223, P = 0.004) in multivariate regression analysis. ROC analysis showed that thrombocytopenia may be an identified marker of shock [area under the ROC curve (AUC), 0.8119; cut-off, 92.50; P < 0.0001], ICU admission (AUC, 0.7484; cut-off, 82.50; P < 0.0015), and mortality (AUC, 0.7827; cut-off, 122.50; P < 0.002). These findings remained consistent across 86 pairs of patients analyzed for PSM analyses. CONCLUSIONS Thrombocytopenia is an independent risk factor for poor prognosis in PLA and patients may be more prone to adverse outcomes.
Collapse
Affiliation(s)
- Sheng-zhong Li
- Department of Surgery, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-hua Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Meng Hao
- Department of Gastroenterology, Zigui County People’s Hospital, Yichang, China
| | - Tian Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Song Hu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Zhe-long Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| |
Collapse
|
7
|
Jeong SH, Park JY, Ryu YB, Kim WS, Lee IC, Kim JH, Kim D, Ha JH, Lee BW, Nam J, Cho KO, Kwon HJ. Myristica fragrans Extract Inhibits Platelet Desialylation and Activation to Ameliorate Sepsis-Associated Thrombocytopenia in a Murine CLP-Induced Sepsis Model. Int J Mol Sci 2023; 24:ijms24108863. [PMID: 37240208 DOI: 10.3390/ijms24108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Sepsis, characterized by an uncontrolled host inflammatory response to infections, remains a leading cause of death in critically ill patients worldwide. Sepsis-associated thrombocytopenia (SAT), a common disease in patients with sepsis, is an indicator of disease severity. Therefore, alleviating SAT is an important aspect of sepsis treatment; however, platelet transfusion is the only available treatment strategy for SAT. The pathogenesis of SAT involves increased platelet desialylation and activation. In this study, we investigated the effects of Myristica fragrans ethanol extract (MF) on sepsis and SAT. Desialylation and activation of platelets treated with sialidase and adenosine diphosphate (platelet agonist) were assessed using flow cytometry. The extract inhibited platelet desialylation and activation via inhibiting bacterial sialidase activity in washed platelets. Moreover, MF improved survival and reduced organ damage and inflammation in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. It also prevented platelet desialylation and activation via inhibiting circulating sialidase activity, while maintaining platelet count. Inhibition of platelet desialylation reduces hepatic Ashwell-Morell receptor-mediated platelet clearance, thereby reducing hepatic JAK2/STAT3 phosphorylation and thrombopoietin mRNA expression. This study lays a foundation for the development of plant-derived therapeutics for sepsis and SAT and provides insights into sialidase-inhibition-based sepsis treatment strategies.
Collapse
Affiliation(s)
- Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea
| | - Ju-Hong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Dohoon Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jiyoung Nam
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea
| |
Collapse
|
8
|
Hollenhorst MA, Tiemeyer KH, Mahoney KE, Aoki K, Ishihara M, Lowery SC, Rangel-Angarita V, Bertozzi CR, Malaker SA. Comprehensive analysis of platelet glycoprotein Ibα ectodomain glycosylation. J Thromb Haemost 2023; 21:995-1009. [PMID: 36740532 PMCID: PMC10065957 DOI: 10.1016/j.jtha.2023.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Platelet glycoprotein (GP) Ibα is the major ligand-binding subunit of the GPIb-IX-V complex that binds von Willebrand factor. GPIbα is heavily glycosylated, and its glycans have been proposed to play key roles in platelet clearance, von Willebrand factor binding, and as target antigens in immune thrombocytopenia syndromes. Despite its importance in platelet biology, the glycosylation profile of GPIbα is not well characterized. OBJECTIVES The aim of this study was to comprehensively analyze GPIbα amino acid sites of glycosylation (glycosites) and glycan structures. METHODS GPIbα ectodomain that was recombinantly expressed or that was purified from human platelets was analyzed by Western blot, mass spectrometry glycomics, and mass spectrometry glycopeptide analysis to define glycosites and the structures of the attached glycans. RESULTS We identified a diverse repertoire of N- and O-glycans, including sialoglycans, Tn antigen, T antigen, and ABO(H) blood group antigens. In the analysis of the recombinant protein, we identified 62 unique O-glycosites. In the analysis of the endogenous protein purified from platelets, we identified 48 unique O-glycosites and 1 N-glycosite. The GPIbα mucin domain is densely O-glycosylated. Glycosites are also located within the macroglycopeptide domain and mechanosensory domain. CONCLUSIONS This comprehensive analysis of GPIbα glycosylation lays the foundation for further studies to determine the functional and structural roles of GPIbα glycans.
Collapse
Affiliation(s)
- Marie A Hollenhorst
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Pathology, Stanford University, Stanford, California, USA; Department of Medicine, Division of Hematology, Stanford University, Stanford, California, USA. https://twitter.com/HollenhorstM
| | | | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Kazuhiro Aoki
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mayumi Ishihara
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah C Lowery
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | | | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
9
|
Chen W, Wilson MS, Wang Y, Bergmeier W, Lanza F, Li R. Fast clearance of platelets in a commonly used mouse model for GPIbα is impeded by an anti-GPIbβ antibody derivative. J Thromb Haemost 2022; 20:1451-1463. [PMID: 35305057 PMCID: PMC9133214 DOI: 10.1111/jth.15702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Glycoprotein (GP)Ibα plays a critical role in regulating platelet clearance. Recently, we identified the mechanosensory domain (MSD) in GPIbα and reported evidence to suggest that unfolding of the GPIbα MSD induces exposure of the Trigger sequence therein and subsequent GPIb-IX signaling that accelerates platelet clearance. In a commonly used transgenic mouse model, IL4R-IbαTg, where the Trigger sequence is constitutively exposed, constitutive GPIb-IX-mediated cellular signals are present. Clearance of their platelets is also significantly faster than that of wild-type mice. Previously, an anti-GPIbβ antibody RAM.1 was developed. RAM.1 inhibits GPIbα-dependent platelet signaling and activation. Further, RAM.1 also inhibits anti-GPIbα antibody-mediated filopodia formation. OBJECTIVE To investigate whether RAM.1 can ameliorate trigger sequence exposure-mediated platelet clearance. METHODS Spontaneous filopodia were measured by confocal microscopy. Other platelet signaling events were measured by flow cytometry. Endogenous platelet life span was tracked by Alexa 488-labeled anti-mouse GPIX antibody. RESULT Transfected Chinese hamster ovary cells stably expressing the same chimeric IL4R-Ibα protein complex as in IL4R-IbαTg mice also constitutively exhibit filopodia, and that such filopodia could be abolished by treatment of RAM.1. Further, transfusion of a recombinant RAM.1 derivative that is devoid of its Fc portion significantly extends the endogenous life span of IL4R-IbαTg platelets. CONCLUSION These results provide the key evidence supporting the causative link of Trigger sequence exposure to accelerated platelet clearance, and suggest that a RAM.1 derivative may be therapeutically developed to treat GPIb-IX-mediated thrombocytopenia.
Collapse
Affiliation(s)
- Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| | - Moriah S. Wilson
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| | - Yingchun Wang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Francois Lanza
- Université de Strasbourg, INSERM, BPPS UMR-S1255, Strasbourg, France
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| |
Collapse
|
10
|
Marini I, Uzun G, Jamal K, Bakchoul T. Treatment of drug-induced immune thrombocytopenias. Haematologica 2022; 107:1264-1277. [PMID: 35642486 PMCID: PMC9152960 DOI: 10.3324/haematol.2021.279484] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 01/19/2023] Open
Abstract
Several therapeutic agents can cause thrombocytopenia by either immune-mediated or non-immune-mediated mechanisms. Non-immune-mediated thrombocytopenia is due to direct toxicity of drug molecules to platelets or megakaryocytes. Immune-mediated thrombocytopenia, on the other hand, involves the formation of antibodies that react to platelet-specific glycoprotein complexes, as in classic drug-induced immune thrombocytopenia (DITP), or to platelet factor 4, as in heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombotic thrombocytopenia (VITT). Clinical signs include a rapid drop in platelet count, bleeding or thrombosis. Since the patient's condition can deteriorate rapidly, prompt diagnosis and management are critical. However, the necessary diagnostic tests are only available in specialized laboratories. Therefore, the most demanding step in treatment is to identify the agent responsible for thrombocytopenia, which often proves difficult because many patients are taking multiple medications and have comorbidities that can themselves also cause thrombocytopenia. While DITP is commonly associated with an increased risk of bleeding, HIT and VITT have a high mortality rate due to the high incidence of thromboembolic complications. A structured approach to drug-associated thrombocytopenia/thrombosis can lead to successful treatment and a lower mortality rate. In addition to describing the treatment of DITP, HIT, VITT, and vaccine-associated immune thrombocytopenia, this review also provides the pathophysiological and clinical information necessary for correct patient management.
Collapse
Affiliation(s)
- Irene Marini
- Centre for Clinical Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen
| | - Gunalp Uzun
- Centre for Clinical Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen
| | - Kinan Jamal
- Centre for Clinical Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen.
| |
Collapse
|
11
|
Kuter DJ. Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies. Haematologica 2022; 107:1243-1263. [PMID: 35642485 PMCID: PMC9152964 DOI: 10.3324/haematol.2021.279512] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 01/19/2023] Open
Abstract
Chemotherapy-induced thrombocytopenia (CIT) is a common complication of the treatment of non-hematologic malignancies. Many patient-related variables (e.g., age, tumor type, number of prior chemotherapy cycles, amount of bone marrow tumor involvement) determine the extent of CIT. CIT is related to the type and dose of chemotherapy, with regimens containing gemcitabine, platinum, or temozolomide producing it most commonly. Bleeding and the need for platelet transfusions in CIT are rather uncommon except in patients with platelet counts below 25x109/L in whom bleeding rates increase significantly and platelet transfusions are the only treatment. Nonetheless, platelet counts below 70x109/L present a challenge. In patients with such counts, it is important to exclude other causes of thrombocytopenia (medications, infection, thrombotic microangiopathy, post-transfusion purpura, coagulopathy and immune thrombocytopenia). If these are not present, the common approach is to reduce chemotherapy dose intensity or switch to other agents. Unfortunately decreasing relative dose intensity is associated with reduced tumor response and remission rates. Thrombopoietic growth factors (recombinant human thrombopoietin, pegylated human megakaryocyte growth and development factor, romiplostim, eltrombopag, avatrombopag and hetrombopag) improve pretreatment and nadir platelet counts, reduce the need for platelet transfusions, and enable chemotherapy dose intensity to be maintained. National Comprehensive Cancer Network guidelines permit their use but their widespread adoption awaits adequate phase III randomized, placebo-controlled studies demonstrating maintenance of relative dose intensity, reduction of platelet transfusions and bleeding, and possibly improved survival. Their potential appropriate use also depends on consensus by the oncology community as to what constitutes an appropriate pretreatment platelet count as well as identification of patient-related and treatment variables that might predict bleeding.
Collapse
Affiliation(s)
- David J Kuter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
12
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
13
|
Heindel D, Chen S, Aziz PV, Chung JY, Marth JD, Mahal LK. Glycomic Analysis Reveals a Conserved Response to Bacterial Sepsis Induced by Different Bacterial Pathogens. ACS Infect Dis 2022; 8:1075-1085. [PMID: 35486714 PMCID: PMC9112329 DOI: 10.1021/acsinfecdis.2c00082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 12/15/2022]
Abstract
Sepsis is an extreme inflammatory response to infection that occurs in the bloodstream and causes damage throughout the body. Glycosylation is known to play a role in immunity and inflammation, but the role of glycans in sepsis is not well-defined. Herein, we profiled the serum glycomes of experimental mouse sepsis models to identify changes induced by 4 different clinical bacterial pathogens (Gram-positive: Streptococcus pneumoniae and Staphylococcus aureus, Gram-negative: Escherichia coli and Salmonella Typhimurium) using our lectin microarray technology. We observed global shifts in the blood sera glycome that were conserved across all four species, regardless of whether they were Gram positive or negative. Bisecting GlcNAc was decreased upon sepsis and a strong increase in core 1/3 O-glycans was observed. Lectin blot analysis revealed a high molecular weight protein induced in sepsis by all four bacteria as the major cause of the core 1/3 O-glycan shift. Analysis of this band by mass spectrometry identified interalpha-trypsin inhibitor heavy chains (ITIHs) and fibronectin, both of which are associated with human sepsis. Shifts in the glycosylation of these proteins were observed. Overall, our work points toward a common mechanism for bacterially induced sepsis, marked by conserved changes in the glycome.
Collapse
Affiliation(s)
- Daniel
W. Heindel
- Biomedical
Research Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Shuhui Chen
- Biomedical
Research Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Peter V. Aziz
- SBP
Medical Discovery Institute, La Jolla, California 92037, United States
| | - Jonathan Y. Chung
- Biomedical
Research Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Jamey D. Marth
- SBP
Medical Discovery Institute, La Jolla, California 92037, United States
| | - Lara K. Mahal
- Biomedical
Research Institute, Department of Chemistry, New York University, New York, New York 10003, United States
- Department
of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|
14
|
Heithoff DM, Pimienta G, Mahan SP, Yang WH, Le DT, House JK, Marth JD, Smith JW, Mahan MJ. Coagulation factor protein abundance in the pre-septic state predicts coagulopathic activities that arise during late-stage murine sepsis. EBioMedicine 2022; 78:103965. [PMID: 35349828 PMCID: PMC8965145 DOI: 10.1016/j.ebiom.2022.103965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although sepsis accounts for 1 in 5 deaths globally, few molecular therapies exist for this condition. The development of effective biomarkers and treatments for sepsis requires a more complete understanding of host responses and pathogenic mechanisms at early stages of disease to minimize host-driven pathology. METHODS An alternative to the current symptom-based approach used to diagnose sepsis is a precise assessment of blood proteomic changes during the onset and progression of Salmonella Typhimurium (ST) murine sepsis. FINDINGS A distinct pattern of coagulation factor protein abundance was identified in the pre-septic state- prior to overt disease symptoms or bacteremia- that was predictive of the dysregulation of fibrinolytic and anti-coagulant activities and resultant consumptive coagulopathy during ST murine sepsis. Moreover, the changes in protein abundance observed generally have the same directionality (increased or decreased abundance) reported for human sepsis. Significant overlap of ST coagulopathic activities was observed in Gram-negative Escherichia coli- but not in Gram-positive staphylococcal or pneumococcal murine sepsis models. Treatment with matrix metalloprotease inhibitors prevented aberrant inflammatory and coagulopathic activities post-ST infection and increased survival. Antibiotic treatment regimens initiated after specific changes arise in the plasma proteome post-ST infection were predictive of an increase in disease relapse and death after cessation of antibiotic treatment. INTERPRETATION Altered blood proteomics provides a platform to develop rapid and easy-to-perform tests to predict sepsis for early intervention via biomarker incorporation into existing blood tests prompted by patient presentation with general malaise, and to stratify Gram-negative and Gram-positive infections for appropriate treatment. Antibiotics are less effective in microbial clearance when initiated after the onset of altered blood proteomics as evidenced by increased disease relapse and death after termination of antibiotic therapy. Treatment failure is potentially due to altered bacterial / host-responses and associated increased host-driven pathology, providing insight into why delays in antibiotic administration in human sepsis are associated with increased risk for death. Delayed treatment may thus require prolonged therapy for microbial clearance despite the prevailing notion of antibiotic de-escalation and shortened courses of antibiotics to improve drug stewardship. FUNDING National Institutes of Health, U.S. Army.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| | - Genaro Pimienta
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis CA 95616, USA
| | - Won Ho Yang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dzung T Le
- Department of Pathology, University of California, La Jolla, San Diego, CA 92093, USA
| | - John K House
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales 2570, Australia
| | - Jamey D Marth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
15
|
Mandel J, Casari M, Stepanyan M, Martyanov A, Deppermann C. Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. Int J Mol Sci 2022; 23:ijms23073868. [PMID: 35409226 PMCID: PMC8998935 DOI: 10.3390/ijms23073868] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbβ3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet-neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet-monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.
Collapse
Affiliation(s)
- Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Maria Stepanyan
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Physics Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Alexey Martyanov
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS (IBCP RAS), 119334 Moscow, Russia
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Correspondence:
| |
Collapse
|
16
|
Jiang Y, Tang Y, Hoover C, Kondo Y, Huang D, Restagno D, Shao B, Gao L, Michael McDaniel J, Zhou M, Silasi-Mansat R, McGee S, Jiang M, Bai X, Lupu F, Ruan C, Marth JD, Wu D, Han Y, Xia L. Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice. Cell Death Differ 2021; 28:3009-3021. [PMID: 33993195 PMCID: PMC8564511 DOI: 10.1038/s41418-021-00797-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The liver has recently been identified as a major organ for destruction of desialylated platelets. However, the underlying mechanism remains unclear. Kupffer cells, which are professional phagocytic cells in the liver, comprise the largest population of resident tissue macrophages in the body. Kupffer cells express a C-type lectin receptor, CLEC4F, that recognizes desialylated glycans with an unclear in vivo role in mediating platelet destruction. In this study, we generated a CLEC4F-deficient mouse model (Clec4f-/-) and found that CLEC4F was specifically expressed by Kupffer cells. Using the Clec4f-/- mice and a newly generated platelet-specific reporter mouse line, we revealed a critical role for CLEC4F on Kupffer cells in mediating destruction of desialylated platelets in the liver in vivo. Platelet clearance experiments and ultrastructural analysis revealed that desialylated platelets were phagocytized predominantly by Kupffer cells in a CLEC4F-dependent manner in mice. Collectively, these findings identify CLEC4F as a Kupffer cell receptor important for the destruction of desialylated platelets induced by bacteria-derived neuraminidases, which provide new insights into the pathogenesis of thrombocytopenia in disease conditions such as sepsis.
Collapse
Affiliation(s)
- Yizhi Jiang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.452929.10000 0004 8513 0241Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Yaqiong Tang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Christopher Hoover
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Yuji Kondo
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Dongping Huang
- grid.452929.10000 0004 8513 0241Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Damien Restagno
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Bojing Shao
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Liang Gao
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - J. Michael McDaniel
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Meixiang Zhou
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Robert Silasi-Mansat
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Samuel McGee
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Miao Jiang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Xia Bai
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Florea Lupu
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Changgeng Ruan
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Jamey D. Marth
- grid.133342.40000 0004 1936 9676Center for Nanomedicine, SBP Medical Discovery Institute, and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106 USA
| | - Depei Wu
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Yue Han
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Lijun Xia
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| |
Collapse
|
17
|
Kuter DJ. Novel therapies for immune thrombocytopenia. Br J Haematol 2021; 196:1311-1328. [PMID: 34611885 DOI: 10.1111/bjh.17872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023]
Abstract
Current therapies for immune thrombocytopenia (ITP) are successful in providing a haemostatic platelet count in over two-thirds of patients. Still, some patients have an inadequate response and there is a need for other therapies. A number of novel therapies for ITP are currently being developed based upon the current pathophysiology of ITP. Many therapies are targetted at reducing platelet destruction by decreasing anti-platelet antibody production by immunosuppression with monoclonal antibodies targetted against CD40, CD38 and the immunoproteasome or physically reducing the anti-platelet antibody concentration by inhibition of the neonatal Fc receptor. Others target the phagocytic system by inhibiting FcγR function with staphylococcal protein A, hypersialylated IgG, polymeric Fc fragments, or Bruton kinase. With a recognition that platelet destruction is also mediated by complement, inhibitors of C1s are also being tested. Inhibition of platelet desialylation may also play a role. Other novel therapies promote platelet production with new oral thrombopoietin receptor agonists or the use of low-level laser light to improve mitochondrial activity and prevent megakaryocyte apoptosis. This review will focus on these novel mechanisms for treating ITP and assess the status of treatments currently under development. Successful new treatments for ITP might also provide a pathway to treat other autoimmune disorders.
Collapse
Affiliation(s)
- David J Kuter
- Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Li Y, Wang L, Zhang J, Han H, Liu H, Li C, Guo H, Chen Y, Chen X. Oseltamivir Improved Thrombocytopenia During Veno-Arterial Extracorporeal Membrane Oxygenation in Adults With Refractory Cardiac Failure: A Single-Center Retrospective Real-World Study. Front Cardiovasc Med 2021; 8:645867. [PMID: 34381822 PMCID: PMC8349981 DOI: 10.3389/fcvm.2021.645867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Severe thrombocytopenia is a common complication of extracorporeal membrane oxygenation (ECMO). Oseltamivir can be used to treat infection-associated thrombocytopenia. Objective: To evaluate the effect of oseltamivir on attenuating severe thrombocytopenia during ECMO. Methods: This was a single-center real-world study in critically ill patients supported with venous-arterial extracorporeal membrane oxygenation (VA-ECMO). Patients suspected or confirmed with influenza received oseltamivir according to the Chinese guidelines. Thrombocytopenia and survival were compared between the oseltamivir-treated and untreated group. The factors associated with survival were analyzed by multivariable Cox analysis. Results: A total of 82 patients were included. All patients developed thrombocytopenia after initiating VA-ECMO. Twenty-three patients received oseltamivir (O+ group), and 59 did not use oseltamivir (O− group). During the first 8 days after VA-ECMO initiation, the platelet count in the O+ group was higher than that in the O− group (all P < 0.05). The patients in the O+ group had a higher median nadir platelet count (77,000/μl, 6,000–169,000/μl) compared with the O− group (49,000/μl, 2,000–168,000/μl; P = 0.04). A nadir platelet count of <50,000/μl was seen in 26% of the patients in the O+ group, compared with 53% in the O− group (P = 0.031). No significant difference in survival from cardiac failure was seen between the O+ and O− group (48 vs. 56%, P = 0.508). The Sequential Organ Failure Assessment (SOFA) score on initiation of VA-ECMO were independently associated with survival (OR = 1.12, 95% confidence interval (95% CI): 1.02–1.22, P = 0.015). Conclusions: Oseltamivir could ameliorate VA-ECMO-related thrombocytopenia. These findings suggested the prophylactic potential of oseltamivir on severe thrombocytopenia associated with the initiation of VA-ECMO.
Collapse
Affiliation(s)
- Yuan Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Lin Wang
- Qilu Hospital, Shandong University, Jinan, China
| | | | - Hui Han
- Qilu Hospital, Shandong University, Jinan, China
| | - Han Liu
- Qilu Hospital, Shandong University, Jinan, China
| | - Chaoyang Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Haipeng Guo
- Qilu Hospital, Shandong University, Jinan, China
| | - Yuguo Chen
- Qilu Hospital, Shandong University, Jinan, China
| | - Xiaomei Chen
- Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
19
|
Sun J, Uchiyama S, Olson J, Morodomi Y, Cornax I, Ando N, Kohno Y, Kyaw MMT, Aguilar B, Haste NM, Kanaji S, Kanaji T, Rose WE, Sakoulas G, Marth JD, Nizet V. Repurposed drugs block toxin-driven platelet clearance by the hepatic Ashwell-Morell receptor to clear Staphylococcus aureus bacteremia. Sci Transl Med 2021; 13:13/586/eabd6737. [PMID: 33762439 DOI: 10.1126/scitranslmed.abd6737] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus (SA) bloodstream infections cause high morbidity and mortality (20 to 30%) despite modern supportive care. In a human bacteremia cohort, we found that development of thrombocytopenia was correlated to increased mortality and increased α-toxin expression by the pathogen. Platelet-derived antibacterial peptides are important in bloodstream defense against SA, but α-toxin decreased platelet viability, induced platelet sialidase to cause desialylation of platelet glycoproteins, and accelerated platelet clearance by the hepatic Ashwell-Morell receptor (AMR). Ticagrelor (Brilinta), a commonly prescribed P2Y12 receptor inhibitor used after myocardial infarction, blocked α-toxin-mediated platelet injury and resulting thrombocytopenia, thereby providing protection from lethal SA infection in a murine intravenous challenge model. Genetic deletion or pharmacological inhibition of AMR stabilized platelet counts and enhanced resistance to SA infection, and the anti-influenza sialidase inhibitor oseltamivir (Tamiflu) provided similar therapeutic benefit. Thus, a "toxin-platelet-AMR" regulatory pathway plays a critical role in the pathogenesis of SA bloodstream infection, and its elucidation provides proof of concept for repurposing two commonly prescribed drugs as adjunctive therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Josh Sun
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| | - Satoshi Uchiyama
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Ingrid Cornax
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Nao Ando
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Yohei Kohno
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - May M T Kyaw
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Bernice Aguilar
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Nina M Haste
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| | - Sachiko Kanaji
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - George Sakoulas
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Jamey D Marth
- Center for Nanomedicine, UC Santa Barbara, Santa Barbara, CA 93106, USA.,Sanford Burnham Prebys Medical Discovery Institute, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Victor Nizet
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA. .,Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Wu X, Li Y, Tong H. Research Advances in the Subtype of Sepsis-Associated Thrombocytopenia. Clin Appl Thromb Hemost 2021; 26:1076029620959467. [PMID: 33054353 PMCID: PMC7573720 DOI: 10.1177/1076029620959467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The incidence and mortality of sepsis in the intensive care unit (ICU) are extremely high. Thrombocytopenia, one of the most common laboratory abnormalities, is correlated with prognosis in sepsis. The pathophysiology of sepsis-associated thrombocytopenia (SAT) remains unclear and may be associated with several factors such as platelet activation due to vascular injury and pathogen, suppression of bone marrow, platelet-targeted antibodies and desialylation. This review summarized all these possible mechanisms in the 3 subtypes of SAT: increased platelet consumption, reduced platelet production and increased platelet destruction. Based on the clinically available platelet parameters, the evidence for identifying SAT subtypes and the recent progress in treatments according to these subtypes are proposed to provide new prospects for the management of SAT.
Collapse
Affiliation(s)
- Xinghui Wu
- The First School of Clinical Medicine, 70570Southern Medical University, Guangzhou, People's Republic of China
| | - Yue Li
- Department of Intensive Care Unit, 26470PLA General Hospital of Southern Theatre Command, Key Laboratory of Tropical Zone Trauma Care and Tissue Repair of PLA, Guangzhou, People's Republic of China
| | - Huasheng Tong
- Department of Intensive Care Unit, 26470PLA General Hospital of Southern Theatre Command, Key Laboratory of Tropical Zone Trauma Care and Tissue Repair of PLA, Guangzhou, People's Republic of China
| |
Collapse
|
21
|
Abstract
Platelet adhesion to the site of vascular damage is a critical early step in hemostasis. The platelet glycoprotein (GP) Ib-IX-V plays a key role in this step via its interaction with immobilized von Willebrand Factor (VWF). In addition to its well-known role in adhesion, GPIb-IX-V is critical for platelets' survival in circulation and plays an important role in the regulation of platelet clearance. Several mechanisms of platelet clearance work in concert to maintain a normal platelet count and ensure that circulating platelets are functionally viable via removal of senescent or activated platelets. Furthermore, dysregulation of platelet clearance underlies several bleeding disorders. GPIb-IX-V is central to many physiological mechanisms of platelet clearance including clearance via glycan receptors, clearance of VWF-platelet complexes, and fast clearance of transfused platelets. GPIb-IX-V dependent clearance also underlies thrombocytopenia in several bleeding disorders, including von Willebrand disease (VWD) and immune thrombocytopenia. This review will cover physiological and pathological mechanisms of platelet clearance, focusing on the role of GPIb-IX-V.
Collapse
Affiliation(s)
- M Edward Quach
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
22
|
Masso-Silva JA, Moshensky A, Shin J, Olay J, Nilaad S, Advani I, Bojanowski CM, Crotty S, Li WT, Ongkeko WM, Singla S, Crotty Alexander LE. Chronic E-Cigarette Aerosol Inhalation Alters the Immune State of the Lungs and Increases ACE2 Expression, Raising Concern for Altered Response and Susceptibility to SARS-CoV-2. Front Physiol 2021; 12:649604. [PMID: 34122126 PMCID: PMC8194307 DOI: 10.3389/fphys.2021.649604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Conventional smoking is known to both increase susceptibility to infection and drive inflammation within the lungs. Recently, smokers have been found to be at higher risk of developing severe forms of coronavirus disease 2019 (COVID-19). E-cigarette aerosol inhalation (vaping) has been associated with several inflammatory lung disorders, including the recent e-cigarette or vaping product use-associated lung injury (EVALI) epidemic, and recent studies have suggested that vaping alters host susceptibility to pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the impact of vaping on lung inflammatory pathways, including the angiotensin-converting enzyme 2 (ACE2) receptor known to be involved in SARS-CoV-2 infection, mice were exposed to e-cigarette aerosols for 60 min daily for 1-6 months and underwent gene expression analysis. Hierarchical clustering revealed extensive gene expression changes occurred in the lungs of both inbred C57BL/6 mice and outbred CD1 mice, with 2,933 gene expression changes in C57BL/6 mice, and 2,818 gene expression changes in CD1 mice (>abs 1.25-fold change). Particularly, large reductions in IgA and CD4 were identified, indicating impairment of host responses to pathogens via reductions in immunoglobulins and CD4 T cells. CD177, facmr, tlr9, fcgr1, and ccr2 were also reduced, consistent with diminished host defenses via decreased neutrophils and/or monocytes in the lungs. Gene set enrichment (GSE) plots demonstrated upregulation of gene expression related to cell activation specifically in neutrophils. As neutrophils are a potential driver of acute lung injury in COVID-19, increased neutrophil activation in the lungs suggests that vapers are at higher risk of developing more severe forms of COVID-19. The receptor through which SARS-CoV-2 infects host cells, ACE2, was found to have moderate upregulation in mice exposed to unflavored vape pens, and further upregulation (six-fold) with JUUL mint aerosol exposure. No changes were found in mice exposed to unflavored Mod device-generated aerosols. These findings suggest that specific vaping devices and components of e-liquids have an effect on ACE2 expression, thus potentially increasing susceptibility to SARS-CoV-2. In addition, exposure to e-cigarette aerosols both with and without nicotine led to alterations in eicosanoid lipid profiles within the BAL. These data demonstrate that chronic, daily inhalation of e-cigarette aerosols fundamentally alters the inflammatory and immune state of the lungs. Thus, e-cigarette vapers may be at higher risk of developing infections and inflammatory disorders of the lungs.
Collapse
Affiliation(s)
- Jorge A. Masso-Silva
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - Alexander Moshensky
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - John Shin
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - Jarod Olay
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - Sedtavut Nilaad
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - Ira Advani
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - Christine M. Bojanowski
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
- Division of Pulmonary Critical Care, Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Shane Crotty
- Department of Medicine, La Jolla Institute of Allergy and Immunology, La Jolla, CA, United States
| | - Wei Tse Li
- Department of Otolaryngology-Head and Neck Surgery, UCSD, La Jolla, CA, United States
| | - Weg M. Ongkeko
- Department of Otolaryngology-Head and Neck Surgery, UCSD, La Jolla, CA, United States
| | - Sunit Singla
- Division of Pulmonary Critical Care, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Laura E. Crotty Alexander
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| |
Collapse
|
23
|
Chen Y, Hu J, Chen Y. Platelet desialylation and TFH cells-the novel pathway of immune thrombocytopenia. Exp Hematol Oncol 2021; 10:21. [PMID: 33722280 PMCID: PMC7958461 DOI: 10.1186/s40164-021-00214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by immune-mediated destruction of one's own platelets. The progression of thrombocytopenia involves an imbalance of platelet production and clearance. B cells can induce autoantibodies, and T cells contribute to the pathological progression as well. Some patients with ITP have a poor response to common first-line therapies. Recent studies have shown that a novel Fc-independent platelet clearance pathway is associated with poor prognosis in these patients. By this pathway, desialylated platelets can be cleared by Ashwell-Morell receptor (AMR) on hepatocytes. Research has demonstrated that patients with refractory ITP usually have a high level of desialylation, indicating the important role of sialylation on platelet membrane glycoprotein (GP) in patients with primary immune thrombocytopenia, and neuraminidase 1(NEU1) translocation might be involved in this process. Patients with ITP who are positive for anti-GPIbα antibodies have a poor prognosis, which indicates that anti-GPIbα antibodies are associated with this Fc-independent platelet clearance pathway. Experiments have proven that these antibodies could lead to the desialylation of GPs on platelets. The T follicular helper (TFH) cell level is related to the expression of the anti-GPIbα antibody, which indicates its role in the progression of desialylation. This review will discuss platelet clearance and production, especially the role of the anti-GPIbα antibody and desialylation in the pathophysiology of ITP and therapy for this disease.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China.
| |
Collapse
|
24
|
Wang Y, Chen W, Zhang W, Lee-Sundlov MM, Casari C, Berndt MC, Lanza F, Bergmeier W, Hoffmeister KM, Zhang XF, Li R. Desialylation of O-glycans on glycoprotein Ibα drives receptor signaling and platelet clearance. Haematologica 2021; 106:220-229. [PMID: 31974202 PMCID: PMC7776245 DOI: 10.3324/haematol.2019.240440] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
During infection neuraminidase desialylates platelets and induces their rapid clearance from circulation. The underlying molecular basis, particularly the role of platelet glycoprotein (GP)Ibα therein, is not clear. Utilizing genetically altered mice, we report that the extracellular domain of GPIbα, but neither von Willebrand factor nor ADAM17 (a disintegrin and metalloprotease 17), is required for platelet clearance induced by intravenous injection of neuraminidase. Lectin binding to platelet following neuraminidase injection over time revealed that the extent of desialylation of O-glycans correlates with the decrease of platelet count in mice. Injection of α2,3-neuraminidase reduces platelet counts in wild-type but not in transgenic mice expressing only a chimeric GPIbα that misses most of its extracellular domain. Neuraminidase treatment induces unfolding of the O-glycosylated mechanosensory domain in GPIbα as monitored by single-molecule force spectroscopy, increases the exposure of the ADAM17 shedding cleavage site in the mechanosensory domain on the platelet surface, and induces ligand-independent GPIb-IX signaling in human and murine platelets. These results suggest that desialylation of O-glycans of GPIbα induces unfolding of the mechanosensory domain, subsequent GPIb-IX signaling including amplified desialylation of N-glycans, and eventually rapid platelet clearance. This new molecular mechanism of GPIbα-facilitated clearance could potentially resolve many puzzling and seemingly contradicting observations associated with clearance of desialylated or hyposialylated platelet.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Wenchun Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Wei Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA
| | | | - Caterina Casari
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, NC
| | | | - Francois Lanza
- Université de Strasbourg, EFS-Alsace, Strasbourg, France
| | | | | | - X Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA
| | - Renhao Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
25
|
Quach ME, Li R. Structure-function of platelet glycoprotein Ib-IX. J Thromb Haemost 2020; 18:3131-3141. [PMID: 32735697 PMCID: PMC7854888 DOI: 10.1111/jth.15035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
The glycoprotein (GP)Ib-IX receptor complex plays a critical role in platelet physiology and pathology. Its interaction with von Willebrand factor (VWF) on the subendothelial matrix instigates platelet arrest at the site of vascular injury and is vital to primary hemostasis. Its reception to other ligands and counter-receptors in the bloodstream also contribute to various processes of platelet biology that are still being discovered. While its basic composition and its link to congenital bleeding disorders were well documented and firmly established more than 25 years ago, recent years have witnessed critical advances in the organization, dynamics, activation, regulation, and functions of the GPIb-IX complex. This review summarizes important findings and identifies questions that remain about this unique platelet mechanoreceptor complex.
Collapse
Affiliation(s)
- M Edward Quach
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
26
|
Deppermann C, Kratofil RM, Peiseler M, David BA, Zindel J, Castanheira FVES, van der Wal F, Carestia A, Jenne CN, Marth JD, Kubes P. Macrophage galactose lectin is critical for Kupffer cells to clear aged platelets. J Exp Med 2020; 217:133651. [PMID: 31978220 PMCID: PMC7144524 DOI: 10.1084/jem.20190723] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/01/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Every day, megakaryocytes produce billions of platelets that circulate for several days and eventually are cleared by the liver. The exact removal mechanism, however, remains unclear. Loss of sialic acid residues is thought to feature in the aging and clearance of platelets. Using state-of-the-art spinning disk intravital microscopy to delineate the different compartments and cells of the mouse liver, we observed rapid accumulation of desialylated platelets predominantly on Kupffer cells, with only a few on endothelial cells and none on hepatocytes. Kupffer cell depletion prevented the removal of aged platelets from circulation. Ashwell-Morell receptor (AMR) deficiency alone had little effect on platelet uptake. Macrophage galactose lectin (MGL) together with AMR mediated clearance of desialylated or cold-stored platelets by Kupffer cells. Effective clearance is critical, as mice with an aged platelet population displayed a bleeding phenotype. Our data provide evidence that the MGL of Kupffer cells plays a significant role in the removal of desialylated platelets through a collaboration with the AMR, thereby maintaining a healthy and functional platelet compartment.
Collapse
Affiliation(s)
- Carsten Deppermann
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rachel M Kratofil
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Moritz Peiseler
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Bruna A David
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Joel Zindel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Fernanda Vargas E Silva Castanheira
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Fardau van der Wal
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Agostina Carestia
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Craig N Jenne
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jamey D Marth
- Center for Nanomedicine, SBP Medical Discovery Institute, and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Lauková L, Weiss R, Semak V, Weber V. Desialylation of platelet surface glycans enhances platelet adhesion to adsorbent polymers for lipoprotein apheresis. Int J Artif Organs 2020; 44:378-384. [PMID: 33143534 PMCID: PMC8524686 DOI: 10.1177/0391398820968849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Lipoprotein apheresis is an important therapeutic option in
homozygous familial hypercholesterolemia, progressive
atherosclerosis, or when depletion of lipoprotein(a) is
indicated. It is generally regarded as safe, but drops in
platelet counts as well as sporadic episodes of thrombocytopenia
have been reported. We assessed the influence of platelet
desialylation, which may be induced by endogenous or
pathogen-derived neuraminidases, on platelet adhesion to
polyacrylate-based adsorbents for whole blood lipoprotein
apheresis. Methods: Medical grade platelet concentrates were incubated with
neuraminidase in vitro and were circulated over adsorbent
columns downscaled from clinical application. Results: Cleavage of terminal sialic residues resulted in platelet
activation with significantly elevated expression of platelet
factor 4 (PF4) and in enhanced platelet adhesion to the
adsorbent, accompanied by a pronounced drop in platelet counts
in the column flow-through. Conclusion: Alterations in endogenous neuraminidase activity or exogenous
(pathogen-derived) neuraminidase may trigger enhanced platelet
adhesion in whole blood lipoprotein apheresis.
Collapse
Affiliation(s)
- Lucia Lauková
- Department for Biomedical
Research, Center for Biomedical Technology, Danube University Krems, Krems,
Austria
| | - René Weiss
- Department for Biomedical
Research, Christian Doppler Laboratory for Innovative Therapy Approaches in
Sepsis, Danube University Krems, Krems, Austria
| | - Vladislav Semak
- Department for Biomedical
Research, Center for Biomedical Technology, Danube University Krems, Krems,
Austria
| | - Viktoria Weber
- Department for Biomedical
Research, Christian Doppler Laboratory for Innovative Therapy Approaches in
Sepsis, Danube University Krems, Krems, Austria
- Viktoria Weber, Department for
Biomedical Research, Christian Doppler Laboratory for Innovative
Therapy Approaches in Sepsis, Danube University Krems, Dr. Karl
Dorrek-Straße 30, Krems 3500, Austria.
| |
Collapse
|
28
|
Belizaire R, Makar RS. Non-Alloimmune Mechanisms of Thrombocytopenia and Refractoriness to Platelet Transfusion. Transfus Med Rev 2020; 34:242-249. [PMID: 33129606 PMCID: PMC7494440 DOI: 10.1016/j.tmrv.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Refractoriness to platelet transfusion is a common clinical problem encountered by the transfusion medicine specialist. It is well recognized that most causes of refractoriness to platelet transfusion are not a consequence of alloimmunization to human leukocyte, platelet-specific, or ABO antigens, but are a consequence of platelet sequestration and consumption. This review summarizes the clinical factors that result in platelet refractoriness and highlights recent data describing novel biological mechanisms that contribute to this clinical problem.
Collapse
Affiliation(s)
- Roger Belizaire
- Associate Director, Adult Transfusion Medicine, Brigham and Women's Hospital, Boston, MA
| | - Robert S Makar
- Director, Blood Transfusion Service, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
29
|
Abstract
Platelets, small anucleate cells circulating in the blood, are critical mediators in haemostasis and thrombosis. Interestingly, recent studies demonstrated that platelets contain both pro-inflammatory and anti-inflammatory molecules, equipping platelets with immunoregulatory function in both innate and adaptive immunity. In the context of infectious diseases, platelets are involved in early detection of invading microorganisms and are actively recruited to sites of infection. Platelets exert their effects on microbial pathogens either by direct binding to eliminate or restrict dissemination, or by shaping the subsequent host immune response. Reciprocally, many invading microbial pathogens can directly or indirectly target host platelets, altering platelet count or/and function. In addition, microbial pathogens can impact the host auto- and alloimmune responses to platelet antigens in several immune-mediated diseases, such as immune thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. In this review, we discuss the mechanisms that contribute to the bidirectional interactions between platelets and various microbial pathogens, and how these interactions hold relevant implications in the pathogenesis of many infectious diseases. The knowledge obtained from "well-studied" microbes may also help us understand the pathogenesis of emerging microbes, such as SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Conglei Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
| | - June Li
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Heyu Ni
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Affiliation(s)
- Jack Yule
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Edgbaston, UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Edgbaston, UK
| | - Natalie S Poulter
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Edgbaston, UK
| |
Collapse
|
31
|
Lee-Sundlov MM, Stowell SR, Hoffmeister KM. Multifaceted role of glycosylation in transfusion medicine, platelets, and red blood cells. J Thromb Haemost 2020; 18:1535-1547. [PMID: 32350996 PMCID: PMC7336546 DOI: 10.1111/jth.14874] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Glycosylation is highly prevalent, and also one of the most complex and varied posttranslational modifications. This large glycan diversity results in a wide range of biological functions. Functional diversity includes protein degradation, protein clearance, cell trafficking, cell signaling, host-pathogen interactions, and immune defense, including both innate and acquired immunity. Glycan-based ABO(H) antigens are critical in providing compatible products in the setting of transfusion and organ transplantation. However, evidence also suggests that ABO expression may influence cardiovascular disease, thrombosis, and hemostasis disorders, including alterations in platelet function and von Willebrand factor blood levels. Glycans also regulate immune and hemostasis function beyond ABO(H) antigens. Mutations in glycogenes (PIGA, COSMC) lead to serious blood disorders, including Tn syndrome associated with hyperagglutination, hemolysis, and thrombocytopenia. Alterations in genes responsible for sialic acids (Sia) synthesis (GNE) and UDP-galactose (GALE) and lactosamine (LacNAc) (B4GALT1) profoundly affect circulating platelet counts. Desialylation (removal of Sia) is affected by human and pathogenic neuraminidases. This review addresses the role of glycans in transfusion medicine, hemostasis and thrombosis, and red blood cell and platelet survival.
Collapse
Affiliation(s)
- Melissa M. Lee-Sundlov
- Translational Glycomics Center, Blood Research Institute Versiti, Milwaukee, WI, United States
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Karin M. Hoffmeister
- Translational Glycomics Center, Blood Research Institute Versiti, Milwaukee, WI, United States
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee WI, United States
| |
Collapse
|
32
|
Assinger A, Schrottmaier WC, Salzmann M, Rayes J. Platelets in Sepsis: An Update on Experimental Models and Clinical Data. Front Immunol 2019; 10:1687. [PMID: 31379873 PMCID: PMC6650595 DOI: 10.3389/fimmu.2019.01687] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022] Open
Abstract
Beyond their important role in hemostasis, platelets play a crucial role in inflammatory diseases. This becomes apparent during sepsis, where platelet count and activation correlate with disease outcome and survival. Sepsis is caused by a dysregulated host response to infection, leading to organ dysfunction, permanent disabilities, or death. During sepsis, tissue injury results from the concomitant uncontrolled activation of the complement, coagulation, and inflammatory systems as well as platelet dysfunction. The balance between the systemic inflammatory response syndrome (SIRS) and the compensatory anti-inflammatory response (CARS) regulates sepsis outcome. Persistent thrombocytopenia is considered as an independent risk factor of mortality in sepsis, although it is still unclear whether the drop in platelet count is the cause or the consequence of sepsis severity. The role of platelets in sepsis development and progression was addressed in different experimental in vivo models, particularly in mice, that represent various aspects of human sepsis. The immunomodulatory function of platelets depends on the experimental model, time, and type of infection. Understanding the molecular mechanism of platelet regulation in inflammation could bring us one step closer to understand this important aspect of primary hemostasis which drives thrombotic as well as bleeding complications in patients with sterile and infectious inflammation. In this review, we summarize the current understanding of the contribution of platelets to sepsis severity and outcome. We highlight the differences between platelet receptors in mice and humans and discuss the potential and limitations of animal models to study platelet-related functions in sepsis.
Collapse
Affiliation(s)
- Alice Assinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Manuel Salzmann
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julie Rayes
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
33
|
Yang WH, Heithoff DM, Aziz PV, Haslund-Gourley B, Westman JS, Narisawa S, Pinkerton AB, Millán JL, Nizet V, Mahan MJ, Marth JD. Accelerated Aging and Clearance of Host Anti-inflammatory Enzymes by Discrete Pathogens Fuels Sepsis. Cell Host Microbe 2019; 24:500-513.e5. [PMID: 30308156 DOI: 10.1016/j.chom.2018.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 09/16/2018] [Indexed: 12/29/2022]
Abstract
Sepsis is a life-threatening inflammatory syndrome accompanying a bloodstream infection. Frequently secondary to pathogenic bacterial infections, sepsis remains difficult to treat as a singular disease mechanism. We compared the pathogenesis of murine sepsis experimentally elicited by five bacterial pathogens and report similarities among host responses to Gram-negative Salmonella and E. coli. We observed that a host protective mechanism involving de-toxification of lipopolysaccharide by circulating alkaline phosphatase (AP) isozymes was incapacitated during sepsis caused by Salmonella or E. coli through activation of host Toll-like receptor 4, which triggered Neu1 and Neu3 neuraminidase induction. Elevated neuraminidase activity accelerated the molecular aging and clearance of AP isozymes, thereby intensifying disease. Mice deficient in the sialyltransferase ST3Gal6 displayed increased disease severity, while deficiency of the endocytic lectin hepatic Ashwell-Morell receptor was protective. AP augmentation or neuraminidase inhibition diminished inflammation and promoted host survival. This study illuminates distinct routes of sepsis pathogenesis, which may inform therapeutic development.
Collapse
Affiliation(s)
- Won Ho Yang
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Douglas M Heithoff
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Peter V Aziz
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Benjamin Haslund-Gourley
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Julia S Westman
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Sonoko Narisawa
- Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Anthony B Pinkerton
- Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - José Luis Millán
- Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Mahan
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Jamey D Marth
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA.
| |
Collapse
|
34
|
|
35
|
Taylor ME, Drickamer K. Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J 2019; 286:1800-1814. [PMID: 30657247 PMCID: PMC6563452 DOI: 10.1111/febs.14759] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Mammalian glycan-binding receptors, sometimes known as lectins, interact with glycans, the oligosaccharide portions of endogenous mammalian glycoproteins and glycolipids as well as sugars on the surfaces of microbes. These receptors guide glycoproteins out of and back into cells, facilitate communication between cells through both adhesion and signaling, and allow the innate immune system to respond quickly to viral, fungal, bacterial, and parasitic pathogens. For many of the roughly 100 glycan-binding receptors that are known in humans, there are good descriptions of what types of glycans they bind and how selectivity for these ligands is achieved at the molecular level. In some cases, there is also comprehensive evidence for the roles that the receptors play at the cellular and organismal levels. In addition to highlighting these well-understood paradigms for glycan-binding receptors, this review will suggest where gaps remain in our understanding of the physiological functions that they can serve.
Collapse
|
36
|
Pimienta G, Heithoff DM, Rosa-Campos A, Tran M, Esko JD, Mahan MJ, Marth JD, Smith JW. Plasma Proteome Signature of Sepsis: a Functionally Connected Protein Network. Proteomics 2019; 19:e1800389. [PMID: 30706660 DOI: 10.1002/pmic.201800389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Sepsis is an extreme host response to infection that leads to loss of organ function and cardiovascular integrity. Mortality from sepsis is on the rise. Despite more than three decades of research and clinical trials, specific diagnostic and therapeutic strategies for sepsis are still absent. The use of LFQ- and TMT-based quantitative proteomics is reported here to study the plasma proteome in five mouse models of sepsis. A knowledge-based interpretation of the data reveals a protein network with extensive connectivity through documented functional or physical interactions. The individual proteins in the network all have a documented role in sepsis and are known to be extracellular. The changes in protein abundance observed in the mouse models of sepsis have for the most part the same directionality (increased or decreased abundance) as reported in the literature for human sepsis. This network has been named the Plasma Proteome Signature of Sepsis (PPSS). The PPSS is a quantifiable molecular readout that can supplant the current symptom-based approach used to diagnose sepsis. This type of molecular interpretation of sepsis, its progression, and its response to therapeutic intervention are an important step in advancing our understanding of sepsis, and for discovering and evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Genaro Pimienta
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 9207, USA
| | - Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA.,Center for Nanomedicine, University of California, Santa Barbara, CA, 93106, USA
| | - Alexandre Rosa-Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Minerva Tran
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 9207, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Jamey D Marth
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 9207, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA.,Center for Nanomedicine, University of California, Santa Barbara, CA, 93106, USA
| | - Jeffrey W Smith
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 9207, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
37
|
Seth PP, Tanowitz M, Bennett CF. Selective tissue targeting of synthetic nucleic acid drugs. J Clin Invest 2019; 129:915-925. [PMID: 30688661 DOI: 10.1172/jci125228] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are chemically synthesized nucleic acid analogs designed to bind to RNA by Watson-Crick base pairing. Following binding to the targeted RNA, the ASO perturbs RNA function by promoting selective degradation of the targeted RNA, altering RNA intermediary metabolism, or disrupting function of the RNA. Most antisense drugs are chemically modified to enhance their pharmacological properties and for passive targeting of the tissues of therapeutic interest. Recent advances in selective tissue targeting have resulted in a newer generation of ASO drugs that are more potent and better tolerated than previous generations, spawning renewed interest in identifying selective ligands that enhance targeted delivery of ASOs to tissues.
Collapse
|
38
|
Wei M, Wang PG. Desialylation in physiological and pathological processes: New target for diagnostic and therapeutic development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:25-57. [PMID: 30905454 DOI: 10.1016/bs.pmbts.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Desialylation is a pivotal part of sialic acid metabolism, which initiates the catabolism of glycans by removing the terminal sialic acid residues on glycans, thereby modulating the structure and functions of glycans, glycoproteins, or glycolipids. The functions of sialic acids have been well recognized, whereas the function of desialylation process is underappreciated or largely ignored. However, accumulating evidence demonstrates that desialylation plays an important role in a variety of physiological and pathological processes. This chapter summarizes the current knowledge pertaining to desialylation in a variety of physiological and pathological processes, with a focus on the underlying molecular mechanisms. The potential of targeting desialylation process for diagnostic and therapeutic development is also discussed.
Collapse
Affiliation(s)
- Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Peng George Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
39
|
Coller BS. Foreword: A Brief History of Ideas About Platelets in Health and Disease. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Revilla N, Corral J, Miñano A, Mingot-Castellano ME, Campos RM, Velasco F, Gonzalez N, Galvez E, Berrueco R, Fuentes I, Gonzalez-Lopez TJ, de la Morena-Barrio ME, Gonzalez-Porras JR, Vicente V, Lozano ML. Multirefractory primary immune thrombocytopenia; targeting the decreased sialic acid content. Platelets 2018; 30:743-751. [PMID: 30296193 DOI: 10.1080/09537104.2018.1513476] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Patients with multirefractory immune thrombocytopenia (ITP) have limited treatment options. Recent data suggest that specific anti-platelet antibodies may cause destruction of platelets by favoring platelet loss of sialic acid. In this multicenter study 35 patients with ITP, including 16 with multirefractory disease, were analyzed for antiplatelet-antibodies, thrombopoietin (TPO) levels, and platelet desialylation. In selected cases, responses to a novel treatment strategy using oseltamivir were tested. We found that antibodies against GPIbα were overrepresented in multirefractory patients compared to responders (n = 19). In contrast to conventional ITP patients, multirefractory patients exhibited a significant increased platelet activation state (granule secretion) and desialylation (RCA-1 binding) (p < 0.05), and a trend toward higher plasma TPO concentrations. The decreased sialic acid content seemed to be restricted to platelet glycoproteins, since other plasma proteins were not hypoglycosylated. A total of 10 patients with multirefractory ITP having remarkable loss of platelet terminal sialic acids were given oseltamivir phosphate. When the antiviral drug was combined with TPO receptor agonists (TPO-RAs) or with immunosuppressant drugs, platelet responses were observed in 66.7% of patients. All responding patients presented with antibodies reactive only against GPIbα. These findings suggest that desialylation may play a key pathogenic role in some multirefractory ITP patients, and provide diagnostic tools for the identification of such patients. Furthermore, we show that sialidase inhibitor treatment in combination with therapies that help to increase platelet production can induce sustained platelet responses in some patients with anti-GPIbα -mediated thrombocytopenia that have failed previous therapies.
Collapse
Affiliation(s)
- Nuria Revilla
- a Centro Regional de Hemodonacion. Servicio de Hematologia y Oncologia Medica , Hospital Universitario Morales Meseguer. IMIB-Arrixaca. Universidad de Murcia , Murcia , Spain
| | - Javier Corral
- a Centro Regional de Hemodonacion. Servicio de Hematologia y Oncologia Medica , Hospital Universitario Morales Meseguer. IMIB-Arrixaca. Universidad de Murcia , Murcia , Spain.,b Grupo de investigación CB15/00055 del Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Antonia Miñano
- a Centro Regional de Hemodonacion. Servicio de Hematologia y Oncologia Medica , Hospital Universitario Morales Meseguer. IMIB-Arrixaca. Universidad de Murcia , Murcia , Spain
| | - Maria Eva Mingot-Castellano
- c Servicio de Hematologia y Hemoterapia , Hospital Regional Universitario de Malaga , Malaga , Spain.,d Servicio de Hematologia , Hospital de Jerez , Jerez , Spain
| | - Rosa Maria Campos
- e Hospital Universitario Reina Sofia, IMIBIC , Universidad de Córdoba , Cordoba , Spain
| | - Francisco Velasco
- f Servicio de Hematologia , Hospital Obispo Polanco , Teruel , Spain
| | - Nicolas Gonzalez
- g Servicio de Hematologia y Oncologia Pediatricas , Hospital Infantil Universitario Niño Jesus , Madrid , Spain
| | - Eva Galvez
- h Servicio de Hematologia y Oncologia Pediatricas , Institut de recerca pediatrica Hospital Sant Joan de Déu , Barcelona , Spain
| | | | | | - Tomas Jose Gonzalez-Lopez
- d Servicio de Hematologia , Hospital de Jerez , Jerez , Spain.,k IBSAL-USAL , Hospital Universitario de Salamanca , Salamanca , Spain
| | - Maria Eugenia de la Morena-Barrio
- a Centro Regional de Hemodonacion. Servicio de Hematologia y Oncologia Medica , Hospital Universitario Morales Meseguer. IMIB-Arrixaca. Universidad de Murcia , Murcia , Spain.,b Grupo de investigación CB15/00055 del Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Jose Ramon Gonzalez-Porras
- k IBSAL-USAL , Hospital Universitario de Salamanca , Salamanca , Spain.,l On behalf of the Spanish ITP group
| | - Vicente Vicente
- a Centro Regional de Hemodonacion. Servicio de Hematologia y Oncologia Medica , Hospital Universitario Morales Meseguer. IMIB-Arrixaca. Universidad de Murcia , Murcia , Spain.,b Grupo de investigación CB15/00055 del Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Maria Luisa Lozano
- a Centro Regional de Hemodonacion. Servicio de Hematologia y Oncologia Medica , Hospital Universitario Morales Meseguer. IMIB-Arrixaca. Universidad de Murcia , Murcia , Spain.,b Grupo de investigación CB15/00055 del Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain.,d Servicio de Hematologia , Hospital de Jerez , Jerez , Spain
| |
Collapse
|
41
|
Desialylation of Platelets by Pneumococcal Neuraminidase A Induces ADP-Dependent Platelet Hyperreactivity. Infect Immun 2018; 86:IAI.00213-18. [PMID: 30037798 DOI: 10.1128/iai.00213-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022] Open
Abstract
Platelets are increasingly recognized to play a role in the complications of Streptococcus pneumoniae infections. S. pneumoniae expresses neuraminidases, which may alter glycans on the platelet surface. In the present study, we investigated the capability of pneumococcal neuraminidase A (NanA) to remove sialic acid (desialylation) from the platelet surface, the consequences for the platelet activation status and reactivity, and the ability of neuraminidase inhibitors to prevent these effects. Our results show that soluble NanA induces platelet desialylation. Whereas desialylation itself did not induce platelet activation (P-selectin expression and platelet fibrinogen binding), platelets became hyperreactive to ex vivo stimulation by ADP and cross-linked collagen-related peptide (CRP-XL). Platelet aggregation with leukocytes also increased. These processes were dependent on the ADP pathway, as inhibitors of the pathway (apyrase and ticagrelor) abrogated platelet hyperreactivity. Inhibition of NanA-induced platelet desialylation by neuraminidase inhibitors (e.g., oseltamivir acid) also prevented the platelet effects of NanA. Collectively, our findings show that soluble NanA can desialylate platelets, leading to platelet hyperreactivity, which can be prevented by neuraminidase inhibitors.
Collapse
|
42
|
GPIbα is required for platelet-mediated hepatic thrombopoietin generation. Blood 2018; 132:622-634. [PMID: 29794068 DOI: 10.1182/blood-2017-12-820779] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Thrombopoietin (TPO), a hematopoietic growth factor produced predominantly by the liver, is essential for thrombopoiesis. Prevailing theory posits that circulating TPO levels are maintained through its clearance by platelets and megakaryocytes via surface c-Mpl receptor internalization. Interestingly, we found a two- to threefold decrease in circulating TPO in GPIbα-/- mice compared with wild-type (WT) controls, which was consistent in GPIbα-deficient human Bernard-Soulier syndrome (BSS) patients. We showed that lower TPO levels in GPIbα-deficient conditions were not due to increased TPO clearance by GPIbα-/- platelets but rather to decreased hepatic TPO mRNA transcription and production. We found that WT, but not GPIbα-/-, platelet transfusions rescued hepatic TPO mRNA and circulating TPO levels in GPIbα-/- mice. In vitro hepatocyte cocultures with platelets or GPIbα-coupled beads further confirm the disruption of platelet-mediated hepatic TPO generation in the absence of GPIbα. Treatment of GPIbα-/- platelets with neuraminidase caused significant desialylation; however, strikingly, desialylated GPIbα-/- platelets could not rescue impaired hepatic TPO production in vivo or in vitro, suggesting that GPIbα, independent of platelet desialylation, is a prerequisite for hepatic TPO generation. Additionally, impaired hepatic TPO production was recapitulated in interleukin-4/GPIbα-transgenic mice, as well as with antibodies targeting the extracellular portion of GPIbα, demonstrating that the N terminus of GPIbα is required for platelet-mediated hepatic TPO generation. These findings reveal a novel nonredundant regulatory role for platelets in hepatic TPO homeostasis, which improves our understanding of constitutive TPO regulation and has important implications in diseases related to GPIbα, such as BSS and auto- and alloimmune-mediated thrombocytopenias.
Collapse
|
43
|
Mechanisms of platelet clearance and translation to improve platelet storage. Blood 2018; 131:1512-1521. [PMID: 29475962 DOI: 10.1182/blood-2017-08-743229] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/28/2018] [Indexed: 02/01/2023] Open
Abstract
Hundreds of billions of platelets are cleared daily from circulation via efficient and highly regulated mechanisms. These mechanisms may be stimulated by exogenous reagents or environmental changes to accelerate platelet clearance, leading to thrombocytopenia. The interplay between antiapoptotic Bcl-xL and proapoptotic molecules Bax and Bak sets an internal clock for the platelet lifespan, and BH3-only proteins, mitochondrial permeabilization, and phosphatidylserine (PS) exposure may also contribute to apoptosis-induced platelet clearance. Binding of plasma von Willebrand factor or antibodies to the ligand-binding domain of glycoprotein Ibα (GPIbα) on platelets can activate GPIb-IX in a shear-dependent manner by inducing unfolding of the mechanosensory domain therein, and trigger downstream signaling in the platelet including desialylation and PS exposure. Deglycosylated platelets are recognized by the Ashwell-Morell receptor and potentially other scavenger receptors, and are rapidly cleared by hepatocytes and/or macrophages. Inhibitors of platelet clearance pathways, including inhibitors of GPIbα shedding, neuraminidases, and platelet signaling, are efficacious at preserving the viability of platelets during storage and improving their recovery and survival in vivo. Overall, common mechanisms of platelet clearance have begun to emerge, suggesting potential strategies to extend the shelf-life of platelets stored at room temperature or to enable refrigerated storage.
Collapse
|
44
|
Handtke S, Steil L, Greinacher A, Thiele T. Toward the Relevance of Platelet Subpopulations for Transfusion Medicine. Front Med (Lausanne) 2018; 5:17. [PMID: 29459897 PMCID: PMC5807390 DOI: 10.3389/fmed.2018.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Circulating platelets consist of subpopulations with different age, maturation state and size. In this review, we address the association between platelet size and platelet function and summarize the current knowledge on platelet subpopulations including reticulated platelets, procoagulant platelets and platelets exposing signals to mediate their clearance. Thereby, we emphasize the impact of platelet turnover as an important condition for platelet production in vivo. Understanding of the features that characterize platelet subpopulations is very relevant for the methods of platelet concentrate production, which may enrich or deplete particular platelet subpopulations. Moreover, the concept of platelet size being associated with platelet function may be attractive for transfusion medicine as it holds the perspective to separate platelet subpopulations with specific functional capabilities.
Collapse
Affiliation(s)
- Stefan Handtke
- Institut für Immunologie und Transfusionsmedizin, Greifswald, Germany
| | - Leif Steil
- Interfakultäres Institut für Funktionelle Genomforschung, Greifswald, Germany
| | | | - Thomas Thiele
- Institut für Immunologie und Transfusionsmedizin, Greifswald, Germany
| |
Collapse
|
45
|
Tunjungputri RN, Gasem MH, van der Does W, Sasongko PH, Isbandrio B, Urbanus RT, de Groot PG, van der Ven A, de Mast Q. Platelet dysfunction contributes to bleeding complications in patients with probable leptospirosis. PLoS Negl Trop Dis 2017; 11:e0005915. [PMID: 28934202 PMCID: PMC5626517 DOI: 10.1371/journal.pntd.0005915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 10/03/2017] [Accepted: 08/28/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Severe leptospirosis is frequently complicated by a hemorrhagic diathesis, of which the pathogenesis is still largely unknown. Thrombocytopenia is common, but often not to the degree that spontaneous bleeding is expected. We hypothesized that the hemorrhagic complications are not only related to thrombocytopenia, but also to platelet dysfunction, and that increased binding of von Willebrand factor (VWF) to platelets is involved in both platelet dysfunction and increased platelet clearance. METHODOLOGY/PRINCIPAL FINDINGS A prospective study was carried out in Semarang, Indonesia, enrolling 33 hospitalized patients with probable leptospirosis, of whom 15 developed clinical bleeding, and 25 healthy controls. Platelet activation and reactivity were determined using flow cytometry by measuring the expression of P-selectin and activation of the αIIbβ3 integrin by the binding of fibrinogen in unstimulated samples and after ex vivo stimulation by the platelet agonists adenosine-diphosphate (ADP) and thrombin-receptor activating peptide (TRAP). Platelet-VWF binding, before and after VWF stimulation by ristocetin, as well as plasma levels of VWF, active VWF, the VWF-inactivating enzyme ADAMTS13, thrombin-antithrombin complexes (TAT) and P-selectin were also measured. Bleeding complications were graded using the WHO bleeding scale. Our study revealed that platelet activation, with a secondary platelet dysfunction, is a feature of patients with probable leptospirosis, especially in those with bleeding manifestations. There was a significant inverse correlation of bleeding score with TRAP-stimulated P-selectin and platelet-fibrinogen binding (R = -0.72, P = 0.003 and R = -0.66, P = 0.01, respectively) but not with platelet count. Patients with bleeding also had a significantly higher platelet-VWF binding. Platelet counts were inversely correlated with platelet-VWF binding (R = -0.74; P = 0.0009. There were no correlations between platelet-VWF binding and the degree of platelet dysfunction, suggesting that increased platelet-VWF binding does not directly interfere with the platelet αIIbβ3 signaling pathway in patients with probable leptospirosis. CONCLUSION/SIGNIFICANCE Platelet dysfunction is common in probable leptospirosis patients with manifest bleeding. Increased VWF-platelet binding may contribute to the activation and clearance of platelets.
Collapse
Affiliation(s)
- Rahajeng N. Tunjungputri
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Muhammad Hussein Gasem
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Willemijn van der Does
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Pandu H. Sasongko
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Bambang Isbandrio
- National Reference Laboratory for Leptospira, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Rolf T. Urbanus
- Department of Clinical Chemistry and Haematology, University Medical Center, Utrecht, The Netherlands
| | - Philip G. de Groot
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Andre van der Ven
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proc Natl Acad Sci U S A 2017; 114:8360-8365. [PMID: 28716912 DOI: 10.1073/pnas.1707662114] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1-/- ). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1-/- mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1-/- platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell-Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1-/- platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1-/- platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver.
Collapse
|
47
|
Li MF, Li XL, Fan KL, Yu YY, Gong J, Geng SY, Liang YF, Huang L, Qiu JH, Tian XH, Wang WT, Zhang XL, Yu QX, Zhang YF, Lin P, Wang LN, Li X, Hou M, Liu LY, Peng J. Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: an open-label, multicenter, randomized controlled trial. J Hematol Oncol 2017; 10:104. [PMID: 28494777 PMCID: PMC5426054 DOI: 10.1186/s13045-017-0476-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Studies in murine models suggested that platelet desialylation was an important mechanism of thrombocytopenia during sepsis. METHODS First, we performed a prospective, multicenter, observational study that enrolled septic patients with or without thrombocytopenia to determine the association between platelet desialylation and thrombocytopenia in patients with sepsis, severe sepsis, and septic shock. Gender- and age-matched healthy adults were selected as normal controls in analysis of the platelet desialylation levels (study I). Next, we conducted an open-label randomized controlled trial (RCT) in which the patients who had severe sepsis with thrombocytopenia (platelet counts ≤50 × 109/L) were randomly assigned to receive antimicrobial therapy alone (control group) or antimicrobial therapy plus oseltamivir (oseltamivir group) in a 1:1 ratio (study II). The primary outcomes were platelet desialylation level at study entry, overall platelet response rate within 14 days post-randomization, and all-cause mortality within 28 days post-randomization. Secondary outcomes included platelet recovery time, the occurrence of bleeding events, and the amount of platelets transfused within 14 days post-randomization. RESULTS The platelet desialylation levels increased significantly in the 127 septic patients with thrombocytopenia compared to the 134 patients without thrombocytopenia. A platelet response was achieved in 45 of the 54 patients in the oseltamivir group (83.3%) compared with 34 of the 52 patients in the control group (65.4%; P = 0.045). The median platelet recovery time was 5 days (interquartile range 4-6) in the oseltamivir group compared with 7 days (interquartile range 5-10) in the control group (P = 0.003). The amount of platelets transfused decreased significantly in the oseltamivir group compared to the control group (P = 0.044). There was no difference in the overall 28-day mortality regardless of whether oseltamivir was used. The Sequential Organ Failure Assessment score and platelet recovery time were independent indicators of oseltamivir therapy. The main reason for all of the mortalities was multiple-organ failure. CONCLUSIONS Thrombocytopenia was associated with increased platelet desialylation in septic patients. The addition of oseltamivir could significantly increase the platelet response rate, shorten platelet recovery time, and reduce platelet transfusion. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR-IPR-16008542 .
Collapse
Affiliation(s)
- Mei-Feng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.,Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Xiao-Li Li
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Kai-Liang Fan
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.,Department of Emergency, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Yi Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jing Gong
- Division of Preventive Medicine, Center for Disease Control and Prevention of Yantai Development Zone, Yantai, China
| | - Shu-Ying Geng
- Department of Internal Medicine, Infectious Disease Hospital of Yantai, Yantai, China
| | - Ya-Feng Liang
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Ling Huang
- Intensive Care Unit, Yantaishan Hospital of Yantai, Yantai, China
| | - Ji-Hua Qiu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xing-Han Tian
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Wen-Ting Wang
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Xiao-Lu Zhang
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Qing-Xia Yu
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Yuan-Feng Zhang
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Peng Lin
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Li-Na Wang
- Department of Internal Medicine, Infectious Disease Hospital of Yantai, Yantai, China
| | - Xin Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Lu-Yi Liu
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
48
|
Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thromb Res 2017; 141 Suppl 2:S68-72. [PMID: 27207430 DOI: 10.1016/s0049-3848(16)30370-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The daily production of billions of platelets must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Complex mechanisms control platelet production and clearance in physiological and pathological conditions. This review will focus on the mechanisms of platelet senescence with specific emphasis on the role of post-translational modifications in platelet life-span and thrombopoietin production downstream of the hepatic Ashwell-Morrell receptor.
Collapse
|
49
|
Mahan MJ, Heithoff DM, Barnes V L, Sinsheimer RL. Epigenetic Programming by Microbial Pathogens and Impacts on Acute and Chronic Disease. EPIGENETICS AND HUMAN HEALTH 2017:89-112. [DOI: 10.1007/978-3-319-55021-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
50
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|