1
|
Chen T, Karedla N, Enderlein J. Observation of E-cadherin adherens junction dynamics with metal-induced energy transfer imaging and spectroscopy. Commun Biol 2024; 7:1596. [PMID: 39613901 DOI: 10.1038/s42003-024-07281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Epithelial cadherin (E-cad) mediated cell-cell junctions play a crucial role in the establishment and maintenance of tissues and organs. In this study, we employed metal-induced energy transfer imaging and spectroscopy to investigate variations in intermembrane distance during adhesion between two model membranes adorned with E-cad. By correlating the measured intermembrane distances with the distinct E-cad junction states, we probed the dynamic behavior and diversity of E-cad junctions across different binding pathways. Our observations led to the identification of a transient intermediate state referred to as the X-dimeric state and enabled a detailed analysis of its kinetics. We discovered that the formation of the X-dimer leads to significant membrane displacement, subsequently impacting the formation of other X-dimers. These direct experimental insights into the subtle dynamics of E-cad-modified membranes and the resultant changes in intermembrane distance provide perspectives on the assembly of E-cad junctions between cells. This knowledge enhances our comprehension of tissue and organ development and may serve as a foundation for the development of innovative therapeutic strategies for diseases linked to cell-cell adhesion abnormalities.
Collapse
Affiliation(s)
- Tao Chen
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany.
| | - Narain Karedla
- The Rosalind Franklin Institute, Didcot, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Chen B, Wang X, Sun J, Lin Y, Zhi H, Shao K, Fu Y, Liu Z. Study on the Interactions Between Cisplatin and Cadherin by Fluorescence Spectrometry and Atomic Force Microscopy. J Fluoresc 2024; 34:1775-1782. [PMID: 37615895 DOI: 10.1007/s10895-023-03401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Cisplatin is an important platinum drug in cancer chemotherapy in clinical practice. It is well established that the main target of cisplatin is nuclear DNA. However, recent studies have demonstrated that platinum drugs may act on some important functional proteins in the human body. E-cadherin is a newly discovered glycoprotein that has been regarded as an important sign of the occurrence and development of some tumors. This study examines the interactions between cisplatin and E-cadherin by fluorescence spectrometry and atomic force microscopy (AFM). The fluorescence spectrometry results indicated that cisplatin can efficiently quench the fluorescence of E-cadherin. The calculated binding constant Kb was 3.20 × 106 (25 ℃), 1.36 × 106(31 ℃), and 8.22 × 105 L mol-1 (37 ℃). These results reveal that the fluorescence quenching effect of cisplatin on E-cadherin is static quenching. The obtained thermodynamic parameters ΔH < 0, ΔS < 0, and ΔG < 0, indicate that the binding of cisplatin on E-cadherin is a spontaneous process dominated by hydrogen bonds and Van der Waals forces. The AFM results revealed that E-cadherins are interlaced with each other to form a spherical-chain structure. The addition of cisplatin can significantly disrupt the interlaced structure of the E-cadherin molecules.
Collapse
Affiliation(s)
- Boyu Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Heilongjiang, People's Republic of China
| | - Xitong Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Jixiang Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Yamei Lin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Heilongjiang, People's Republic of China
| | - Hongxin Zhi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Heilongjiang, People's Republic of China
| | - Kai Shao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Heilongjiang, People's Republic of China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China.
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China.
- Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Northeast Forestry University, Harbin, 150040, People's Republic of China.
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Heilongjiang, People's Republic of China.
| |
Collapse
|
3
|
Sirpilla O, Sakemura RL, Hefazi M, Huynh TN, Can I, Girsch JH, Tapper EE, Cox MJ, Schick KJ, Manriquez-Roman C, Yun K, Stewart CM, Ogbodo EJ, Kimball BL, Mai LK, Gutierrez-Ruiz OL, Rodriguez ML, Gluscevic M, Larson DP, Abel AM, Wierson WA, Olivier G, Siegler EL, Kenderian SS. Mesenchymal stromal cells with chimaeric antigen receptors for enhanced immunosuppression. Nat Biomed Eng 2024; 8:443-460. [PMID: 38561490 PMCID: PMC12080371 DOI: 10.1038/s41551-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.
Collapse
Affiliation(s)
- Olivia Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - R Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Truc N Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - James H Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erin E Tapper
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Michelle J Cox
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kendall J Schick
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Claudia Manriquez-Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Ekene J Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Long K Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Omar L Gutierrez-Ruiz
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Makena L Rodriguez
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Daniel P Larson
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Alex M Abel
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Wesley A Wierson
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Gloria Olivier
- Department of Business Development, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Leckband D, Schwartz DK, Wu Y. Computational and experimental approaches to quantify protein binding interactions under confinement. Biophys J 2024; 123:424-434. [PMID: 38245831 PMCID: PMC10912910 DOI: 10.1016/j.bpj.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Crowded environments and confinement alter the interactions of adhesion proteins confined to membranes or narrow, crowded gaps at adhesive contacts. Experimental approaches and theoretical frameworks were developed to quantify protein binding constants in these environments. However, recent predictions and the complexity of some protein interactions proved challenging to address with prior experimental or theoretical approaches. This perspective highlights new methods developed by these authors that address these challenges. Specifically, single-molecule fluorescence resonance energy transfer and single-molecule tracking measurements were developed to directly image the binding/unbinding rates of membrane-tethered cadherins. Results identified predicted cis (lateral) interactions, which control cadherin clustering on membranes but were not detected in solution. Kinetic Monte Carlo simulations, based on a realistic model of cis cadherin interactions, were developed to extract binding/unbinding rate constants from heterogeneous single-molecule data. The extension of single-molecule fluorescence measurements to cis and trans (adhesive) cadherin interactions at membrane junctions identified unexpected cooperativity between cis and trans binding that appears to enhance intercellular binding kinetics. Comparisons of intercellular binding kinetics, kinetic Monte Carlo simulations, and single-molecule fluorescence data suggest a strategy to bridge protein binding kinetics across length scales. Although cadherin is the focus of these studies, the approaches can be extended to other intercellular adhesion proteins.
Collapse
Affiliation(s)
- Deborah Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Daniel K Schwartz
- Chemical and Biomolecular Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
5
|
Xie B, Xu S, Schecterson L, Gumbiner BM, Sivasankar S. Strengthening E-cadherin adhesion via antibody-mediated binding stabilization. Structure 2024; 32:217-227.e3. [PMID: 38052206 PMCID: PMC10872345 DOI: 10.1016/j.str.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8-mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site-directed mutagenesis, and single-molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped β-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies.
Collapse
Affiliation(s)
- Bin Xie
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Leslayann Schecterson
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Barry M Gumbiner
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Sanjeevi Sivasankar
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
6
|
Wu Y, Sun SX. Mechanics of cell-cell junctions. Biophys J 2023; 122:3354-3368. [PMID: 37475215 PMCID: PMC10465726 DOI: 10.1016/j.bpj.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Tissue cells in epithelial or endothelial monolayers are connected through cell-cell junctions, which are stabilized by transmembrane E-cadherin bonds and intracellular actin filaments. These bonds and junctions play a crucial role in maintaining the barrier function of epithelia and endothelia and are believed to transmit forces between cells. Additionally, E-cadherin bonds can impact the shape of cell-cell junctions. In this study, we develop a continuum mechanical model of the cell-cell junction by explicitly incorporating the cell membrane, distributions of E-cadherin bonds, cytoplasmic fluid pressure, and F-actin dynamics. The static force-balanced version of the model is able to analyze the influences of cell cortical tension, actin dynamics, and cytoplasmic pressure on the junction shape and E-cadherin bonds. Furthermore, an extended model that incorporates fluid flow, across the cell boundary as well as around the cell, is also examined. This model can couple cell-shape changes with cell cortical tension and fluid flow, and predicts the additional effect of fluid motion on cell-cell junction mechanics. Taken together, our models serve as an intermediate link between molecular-scale models of cell-junction molecules and cell-scale models of tissue and epithelia.
Collapse
Affiliation(s)
- Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
7
|
Sivasankar S, Xie B. Engineering the Interactions of Classical Cadherin Cell-Cell Adhesion Proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:343-349. [PMID: 37459190 PMCID: PMC10361579 DOI: 10.4049/jimmunol.2300098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 07/20/2023]
Abstract
Classical cadherins are calcium-dependent cell-cell adhesion proteins that play key roles in the formation and maintenance of tissues. Deficiencies in cadherin adhesion are hallmarks of numerous cancers. In this article, we review recent biophysical studies on the regulation of cadherin structure and adhesion. We begin by reviewing distinct cadherin binding conformations, their biophysical properties, and their response to mechanical stimuli. We then describe biophysical guidelines for engineering Abs that can regulate adhesion by either stabilizing or destabilizing cadherin interactions. Finally, we review molecular mechanisms by which cytoplasmic proteins regulate the conformation of cadherin extracellular regions from the inside out.
Collapse
Affiliation(s)
- Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Biophysics Graduate Group, University of California, Davis, CA 95616
| | - Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA 95616
| |
Collapse
|
8
|
Xie B, Xu S, Schecterson L, Gumbiner BM, Sivasankar S. Strengthening E-cadherin adhesion via antibody mediated binding stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547716. [PMID: 37461464 PMCID: PMC10350017 DOI: 10.1101/2023.07.04.547716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8 mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site directed mutagenesis and single molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped β-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies.
Collapse
|
9
|
Troyanovsky SM. Adherens junction: the ensemble of specialized cadherin clusters. Trends Cell Biol 2023; 33:374-387. [PMID: 36127186 PMCID: PMC10020127 DOI: 10.1016/j.tcb.2022.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
The cell-cell connections in adherens junctions (AJs) are mediated by transmembrane receptors, type I cadherins (referred to here as cadherins). These cadherin-based connections (or trans bonds) are weak. To upregulate their strength, cadherins exploit avidity, the increased affinity of binding between cadherin clusters compared with isolated monomers. Formation of such clusters is a unique molecular process that is driven by a synergy of direct and indirect cis interactions between cadherins located at the same cell. In addition to their role in adhesion, cadherin clusters provide structural scaffolds for cytosolic proteins, which implicate cadherin into different cellular activities and signaling pathways. The cluster lifetime, which depends on the actin cytoskeleton, and on the mechanical forces it generates, determines the strength of AJs and their plasticity. The key aspects of cadherin adhesion, therefore, cannot be understood at the level of isolated cadherin molecules, but should be discussed in the context of cadherin clusters.
Collapse
Affiliation(s)
- Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Molecular Biology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Ibata N, Terentjev EM. Nucleation of cadherin clusters on cell-cell interfaces. Sci Rep 2022; 12:18485. [PMID: 36323859 PMCID: PMC9630535 DOI: 10.1038/s41598-022-23220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cadherins mediate cell-cell adhesion and help the cell determine its shape and function. Here we study collective cadherin organization and interactions within cell-cell contact areas, and find the cadherin density at which a 'gas-liquid' phase transition occurs, when cadherin monomers begin to aggregate into dense clusters. We use a 2D lattice model of a cell-cell contact area, and coarse-grain to the continuous number density of cadherin to map the model onto the Cahn-Hilliard coarsening theory. This predicts the density required for nucleation, the characteristic length scale of the process, and the number density of clusters. The analytical predictions of the model are in good agreement with experimental observations of cadherin clustering in epithelial tissues.
Collapse
Affiliation(s)
- Neil Ibata
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE UK
| | - Eugene M. Terentjev
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE UK
| |
Collapse
|
11
|
Xie B, Maker A, Priest AV, Dranow DM, Phan JN, Edwards TE, Staker BL, Myler PJ, Gumbiner BM, Sivasankar S. Molecular mechanism for strengthening E-cadherin adhesion using a monoclonal antibody. Proc Natl Acad Sci U S A 2022; 119:e2204473119. [PMID: 35921442 PMCID: PMC9371698 DOI: 10.1073/pnas.2204473119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
E-cadherin (Ecad) is an essential cell-cell adhesion protein with tumor suppression properties. The adhesive state of Ecad can be modified by the monoclonal antibody 19A11, which has potential applications in reducing cancer metastasis. Using X-ray crystallography, we determine the structure of 19A11 Fab bound to Ecad and show that the antibody binds to the first extracellular domain of Ecad near its primary adhesive motif: the strand-swap dimer interface. Molecular dynamics simulations and single-molecule atomic force microscopy demonstrate that 19A11 interacts with Ecad in two distinct modes: one that strengthens the strand-swap dimer and one that does not alter adhesion. We show that adhesion is strengthened by the formation of a salt bridge between 19A11 and Ecad, which in turn stabilizes the swapped β-strand and its complementary binding pocket. Our results identify mechanistic principles for engineering antibodies to enhance Ecad adhesion.
Collapse
Affiliation(s)
- Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA, 95616
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - Allison Maker
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, 98101
- Department of Biochemistry, University of Washington, Seattle, WA, 98195
| | - Andrew V. Priest
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - David M. Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Jenny N. Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109
- Department of Pediatrics, University of Washington, Seattle, WA, 98195
| | - Barry M. Gumbiner
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, 98101
- Department of Biochemistry, University of Washington, Seattle, WA, 98195
- Department of Pediatrics, University of Washington, Seattle, WA, 98195
| | - Sanjeevi Sivasankar
- Biophysics Graduate Group, University of California, Davis, CA, 95616
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| |
Collapse
|
12
|
Multiple dimeric structures and strand-swap dimerization of E-cadherin in solution visualized by high-speed atomic force microscopy. Proc Natl Acad Sci U S A 2022; 119:e2208067119. [PMID: 35867820 PMCID: PMC9335211 DOI: 10.1073/pnas.2208067119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Classical cadherins play key roles in cell-cell adhesion. The adhesion process is thought to comprise mainly two steps: X-dimer and strand-swap (SS-) dimer formation of the extracellular domains (ectodomains) of cadherins. The dimerization mechanism of this two-step process has been investigated for type I cadherins, including E-cadherin, of classical cadherins, whereas other binding states also have been proposed, raising the possibility of additional binding processes required for the cadherin dimerization. However, technical limitations in observing single-molecule structures and their dynamics have precluded the investigation of the dynamic binding process of cadherin. Here, we used high-speed atomic force microscopy (HS-AFM) to observe full-length ectodomains of E-cadherin in solution and identified multiple dimeric structures that had not been reported previously. HS-AFM revealed that almost half of the cadherin dimers showed S- (or reverse S-) shaped conformations, which had more dynamic properties than the SS- and X-like dimers. The combined HS-AFM, mutational, and molecular modeling analyses showed that the S-shaped dimer was formed by membrane-distal ectodomains, while the binding interface was different from that of SS- and X-dimers. Furthermore, the formation of the SS-dimer from the S-shaped and X-like dimers was directly visualized, suggesting the processes of SS-dimer formation from S-shaped and X-dimers during cadherin dimerization.
Collapse
|
13
|
Vae Priest A, Koirala R, Sivasankar S. Cadherins can dimerize via asymmetric interactions. FEBS Lett 2022; 596:1639-1646. [PMID: 35532156 PMCID: PMC9829383 DOI: 10.1002/1873-3468.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/12/2023]
Abstract
Cadherins are essential cell-cell adhesion proteins that interact in two distinct conformations: X-dimers and strand-swap dimers. Both X-dimers and strand-swap dimers are thought to exclusively rely on symmetric sets of interactions between key amino acids on both cadherin binding partners. Here, we use single-molecule atomic force microscopy and computer simulations to show that symmetry in cadherin binding is dispensable and that cadherins can also interact in a novel conformation that asymmetrically incorporates key elements of both strand-swap dimers and X-dimers. Our results clarify the biophysical rules for cadherin binding and demonstrate that cadherins interact in a more diverse range of conformations than previously understood.
Collapse
|
14
|
Dash S, Duraivelan K, Hansda A, Kumari P, Chatterjee S, Mukherjee G, Samanta D. Heterophilic recognition between E-cadherin and N-cadherin relies on same canonical binding interface as required for E-cadherin homodimerization. Arch Biochem Biophys 2022; 727:109329. [PMID: 35738425 DOI: 10.1016/j.abb.2022.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022]
Abstract
Cadherins are a family of cell surface glycoproteins that mediate Ca2+-dependent cell to cell adhesion. They organize to form large macromolecular assemblies at the junctions of cells in order to form and maintain the integrity of tissue structures, thereby playing an indispensable role in the multicellular organization. Notably, a large body of research on E- and N-cadherin, the two most widely studied members of the cadherin superfamily, suggest for homophilic associations among them to drive cell adhesion. Interestingly, latest studies also highlight for direct crosstalk among these two classical cadherins to form heterotypic connections in physiological as well as in disease environment. However, the molecular details for the heterophilic association of E-cadherin and N-cadherin has not been investigated yet, which we aimed to address in this work. Using surface plasmon resonance and flow cytometry based biophysical studies we observed heterophilic interaction between E- and N-cadherin mediated through the membrane distal ectodomains. Further, the heterodimeric interface of E-cadherin and N-cadherin was mapped using structure-guided mutational studies followed by complementary biophysical analyses to identify the important interface residues involved in the interaction. The results obtained imply significant resemblance in the interface residues of E-cadherin that are crucial for homophilic recognition of E-cadherin and heterophilic recognition of N-cadherin as well.
Collapse
Affiliation(s)
- Sagarika Dash
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Anita Hansda
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Puja Kumari
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Shruti Chatterjee
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
15
|
Kabra A, Rumpa E, Li Y. Observation of Arginine Side-Chain Motions Coupled to the Global Conformational Exchange Process in Deubiquitinase A. ACS OMEGA 2022; 7:9936-9943. [PMID: 35350351 PMCID: PMC8945143 DOI: 10.1021/acsomega.2c00492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Coupled motions have been demonstrated to be functionally important in a number of enzymes. Noncovalent side-chain interactions play essential roles in coordinating the motions across different structural elements in a protein. However, most of the dynamic studies of proteins are focused on backbone amides or methyl groups in the side chains and little is known about the polar and charged side chains. We have previously characterized the conformational dynamics of deubiquitinase A (DUBA), an isopeptidase, on the microsecond-to-millisecond (μs-ms) time scales with the amide 1H Carr-Purcell-Meiboom-Gill (CPMG) experiment. We detected a global conformational exchange process on a time scale of approximately 200 μs, which involves most of the structural elements in DUBA, including the active site and the substrate binding interface. Here, we extend our previous study on backbone amides to the arginine side-chain Nε-Hε groups using a modified 1H CPMG pulse sequence that can efficiently detect both backbone amide and arginine side-chain Nε-Hε signals in a single experiment. We found that the side chains of three arginines display motions on the same time scale as the backbone amides. Mutations of two of the three arginines to alanines result in a decrease in enzyme activity. One of these two arginines is located in a loop involved in substrate binding. This loop is not visible in the backbone amide-detected experiments due to excess line broadening induced by motions on the μs-ms time scales. These results clearly demonstrate that the motions of some arginine side chains are coupled to the global conformational exchange process and provide an additional probe for motions in a functionally important loop that did not yield visible backbone amide signals, suggesting the value of side-chain experiments on DUBA. The modified 1H CPMG pulse sequence allows the simultaneous characterization of backbone and arginine side-chain dynamics without any increase in data acquisition time and can be applied to the dynamic studies of any protein that displays measurable amide 1H relaxation dispersion.
Collapse
Affiliation(s)
| | | | - Ying Li
- . Tel: (502)852-5975. Fax: (502)852-8149
| |
Collapse
|
16
|
Chen Y, Brasch J, Harrison OJ, Bidone TC. Computational model of E-cadherin clustering under force. Biophys J 2021; 120:4944-4954. [PMID: 34687721 DOI: 10.1016/j.bpj.2021.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
E-cadherins play a critical role in the formation of cell-cell adhesions for several physiological functions, including tissue development, repair, and homeostasis. The formation of clusters of E-cadherins involves extracellular adhesive (trans-) and lateral (cis-) associations between E-cadherin ectodomains and stabilization through intracellular binding to the actomyosin cytoskeleton. This binding provides force to the adhesion and is required for mechanotransduction. However, the exact role of cytoskeletal force on the clustering of E-cadherins is not well understood. To gain insights into this mechanism, we developed a computational model based on Brownian dynamics. In the model, E-cadherins transit between structural and functional states; they are able to bind and unbind other E-cadherins on the same and/or opposite cell(s) through trans- and cis-interactions while also creating dynamic links with the actomyosin cytoskeleton. Our results show that actomyosin force governs the fraction of E-cadherins in clusters and the size and number of clusters. For low forces (below 10 pN), a large number of small E-cadherin clusters form with less than five E-cadherins each. At higher forces, the probability of forming fewer but larger clusters increases. These findings support the idea that force reinforces cell-cell adhesions, which is consistent with differences in cluster size previously observed between apical and lateral junctions of epithelial tissues.
Collapse
Affiliation(s)
- Yang Chen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Julia Brasch
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Oliver J Harrison
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
17
|
Koirala R, Priest AV, Yen CF, Cheah JS, Pannekoek WJ, Gloerich M, Yamada S, Sivasankar S. Inside-out regulation of E-cadherin conformation and adhesion. Proc Natl Acad Sci U S A 2021; 118:e2104090118. [PMID: 34301871 PMCID: PMC8325368 DOI: 10.1073/pnas.2104090118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherin cell-cell adhesion proteins play key roles in tissue morphogenesis and wound healing. Cadherin ectodomains bind in two conformations, X-dimers and strand-swap dimers, with different adhesive properties. However, the mechanisms by which cells regulate ectodomain conformation are unknown. Cadherin intracellular regions associate with several actin-binding proteins including vinculin, which are believed to tune cell-cell adhesion by remodeling the actin cytoskeleton. Here, we show at the single-molecule level, that vinculin association with the cadherin cytoplasmic region allosterically converts weak X-dimers into strong strand-swap dimers and that this process is mediated by myosin II-dependent changes in cytoskeletal tension. We also show that in epithelial cells, ∼70% of apical cadherins exist as strand-swap dimers while the remaining form X-dimers, providing two cadherin pools with different adhesive properties. Our results demonstrate the inside-out regulation of cadherin conformation and establish a mechanistic role for vinculin in this process.
Collapse
Affiliation(s)
- Ramesh Koirala
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Andrew Vae Priest
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Chi-Fu Yen
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Joleen S Cheah
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616;
| |
Collapse
|
18
|
Koss H, Honig B, Shapiro L, Palmer AG. Dimerization of Cadherin-11 involves multi-site coupled unfolding and strand swapping. Structure 2021; 29:1105-1115.e6. [PMID: 34166612 DOI: 10.1016/j.str.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/01/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Cadherin extracellular domain 1 (EC1) mediates homophilic dimerization in adherens junctions. Conserved Trp2 and Trp4 residues in type II cadherins anchor the EC1 A strand intermolecularly in strand-swapped dimers. Herein, NMR spectroscopy is used to elucidate the roles of Trp2 and Trp4 in Cadherin-11 dimerization. The monomeric state, with the A strand and Trp side chains packed intramolecularly, is in equilibrium with sparsely populated partially and fully A-strand-exposed states, in which Trp2 (and Trp4, respectively) side-chain packing is disrupted. Exchange kinetics between the major state and the partially (fully) A-strand-exposed state is slow-intermediate (intermediate-fast). A separate very fast process exchanges ordered and random-coil BC-loop conformations with populations dependent on A-strand exposure and dimerization status. In addition, very slow processes connect the folded A-strand-exposed conformation to partially unfolded states, which may represent additional domain-swapping intermediates. The dimerization mechanism of type II cadherins is revealed as coupled folding and strand swapping.
Collapse
Affiliation(s)
- Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA; Zuckerman Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA; Department of Systems Biology, Columbia University Irving Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA; Zuckerman Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
19
|
Duff MR, Redzic JS, Ryan LP, Paukovich N, Zhao R, Nix JC, Pitts TM, Agarwal P, Eisenmesser EZ. Structure, dynamics and function of the evolutionarily changing biliverdin reductase B family. J Biochem 2021; 168:191-202. [PMID: 32246827 DOI: 10.1093/jb/mvaa039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/19/2020] [Indexed: 11/14/2022] Open
Abstract
Biliverdin reductase B (BLVRB) family members are general flavin reductases critical in maintaining cellular redox with recent findings revealing that BLVRB alone can dictate cellular fate. However, as opposed to most enzymes, the BLVRB family remains enigmatic with an evolutionarily changing active site and unknown structural and functional consequences. Here, we applied a multi-faceted approach that combines X-ray crystallography, NMR and kinetics methods to elucidate the structural and functional basis of the evolutionarily changing BLVRB active site. Using a panel of three BLVRB isoforms (human, lemur and hyrax) and multiple human BLVRB mutants, our studies reveal a novel evolutionary mechanism where coenzyme 'clamps' formed by arginine side chains at two co-evolving positions within the active site serve to slow coenzyme release (Positions 14 and 78). We find that coenzyme release is further slowed by the weaker binding substrate, resulting in relatively slow turnover numbers. However, different BLVRB active sites imposed by either evolution or mutagenesis exhibit a surprising inverse relationship between coenzyme release and substrate turnover that is independent of the faster chemical step of hydride transfer also measured here. Collectively, our studies have elucidated the role of the evolutionarily changing BLVRB active site that serves to modulate coenzyme release and has revealed that coenzyme release is coupled to substrate turnover.
Collapse
Affiliation(s)
- Michael R Duff
- Biochemistry & Cellular and Molecular Biology Department, University of Tennessee, 1311 Cumberland Ave., Knoxville, TN 37996, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Lucas P Ryan
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Pratul Agarwal
- Biochemistry & Cellular and Molecular Biology Department, University of Tennessee, 1311 Cumberland Ave., Knoxville, TN 37996, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| |
Collapse
|
20
|
Role of Actin Cytoskeleton in E-cadherin-Based Cell–Cell Adhesion Assembly and Maintenance. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00214-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Kabra A, Li Y. Conformational Dynamics of Deubiquitinase A and Functional Implications. Biochemistry 2021; 60:201-209. [PMID: 33417762 DOI: 10.1021/acs.biochem.0c00834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Deubiquitinase A (DUBA) belongs to the ovarian tumor family of deubiquitinating enzymes and was initially identified as a negative regulator of type I interferons, whose overproduction has been linked to autoimmune diseases. The deubiquitinating activity of DUBA is positively regulated by phosphorylation at a single serine residue, S177, which results in minimal structural changes. We have previously shown that phosphorylation induces a two-state conformational equilibrium observed only in the active form of DUBA, highlighting the functional importance of DUBA dynamics. Here, we report the conformational dynamics of DUBA on the microsecond-to-millisecond time scales characterized by nuclear magnetic resonance relaxation dispersion experiments. We found that motions on these time scales are highly synchronized in the phosphorylated and nonphosphorylated DUBA. Despite the overall similarity of these two forms, different dynamic properties were observed in helix α1 and the neighboring regions, including residue S177, which likely contribute to the activation of DUBA by phosphorylation. Moreover, our data suggest that transient unfolding of helix α6 drives the global conformational process and that mutations can be introduced to modulate this process, which provides a basis for future studies to define the exact functional roles of motions in DUBA activation and substrate specificity.
Collapse
Affiliation(s)
- Ashish Kabra
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40208, United States
| | - Ying Li
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40208, United States
| |
Collapse
|
22
|
Loening NM, Saravanan S, Jespersen NE, Jara K, Barbar E. Interplay of Disorder and Sequence Specificity in the Formation of Stable Dynein-Dynactin Complexes. Biophys J 2020; 119:950-965. [PMID: 32814057 DOI: 10.1016/j.bpj.2020.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/22/2023] Open
Abstract
Cytoplasmic dynein is a eukaryotic motor protein complex that, along with its regulatory protein dynactin, is essential to the transport of organelles within cells. The interaction of dynein with dynactin is regulated by binding between the intermediate chain (IC) subunit of dynein and the p150Glued subunit of dynactin. Even though in the rat versions of these proteins this interaction primarily involves the single α-helix region at the N-terminus of the IC, in Drosophila and yeast ICs the removal of a nascent helix (H2) downstream of the single α-helix considerably diminishes IC-p150Glued complex stability. We find that for ICs from various species, there is a correlation between disorder in H2 and its contribution to binding affinity, and that sequence variations in H2 that do not change the level of disorder show similar binding behavior. Analysis of the structure and interactions of the IC from Chaetomium thermophilum demonstrates that the H2 region of C. thermophilum IC has a low helical propensity and establishes that H2 binds directly to the coiled-coil 1B (CC1B) domain of p150Glued, thus explaining why H2 is necessary for tight binding. Isothermal titration calorimetry, circular dichroism, and NMR studies of smaller CC1B constructs localize the region of CC1B most essential for a tight interaction with IC. These results suggest that it is the level of disorder in H2 of IC along with its charge, rather than sequence specificity, that underlie its importance in initiating tight IC-p150Glued complex formation. We speculate that the nascent H2 helix may provide conformational flexibility to initiate binding, whereas those species that have a fully folded H2 have co-opted an alternative mechanism for promoting p150Glued binding.
Collapse
Affiliation(s)
| | - Sanjana Saravanan
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Nathan E Jespersen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Kayla Jara
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon.
| |
Collapse
|
23
|
Otsuka FAM, Chagas RS, Almeida VM, Marana SR. Homodimerization of a glycoside hydrolase family GH1 β-glucosidase suggests distinct activity of enzyme different states. Protein Sci 2020; 29:1879-1889. [PMID: 32597558 DOI: 10.1002/pro.3908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/06/2022]
Abstract
In this work, we investigated how activity and oligomeric state are related in a purified GH1 β-glucosidase from Spodoptera frugiperda (Sfβgly). Gel filtration chromatography coupled to a multiple angle light scattering detector allowed separation of the homodimer and monomer states and determination of the dimer dissociation constant (KD ), which was in the micromolar range. Enzyme kinetic parameters showed that the dimer is on average 2.5-fold more active. Later, we evaluated the kinetics of homodimerization, scanning the changes in the Sfβgly intrinsic fluorescence over time when the dimer dissociates into the monomer after a large dilution. We described how the rate constant of monomerization (koff ) is affected by temperature, revealing the enthalpic and entropic contributions to the process. We also evaluated how the rate constant (kobs ) by which equilibrium is reached after dimer dilution behaves when varying the initial Sfβgly concentration. These data indicated that Sfβgly dimerizes through the conformational selection mechanism, in which the monomer undergoes a conformational exchange and then binds to a similar monomer, forming a more active homodimer. Finally, we noted that conformational selection reports and experiments usually rely on a ligand whose concentration is in excess, but for homodimerization, this approach does not hold. Hence, since our approach overcomes this limitation, this study not only is a new contribution to the comprehension of GH1 β-glucosidases, but it can also help to elucidate protein interaction pathways.
Collapse
Affiliation(s)
- Felipe A M Otsuka
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael S Chagas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Vitor M Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sandro R Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Terzoli S, Tiana G. Molecular Recognition between Cadherins Studied by a Coarse-Grained Model Interacting with a Coevolutionary Potential. J Phys Chem B 2020; 124:4079-4088. [PMID: 32336092 PMCID: PMC8007105 DOI: 10.1021/acs.jpcb.0c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Studying the conformations
involved in the dimerization of cadherins
is highly relevant to understand the development of tissues and its
failure, which is associated with tumors and metastases. Experimental
techniques, like X-ray crystallography, can usually report only the
most stable conformations, missing minority states that could nonetheless
be important for the recognition mechanism. Computer simulations could
be a valid complement to the experimental approach. However, standard
all-atom protein models in explicit solvent are computationally too
demanding to search thoroughly the conformational space of multiple
chains composed of several hundreds of amino acids. To reach this
goal, we resorted to a coarse-grained model in implicit solvent. The
standard problem with this kind of model is to find a realistic potential
to describe its interactions. We used coevolutionary information from
cadherin alignments, corrected by a statistical potential, to build
an interaction potential, which is agnostic about the experimental
conformations of the protein. Using this model, we explored the conformational
space of multichain systems and validated the results comparing with
experimental data. We identified dimeric conformations that are sequence
specific and that can be useful to rationalize the mechanism of recognition
between cadherins.
Collapse
Affiliation(s)
- Sara Terzoli
- Department of Physics and Center for Complexity and Biosystems, Universitá degli Studi di Milano and INFN, via Celoria 16, Milano 20133, Italy
| | - Guido Tiana
- Department of Physics and Center for Complexity and Biosystems, Universitá degli Studi di Milano and INFN, via Celoria 16, Milano 20133, Italy
| |
Collapse
|
25
|
Kabra A, Rumpa E, Li Y. Modulation of conformational equilibrium by phosphorylation underlies the activation of deubiquitinase A. J Biol Chem 2020; 295:3945-3951. [PMID: 32071088 DOI: 10.1074/jbc.ac119.010808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/16/2020] [Indexed: 01/20/2023] Open
Abstract
Deubiquitinases deconjugate ubiquitin modifications from target proteins and are involved in many cellular processes in eukaryotes. The functions of deubiquitinases are regulated by post-translational modifications, mainly phosphorylation and ubiquitination. Post-translational modifications can result in subtle changes in structural and dynamic properties, which are difficult to identify but functionally important. In this work, we used NMR spectroscopy to characterize the conformational properties of the human deubiquitinase A (DUBA), a negative regulator of type I interferon. DUBA activity is regulated by phosphorylation at a single serine residue, Ser-177. We found that the catalytic rate constant of DUBA is enhanced by phosphorylation. By comparing NMR and enzyme kinetics data among different forms of DUBA with low and high activities, we concluded that a two-state equilibrium that was present only in phosphorylated DUBA is important for DUBA activity. Our results highlight the importance of defining conformational dynamics in understanding the mechanism of DUBA activation.
Collapse
Affiliation(s)
- Ashish Kabra
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208
| | - Efsita Rumpa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208
| | - Ying Li
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208
| |
Collapse
|
26
|
Biswas KH. Molecular Mobility-Mediated Regulation of E-Cadherin Adhesion. Trends Biochem Sci 2019; 45:163-173. [PMID: 31810601 DOI: 10.1016/j.tibs.2019.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Cells in epithelial tissues utilize homotypic E-cadherin interaction-mediated adhesions to both physically adhere to each other and sense the physical properties of their microenvironment, such as the presence of other cells in close vicinity or an alteration in the mechanical tension of the tissue. These position E-cadherin centrally in organogenesis and other processes, and its function is therefore tightly regulated through a variety of means including endocytosis and gene expression. How does membrane molecular mobility of E-cadherin, and thus membrane physical properties and associated actin cytoskeleton, impinges on the assembly of adhesive clusters and signaling is discussed.
Collapse
Affiliation(s)
- Kabir H Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
27
|
Dalle Vedove A, Falchi F, Donini S, Dobric A, Germain S, Di Martino GP, Prosdocimi T, Vettraino C, Torretta A, Cavalli A, Rigot V, André F, Parisini E. Structure-Based Virtual Screening Allows the Identification of Efficient Modulators of E-Cadherin-Mediated Cell-Cell Adhesion. Int J Mol Sci 2019; 20:ijms20143404. [PMID: 31373305 PMCID: PMC6678102 DOI: 10.3390/ijms20143404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cadherins are a large family of transmembrane calcium-dependent cell adhesion proteins that orchestrate adherens junction formation and are crucially involved in tissue morphogenesis. Due to their important role in cancer development and metastasis, cadherins can be considered attractive targets for drug discovery. A recent crystal structure of the complex of a cadherin extracellular portion and a small molecule inhibitor allowed the identification of a druggable interface, thus providing a viable strategy for the design of cadherin dimerization modulators. Here, we report on a structure-based virtual screening approach that led to the identification of efficient and selective modulators of E-cadherin-mediated cell–cell adhesion. Of all the putative inhibitors that were identified and experimentally tested by cell adhesion assays using human pancreatic tumor BxPC-3 cells expressing both E-cadherin and P-cadherin, two compounds turned out to be effective in inhibiting stable cell–cell adhesion at micromolar concentrations. Moreover, at the same concentrations, one of them also showed anti-invasive properties in cell invasion assays. These results will allow further development of novel and selective cadherin-mediated cell–cell adhesion modulators for the treatment of a variety of cadherin-expressing solid tumors and for improving the efficiency of drug delivery across biological barriers.
Collapse
Affiliation(s)
- Andrea Dalle Vedove
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Federico Falchi
- Computational Sciences, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40121 Bologna, Italy
| | - Stefano Donini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Aurelie Dobric
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, 13273 Marseille CEDEX 09, France
| | - Sebastien Germain
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, 13273 Marseille CEDEX 09, France
| | - Giovanni Paolo Di Martino
- Computational Sciences, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40121 Bologna, Italy
| | - Tommaso Prosdocimi
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Chiara Vettraino
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Archimede Torretta
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Andrea Cavalli
- Computational Sciences, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40121 Bologna, Italy
| | - Veronique Rigot
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, 13273 Marseille CEDEX 09, France
| | - Frederic André
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, 13273 Marseille CEDEX 09, France
| | - Emilio Parisini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy.
| |
Collapse
|
28
|
Civera M, Vasile F, Potenza D, Colombo C, Parente S, Vettraino C, Prosdocimi T, Parisini E, Belvisi L. Exploring E-cadherin-peptidomimetics interaction using NMR and computational studies. PLoS Comput Biol 2019; 15:e1007041. [PMID: 31158220 PMCID: PMC6564044 DOI: 10.1371/journal.pcbi.1007041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/13/2019] [Accepted: 04/22/2019] [Indexed: 02/02/2023] Open
Abstract
Cadherins are homophilic cell-cell adhesion molecules whose aberrant expression has often been shown to correlate with different stages of tumor progression. In this work, we investigate the interaction of two peptidomimetic ligands with the extracellular portion of human E-cadherin using a combination of NMR and computational techniques. Both ligands have been previously developed as mimics of the tetrapeptide sequence Asp1-Trp2-Val3-Ile4 of the cadherin adhesion arm, and have been shown to inhibit E-cadherin-mediated adhesion in epithelial ovarian cancer cells with millimolar potency. To sample a set of possible interactions of these ligands with the E-cadherin extracellular portion, STD-NMR experiments in the presence of two slightly different constructs, the wild type E-cadherin-EC1-EC2 fragment and the truncated E-cadherin-(Val3)-EC1-EC2 fragment, were carried out at three temperatures. Depending on the protein construct, a different binding epitope of the ligand and also a different temperature effect on STD signals were observed, both suggesting an involvement of the Asp1-Trp2 protein sequence among all the possible binding events. To interpret the experimental results at the atomic level and to probe the role of the cadherin adhesion arm in the dynamic interaction with the peptidomimetic ligand, a computational protocol based on docking calculations and molecular dynamics simulations was applied. In agreement with NMR data, the simulations at different temperatures unveil high variability/dynamism in ligand-cadherin binding, thus explaining the differences in ligand binding epitopes. In particular, the modulation of the signals seems to be dependent on the protein flexibility, especially at the level of the adhesive arm, which appears to participate in the interaction with the ligand. Overall, these results will help the design of novel cadherin inhibitors that might prevent the swap dimer formation by targeting both the Trp2 binding pocket and the adhesive arm residues. Classical cadherins are the main adhesive proteins at the intercellular junctions and play an essential role in tissue morphogenesis and homeostasis. A large number of studies have shown that cadherin aberrant expression and/or dysregulation often correlate with pathological processes, such as tumor development and progression. Notwithstanding the emerging role played by cadherins in a number of solid tumors, the rational design of small inhibitors targeting these proteins is still in its infancy, likely due to the challenges posed by the development of small drug-like molecules that modulate protein-protein interactions and to the structural complexity of the various cadherin dimerization interfaces that constantly form and disappear as the protein moves along its highly dynamic and reversible homo-dimerization trajectory. In this work, we study the interaction of two small molecules with the extracellular portion of human E-cadherin using a combination of spectroscopic and computational techniques. The availability of molecules interfering in the cadherin homophilic interactions could provide a useful tool for the investigation of cadherin function in tumors, and potentially pave the way to the development of novel alternative diagnostic and therapeutic interventions in cadherin-expressing solid tumors.
Collapse
Affiliation(s)
- Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
- * E-mail: (MC); (FV)
| | - Francesca Vasile
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
- * E-mail: (MC); (FV)
| | - Donatella Potenza
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Colombo
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Como, Italy
| | - Chiara Vettraino
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Tommaso Prosdocimi
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
29
|
Tiwari P, Mrigwani A, Kaur H, Kaila P, Kumar R, Guptasarma P. Structural-Mechanical and Biochemical Functions of Classical Cadherins at Cellular Junctions: A Review and Some Hypotheses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:107-138. [DOI: 10.1007/978-981-13-3065-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Dong L, Qian J, Chen F, Fan Y, Long J. LINC00461 promotes cell migration and invasion in breast cancer through miR-30a-5p/integrin β3 axis. J Cell Biochem 2019; 120:4851-4862. [PMID: 30623482 DOI: 10.1002/jcb.27435] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Mounting evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated and implicated in the occurrence and development of a wide range of human malignancies. LINC00461, a novel cancer-related lncRNA, has been reported to be highly expressed and serve as oncogene in glioma; however, its biological role in breast cancer (BC) remains obscure. This study aimed to explore the role of LINC00461 in BC and elucidate the potential molecular mechanisms involved. In the current study, LINC00461 was found to be significantly upregulated in both BC tissues and cell lines. Besides, we found that high LINC00461 expression was associated with TNM stage and differentiation. Furthermore, functional studies demonstrated that LINC00461 expedited BC cell migration and invasion. Notably, LINC00461 was observed to enhance the expression of vimentin and zinc-finger E-box binding homeobox factor 1, suppress the expression of E-cadherin, and promote the activation of extracellular signal-regulated kinase and AKT signaling pathways. Mechanical investigations revealed that LINC00461 positively modulated integrin β3 (ITGB3) expression as miR-30a-5p sponge in BC cells. Taken together, LINC00461 exerts an oncogenic role in BC through miR-30a-5p/ITGB3 axis. Our data indicate that LINC00461 may be used to be a novel candidate therapeutic target and a valuable diagnostic biomarker for BC.
Collapse
Affiliation(s)
- Lifeng Dong
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junbin Qian
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Fangfang Chen
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangfan Fan
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingpei Long
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Abstract
The phenomenon of chemical or conformational exchange in NMR spectroscopy has enabled detailed characterization of time-dependent aspects of biomolecular function, including folding, molecular recognition, allostery, and catalysis, on timescales from microsecond to second. Importantly, NMR methods based on a variety of spin relaxation parameters have been developed that provide quantitative information on interconversion kinetics, thermodynamic properties, and structural features of molecular states populated to a fraction of a percent at equilibrium and otherwise unobservable by other NMR approaches. The ongoing development of more sophisticated experimental techniques and the necessity to apply these methods to larger and more complex molecular systems engenders a corresponding need for theoretical advances describing such techniques and facilitating data analysis in applications. This review surveys current aspects of the theory of chemical exchange, as utilized in ZZ-exchange; Hahn and Carr-Purcell-Meiboom-Gill (CPMG) spin-echo; and R1ρ, chemical exchange saturation transfer (CEST), and dark state saturation transfer (DEST) spin-locking experiments. The review emphasizes theoretical results for kinetic topologies with more than two interconverting states, both to obtain compact analytical forms suitable for data analysis and to establish conditions for distinguishability between alternative kinetic schemes.
Collapse
Affiliation(s)
- Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.
| | - Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
32
|
Koss H, Rance M, Palmer AG. General Expressions for Carr-Purcell-Meiboom-Gill Relaxation Dispersion for N-Site Chemical Exchange. Biochemistry 2018; 57:4753-4763. [PMID: 30040382 DOI: 10.1021/acs.biochem.8b00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Carr-Purcell-Meiboom-Gill (CPMG) nuclear magnetic resonance experiment is widely used to characterize chemical exchange phenomena in biological macromolecules. Theoretical expressions for the nuclear spin relaxation rate constant for two-site chemical exchange during CPMG pulse trains valid for all time scales are well-known as are descriptions of N-site exchange in the fast limit. We have obtained theoretical expressions for N-site exchange outside of the fast limit by using approximations to an average Liouvillian describing the decay of magnetization during a CPMG pulse train. We obtain general expressions for CPMG experiments for any N-site scheme and all experimentally accessible time scales. For sufficiently slow chemical exchange, we obtain closed-form expressions for the relaxation rate constant and a general characteristic polynomial for arbitrary kinetic schemes. Furthermore, we highlight features that qualitatively characterize CPMG curves obtained for various N-site kinetic topologies, quantitatively characterize CPMG curves obtained from systems in various N-site exchange situations, and test distinguishability of kinetic models.
Collapse
Affiliation(s)
- Hans Koss
- Department of Biochemistry and Molecular Biophysics , Columbia University , 630 West 168th Street , New York , New York 10032 , United States
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology , University of Cincinnati , Cincinnati , Ohio 45267 , United States
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics , Columbia University , 630 West 168th Street , New York , New York 10032 , United States
| |
Collapse
|
33
|
Nunes AM, Minetti CASA, Remeta DP, Baum J. Magnesium Activates Microsecond Dynamics to Regulate Integrin-Collagen Recognition. Structure 2018; 26:1080-1090.e5. [PMID: 29937357 DOI: 10.1016/j.str.2018.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/03/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
Integrin receptors bind collagen via metal-mediated interactions that are modulated by magnesium (Mg2+) levels in the extracellular matrix. Nuclear magnetic resonance-based relaxation experiments, isothermal titration calorimetry, and adhesion assays reveal that Mg2+ functions as both a structural anchor and dynamic switch of the α1β1 integrin I domain (α1I). Specifically, Mg2+ binding activates micro- to millisecond timescale motions of residues distal to the binding site, particularly those surrounding the salt bridge at helix 7 and near the metal ion-dependent adhesion site. Mutagenesis of these residues impacts α1I functional activity, thereby suggesting that Mg-bound α1I dynamics are important for collagen binding and consequent allosteric rearrangement of the low-affinity closed to high-affinity open conformation. We propose a multistep recognition mechanism for α1I-Mg-collagen interactions involving both conformational selection and induced-fit processes. Our findings unravel the multifaceted role of Mg2+ in integrin-collagen recognition and assist in elucidating the molecular mechanisms by which metals regulate protein-protein interactions.
Collapse
Affiliation(s)
- Ana Monica Nunes
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Center for Integrative Proteomics Research, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Conceição A S A Minetti
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - David P Remeta
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Center for Integrative Proteomics Research, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
34
|
Paukovich N, Xue M, Elder JR, Redzic JS, Blue A, Pike H, Miller BG, Pitts TM, Pollock DD, Hansen K, D'Alessandro A, Eisenmesser EZ. Biliverdin Reductase B Dynamics Are Coupled to Coenzyme Binding. J Mol Biol 2018; 430:3234-3250. [PMID: 29932944 DOI: 10.1016/j.jmb.2018.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Biliverdin reductase B (BLVRB) is a newly identified cellular redox regulator that catalyzes the NADPH-dependent reduction of multiple substrates. Through mass spectrometry analysis, we identified high levels of BLVRB in mature red blood cells, highlighting the importance of BLVRB in redox regulation. The BLVRB conformational changes that occur during conezyme/substrate binding and the role of dynamics in BLVRB function, however, remain unknown. Through a combination of NMR, kinetics, and isothermal titration calorimetry studies, we determined that BLVRB binds its coenzyme 500-fold more tightly than its substrate. While the active site of apo BLVRB is highly dynamic on multiple timescales, active site dynamics are largely quenched within holo BLVRB, in which dynamics are redistributed to other regions of the enzyme. We show that a single point mutation of Arg78➔Ala leads to both an increase in active site micro-millisecond motions and an increase in the microscopic rate constants of coenzyme binding. This demonstrates that altering BLVRB active site dynamics can directly cause a change in functional characteristics. Our studies thus address the solution behavior of apo and holo BLVRB and identify a role of enzyme dynamics in coenzyme binding.
Collapse
Affiliation(s)
- Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Mengjun Xue
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - James R Elder
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Ashley Blue
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Hamish Pike
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Brian G Miller
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32310, USA
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, Aurora, CO 80045, USA
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
35
|
Strebitzer E, Nußbaumer F, Kremser J, Tollinger M, Kreutz C. Studying sparsely populated conformational states in RNA combining chemical synthesis and solution NMR spectroscopy. Methods 2018; 148:39-47. [PMID: 29753787 DOI: 10.1016/j.ymeth.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
Using chemical synthesis and solution NMR spectroscopy, RNA structural ensembles including a major ground state and minor populated excited states can be studied at atomic resolution. In this work, atom-specific 13C labeled RNA building blocks - a 5-13C-uridine and a 2,8-13C2-adenosine building block - are used to introduce isolated 13C-1H-spin topologies into a target RNA to probe such structural ensembles via NMR spectroscopy. First, the 5-13C-uridine 2'-O-TBDMS-phosphoramidite building block was introduced into a 21 nucleotide (nt) tP5c stem construct of the tP5abc subdomain of the Tetrahymena group I ribozyme. Then, the 2,8-13C2-adenosine 2'-O-TBDMS-phosphoramidite building block was incorporated into a 9 kDa and a 15 kD construct derived from the epsilon (ε) RNA element of the duck Hepatitis B virus. The 2,8-13C2-adenosine resonances of the 9 kDa 28 nt sequence could be mapped to the full-length 53 nt construct. The isolated NMR active nuclei pairs were used to probe for low populated excited states (<10%) via 13C-Carr-Purcell-Meiboom-Gill (CPMG)-relaxation dispersion NMR spectroscopy. The 13C-CPMG relaxation dispersion experiment recapitulated a secondary structure switching event in the P5c hairpin of the group I intron construct previously revealed by 15N relaxation dispersion experiments. In the ε-HBV RNA an unfolding event occurring on the millisecond time scale was found in the upper stem in-line with earlier observations. This unpaired conformational state is presumed to be important for the binding of the epsilon reverse transcriptase (RT) enzyme. Thus, a full description of an RNA's folding landscape helps to obtain a deeper understanding of its function, as these high energy conformational states often represent functionally important intermediates involved in (un)folding or ribozyme catalysis.
Collapse
Affiliation(s)
- Elisabeth Strebitzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
36
|
Zhou HX, Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 2018; 118:1691-1741. [PMID: 29319301 DOI: 10.1021/acs.chemrev.7b00305] [Citation(s) in RCA: 584] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged and polar groups, through forming ion pairs, hydrogen bonds, and other less specific electrostatic interactions, impart important properties to proteins. Modulation of the charges on the amino acids, e.g., by pH and by phosphorylation and dephosphorylation, have significant effects such as protein denaturation and switch-like response of signal transduction networks. This review aims to present a unifying theme among the various effects of protein charges and polar groups. Simple models will be used to illustrate basic ideas about electrostatic interactions in proteins, and these ideas in turn will be used to elucidate the roles of electrostatic interactions in protein structure, folding, binding, condensation, and related biological functions. In particular, we will examine how charged side chains are spatially distributed in various types of proteins and how electrostatic interactions affect thermodynamic and kinetic properties of proteins. Our hope is to capture both important historical developments and recent experimental and theoretical advances in quantifying electrostatic contributions of proteins.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
37
|
Chen J, Newhall J, Xie ZR, Leckband D, Wu Y. A Computational Model for Kinetic Studies of Cadherin Binding and Clustering. Biophys J 2017; 111:1507-1518. [PMID: 27705773 DOI: 10.1016/j.bpj.2016.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/02/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Cadherin is a cell-surface transmembrane receptor that mediates calcium-dependent cell-cell adhesion and is a major component of adhesive junctions. The formation of intercellular adhesive junctions is initiated by trans binding between cadherins on adjacent cells, which is followed by the clustering of cadherins via the formation of cis interactions between cadherins on the same cell membranes. Moreover, classical cadherins have multiple glycosylation sites along their extracellular regions. It was found that aberrant glycosylation affects the adhesive function of cadherins and correlates with metastatic phenotypes of several cancers. However, a mechanistic understanding of cadherin clustering during cell adhesion and the role of glycosylation in this process is still lacking. Here, we designed a kinetic model that includes multistep reaction pathways for cadherin clustering. We further applied a diffusion-reaction algorithm to numerically simulate the clustering process using a recently developed coarse-grained model. Using experimentally measured rates of trans binding between soluble E-cadherin extracellular domains, we conducted simulations of cadherin-mediated cell-cell binding kinetics, and the results are quantitatively comparable to experimental data from micropipette experiments. In addition, we show that incorporating cadherin clustering via cis interactions further increases intercellular binding. Interestingly, a two-phase kinetic profile was derived under the assumption that glycosylation regulates the kinetic rates of cis interactions. This two-phase profile is qualitatively consistent with experimental results from micropipette measurements. Therefore, our computational studies provide new, to our knowledge, insights into the molecular mechanism of cadherin-based cell adhesion.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jillian Newhall
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Deborah Leckband
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
38
|
Schumann-Gillett A, Mark AE, Deplazes E, O'Mara ML. A potential new, stable state of the E-cadherin strand-swapped dimer in solution. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017. [PMID: 28620741 DOI: 10.1007/s00249-017-1229-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
E-cadherin is a transmembrane glycoprotein that facilitates inter-cellular adhesion in the epithelium. The ectodomain of the native structure is comprised of five repeated immunoglobulin-like domains. All E-cadherin crystal structures show the protein in one of three alternative conformations: a monomer, a strand-swapped trans homodimer and the so-called X-dimer, which is proposed to be a kinetic intermediate to forming the strand-swapped trans homodimer. However, previous studies have indicated that even once the trans strand-swapped dimer is formed, the complex is highly dynamic and the E-cadherin monomers may reorient relative to each other. Here, molecular dynamics simulations have been used to investigate the stability and conformational flexibility of the human E-cadherin trans strand-swapped dimer. In four independent, 100 ns simulations, the dimer moved away from the starting structure and converged to a previously unreported structure, which we call the Y-dimer. The Y-dimer was present for over 90% of the combined simulation time, suggesting that it represents a stable conformation of the E-cadherin dimer in solution. The Y-dimer conformation is stabilised by interactions present in both the trans strand-swapped dimer and X-dimer crystal structures, as well as additional interactions not found in any E-cadherin dimer crystal structures. The Y-dimer represents a previously unreported, stable conformation of the human E-cadherin trans strand-swapped dimer and suggests that the available crystal structures do not fully capture the conformations that the human E-cadherin trans homodimer adopts in solution.
Collapse
Affiliation(s)
- Alexandra Schumann-Gillett
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD, 4072, Australia
- Research School of Chemistry (RSC), The Australian National University, Canberra, ACT, 2061, Australia
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD, 4072, Australia
- The Institute for Molecular Biosciences (IMB), University of Queensland, Brisbane, QLD, 4072, Australia
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD, 4072, Australia.
- Research School of Chemistry (RSC), The Australian National University, Canberra, ACT, 2061, Australia.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia.
| | - Megan L O'Mara
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD, 4072, Australia. megan.o'
- Research School of Chemistry (RSC), The Australian National University, Canberra, ACT, 2061, Australia. megan.o'
| |
Collapse
|
39
|
Priest AV, Shafraz O, Sivasankar S. Biophysical basis of cadherin mediated cell-cell adhesion. Exp Cell Res 2017; 358:10-13. [PMID: 28300566 DOI: 10.1016/j.yexcr.2017.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
Abstract
Classical cadherin transmembrane cell-cell adhesion proteins play essential roles in tissue morphogenesis and in mediating tissue integrity. Cadherin ectodomains from opposing cells interact to form load-bearing trans dimers that mechanically couple cells. Cell-cell adhesion is believed to be strengthened by cis clustering of cadherins on the same cell surface. This review summarizes biophysical studies of the structure, interaction kinetics and biomechanics of classical cadherin ectodomains. We first discuss the structure and equilibrium binding kinetics of classical cadherin trans and cis dimers. We then discuss how mechanical stimuli alters the kinetics of cadherin interaction and tunes adhesion. Finally, we highlight open questions on the role of mechanical forces in influencing cadherin structure, function and organization on the cell surface.
Collapse
Affiliation(s)
- Andrew Vae Priest
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Omer Shafraz
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
40
|
Biswas KH, Zaidel-Bar R. Early events in the assembly of E-cadherin adhesions. Exp Cell Res 2017; 358:14-19. [PMID: 28237244 DOI: 10.1016/j.yexcr.2017.02.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/20/2017] [Indexed: 12/30/2022]
Abstract
E-cadherin is a calcium dependent cell adhesion molecule that is key to the organization of cells in the epithelial tissue. It is a multidomain, trans-membrane protein in which the extracellular domain forms the homotypic, adhesive interaction while the intracellular domain interacts with the actin cytoskeleton through the catenin family of adaptor proteins. A number of recent studies have provided novel insights into the mechanism of adhesion formation by this class of adhesion proteins. Here, we describe an updated view of the process of E-cadherin adhesion formation with an emphasis on the role of molecular mobility, clustering, and active cellular processes.
Collapse
Affiliation(s)
- Kabir H Biswas
- Mechanobiology Institute, National University of Singapore, Singapore.
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
41
|
Olsson S, Noé F. Mechanistic Models of Chemical Exchange Induced Relaxation in Protein NMR. J Am Chem Soc 2016; 139:200-210. [DOI: 10.1021/jacs.6b09460] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Simon Olsson
- Computational Molecular
Biology,
FB Mathematik und Informatik, Freie Universität Berlin, Berlin 14195, Germany
| | - Frank Noé
- Computational Molecular
Biology,
FB Mathematik und Informatik, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
42
|
Manibog K, Sankar K, Kim SA, Zhang Y, Jernigan RL, Sivasankar S. Molecular determinants of cadherin ideal bond formation: Conformation-dependent unbinding on a multidimensional landscape. Proc Natl Acad Sci U S A 2016; 113:E5711-20. [PMID: 27621473 PMCID: PMC5047164 DOI: 10.1073/pnas.1604012113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Classical cadherin cell-cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces.
Collapse
Affiliation(s)
- Kristine Manibog
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011; Ames Laboratory, US Department of Energy, Ames, IA 50011
| | - Kannan Sankar
- Bioinformatics and Computational Biology Interdepartmental Program, Iowa State University, Ames, IA 50011; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Sun-Ae Kim
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011; Ames Laboratory, US Department of Energy, Ames, IA 50011
| | - Yunxiang Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Robert L Jernigan
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011; Bioinformatics and Computational Biology Interdepartmental Program, Iowa State University, Ames, IA 50011; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011; L. H. Baker Center for Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011
| | - Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011; Ames Laboratory, US Department of Energy, Ames, IA 50011;
| |
Collapse
|
43
|
Lu H, Sokolow A, Kiehart DP, Edwards GS. Remodeling Tissue Interfaces and the Thermodynamics of Zipping during Dorsal Closure in Drosophila. Biophys J 2016; 109:2406-17. [PMID: 26636951 DOI: 10.1016/j.bpj.2015.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022] Open
Abstract
Dorsal closure during Drosophila embryogenesis is an important model system for investigating the biomechanics of morphogenesis. During closure, two flanks of lateral epidermis (with actomyosin-rich purse strings near each leading edge) close an eye-shaped opening that is filled with amnioserosa. At each canthus (corner of the eye) a zipping process remodels the tissue interfaces between the leading edges of the lateral epidermis and the amnioserosa. We investigated zipping dynamics and found that apposing leading edge cells come together at their apical ends and then square off basally to form a lateral junction. Meanwhile, the purse strings act as contractile elastic rods bent toward the embryo interior near each canthus. We propose that a canthus-localized force contributes to both bending the ends of the purse strings and the formation of lateral junctions. We developed a thermodynamic model for zipping based on three-dimensional remodeling of the tissue interfaces and the reaction dynamics of adhesion molecules in junctions and elsewhere, which we applied to zipping during unperturbed wild-type closure and to laser or genetically perturbed closure. We identified two processes that can contribute to the zipping mechanism, consistent with experiments, distinguished by whether amnioserosa dynamics do or do not augment canthus adhesion dynamics.
Collapse
Affiliation(s)
- Heng Lu
- Physics Department, Duke University, Durham, North Carolina
| | - Adam Sokolow
- Physics Department, Duke University, Durham, North Carolina
| | | | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina.
| |
Collapse
|
44
|
Zhang M, Zheng J, Nussinov R, Ma B. Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane. Sci Rep 2016; 6:33340. [PMID: 27630059 PMCID: PMC5024136 DOI: 10.1038/srep33340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio 44325
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio 44325
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
45
|
Kudo S, Caaveiro J, Tsumoto K. Adhesive Dimerization of Human P-Cadherin Catalyzed by a Chaperone-like Mechanism. Structure 2016; 24:1523-36. [DOI: 10.1016/j.str.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 01/17/2023]
|
46
|
Furukawa A, Konuma T, Yanaka S, Sugase K. Quantitative analysis of protein-ligand interactions by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 96:47-57. [PMID: 27573180 DOI: 10.1016/j.pnmrs.2016.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 06/06/2023]
Abstract
Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used to analyze population-averaged NMR quantities. Essentially, to apply NMR successfully, both the type of experiment and equation to fit the data must be carefully and specifically chosen for the protein-ligand interaction under analysis. In this review, we first explain the exchange regimes and kinetic models of protein-ligand interactions, and then describe the NMR methods that quantitatively analyze these specific interactions.
Collapse
Affiliation(s)
- Ayako Furukawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsuyoshi Konuma
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saeko Yanaka
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan; Department of Life and Coordination-Complex Molecular Science, Biomolecular Functions, Institute of Molecular Science, National Institute of Natural Sciences, Japan
| | - Kenji Sugase
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan; Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan.
| |
Collapse
|
47
|
Zhang M, Yu XW, Swapna GVT, Xiao R, Zheng H, Sha C, Xu Y, Montelione GT. Efficient production of (2)H, (13)C, (15)N-enriched industrial enzyme Rhizopus chinensis lipase with native disulfide bonds. Microb Cell Fact 2016; 15:123. [PMID: 27411547 PMCID: PMC4944435 DOI: 10.1186/s12934-016-0522-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/03/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND In order to use most modern methods of NMR spectroscopy to study protein structure and dynamics, isotope-enriched protein samples are essential. Especially for larger proteins (>20 kDa), perdeuterated and Ile (δ1), Leu, and Val methyl-protonated protein samples are required for suppressing nuclear relaxation to provide improved spectral quality, allowing key backbone and side chain resonance assignments needed for protein structure and dynamics studies. Escherichia coli and Pichia pastoris are two of the most popular expression systems for producing isotope-enriched, recombinant protein samples for NMR investigations. The P. pastoris system can be used to produce (13)C, (15)N-enriched and even (2)H,(13)C, (15)N-enriched protein samples, but efficient methods for producing perdeuterated proteins with Ile (δ1), Leu and Val methyl-protonated groups in P. pastoris are still unavailable. Glycosylation heterogeneity also provides challenges to NMR studies. E. coli expression systems are efficient for overexpressing perdeuterated and Ile (δ1), Leu, Val methyl-protonated protein samples, but are generally not successful for producing secreted eukaryotic proteins with native disulfide bonds. RESULTS The 33 kDa protein-Rhizopus chinensis lipase (RCL), an important industrial enzyme, was produced using both P. pastoris and E. coli BL21 trxB (DE3) systems. Samples produced from both systems exhibit identical native disulfide bond formation and similar 2D NMR spectra, indicating similar native protein folding. The yield of (13)C, (15)N-enriched r27RCL produced using P. pastoris was 1.7 times higher that obtained using E. coli, while the isotope-labeling efficiency was ~15 % lower. Protein samples produced in P. pastoris exhibit O-glycosylation, while the protein samples produced in E. coli were not glycosylated. The specific activity of r27RCL from P. pastoris was ~1.4 times higher than that produced in E. coli. CONCLUSIONS These data demonstrate efficient production of (2)H, (13)C, (15)N-enriched, Ile (δ1), Leu, Val methyl-protonated eukaryotic protein r27RCL with native disulfides using the E. coli BL21 trxB (DE3) system. For certain NMR studies, particularly efforts for resonance assignments, structural studies, and dynamic studies, E. coli provides a cost-effective system for producing isotope-enriched RCL. It should also be potential for producing other (2)H, (13)C, (15)N-enriched, Ile (δ1), Leu, Val methyl-protonated eukaryotic proteins with native disulfide bonds.
Collapse
Affiliation(s)
- Meng Zhang
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - Xiao-Wei Yu
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
- />State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - G. V. T. Swapna
- />Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Rong Xiao
- />Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Haiyan Zheng
- />Biological Mass Spectrometry Facility, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Chong Sha
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - Yan Xu
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
- />State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - Gaetano T. Montelione
- />Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- />Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
48
|
Nardone V, Lucarelli AP, Dalle Vedove A, Fanelli R, Tomassetti A, Belvisi L, Civera M, Parisini E. Crystal Structure of Human E-Cadherin-EC1EC2 in Complex with a Peptidomimetic Competitive Inhibitor of Cadherin Homophilic Interaction. J Med Chem 2016; 59:5089-94. [PMID: 27120112 DOI: 10.1021/acs.jmedchem.5b01487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cadherins are transmembrane cell adhesion proteins whose aberrant expression often correlates with cancer development and proliferation. We report the crystal structure of an E-cadherin extracellular fragment in complex with a peptidomimetic compound that was previously shown to partially inhibit cadherin homophilic adhesion. The structure reveals an unexpected binding mode and allows the identification of a druggable cadherin interface, thus paving the way to a future structure-guided design of cell adhesion inhibitors against cadherin-expressing solid tumors.
Collapse
Affiliation(s)
- Valentina Nardone
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via G. Pascoli 70/3, 20133 Milano, Italy.,Dipartimento di Chimica, Materiali and Ingegneria Chimica "Giulio Natta", Politecnico di Milano , Via L. Mancinelli 7, 20131 Milano, Italy
| | - Anna Paola Lucarelli
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via G. Pascoli 70/3, 20133 Milano, Italy
| | - Andrea Dalle Vedove
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via G. Pascoli 70/3, 20133 Milano, Italy.,Dipartimento di Chimica, Materiali and Ingegneria Chimica "Giulio Natta", Politecnico di Milano , Via L. Mancinelli 7, 20131 Milano, Italy
| | - Roberto Fanelli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria , Via Valleggio 11, 22100 Como, Italy
| | - Antonella Tomassetti
- Dipartimento di Oncologia Sperimentale e Medicina Molecolare, Fondazione IRCCS Istituto Nazionale dei Tumori , Via G. Amadeo 42, 20133 Milano, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano , Via C. Golgi 19, 20133 Milano, Italy
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano , Via C. Golgi 19, 20133 Milano, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via G. Pascoli 70/3, 20133 Milano, Italy
| |
Collapse
|
49
|
Chen J, Xie ZR, Wu Y. Elucidating the general principles of cell adhesion with a coarse-grained simulation model. MOLECULAR BIOSYSTEMS 2016; 12:205-18. [DOI: 10.1039/c5mb00612k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coarse-grained simulation of interplay between cell adhesion and cell signaling.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| | - Yinghao Wu
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| |
Collapse
|
50
|
Doro F, Colombo C, Alberti C, Arosio D, Belvisi L, Casagrande C, Fanelli R, Manzoni L, Parisini E, Piarulli U, Luison E, Figini M, Tomassetti A, Civera M. Computational design of novel peptidomimetic inhibitors of cadherin homophilic interactions. Org Biomol Chem 2015; 13:2570-3. [PMID: 25614037 DOI: 10.1039/c4ob02538e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a first set of peptidomimetic ligands mimicking the adhesive interface identified by recent crystallographic structures of E- and N-cadherin. Compounds 2 and 3 inhibit adhesion of epithelial ovarian cancer (EOC) cells with improved efficacy compared to the ADH-1 peptide, a N-cadherin antagonist that is in early clinical trials in EOC patients.
Collapse
Affiliation(s)
- Fabio Doro
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, I-20133, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|