1
|
Zhao C, Peng Y, Raza MF, Wang W, Zhang Y, Chen Y, Han R, Guo J, Huang S, Li W. A gut bacterial supplement for Asian honey bee (Apis cerana) enhances host tolerance to nitenpyram: Insight from microbiota-gut-brain axis. ENVIRONMENTAL RESEARCH 2025; 274:121306. [PMID: 40054557 DOI: 10.1016/j.envres.2025.121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 05/04/2025]
Abstract
The widespread use of neonicotinoid pesticides has severely impacted honey bees, driving population declines. Gut microbiota are increasingly recognized for their role in mitigating pesticide toxicity. This study evaluated the ability of Gilliamella sp. G0441, a core microbiome member of the Asian honey bee (Apis cerana), to confer resistance to the toxicity of a neonicotinoid nitenpyram. Newly emerged Asian honey bees were first colonized with gut microbiota in the source colony, then divided into four treatments: SS (fed sucrose solution throughout), SN (fed sucrose solution, then exposed to nitenpyram), GS (fed Gilliamella, then sucrose solution), and GN (fed Gilliamella, then exposed to nitenpyram), and their responses-mortality, food consumption, body weight, and sucrose sensitivity-were assessed. The protective effects of Gilliamella administration on the host were further validated using a microbiota-free bee model. Gilliamella supplementation significantly mitigated nitenpyram-induced appetite suppression, weight loss, impaired learning, and gut microbiota disruption. Mechanistic analyses revealed that nitenpyram disrupted brain metabolism via the intestinal MAPK pathway, reducing ascorbate and aldarate metabolism. Prophylactic Gilliamella treatment reversed these effects, restored metabolic balance, and modulated esterase E4 expression, enhancing pesticide resistance. This study underscores Gilliamella's vital role in honey bee resilience to neonicotinoids, offering insights into the microbiota-gut-brain axis (MGBA) as a pathway for enhancing pesticide tolerance and ecological health.
Collapse
Affiliation(s)
- Chonghui Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yehua Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China; College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Fahad Raza
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Wenbo Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China; College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Zhang
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Yunfu, 527527, China
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Shaokang Huang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wenfeng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
| |
Collapse
|
2
|
Martin Ewert A, McMenamin A, Adjaye D, Rainey V, Ricigliano V. Microalgae functional feed additives strengthen immunity and increase longevity in honey bees. J Invertebr Pathol 2025; 211:108352. [PMID: 40324679 DOI: 10.1016/j.jip.2025.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/24/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Honey bees (Apis mellifera) are faced with a myriad of immunological threats, often worsened by poor nutrition. The use of functional feed additives offers a promising strategy to address colony nutritional deficiencies while helping strengthen bee immune responses and mitigate stress. Microalgae have gained recognition as beneficial diet ingredients for livestock due to their abundance of essential nutrients and immunomodulatory properties. Here, we tested the effects of microalgae-containing feed on honey bee immunity, lifespan, and nutrient assimilation. Caged bees were fed a commercial artificial diet or the same diet with added pollen, spirulina (Arthrospira platensis) or Chlorella (Chlorella vulgaris). Immune-related gene expression, longevity, and body weight were measured following six days of ad libitum feeding. All diets resulted in similar body weights, indicating adequate nutrient assimilation. While bees fed the pollen-containing diet lived the longest (median lifespan = 51 days), bees fed spirulina- and Chlorella-containing diets lived significantly longer (median lifespan = 48 and 46 days, respectively) than those fed the base diet (median lifespan = 40 days). Spirulina-fed bees exhibited significantly higher expression of several antimicrobial peptide (AMP) genes relative to the base diet and had superior bacterial clearing ability after injection with live E. coli cells. We propose that this increased immunocompetence is at least partially due to elevated AMP levels. Our findings suggest that the tested microalgae can improve honey bee longevity and immune functions with negligible health costs relative to a commonly used artificial diet. Determining the effects of microalgae feed additives in field-relevant contexts and in the face of diverse pathogen challenges should be the focus of future research efforts.
Collapse
Affiliation(s)
- Allyson Martin Ewert
- Louisiana State University, AgCenter, Department of Entomology, Baton Rouge, LA 70803, USA; USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Unit, Baton Rouge, LA 70820, USA
| | - Alexander McMenamin
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Unit, Baton Rouge, LA 70820, USA
| | - Daniela Adjaye
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Unit, Baton Rouge, LA 70820, USA
| | - Victor Rainey
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Unit, Baton Rouge, LA 70820, USA
| | - Vincent Ricigliano
- USDA-ARS Invasive Species and Pollinator Health Unit, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Mitkovska V, Stoyanov I, Chassovnikarova T, Vasileva P, Petrov P, Ivanova EN. Pesticide stress induces spermatozoa DNA damage and morphological abnormalities in Apis mellifera populations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104710. [PMID: 40316003 DOI: 10.1016/j.etap.2025.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The rising losses of honey bee colonies are causing public concern regarding the species' long-term sustainability. Therefore, this study aimed to assess how pesticide exposure affects DNA damage and morphological traits of drone spermatozoa across different Apis mellifera populations, categorized by varying colony loss rates. Chromatographic analysis identified 24 pesticide residues in bee samples and colony food stocks. Significant differences were found in comet assay parameters (tail intensity and Olive tail moment), frequency of morphological abnormalities, and morphometric variations in spermatozoa between apiaries experiencing high versus low mortality rates. The findings indicate that DNA damage and morphological abnormalities in spermatozoa, potentially caused by pesticide stress, compromise the reproductive ability of honey bee drones, contributing to the complex phenomenon of colony loss. The comet assay parameters and morphological aberrations of honey bee spermatozoa may serve as effective biomarkers for evaluating the fitness of drone spermatozoa and assessing environmental hazards to bee populations.
Collapse
Affiliation(s)
- Vesela Mitkovska
- Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv 4000, Bulgaria
| | - Ivan Stoyanov
- Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv 4000, Bulgaria
| | - Tsenka Chassovnikarova
- Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv 4000, Bulgaria; Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia 1000, Bulgaria
| | - Penka Vasileva
- Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv 4000, Bulgaria
| | - Plamen Petrov
- Department of Animal Science, Agricultural University - Plovdiv, Plovdiv 4000, Bulgaria
| | - Evgeniya N Ivanova
- Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv 4000, Bulgaria.
| |
Collapse
|
4
|
De la Mora A, Goodwin PH, Morfin N, Petukhova T, Guzman-Novoa E. Diversity of Potential Resistance Mechanisms in Honey Bees ( Apis mellifera) Selected for Low Population Growth of the Parasitic Mite, Varroa destructor. INSECTS 2025; 16:385. [PMID: 40332899 PMCID: PMC12027846 DOI: 10.3390/insects16040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025]
Abstract
Honey bees (Apis mellifera) bred for resistance to the parasitic mite, Varroa destructor, were examined for potential Varroa resistance mechanisms following bidirectional selection for low (resistant) or high (susceptible) Varroa population growth (LVG and HVG, respectively) based on mite fall in colonies at two different time points. Hygienic and grooming behavior rates in LVG colonies were significantly higher than those in HVG colonies for two out of three generations of selection, indicating that behavioral resistance to the mite increased. For the third generation, grooming start time was significantly shorter, and grooming intensity more frequent in LVG bees than in HVG bees. Cellular immunity was increased as well, based on significantly higher haemocyte concentrations in non-parasitized and Varroa-parasitized LVG bees. Humoral immunity was increased with Varroa-parasitized LVG bees, which had significantly higher expression of the antimicrobial peptide gene, hymenoptaecin 2. In addition, antiviral resistance may be involved as there were significantly lower levels of deformed wing virus (DWV) in Varroa-parasitized LVG bees. While selection for LVG and HVG bees was solely based on Varroa population growth, it appears that behavioral, cellular, and humoral mechanisms were all selected along with this resistance. Thus, LVG resistance appears to be a multi-gene trait, involving multiple resistance mechanisms.
Collapse
Affiliation(s)
- Alvaro De la Mora
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (P.H.G.); (E.G.-N.)
| | - Nuria Morfin
- Department of Entomology, Faculty of Agricultural and Food Sciences, University of Manitoba, 12 Dafoe Road, Winnipeg, MB R3T 2N2, Canada;
| | - Tatiana Petukhova
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (P.H.G.); (E.G.-N.)
| |
Collapse
|
5
|
Khan MK, Rolff J. Insect immunity in the Anthropocene. Biol Rev Camb Philos Soc 2025; 100:698-723. [PMID: 39500735 PMCID: PMC11885697 DOI: 10.1111/brv.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 03/08/2025]
Abstract
Anthropogenic activities result in global change, including climate change, landscape degradation and pollution, that can alter insect physiology and immune defences. These changes may have contributed to global insect decline and the dynamics of insect-transmitted diseases. The ability of insects to mount immune responses upon infection is crucial for defence against pathogens and parasites. Suppressed immune defences reduce fitness by causing disease-driven mortality and elevated immune responses reduce energy available to invest in other fitness traits such as reproduction. Understanding the impact of anthropogenic factors on insect-pathogen interactions is therefore key to determining the contribution of anthropogenic global change to pathogen-driven global insect decline and the emergence and transmission of insect-borne diseases. Here, we synthesise evidence of the impact of anthropogenic factors on insect immunity. We found evidence that anthropogenic factors, such as insecticides and heavy metals, directly impacting insect immune responses by inhibiting immune activation pathways. Alternatively, factors such as global warming, heatwaves, elevated CO2 and landscape degradation can indirectly reduce insect immune responses via reducing the energy available for immune function. We further review how anthropogenic factors impact pathogen clearance and contribute to an increase in vector-borne diseases. We discuss the fitness cost of anthropogenic factors via pathogen-driven mortality and reduced reproductive output and how this can contribute to species extinction. We found that most research has determined the impact of a single anthropogenic factor on insect immune responses or pathogen resistance. We recommend studying the combined impact of multiple stressors on immune response and pathogen resistance to understand better how anthropogenic factors affect insect immunity. We conclude by highlighting the importance of initiatives to mitigate the impact of anthropogenic factors on insect immunity, to reduce the spread of vector-borne diseases, and to protect vulnerable ecosystems from emerging diseases.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
- School of Natural SciencesMacquarie University18 Wally's Walk, North Ryde‐2109SydneyNSWAustralia
| | - Jens Rolff
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
| |
Collapse
|
6
|
MacInnis CI, Luong LT, Pernal SF. Effects of Nosema ceranae and Lotmaria passim infections on honey bee foraging behaviour and physiology. Int J Parasitol 2025; 55:213-223. [PMID: 39736384 DOI: 10.1016/j.ijpara.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
Nosema ceranae and Lotmaria passim are two commonly encountered digestive tract parasites of the adult honey bee (Apis mellifera L.). Although these parasites are associated with colony losses, little is known about how they affect individual bee physiology and behaviour at the colony level. Using locally obtained isolates, we investigated the effects of both single and mixed infections of L. passim and N. ceranae on honey bee vitellogenin (Vg) expression and foraging behaviour. At the first instance of foraging, bees inoculated with either parasite had significantly lower Vg expression than uninoculated bees, with bees from the mixed infection treatment having the lowest Vg expression. Bees from the mixed infection treatment also had significantly higher densities of N. ceranae spores and numerically greater densities of L. passim cells per bee compared with bees inoculated with either parasite alone. In addition, bees from the mixed infection treatment had a significantly younger average foraging age compared with uninoculated bees from the same cohort. Although we did not find any effect of treatment on foraging effort, we discovered that bees inoculated with L. passim alone, or together with N. ceranae, had higher returning rates of foragers than control bees or bees inoculated with N. ceranae alone. Our findings indicate that both parasites can alter individual bee physiology, leading to individual changes in behaviour that could alter colony foraging dynamics. These have the potential to result in smaller, less productive colonies, decreased colony survivorship and reduced income for beekeepers.
Collapse
Affiliation(s)
- Courtney I MacInnis
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, Alberta, Canada T0H 0C0; University of Alberta, Department of Biological Sciences, Edmonton, Alberta T6G 2E9, Canada.
| | - Lien T Luong
- University of Alberta, Department of Biological Sciences, Edmonton, Alberta T6G 2E9, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, Alberta, Canada T0H 0C0.
| |
Collapse
|
7
|
Sukkar D, Wagner L, Bonnefoy A, Falla-Angel J, Laval-Gilly P. Imidacloprid and amitraz differentially alter antioxidant enzymes in honeybee (Apis mellifera) hemocytes when exposed to microbial pathogen-associated molecular patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178868. [PMID: 39999704 DOI: 10.1016/j.scitotenv.2025.178868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Honeybees (Apis mellifera) are increasingly exposed to pesticides and microbial stressors, yet their combined effects on immune defenses remain unclear. Exposure to the neonicotinoid imidacloprid and the acaricide amitraz, alone and in combination, alters antioxidant enzyme activity in hemocytes when challenged with bacterial components such as lipopolysaccharide and peptidoglycan or the fungal-derived molecule zymosan A. The combination of pesticides with zymosan A synergistically suppresses superoxide dismutase and glutathione-S-transferase activity, while catalase activity remains unchanged. In contrast, lipopolysaccharide counteracts pesticide-induced oxidative stress, suggesting immune-pathway-specific modulation. The heightened vulnerability of honeybees to fungal-associated immune challenges in pesticide-contaminated environments compromises their ability to detoxify harmful substances and respond to infections. Such approaches that include comparison of different microbial interactions, pesticide cocktails, and immunity are needed. Understanding these interactions is essential for improving pesticide regulations and pollinator conservation efforts in the face of increasing environmental stressors.
Collapse
Affiliation(s)
- Dani Sukkar
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France.
| | - Lea Wagner
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Université de Lorraine, Department of Environmental Management, 57000 Metz, France
| | - Antoine Bonnefoy
- Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France
| | - Jairo Falla-Angel
- Université de Lorraine, Department of Environmental Management, 57000 Metz, France
| | | |
Collapse
|
8
|
Witwicka A, López-Osorio F, Arce A, Gill RJ, Wurm Y. Acute and chronic pesticide exposure trigger fundamentally different molecular responses in bumble bee brains. BMC Biol 2025; 23:72. [PMID: 40069737 PMCID: PMC11900027 DOI: 10.1186/s12915-025-02169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Beneficial insects, including pollinators, encounter various pesticide exposure conditions, from brief high-concentration acute exposure to continuous low-level chronic exposure. To effectively assess the environmental risks of pesticides, it is critical to understand how different exposure schemes influence their effects. Unfortunately, this knowledge remains limited. To clarify whether different exposure schemes disrupt the physiology of pollinators in a similar manner, we exposed bumble bees to acute or chronic treatments of three different pesticides: acetamiprid, clothianidin, or sulfoxaflor. Genome-wide gene expression profiling enabled us to compare the effects of these treatments on the brain in a high-resolution manner. RESULTS There were two main findings: First, acute and chronic exposure schemes largely affected non-overlapping sets of genes. Second, different pesticides under the same exposure scheme showed more comparable effects than the same pesticide under different exposure schemes. Each exposure scheme induced a distinct gene expression profile. Acute exposure mainly caused upregulation of genes linked to the stress response mechanisms, like peroxidase and detoxification genes, while chronic exposure predominantly affected immunity and energy metabolism. CONCLUSIONS Our findings show that the mode of exposure is critical in determining the molecular effects of pesticides. These results signal the need for safety testing practices to better consider mode-of-exposure dependent effects and suggest that transcriptomics can support such improvements.
Collapse
Affiliation(s)
- Alicja Witwicka
- Biology Department, Mary University of London, London, Queen, UK.
| | | | - Andres Arce
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, UK
| | - Richard J Gill
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Silwood Park Campus, Imperial College London, London, UK
| | - Yannick Wurm
- Biology Department, Mary University of London, London, Queen, UK.
- Digital Environment Research Institute, Queen Mary University of London, London, UK.
- Alan Turing Institute, London, UK.
| |
Collapse
|
9
|
Leitzke M, Roach DT, Hesse S, Schönknecht P, Becker GA, Rullmann M, Sattler B, Sabri O. Long COVID - a critical disruption of cholinergic neurotransmission? Bioelectron Med 2025; 11:5. [PMID: 40011942 DOI: 10.1186/s42234-025-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Following the COVID-19 pandemic, there are many chronically ill Long COVID (LC) patients with different symptoms of varying degrees of severity. The pathological pathways of LC remain unclear until recently and make identification of path mechanisms and exploration of therapeutic options an urgent challenge. There is an apparent relationship between LC symptoms and impaired cholinergic neurotransmission. METHODS This paper reviews the current literature on the effects of blocked nicotinic acetylcholine receptors (nAChRs) on the main affected organ and cell systems and contrasts this with the unblocking effects of the alkaloid nicotine. In addition, mechanisms are presented that could explain the previously unexplained phenomenon of post-vaccination syndrome (PVS). The fact that not only SARS-CoV-2 but numerous other viruses can bind to nAChRs is discussed under the assumption that numerous other post-viral diseases and autoimmune diseases (ADs) may also be due to impaired cholinergic transmission. We also present a case report that demonstrates changes in cholinergic transmission, specifically, the availability of α4β2 nAChRs by using (-)-[18F]Flubatine whole-body positron emission tomography (PET) imaging of cholinergic dysfunction in a LC patient along with a significant neurological improvement before and after low-dose transcutaneous nicotine (LDTN) administration. Lastly, a descriptive analysis and evaluation were conducted on the results of a survey involving 231 users of LDTN. RESULTS A substantial body of research has emerged that offers a compelling explanation for the phenomenon of LC, suggesting that it can be plausibly explained because of impaired nAChR function in the human body. Following a ten-day course of transcutaneous nicotine administration, no enduring neuropathological manifestations were observed in the patient. This observation was accompanied by a significant increase in the number of free ligand binding sites (LBS) of nAChRs, as determined by (-)-[18F]Flubatine PET imaging. The analysis of the survey shows that the majority of patients (73.5%) report a significant improvement in the symptoms of their LC/MEF/CFS disease as a result of LDTN. CONCLUSIONS In conclusion, based on current knowledge, LDTN appears to be a promising and safe procedure to relieve LC symptoms with no expected long-term harm.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany.
- Department of Anesthesiology, Intensive Care Medicine, Pain- and Palliative Therapy Helios Clinics, Colditzer Straße 48, Leisnig, 04703, Germany.
| | - Donald Troy Roach
- School of Comillas University, Renegade Research, Madrid, 28015, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Neurology Altscherbitz, Schkeuditz, 04435, Germany
- Outpatient Department for Forensic-Psychiatric Research, University of Leipzig, Leipzig, 04103, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Bernhardt Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| |
Collapse
|
10
|
Barroso P, Reza-Varzandi A, Sardo A, Pesavento A, Allais L, Zanet S, Ferroglio E. Impact of intensive agriculture and pathogens on honeybee (Apis mellifera) colony strength in northwestern Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125571. [PMID: 39746641 DOI: 10.1016/j.envpol.2024.125571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Honeybee colony survival has significantly decreased in many countries over recent decades, which has been associated with multiple factors including pathogens, parasites, resource availability, and environmental stressors, with agricultural intensification playing a key role. This study assessed the effects of Varroa destructor mite infestation, viral prevalence and load, and agrochemical concentrations in the hive matrix on colony strength in two apiaries located in different agricultural contexts (intensive vs traditional) in Northwestern Italy from March to September 2021. The results revealed that colonies in the intensively managed area exhibited lower colony strength and higher mortality rates. Varroa destructor was found to interact with viruses, potentially increasing their effective virulence. Pesticide concentrations in hive matrices correlated with reduced colony strength, exacerbated by elevated pathogen loads. These findings highlighted the effects of agricultural chemicals together with pathogens on worsening bee health, raising urgent concerns for environmental management and regulatory policy.
Collapse
Affiliation(s)
- Patricia Barroso
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2 Grugliasco, 10095, Turin, Italy; Department of Animal Health, University of Leon, Campus de Vegazana, 24071, León, Spain.
| | - Amir Reza-Varzandi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2 Grugliasco, 10095, Turin, Italy
| | - Andrea Sardo
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2 Grugliasco, 10095, Turin, Italy
| | - Alberto Pesavento
- Associazione Produttori Miele Piemonte-ASPROMIELE, Via del Passatore 24C, 12100, Cuneo, Italy
| | - Luca Allais
- Associazione Produttori Miele Piemonte-ASPROMIELE, Via del Passatore 24C, 12100, Cuneo, Italy
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2 Grugliasco, 10095, Turin, Italy
| | - Ezio Ferroglio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2 Grugliasco, 10095, Turin, Italy
| |
Collapse
|
11
|
Bortolin F, Rigato E, Perandin S, Granato A, Zulian L, Millino C, Pacchioni B, Mutinelli F, Fusco G. First evidence of the effectiveness of a field application of RNAi technology in reducing infestation of the mite Varroa destructor in the western honey bee (Apis mellifera). Parasit Vectors 2025; 18:28. [PMID: 39865294 PMCID: PMC11771053 DOI: 10.1186/s13071-025-06673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking. METHODS We investigated the efficacy and feasibility of a RNAi treatment to improve bee health under natural beekeeping conditions by integrating a honey bee diet with a mixture of dsRNA targeting V. destructor acetyl-CoA carboxylase, Na+/K+ ATPase and endochitinase genes. RESULTS In treated hives, we observed that the average infestation rate of phoretic Varroa mite was reduced by 33% and 42% relative to control bees fed with sucrose and GFP-dsRNA, respectively. The dsRNA treatment did not affect bee survival, and the beekeepers involved in the project found the method manageable in the apiary and non-intrusive to production activities. CONCLUSIONS Our findings demonstrate the feasibility and effectiveness of RNAi technology in reducing Varroa mite infestations under natural rearing conditions. This study supports the potential of RNAi as a promising alternative to chemical pesticides, offering a targeted, efficient and sustainable solution for managing V. destructor in honey bee populations.
Collapse
Affiliation(s)
| | | | | | - Anna Granato
- National Reference Laboratory for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Laura Zulian
- National Reference Laboratory for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | | | | | - Franco Mutinelli
- National Reference Laboratory for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Giuseppe Fusco
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Becchimanzi A, De Leva G, Mattossovich R, Camerini S, Casella M, Jesu G, Di Lelio I, Di Giorgi S, de Miranda JR, Valenti A, Gigliotti S, Pennacchio F. Deformed wing virus coopts the host arginine kinase to enhance its fitness in honey bees (Apis mellifera). BMC Biol 2025; 23:12. [PMID: 39800727 PMCID: PMC11727705 DOI: 10.1186/s12915-025-02117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Deformed wing virus (DWV) is a major honey bee pathogen that is actively transmitted by the parasitic mite Varroa destructor and plays a primary role in Apis mellifera winter colony losses. Despite intense investigation on this pollinator, which has a unique environmental and economic importance, the mechanisms underlying the molecular interactions between DWV and honey bees are still poorly understood. Here, we report on a group of honey bee proteins, identified by mass spectrometry, that specifically co-immunoprecipitate with DWV virus particles. RESULTS Most of the proteins identified are involved in fundamental metabolic pathways. Among the co-immunoprecipitated proteins, one of the most interesting was arginine kinase (ArgK), a conserved protein playing multiple roles both in physiological and pathological processes and stress response in general. Here, we investigated in more detail the relationship between DWV and this protein. We found that argK RNA level positively correlates with DWV load in field-collected honey bee larvae and adults and significantly increases in adults upon DWV injection in controlled laboratory conditions, indicating that the argK gene was upregulated by DWV infection. Silencing argK gene expression in vitro, using RNAi, resulted in reduced DWV viral load, thus confirming that argK upregulation facilitates DWV infection, likely through interfering with the delicate balance between metabolism and immunity. CONCLUSIONS In summary, these data indicate that DWV modulates the host ArgK through transcriptional regulation and cooptation to enhance its fitness in honey bees. Our findings open novel perspectives on possible new therapies for DWV control by targeting specific host proteins.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Naples Federico II, Naples, Italy
| | - Giovanna De Leva
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Rosanna Mattossovich
- Institute of Biosciences and BioResources, National Council of Research of Italy, Naples, Italy
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità (ISS), Rome, Italy
| | | | - Giovanni Jesu
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Naples Federico II, Naples, Italy
| | | | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Valenti
- Institute of Biosciences and BioResources, National Council of Research of Italy, Naples, Italy.
| | - Silvia Gigliotti
- Institute of Biosciences and BioResources, National Council of Research of Italy, Naples, Italy.
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
- BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
13
|
Chattopadhyay A, Samadder A, Mukhopadhyay S, Bhattacharya S, Lai YC. Understanding pesticide-induced tipping in plant-pollinator networks across geographical scales: Prioritizing richness and modularity over nestedness. Phys Rev E 2025; 111:014407. [PMID: 39972750 DOI: 10.1103/physreve.111.014407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 02/21/2025]
Abstract
Mutually beneficial interactions between plants and pollinators are crucial for biodiversity, ecosystem stability, and crop production. A threat to a mutualistic network is the occurrence of a tipping point at which the species abundances collapse to a near zero level. In modern agriculture, there is widespread use of pesticides. What are the effects of extensive pesticide use on mutualistic networks? We develop a plant-pollinator-pesticide model and study its dynamics using 123 mutualistic networks across the globe. We demonstrate that pesticide exposure can lead to a tipping point. Furthermore, while the network characteristics such as richness and modularity exhibit a strong association with pesticide-induced tipping, nestedness shows a weak association. A surprising finding is that the mutualistic networks in the African continent are less pesticide tolerant than those in Europe. We articulate and test a pragmatic intervention strategy through targeted management of pesticide levels within specific plant species to delay or avert the tipping point. Our study provides quantitative insights into the phenomenon of pesticide-induced tipping for safeguarding mutualistic networks that are fundamental to agriculture and ecosystems.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Indian Statistical Institute, Agricultural and Ecological Research Unit, Kolkata 700108, West Bengal, India
| | - Amit Samadder
- Indian Statistical Institute, Agricultural and Ecological Research Unit, Kolkata 700108, West Bengal, India
| | - Soumalya Mukhopadhyay
- Visva Bharati University, Department Of Statistics, Siksha Bhavana, Santiniketan 731235, West Bengal, India
| | - Sabyasachi Bhattacharya
- Indian Statistical Institute, Agricultural and Ecological Research Unit, Kolkata 700108, West Bengal, India
| | - Ying-Cheng Lai
- Arizona State University, School of Electrical, Computer and Energy Engineering, Department of Physics, Tempe, Arizona 85287, USA
| |
Collapse
|
14
|
Lin CY, Lin YC, Lu YH, Chen SJ, Lin YH, Tseng YK, Lin YT, Wu YL, Huang RN. Synergistic impacts of propargite exposure and deformed wing virus infection on the health of western honey bees. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117430. [PMID: 39644560 DOI: 10.1016/j.ecoenv.2024.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to elucidate the possible synergistic effects of chemical pesticides and viral infections. Our experiments demonstrated that the Varroa mite-borne deformed wing virus (DWV) by itself had a minimal impact on bees. Conversely, when bees were simultaneously treated with acaricides, their mortality rate increased. The administration of DWV alone boosted the expression of immune response genes, whereas acaricide alone did not significantly affect the expression of detoxification genes. However, simultaneous treatment of DWV and acaricide increased both the immune response and detoxification gene expression, thereby indicating enhanced bee resistance. These findings indicate a synergistic association between viral infection and bee sensitivity to acaricides, possibly as a result of physiological or immune system impairment. Our results also indicated that adenosine supplementation enhances the resilience of bees to environmental challenges, further supporting the energy requirement hypothesis.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Chun Lin
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science, Institute of Ecology and Evolutionary Biology and TechComm-5, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Hsien Lin
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | - Yao-Kuang Tseng
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Tzu Lin
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan; Master Program for Plant Medicine, National Taiwan University, Taipei 106, Taiwan.
| | - Rong-Nan Huang
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan; Master Program for Plant Medicine, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
15
|
De la Mora A, Goodwin PH, Emsen B, Kelly PG, Petukhova T, Guzman-Novoa E. Selection of Honey Bee ( Apis mellifera) Genotypes for Three Generations of Low and High Population Growth of the Mite Varroa destructor. Animals (Basel) 2024; 14:3537. [PMID: 39682502 DOI: 10.3390/ani14233537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Honey bee (Apis mellifera) population declines have been associated with the parasitic mite, Varroa destructor, which is currently primarily controlled by the use of acaricides. An alternative is to breed for resistance to Varroa, which was conducted in this study by bidirectional selection for mite fall to obtain colonies with low (resistant) or high (susceptible) Varroa population growth (LVG and HVG, respectively). Selection for three generations resulted in approx. 90% lower Varroa population growth in LVG than in HVG colonies. In addition, late summer Varroa infestation rates of brood and adults were both significantly lower in LVG colonies (p < 0.01), which was also significantly associated with lower Deformed Wing Virus (DWV) infection levels (p < 0.01). Survival of Varroa-parasitized bees was almost 50% higher for LVG bees compared to HVG bees (p < 0.01). Also, colony winter survivorship was significantly higher for LVG colonies than for HVG colonies (p < 0.05). However, the higher colony populations observed for LVG colonies were not significantly different from those of HVG colonies. Overall, individual and colony health was improved by selecting colonies for LVG, demonstrating its effectiveness as a means of breeding for controlling Varroa populations in honey bee colonies.
Collapse
Affiliation(s)
- Alvaro De la Mora
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Berna Emsen
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Paul G Kelly
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Tatiana Petukhova
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
16
|
Lisi F, Amichot M, Desneux N, Gatti JL, Guedes RNC, Nazzi F, Pennacchio F, Russo A, Sánchez-Bayo F, Wang X, Zappalà L, Biondi A. Pesticide immunotoxicity on insects - Are agroecosystems at risk? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175467. [PMID: 39155008 DOI: 10.1016/j.scitotenv.2024.175467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
Recent years have witnessed heightened scrutiny of the non-target sublethal effects of pesticides on behavioural and physiological traits of insects. Traditionally, attention has focused on investigating pesticides' primary modes of action, often overlooking the potential secondary mechanisms. This review brings forth the nuanced impacts of sublethal pesticide exposure on the immune system of target and non-target insect species. Pesticides, such as for example neonicotinoids, suppress immune response, while others, like certain organophosphates and some insect growth regulators (IGRs), appear to bolster immunocompetence under certain circumstances. Beyond their individual impacts, the synergic effects of pesticide mixtures on insect immunity are garnering increasing interest. This review thus summarizes recent advances in the immunomodulatory effects of pesticides, detailing both mechanisms and consequences of such interactions. The implications of these effects for ecosystem preservation and viability of beneficial organisms, such as pollinators and natural enemies of pests, are discussed. The review also considers further research directions on pesticide secondary modes of action and explores potential implications for integrated pest management (IPM) programs, as several model organisms studied are crop pest species. While current data provide an expansive overview of how insect innate immunity is modulated, concrete endpoints remain elusive requiring further research into pesticide secondary modes of actions.
Collapse
Affiliation(s)
- Fabrizio Lisi
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy
| | - Marcel Amichot
- INRAE, Université Côte d'Azur, CNRS, UMR ISA, 06903 Sophia-Antipolis, France
| | - Nicolas Desneux
- INRAE, Université Côte d'Azur, CNRS, UMR ISA, 06903 Sophia-Antipolis, France
| | - Jean-Luc Gatti
- INRAE, Université Côte d'Azur, CNRS, UMR ISA, 06903 Sophia-Antipolis, France
| | | | - Francesco Nazzi
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), Udine, Italy
| | - Francesco Pennacchio
- University of Naples, Department of Entomology and Zoology, Portici, Naples, Italy
| | - Agatino Russo
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy
| | | | - Xingeng Wang
- USDA ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Lucia Zappalà
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy
| | - Antonio Biondi
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy.
| |
Collapse
|
17
|
Zhang Y, Zhu W, Wang Y, Li X, Lv J, Luo J, Yang M. Insight of neonicotinoid insecticides: Exploring exposure, mechanisms in non-target organisms, and removal technologies. Pharmacol Res 2024; 209:107415. [PMID: 39306021 DOI: 10.1016/j.phrs.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Neonicotinoid insecticides (NEOs) have garnered global attention due to their selective toxicity to insects and minimal impact on mammals. However, growing concerns about their extensive use and potential adverse effects on the ecological environment and non-target organisms necessitate further investigation. This study utilized bibliometric tools to analyze Web of Science data from 2003 to 2024, elucidating the current research landscape, identifying key research areas, and forecasting future trends related to NEOs. This paper provides an in-depth analysis of NEO exposure in non-target organisms, including risk assessments for various samples and maximum residue limits established by different countries. Additionally, it examines the impacts and mechanisms of NEOs on non-target organisms. Finally, it reviews the current methods for NEO removal and degradation. This comprehensive analysis provides valuable insights for regulating NEO usage and addressing associated exposure challenges.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanxuan Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Xueli Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianxin Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
18
|
Hsieh EM, Dolezal AG. Nutrition, pesticide exposure, and virus infection interact to produce context-dependent effects in honey bees (Apis mellifera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175125. [PMID: 39084359 DOI: 10.1016/j.scitotenv.2024.175125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Declines in pollinator health are frequently hypothesized to be the combined result of multiple interacting biotic and abiotic stressors; namely, nutritional limitations, pesticide exposure, and infection with pathogens and parasites. Despite this hypothesis, most studies examining stressor interactions have been constrained to two concurrent factors, limiting our understanding of multi-stressor dynamics. Using honey bees as a model, we addressed this gap by studying how variable diet, field-realistic levels of multiple pesticides, and virus infection interact to affect survival, infection intensity, and immune and detoxification gene expression. Although we found evidence that agrochemical exposure (a field-derived mixture of chlorpyrifos and two fungicides) can exacerbate infection and increase virus-induced mortality, this result was nutritionally-dependent, only occurring when bees were provided artificial pollen. Provisioning with naturally-collected polyfloral pollen inverted the effect, reducing virus-induced mortality and suggesting a hormetic response. To test if the response was pesticide specific, we repeated our experiment with a pyrethroid (lambda-cyhalothrin) and a neonicotinoid (thiamethoxam), finding variable results. Finally, to understand the underpinnings of these effects, we measured viral load and expression of important immune and detoxification genes. Together, our results show that multi-stressor interactions are complex and highly context-dependent, but have great potential to affect bee health and physiology.
Collapse
Affiliation(s)
- Edward M Hsieh
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin, Urbana, IL 61801-3795, USA.
| | - Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin, Urbana, IL 61801-3795, USA
| |
Collapse
|
19
|
Bosco L, Yañez O, Schauer A, Maurer C, Cushman SA, Arlettaz R, Jacot A, Seuberlich T, Neumann P, Schläppi D. Landscape structure affects temporal dynamics in the bumble bee virome: Landscape heterogeneity supports colony resilience. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174280. [PMID: 38942311 DOI: 10.1016/j.scitotenv.2024.174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Virus spillovers from managed honey bees, Apis mellifera, are thought to contribute to the decline of wild pollinators, including bumble bees. However, data on the impact of such viruses on wild pollinators remain scarce, and the influence of landscape structure on virus dynamics is poorly understood. In this study, we deployed bumble bee colonies in an agricultural landscape and studied changes in the bumble bee virome during field placement under varying habitat composition and configuration using a multiscale analytical framework. We estimated prevalence of viruses and viral loads (i.e. number of viral genomic equivalent copies) in bumble bees before and after placing them in the field using next generation sequencing and quantitative PCR. The results show that viral loads and number of different viruses present increased during placement in the field and that the virus composition of the colonies shifted from an initial dominance of honey bee associated viruses to a higher number (in both viral loads and number of viruses present) of bumble bee associated viruses. Especially DWV-B, typical for honey bees, drastically decreased after the time in the field. Viral loads prior to placing colonies in the field showed no effect on colony development, suggesting low impacts of these viruses in field settings. Notably, we further demonstrate that increased habitat diversity results in a lower number of different viruses present in Bombus colonies, while colonies in areas with well-connected farmland patches decreased in their total viral load after field placement. Our results emphasize the importance of landscape heterogeneity and connectivity for wild pollinator health and that these influences predominate at fine spatial scales.
Collapse
Affiliation(s)
- Laura Bosco
- LUOMUS - Finnish Museum of Natural History, PL 17 - P.O. Box 17, 00014, University of Helsinki, Finland; Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Alexandria Schauer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Corina Maurer
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.
| | - Samuel A Cushman
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Raphaël Arlettaz
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | - Alain Jacot
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Ornithological Institute, Regional Office Valais, 1950 Sion, Switzerland.
| | - Torsten Seuberlich
- Division of Neurological Sciences, University of Bern, Bern, Switzerland.
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Daniel Schläppi
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; School of Biological Sciences, University of Bristol, Life Science Building, 24 Tyndall Avenue, BS8 1TQ Bristol, United Kingdom.
| |
Collapse
|
20
|
Wizenberg SB, French SK, Newburn LR, Pepinelli M, Conflitti IM, Moubony M, Ritchie C, Jamieson A, Richardson RT, Travas A, Imrit MA, Chihata M, Higo H, Common J, Walsh EM, Bixby M, Guarna MM, Pernal SF, Hoover SE, Currie RW, Giovenazzo P, Guzman-Novoa E, Borges D, Foster LJ, Zayed A. Pollen foraging mediates exposure to dichotomous stressor syndromes in honey bees. PNAS NEXUS 2024; 3:pgae440. [PMID: 39434869 PMCID: PMC11491753 DOI: 10.1093/pnasnexus/pgae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024]
Abstract
Recent declines in the health of honey bee colonies used for crop pollination pose a considerable threat to global food security. Foraging by honey bee workers represents the primary route of exposure to a plethora of toxins and pathogens known to affect bee health, but it remains unclear how foraging preferences impact colony-level patterns of stressor exposure. Resolving this knowledge gap is crucial for enhancing the health of honey bees and the agricultural systems that rely on them for pollination. To address this, we carried out a national-scale experiment encompassing 456 Canadian honey bee colonies to first characterize pollen foraging preferences in relation to major crops and then explore how foraging behavior influences patterns of stressor exposure. We used a metagenetic approach to quantify honey bee dietary breadth and found that bees display distinct foraging preferences that vary substantially relative to crop type and proximity, and the breadth of foraging interactions can be used to predict the abundance and diversity of stressors a colony is exposed to. Foraging on diverse plant communities was associated with increased exposure to pathogens, while the opposite was associated with increased exposure to xenobiotics. Our work provides the first large-scale empirical evidence that pollen foraging behavior plays an influential role in determining exposure to dichotomous stressor syndromes in honey bees.
Collapse
Affiliation(s)
| | - Sarah K French
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Laura R Newburn
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Mateus Pepinelli
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Ida M Conflitti
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Mashaba Moubony
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Caroline Ritchie
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Aidan Jamieson
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | | - Anthea Travas
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | | - Matthew Chihata
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Heather Higo
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Julia Common
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Elizabeth M Walsh
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada T0H 0C0
| | - Miriam Bixby
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - M Marta Guarna
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada T0H 0C0
- Department of Computer Science, University of Victoria, Victoria, BC, Canada V8P 5C2
| | - Stephen F Pernal
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada T0H 0C0
| | - Shelley E Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| | - Robert W Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Pierre Giovenazzo
- Département de Biologie, Université Laval, Ville de Québec, QC, Canada G1V 0A6
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Daniel Borges
- Ontario Beekeepers’ Association, Technology Transfer Program, Guelph, ON, Canada N1H 6J2
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| |
Collapse
|
21
|
Pamminger T, Basley K, Goulson D, Hughes WOH. Potential acetylcholine-based communication in honeybee haemocytes and its modulation by a neonicotinoid insecticide. PeerJ 2024; 12:e17978. [PMID: 39285925 PMCID: PMC11404474 DOI: 10.7717/peerj.17978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
There is growing concern that some managed and wild insect pollinator populations are in decline, potentially threatening biodiversity and sustainable food production on a global scale. In recent years, there has been increasing evidence that sub-lethal exposure to neurotoxic, neonicotinoid pesticides can negatively affect pollinator immunocompetence and could amplify the effects of diseases, likely contributing to pollinator declines. However, a direct pathway connecting neonicotinoids and immune functions remains elusive. In this study we show that haemocytes and non-neural tissues of the honeybee Apis mellifera express the building blocks of the nicotinic acetylcholine receptors that are the target of neonicotinoids. In addition, we demonstrate that the haemocytes, which form the cellular arm of the innate immune system, actively express choline acetyltransferase, a key enzyme necessary to synthesize acetylcholine. In a last step, we show that the expression of this key enzyme is affected by field-realistic doses of clothianidin, a widely used neonicotinoid. These results support a potential mechanistic framework to explain the effects of sub-lethal doses of neonicotinoids on the immune function of pollinators.
Collapse
Affiliation(s)
- Tobias Pamminger
- School of Life Sciences, University of Sussex, Brighton, UK
- Bayer AG, Monheim am Rhein, Germany
| | - Kate Basley
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, UK
| | | |
Collapse
|
22
|
Liu Q, Deng X, Wang L, Xie W, Zhang H, Li Q, Yang Q, Jiang C. Chlorantraniliprole Enhances Cellular Immunity in Larvae of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). INSECTS 2024; 15:586. [PMID: 39194791 DOI: 10.3390/insects15080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
The innate immunity of insects encompasses cellular and humoral defense mechanisms and constitutes the primary defense against invading microbial pathogens. Cellular immunity (phagocytosis, nodulation, and encapsulation) is primarily mediated by hemocytes. Plasmatocytes and granulocytes play an important role and require changes in the cytoskeletons of hemocytes. However, research investigating the immunological impacts of insecticides on the fall armyworm (FAW), Spodoptera frugiperda, remains scarce. Therefore, we conducted a study to investigate the effects of chlorantraniliprole exposure on cellular immunity in FAW larvae. Our findings revealed the presence of five types of hemocytes in the larvae: prohemocytes, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. The LD10, LD20, and LD30 of chlorantraniliprole affected both the morphology and total count of some hemocytes in the larvae. Moreover, larvae exposed to chlorantraniliprole showed increased phagocytosis, nodulation, and encapsulation. To determine the mechanism of the enhanced cellular immunity, we studied plasmatocytes in the spread state and the cytoskeleton in hemocytes. It was found that the spreading ratio of plasmatocytes and the areas of the cytoskeletons in hemocytes were increased after chlorantraniliprole treatment. These results suggest that exposure to chlorantraniliprole results in an enhanced immune response function in FAW larvae, which may be mediated by cytoskeletal changes and plasmatocyte spreading. Consequently, this study provides valuable insights into the cellular immune response of FAW larvae to insecticide exposure.
Collapse
Affiliation(s)
- Qingyan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyue Deng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Emeishan Agricultural and Rural Bureau, Emeishan 614200, China
| | - Liuhong Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqi Xie
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huilai Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunfang Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
23
|
Li B, Chen X, Ke L, Dai P, Ge Y, Liu YJ. Early-Life Sublethal Exposure to Thiacloprid Alters Adult Honeybee Gut Microbiota. Genes (Basel) 2024; 15:1001. [PMID: 39202363 PMCID: PMC11353648 DOI: 10.3390/genes15081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Thiacloprid, a neonicotinoid pesticide, is known to affect the gut microbiome of honeybees, yet studies often focus on immediate alternations during exposure, overlooking long-term microbiological impacts post-exposure. This study investigates the influences of sublethal thiacloprid administered during the larval developmental stage of honeybees on physiological changes and gut microbiota of adult honeybees. We found that thiacloprid exposure increased mortality and sugar intake in emerged honeybees. Using 16S rDNA sequencing, we analyzed intestinal microbial diversity of honeybees at one and six days post-emergence. Our findings reveal a significant but transient disruption in gut microbiota on day 1, with recovery from dysbiosis by day 6. This study emphasizes the importance of evaluating chronic sublethal exposure risks of thiacloprid to protect honeybee health.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Xiasang Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Li Ke
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| |
Collapse
|
24
|
Frizzera D, Zanni V, Seffin E, de Miranda JR, Marroni F, Annoscia D, Nazzi F. Assessing lethal and sublethal effects of pesticides on honey bees in a multifactorial context. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174892. [PMID: 39034005 DOI: 10.1016/j.scitotenv.2024.174892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The registration of novel pesticides that are subsequently banned because of their unexpected negative effects on non-target species can have a huge environmental impact. Therefore, the pre-emptive evaluation of the potential effects of new compounds is essential. To this aim both lethal and sublethal effects should be assessed in a realistic scenario including the other stressors that can interact with pesticides. However, laboratory studies addressing such interactive effects are rare, while standardized laboratory-based protocols focus on lethal effects and not on sub-lethal effects. We propose to assess both lethal and sublethal effects in a multifactorial context including the other stressors affecting the non-target species. We tested this approach by studying the impact on honey bees of the insecticide sulfoxaflor in combination with a common parasite, a sub-optimal temperature and food deprivation. We studied the survival and the transcriptome of honey bees, to assess both the lethal and the potential sublethal effects of the insecticide, respectively. With this method we show that a field realistic concentration of sulfoxaflor in food does not affect the survival of honey bees; however, the significant impact on some key genes indicates that sublethal effects are possible in a realistically complex scenario. Moreover, our results demonstrate the feasibility and reliability of a novel approach to hazard assessment considering the interactive effects of pesticides. We anticipate our approach to be a starting point for a paradigm shift in toxicology: from an unifactorial, mortality-centered assessment to a multifactorial, comprehensive approach. This is something of the utmost importance to preserve pollination, thus contributing to the sustainability of our food production system.
Collapse
Affiliation(s)
- Davide Frizzera
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Elisa Seffin
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | | | - Fabio Marroni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy.
| |
Collapse
|
25
|
De Souza D, Urbanowicz C, Ng WH, Baert N, Fersch AA, Smith ML, McArt SH. Acute toxicity of the fungicide captan to honey bees and mixed evidence for synergism with the insecticide thiamethoxam. Sci Rep 2024; 14:15709. [PMID: 38977768 PMCID: PMC11231156 DOI: 10.1038/s41598-024-66248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024] Open
Abstract
Honey bees are commonly co-exposed to pesticides during crop pollination, including the fungicide captan and neonicotinoid insecticide thiamethoxam. We assessed the impact of exposure to these two pesticides individually and in combination, at a range of field-realistic doses. In laboratory assays, mortality of larvae treated with captan was 80-90% greater than controls, dose-independent, and similar to mortality from the lowest dose of thiamethoxam. There was evidence of synergism (i.e., a non-additive response) from captan-thiamethoxam co-exposure at the highest dose of thiamethoxam, but not at lower doses. In the field, we exposed whole colonies to the lowest doses used in the laboratory. Exposure to captan and thiamethoxam individually and in combination resulted in minimal impacts on population growth or colony mortality, and there was no evidence of synergism or antagonism. These results suggest captan and thiamethoxam are each acutely toxic to immature honey bees, but whole colonies can potentially compensate for detrimental effects, at least at the low doses used in our field trial, or that methodological differences of the field experiment impacted results (e.g., dilution of treatments with natural pollen). If compensation occurred, further work is needed to assess how it occurred, potentially via increased queen egg laying, and whether short-term compensation leads to long-term costs. Further work is also needed for other crop pollinators that lack the social detoxification capabilities of honey bee colonies and may be less resilient to pesticides.
Collapse
Affiliation(s)
- Daiana De Souza
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
| | | | - Wee Hao Ng
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Nicolas Baert
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Ashley A Fersch
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Michael L Smith
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
26
|
Foster LJ, Tsvetkov N, McAfee A. Mechanisms of Pathogen and Pesticide Resistance in Honey Bees. Physiology (Bethesda) 2024; 39:0. [PMID: 38411571 PMCID: PMC11368521 DOI: 10.1152/physiol.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.
Collapse
Affiliation(s)
- Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Nadejda Tsvetkov
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Kang Y, Wu T, Han B, Yang S, Wang X, Wang Q, Gao J, Dai P. Interaction of acetamiprid, Varroa destructor, and Nosema ceranae in honey bees. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134380. [PMID: 38657514 DOI: 10.1016/j.jhazmat.2024.134380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Health of honey bees is threatened by a variety of stressors, including pesticides and parasites. Here, we investigated effects of acetamiprid, Varroa destructor, and Nosema ceranae, which act either alone or in combination. Our results suggested that interaction between the three factors was additive, with survival risk increasing as the number of stressors increased. Although exposure to 150 μg/L acetamiprid alone did not negatively impact honey bee survival, it caused severe damage to midgut tissue. Among the three stressors, V. destructor posed the greatest threat to honey bee survival, and N. ceranae exacerbated intestinal damage and increased thickness of the midgut wall. Transcriptomic analysis indicated that different combinations of stressors elicited specific gene expression responses in honey bees, and genes involved in energy metabolism, immunity, and detoxification were altered in response to multiple stressor combinations. Additionally, genes associated with Toll and Imd signalling, tyrosine metabolism, and phototransduction pathway were significantly suppressed in response to different combinations of multiple stressors. This study enhances our understanding of the adaptation mechanisms to multiple stressors and aids in development of suitable protective measures for honey bees. ENVIRONMENTAL IMPLICATION: We believe our study is environmentally relevant for the following reasons: This study investigates combined effects of pesticide, Varroa destructor, and Nosema ceranae. These stressors are known to pose a threat to long-term survival of honey bees (Apis mellifera) and stability of the ecosystems. The research provides valuable insights into the adaptive mechanisms of honey bees in response to multiple stressors and developing effective conservation strategies. Further research can identify traits that promote honey bee survival in the face of future challenges from multiple stressors to maintain the overall stability of environment.
Collapse
Affiliation(s)
- Yuxin Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing Wang
- Beijing Apicultural Station, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
28
|
Kline O, Joshi NK. Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. J Xenobiot 2024; 14:753-771. [PMID: 38921652 PMCID: PMC11204611 DOI: 10.3390/jox14020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural crops and vector diseases to humans and livestock. Insects are often exposed to toxic xenobiotics in the environment, both naturally occurring toxins like plant secondary metabolites and synthetic chemicals like herbicides, fungicides, and insecticides. Because of this, insects have evolved several mechanisms of resistance to toxic xenobiotics, including sequestration, behavioral avoidance, and enzymatic degradation, and in many cases had developed symbiotic relationships with microbes that can aid in this detoxification. As research progresses, the important roles of these microbes in insect health and function have become more apparent. Bacterial symbionts that degrade plant phytotoxins allow host insects to feed on otherwise chemically defended plants. They can also confer pesticide resistance to their hosts, especially in frequently treated agricultural fields. It is important to study these interactions between insects and the toxic chemicals they are exposed to in order to further the understanding of pest insect resistance and to mitigate the negative effect of pesticides on nontarget insect species like Hymenopteran pollinators.
Collapse
Affiliation(s)
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
29
|
Strang CG, Rondeau S, Baert N, McArt SH, Raine NE, Muth F. Field agrochemical exposure impacts locomotor activity in wild bumblebees. Ecology 2024; 105:e4310. [PMID: 38828716 DOI: 10.1002/ecy.4310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 06/05/2024]
Abstract
Agricultural intensification has been identified as one of the key causes of global insect biodiversity losses. These losses have been further linked to the widespread use of agrochemicals associated with modern agricultural practices. Many of these chemicals are known to have negative sublethal effects on commercial pollinators, such as managed honeybees and bumblebees, but less is known about the impacts on wild bees. Laboratory-based studies with commercial pollinators have consistently shown that pesticide exposure can impact bee behavior, with cascading effects on foraging performance, reproductive success, and pollination services. However, these studies typically assess only one chemical, neglecting the complexity of real-world exposure to multiple agrochemicals and other stressors. In the summer of 2020, we collected wild-foraging workers of the common eastern bumblebee, Bombus impatiens, from five squash (Cucurbita) agricultural sites (organic and conventional farms), selected to represent a range of agrochemical, including neonicotinoid insecticide, use. For each bee, we measured two behaviors relevant to foraging success and previously shown to be impacted by pesticide exposure: sucrose responsiveness and locomotor activity. Following behavioral testing, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) chemical analysis to detect and quantify the presence of 92 agrochemicals in each bumblebee. Bees collected from our sites did not vary in pesticide exposure as expected. While we found a limited occurrence of neonicotinoids, two fungicides (azoxystrobin and difenoconazole) were detected at all sites, and the pesticide synergist piperonyl butoxide (PBO) was present in all 123 bees. We found that bumblebees that contained higher levels of PBO were less active, and this effect was stronger for larger bumblebee workers. While PBO is unlikely to be the direct cause of the reduction in bee activity, it could be an indicator of exposure to pyrethroids and/or other insecticides that we were unable to directly quantify, but which PBO is frequently tank-mixed with during pesticide applications on crops. We did not find a relationship between agrochemical exposure and bumblebee sucrose responsiveness. To our knowledge, this is the first evidence of a sublethal behavioral impact of agrochemical exposure on wild-foraging bees.
Collapse
Affiliation(s)
- Caroline G Strang
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Baert
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Felicity Muth
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| |
Collapse
|
30
|
Wu J, Liu F, Sun J, Wei Q, Kang W, Wang F, Zhang C, Zhao M, Xu S, Han B. Toxic effects of acaricide fenazaquin on development, hemolymph metabolome, and gut microbiome of honeybee (Apis mellifera) larvae. CHEMOSPHERE 2024; 358:142207. [PMID: 38697560 DOI: 10.1016/j.chemosphere.2024.142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fenazaquin, a potent insecticide widely used to control phytophagous mites, has recently emerged as a potential solution for managing Varroa destructor mites in honeybees. However, the comprehensive impact of fenazaquin on honeybee health remains insufficiently understood. Our current study investigated the acute and chronic toxicity of fenazaquin to honeybee larvae, along with its influence on larval hemolymph metabolism and gut microbiota. Results showed that the acute median lethal dose (LD50) of fenazaquin for honeybee larvae was 1.786 μg/larva, and the chronic LD50 was 1.213 μg/larva. Although chronic exposure to low doses of fenazaquin exhibited no significant effect on larval development, increasing doses of fenazaquin resulted in significant increases in larval mortality, developmental time, and deformity rates. At the metabolic level, high doses of fenazaquin inhibited nucleotide, purine, and lipid metabolism pathways in the larval hemolymph, leading to energy metabolism disorders and physiological dysfunction. Furthermore, high doses of fenazaquin reduced gut microbial diversity and abundance, characterized by decreased relative abundance of functional gut bacterium Lactobacillus kunkeei and increased pathogenic bacterium Melissococcus plutonius. The disrupted gut microbiota, combined with the observed gut tissue damage, could potentially impair food digestion and nutrient absorption in the larvae. Our results provide valuable insights into the complex and diverse effects of fenazaquin on honeybee larvae, establishing an important theoretical basis for applying fenazaquin in beekeeping.
Collapse
Affiliation(s)
- Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiajing Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weipeng Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng Wang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Meijiao Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
31
|
Shi J, Wang X, Chen Z, Mao D, Luo Y. Spatial distribution of two acaricides and five neonicotinoids in beehives and surrounding environments in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133892. [PMID: 38461662 DOI: 10.1016/j.jhazmat.2024.133892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Managed bees commonly suffer from cross-contamination with acaricides and neonicotinoids, posing robust threats to bee population health. However, their residual characteristics and spatial distribution in beehives and surrounding environments are poorly understood. This study detected two common acaricides and five neonicotinoids in 240 beehive samples and 44 surrounding environmental samples collected from 25 Chinese provinces. The results showed that 40.0% of the honey samples contained acaricides and 83.1% contained neonicotinoids. Neonicotinoid concentrations in honey were geographically distinguished by the "Hu Huanyong line", and concentrations of neonicotinoids in honey from eastern areas were 2.65-fold higher than those in honey from western areas. Compared to the approved acaricide amitraz, the banned acaricide coumaphos was detected more frequently in honey and was positively correlated with that quantified in the paired pollen samples. Although coumaphos was identified in only three soil samples, lower coumaphos residues in honey might be associated with persistent pollution in the surrounding environment. Conversely, neonicotinoids were detected at higher levels in honey than in the pollen and soil, demonstrating that the neonicotinoid residues in honey have a cumulative effect. This study contributes to a better understanding of the pesticide contamination scenarios that underlie the exposure risks of bees.
Collapse
Affiliation(s)
- Jingliang Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
32
|
Lin Z, Shen S, Wang K, Ji T. Biotic and abiotic stresses on honeybee health. Integr Zool 2024; 19:442-457. [PMID: 37427560 DOI: 10.1111/1749-4877.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Honeybees are the most critical pollinators providing key ecosystem services that underpin crop production and sustainable agriculture. Amidst a backdrop of rapid global change, this eusocial insect encounters a succession of stressors during nesting, foraging, and pollination. Ectoparasitic mites, together with vectored viruses, have been recognized as central biotic threats to honeybee health, while the spread of invasive giant hornets and small hive beetles also increasingly threatens colonies worldwide. Cocktails of agrochemicals, including acaricides used for mite treatment, and other pollutants of the environment have been widely documented to affect bee health in various ways. Additionally, expanding urbanization, climate change, and agricultural intensification often result in the destruction or fragmentation of flower-rich bee habitats. The anthropogenic pressures exerted by beekeeping management practices affect the natural selection and evolution of honeybees, and colony translocations facilitate alien species invasion and disease transmission. In this review, the multiple biotic and abiotic threats and their interactions that potentially undermine bee colony health are discussed, while taking into consideration the sensitivity, large foraging area, dense network among related nestmates, and social behaviors of honeybees.
Collapse
Affiliation(s)
- Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Siyi Shen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Li T, Liu R, Wang Q, Rao J, Liu Y, Dai Z, Gooneratne R, Wang J, Xie Q, Zhang X. A review of the influence of environmental pollutants (microplastics, pesticides, antibiotics, air pollutants, viruses, bacteria) on animal viruses. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133831. [PMID: 38402684 DOI: 10.1016/j.jhazmat.2024.133831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Microorganisms, especially viruses, cause disease in both humans and animals. Environmental chemical pollutants including microplastics, pesticides, antibiotics sand air pollutants arisen from human activities affect both animal and human health. This review assesses the impact of chemical and biological contaminants (virus and bacteria) on viruses including its life cycle, survival, mutations, loads and titers, shedding, transmission, infection, re-assortment, interference, abundance, viral transfer between cells, and the susceptibility of the host to viruses. It summarizes the sources of environmental contaminants, interactions between contaminants and viruses, and methods used to mitigate such interactions. Overall, this review provides a perspective of environmentally co-occurring contaminants on animal viruses that would be useful for future research on virus-animal-human-ecosystem harmony studies to safeguard human and animal health.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ruiheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Qian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Jiaqian Rao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Yuanjia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenkai Dai
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| |
Collapse
|
34
|
Wang Z, Lin X, Shi W, Cao C. Nicotinic Acetylcholine Receptor Alpha6 Contributes to Antiviral Immunity via IMD Pathway in Drosophila melanogaster. Viruses 2024; 16:562. [PMID: 38675904 PMCID: PMC11054842 DOI: 10.3390/v16040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, insecticides that target nicotinic acetylcholine receptors (nAChR) are widely used. Studies on the sublethal effects of insecticides have found that they can affect the amount of virus in insects. The mechanism by which insecticides affect insect virus load remain unclear. Here, we show that nAChR targeting insecticide can affect viral replication through the immune deficiency (IMD) pathway. We demonstrate that a low dose of spinosad (6.8 ng/mL), acting as an antagonist to Drosophila melanogaster nicotinic acetylcholine receptor α6 (Dα6), significantly elevates Drosophila melanogaster sigmavirus (DMelSV) virus titers in adults of Drosophila melanogaster. Conversely, a high dose of spinosad (50 ng/mL), acting as an agonist to Dα6, substantially decreases viral load. This bidirectional regulation of virus levels is absent in Dα6-knockout flies, signifying the specificity of spinosad's action through Dα6. Furthermore, the knockdown of Dα6 results in decreased expression of genes in the IMD pathway, including dredd, imd, relish, and downstream antimicrobial peptide genes AttA and AttB, indicating a reduced innate immune response. Subsequent investigations reveal no significant difference in viral titers between relish mutant flies and Dα6-relish double mutants, suggesting that the IMD pathway's role in antiviral defense is dependent on Dα6. Collectively, our findings shed light on the intricate interplay between nAChR signaling and the IMD pathway in mediating antiviral immunity, highlighting the potential for nAChR-targeting compounds to inadvertently influence viral dynamics in insect hosts. This knowledge may inform the development of integrated pest management strategies that consider the broader ecological impact of insecticide use.
Collapse
Affiliation(s)
| | | | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.)
| | - Chuan Cao
- Department of Entomology, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.)
| |
Collapse
|
35
|
Jaremek M, Olszewski K, Chobotow J, Strachecka A. The Morphological Image of Fat Body and Tergal Gland Cells in Uninseminated Apis mellifera Queen Bees. INSECTS 2024; 15:244. [PMID: 38667374 PMCID: PMC11050307 DOI: 10.3390/insects15040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
The morphological changes in fat body cells, tergal gland cells, and the surface areas of the cell nuclei were determined in queen bees of the subspecies Apis mellifera carnica. This study focused on 1-, 8-, and 20-day-old uninseminated females kept in colonies, analyzing cells from three locations in the abdomen: the sternite, and tergites III and V. The oenocytes in the sternites were large, oval/circular with a centrally located nucleus, while in tergites III and V, they were small and triangular in the 1-day-old queens. During the first week of life, these cells in tergites III and V change their shape to oval and increase their sizes. The initially light yellow and then dark yellow granularities in the oenocytes of the fat body appear along with the advancing age of the queens. The trophocytes (sternites, tergites III and V) in the 1-day-old queens were completely filled with droplets of different sizes. In the 8- and 20-day-old queens, the number and size of the droplets decreased in the trophocytes of tergites III and V. The tergal gland cells had a centrally located cell nucleus in the 1-, 8- and 20-day-old queens. The dark granularities in these cells were visible only in the 20-day-old queens. Different morphological images of the fat body at the sternite, and tergites III and V, and the difference in the size of the oenocyte cell nuclei may indicate various functions of the fat body depending on its location. Characterization of the changes in the morphology of the fat body, taking into account its segmental character, and the tergal glands requires further research in older queens, e.g., one-year-old, brooding queens.
Collapse
Affiliation(s)
- Milena Jaremek
- Department of Invertebrate Ecophysiology and Experimental Biology, Faculty of Environmental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland;
| | - Krzysztof Olszewski
- Subdepartment of Apidology, Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Jacek Chobotow
- Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-400 Lublin, Poland;
| | - Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, Faculty of Environmental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland;
| |
Collapse
|
36
|
Papp M, Tóth AG, Békési L, Farkas R, Makrai L, Maróti G, Solymosi N. Apis mellifera filamentous virus from a honey bee gut microbiome survey in Hungary. Sci Rep 2024; 14:5803. [PMID: 38461199 PMCID: PMC10924886 DOI: 10.1038/s41598-024-56320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
In Hungary, as part of a nationwide, climatically balanced survey for a next-generation sequencing-based study of the honey bee (Apis mellifera) gut microbiome, repeated sampling was carried out during the honey production season (March and May 2019). Among other findings, the presence of Apis mellifera filamentous virus (AmFV) was detected in all samples, some at very high levels. AmFV-derived reads were more abundant in the March samples than in the May samples. In March, a higher abundance of AmFV-originated reads was identified in samples collected from warmer areas compared to those collected from cooler areas. A lower proportion of AmFV-derived reads were identified in samples collected in March from the wetter areas than those collected from the drier areas. AmFV-read abundance in samples collected in May showed no significant differences between groups based on either environmental temperature or precipitation. The AmFV abundance correlated negatively with Bartonella apihabitans, Bartonella choladocola, and positively with Frischella perrara, Gilliamella apicola, Gilliamella sp. ESL0443, Lactobacillus apis, Lactobacillus kullabergensis, Lactobacillus sp. IBH004. De novo metagenome assembly of four samples resulted in almost the complete AmFV genome. According to phylogenetic analysis based on DNA polymerase, the Hungarian strains are closest to the strain CH-05 isolated in Switzerland.
Collapse
Affiliation(s)
- Márton Papp
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary
| | - Adrienn Gréta Tóth
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary
| | - László Békési
- Department of Parasitology and Zoology, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary
| | - Róbert Farkas
- Department of Parasitology and Zoology, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary
| | | | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, HUN-REN, Szeged, 6726, Hungary
- Faculty of Water Sciences, University of Public Service, Baja, 6500, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary.
- Department of Phyisics of Complex Systems, Eötvös Loránd University, Budapest, 1117, Hungary.
| |
Collapse
|
37
|
Cappellari A, Malagnini V, Fontana P, Zanotelli L, Tonidandel L, Angeli G, Ioriatti C, Marini L. Impact of landscape composition on honey bee pollen contamination by pesticides: A multi-residue analysis. CHEMOSPHERE 2024; 349:140829. [PMID: 38042427 DOI: 10.1016/j.chemosphere.2023.140829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
The honey bee is the most common and important managed pollinator of crops. In recent years, honey bee colonies faced high mortality for multiple causes, including land-use change and the use of plant protection products (hereafter pesticides). This work aimed to explore how contamination by pesticides of pollen collected by honey bees was modulated by landscape composition and seasonality. We placed two honey bee colonies in 13 locations in Northern Italy in contrasting landscapes, from which we collected pollen samples monthly during the whole flowering season in 2019 and 2020. We searched for almost 400 compounds, including fungicides, herbicides, insecticides, and acaricides. We then calculated for each pollen sample the Pollen Hazard Quotient (PHQ), an index that provides a measure of multi-residue toxicity of contaminated pollen. Almost all pollen samples were contaminated by at least one compound. We detected 97 compounds, mainly fungicides, but insecticides and acaricides showed the highest toxicity. Fifteen % of the pollen samples had medium-high or high levels of PHQ, which could pose serious threats to honey bees. Fungicides showed a nearly constant PHQ throughout the season, while herbicides and insecticides and acaricides showed higher PHQ values in spring and early summer. Also, PHQ increased with increasing cover of agricultural and urban areas from April to July, while it was low and independent of landscape composition at the end of the season. The cover of perennial crops, i.e., fruit trees and vineyards, but not of annual crops, increased PHQ of pollen samples. Our work highlighted that the potential toxicity of pollen collected by honey bees was modulated by complex interactions among pesticide category, seasonality, and landscape composition. Due to the large number of compounds detected, our study should be complemented with additional experimental research on the potential interactive effects of multiple compounds on honey bee health.
Collapse
Affiliation(s)
- Andree Cappellari
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale Dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Valeria Malagnini
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Paolo Fontana
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Livia Zanotelli
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Loris Tonidandel
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Gino Angeli
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Claudio Ioriatti
- Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Lorenzo Marini
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
38
|
Farder-Gomes CF, Grella TC, Malaspina O, Nocelli RFC. Exposure to sublethal concentrations of imidacloprid, pyraclostrobin, and glyphosate harm the behavior and fat body cells of the stingless bee Scaptotrigona postica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168072. [PMID: 37879468 DOI: 10.1016/j.scitotenv.2023.168072] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Pesticide use in agriculture threatens non-target insects such as bees. Considering the ecological and economic relevance of native bees, such as Scaptotrigona postica, and the insufficient studies on the effects of pesticides on their behavior and physiology, improving the current knowledge on this issue is essential. Therefore, this study investigated the sublethal effects of imidacloprid, pyraclostrobin, and glyphosate on the behavior and fat body cells of S. postica. Pesticide ingestion decreased the walking distance and mean velocity of bees compared to the control and solvent control groups. The oenocytes of the control groups were spherical, with central nuclei containing decondensed chromatin, and the trophocytes presented irregular morphology, with cells varying in shape and the cytoplasm filled with vacuoles and granules. However, bees exposed to pesticides showed extensive cytoarchitectural disruption in the fat body, such as vacuolization and shape changes in oenocytes and altered nuclei morphology in trophocytes. Moreover, pesticide exposure increased the number of atypical oenocytes and altered trophocytes, except for the PYR group, which showed a lower number of atypical oenocytes. Caspase-positive labeling significantly increased in all exposed bee groups. Alternatively, TLR4 labeling was significantly decreased in the exposed groups compared to the control groups. There was a significant increase in HSP90 immunolabeling in all exposed groups compared to the control. These findings reinforce the importance of research on the sublethal effects of low pesticide concentrations on key neotropical pollinators and prove that these toxic substances can impair their detoxification and immune defense.
Collapse
Affiliation(s)
- Cliver Fernandes Farder-Gomes
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos Campus Araras, Araras, SP 13.600-970, Brazil.
| | - Tatiane Caroline Grella
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia Geral e Aplicada, Rio Claro, SP 13506-900, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia Geral e Aplicada, Rio Claro, SP 13506-900, Brazil.
| | - Roberta Ferreira Cornélio Nocelli
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos Campus Araras, Araras, SP 13.600-970, Brazil.
| |
Collapse
|
39
|
Carroll MJ, Brown NJ, Reitz D. Sublethal effects of imidacloprid-contaminated honey stores on colony performance, queens, and worker activities in fall and early winter colonies. PLoS One 2024; 19:e0292376. [PMID: 38165994 PMCID: PMC10760783 DOI: 10.1371/journal.pone.0292376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/19/2023] [Indexed: 01/04/2024] Open
Abstract
Neonicotinoid-contaminated sugar stores can have both near term and long term effects on honey bees due to their persistence in honey stores. Effects of imidacloprid food stores contaminants were examined in subtropical colonies that experience reduced brood rearing and foraging during overwintering. Colonies were given treatment sugar syrup containing 0 ppb (control), 20 ppb (field relevant), or 100 ppb (above field relevant) imidacloprid over six weeks to simulate contaminated fall nectar. Colonies were evaluated immediately (post-treatment) and 10 weeks (mid-winter) after treatment to compare proximal and latent effects. Post-treatment 0 ppb and 20 ppb colonies had more workers than 100 ppb colonies while 0 ppb colonies more brood than 20 ppb or 100 ppb colonies. Mid-winter 0 ppb and 20 ppb colonies had more workers than 100 ppb colonies and 0 ppb colonies more brood than 100 ppb colonies. Colonies experienced seasonal declines in stored pollen but no treatment effects. Lower 100 ppb colony performance was associated with reduced effort rather than lifespan. RFID (Radio Frequency Identification) tracking revealed that workers had similar adult lifespans across treatments; however, 100 ppb workers engaged in activities outside the colony for less time than 0 ppb workers. Imidacloprid exposure affected queen but not worker nutritional physiology. Nurses retained well-developed hypopharyngeal glands (as indicated by head protein) across treatments. Mid-winter queens from 0 ppb colonies had marginally higher ovary protein than queens from 100 ppb colonies and more ovary lipids than queens from 20 ppb colonies. However, queen nutrient stores in non-reproductive tissues (fat bodies) did not differ across treatments. Queens from different treatments were attended by comparable numbers of retinue workers and had similar gland contents of four QMP (Queen Mandibular Pheromone) components essential to queen care. High levels of imidacloprid in sugar stores can negatively affect colony performance months after initial storage.
Collapse
Affiliation(s)
- Mark J. Carroll
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Nicholas J. Brown
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Dylan Reitz
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| |
Collapse
|
40
|
Favaro R, Garrido PM, Bruno D, Braglia C, Alberoni D, Baffoni L, Tettamanti G, Porrini MP, Di Gioia D, Angeli S. Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167277. [PMID: 37741399 DOI: 10.1016/j.scitotenv.2023.167277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Fungicides, insecticides and herbicides are widely used in agriculture to counteract pathogens and pests. Several of these molecules are toxic to non-target organisms such as pollinators and their lethal dose can be lowered if applied as a mixture. They can cause large and unpredictable problems, spanning from behavioural changes to alterations in the gut. The present work aimed at understanding the synergistic effects on honeybees of a combined in-hive exposure to sub-lethal doses of the insecticide thiacloprid and the fungicide penconazole. A multidisciplinary approach was used: honeybee mortality upon exposure was initially tested in cage, and the colonies development monitored. Morphological and ultrastructural analyses via light and transmission electron microscopy were carried out on the gut of larvae and forager honeybees. Moreover, the main pollen foraging sources and the fungal gut microbiota were studied using Next Generation Sequencing; the gut core bacterial taxa were quantified via qPCR. The mortality test showed a negative effect on honeybee survival when exposed to agrochemicals and their mixture in cage but not confirmed at colony level. Microscopy analyses on the gut epithelium indicated no appreciable morphological changes in larvae, newly emerged and forager honeybees exposed in field to the agrochemicals. Nevertheless, the gut microbial profile showed a reduction of Bombilactobacillus and an increase of Lactobacillus and total fungi upon mixture application. Finally, we highlighted for the first time a significant honeybee diet change after pesticide exposure: penconazole, alone or in mixture, significantly altered the pollen foraging preference, with honeybees preferring Hedera pollen. Overall, our in-hive results showed no severe effects upon administration of sublethal doses of thiacloprid and penconazole but indicate a change in honeybees foraging preference. A possible explanation can be that the different nutritional profile of the pollen may offer better recovery chances to honeybees.
Collapse
Affiliation(s)
- Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| | - Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Martin Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| |
Collapse
|
41
|
Paula MCD, Batista NR, Cunha DADS, Santos PGD, Antonialli-Junior WF, Cardoso CAL, Simionatto E. Impacts of the insecticide thiamethoxam on the native stingless bee Plebeia catamarcensis (Hymenoptera, Apidae, Meliponini). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122742. [PMID: 37839683 DOI: 10.1016/j.envpol.2023.122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Agricultural production and the indiscriminate use of insecticides such as thiamethoxam have put at risk the biodiversity and ecosystem services provided by bees, including native stingless species. Since most of the native species do not present economic importance, they may suffer "silent extinction", due to lack of monitoring of their colonies. Therefore, this study aimed to determine the lethal and sublethal concentrations of the insecticide thiamethoxam, with evaluation of its sublethal effects on mobility, in the stingless bee Plebeia catamarcensis (Holmberg, 1903). Foraging bees were collected and exposed to thiamethoxam to determine lethal (LC50) and sublethal concentrations. The 24 h LC50 was 0.408 ng a.i./μL, a value demonstrating that this species may be as sensitive as other stingless bees already studied. Sublethal concentrations influenced the locomotion abilities of the bees, making them hyperactive when exposed to LC50/10 and lethargic when exposed to LC50/100. The effects of sublethal concentrations on individuals may have collective consequences, especially in colonies with few individuals, as is the case of P. catamarcensis. The findings reinforce the hypothesis that thiamethoxam may contribute to the decline of native stingless bees, which can be significantly impacted when chronically exposed to agricultural production systems that use this insecticide, consequently affecting the ecosystem services provided by these bees.
Collapse
Affiliation(s)
- Michele Castro de Paula
- Laboratório de Óleos e Extratos (LAPOEX), Programa de Pós-Graduação em Recursos Naturais (PGRN), Universidade Estadual de Mato Grosso do Sul (UEMS), CEP, 79950-000, Naviraí, MS, Brazil; Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Nathan Rodrigues Batista
- Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - Dayana Alves da Silva Cunha
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil; Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Poliana Galvão Dos Santos
- Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - William Fernando Antonialli-Junior
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil; Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - Claudia Andrea Lima Cardoso
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Euclésio Simionatto
- Laboratório de Óleos e Extratos (LAPOEX), Programa de Pós-Graduação em Recursos Naturais (PGRN), Universidade Estadual de Mato Grosso do Sul (UEMS), CEP, 79950-000, Naviraí, MS, Brazil; Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| |
Collapse
|
42
|
Poyntz-Wright IP, Harrison XA, Johnson A, Zappala S, Tyler CR. Pesticide pollution associations with riverine invertebrate communities in England. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166519. [PMID: 37640080 DOI: 10.1016/j.scitotenv.2023.166519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Globally freshwater biodiversity has experienced major decline and chemical pollutants are believed to have played a significant role in this decline, but this has not been well quantified for most riverine invertebrate populations. Here we applied a biogeographically independent trait-based bioindicator, SPEARpesticides across sites across five regions (Northern, Midlands and Western, Anglian, Southeast, and Southwest) in England to investigate for associations specifically between pesticide use/pollution and riverine invertebrate communities over a 55-year period (1965-2019). Both spatially and temporally post-1990, the Anglian and Thames regions consistently showed the lowest SPEARpesticides scores, illustrating the presence of fewer pesticide sensitive species. The Anglian region had the highest pesticide use compared to all other regions from 1990 to 2018 and there were negative relationships between the level of pesticide/insecticide use and the regional SPEARpesticides score. Biochemical Oxygen Demand and ammonia, as measures of general water quality, were also negatively correlated with the SPEARpesticides scores across the regions, but these factors were not the driver for the lower SPEARpesticides scores seen in the Anglian region. Based on SPEARpesticides scores, riverine invertebrate communities in England have been most impacted in the Anglian region and we evidence chronic insecticide exposure is likely a significant factor in shaping the status of those invertebrate communities.
Collapse
Affiliation(s)
- Imogen P Poyntz-Wright
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Xavier A Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Andrew Johnson
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Susan Zappala
- JNCC, Quay House, 2 East Station Road, Fletton Quays, Peterborough PE2 8YY, UK
| | - Charles R Tyler
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
43
|
Schöfer N, Ackermann J, Hoheneder J, Hofferberth J, Ruther J. Sublethal Effects of Four Insecticides Targeting Cholinergic Neurons on Partner and Host Finding in the Parasitic Wasp Nasonia vitripennis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2400-2411. [PMID: 37477474 DOI: 10.1002/etc.5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Lethal and sublethal effects of pesticides on nontarget organisms are one of the causes of the current decline of many insect species. However, research in the past decades has focused primarily on pollinators, although other beneficial nontarget organisms such as parasitic wasps may also be affected. We studied the sublethal effects of the four insecticides acetamiprid, dimethoate, flupyradifurone, and sulfoxaflor on pheromone-mediated sexual communication and olfactory host finding of the parasitic wasp Nasonia vitripennis. All agents target cholinergic neurons, which are involved in the processing of chemical information by insects. We applied insecticide doses topically and tested the response of treated wasps to sex pheromones and host-associated chemical cues. In addition, we investigated the mating rate of insecticide-treated wasps. The pheromone response of females surviving insecticide treatment was disrupted by acetamiprid (≥0.63 ng), dimethoate (≥0.105 ng), and flupyradifurone (≥21 ng), whereas sulfoxaflor had no significant effects at the tested doses. Olfactory host finding was affected by all insecticides (acetamiprid ≥1.05 ng, dimethoate ≥0.105 ng, flupyradifurone ≥5.25 ng, sulfoxaflor ≥0.52 ng). Remarkably, females treated with ≥0.21 ng dimethoate even avoided host odor. The mating rate of treated N. vitripennis couples was decreased by acetamiprid (6.3 ng), flupyradifurone (≥2.63 ng), and sulfoxaflor (2.63 ng), whereas dimethoate showed only minor effects. Finally, we determined the amount of artificial nectar consumed by N. vitripennis females within 48 h. Considering this amount (∼2 µL) and the maximum concentrations of the insecticides reported in nectar, tested doses can be considered field-realistic. Our results suggest that exposure of parasitic wasps to field-realistic doses of insecticides targeting the cholinergic system reduces their effectiveness as natural enemies by impairing the olfactory sense. Environ Toxicol Chem 2023;42:2400-2411. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Nils Schöfer
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Julian Ackermann
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Julian Hoheneder
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | | | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
44
|
Straub F, Birkenbach M, Leonhardt SD, Ruedenauer FA, Kuppler J, Wilfert L, Ayasse M. Land-use-associated stressors interact to reduce bumblebee health at the individual and colony level. Proc Biol Sci 2023; 290:20231322. [PMID: 37817596 PMCID: PMC10565366 DOI: 10.1098/rspb.2023.1322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
In agricultural landscapes, bees face a variety of stressors, including insecticides and poor-quality food. Although both stressors individually have been shown to affect bumblebee health negatively, few studies have focused on stressor interactions, a scenario expected in intensively used agricultural landscapes. Using the bumblebee Bombus terrestris, a key pollinator in agricultural landscapes, we conducted a fully factorial laboratory experiment starting at nest initiation. We assessed the effects of food quality and insecticides, alone and in interaction, on health traits at various levels, some of which have been rarely studied. Pollen with a diluted nutrient content (low quality) reduced ovary size and delayed colony development. Wing asymmetry, indicating developmental stress, was increased during insecticide exposure and interactions with poor food, whereas both stressors reduced body size. Both stressors and their interaction changed the workers' chemical profile and reduced worker interactions and the immune response. Our findings suggest that insecticides combined with nutritional stress reduce bumblebee health at the individual and colony levels, thus possibly affecting colony performance, such as development and reproduction, and the stability of plant-pollinator networks. The synergistic effects highlight the need of combining stressors in risk assessments and when studying the complex effects of anthropogenic stressors on health outcomes.
Collapse
Affiliation(s)
- Florian Straub
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Birkenbach
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sara D. Leonhardt
- Plant-Insect-Interactions, Research Department Life Science Systems, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Fabian A. Ruedenauer
- Plant-Insect-Interactions, Research Department Life Science Systems, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
45
|
Urueña Á, Blasco-Lavilla N, De la Rúa P. Sulfoxaflor effects depend on the interaction with other pesticides and Nosema ceranae infection in the honey bee (Apis mellifera). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115427. [PMID: 37666201 DOI: 10.1016/j.ecoenv.2023.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Honey bees health is compromised by many factors such as the use of agrochemicals in agriculture and the various diseases that can affect them. Multiple studies have shown that these factors can interact, producing a synergistic effect that can compromise the viability of honey bees. This study analyses the interactions between different pesticides and the microsporidium Nosema ceranae and their effect on immune and detoxification gene expression, sugar consumption and mortality in the Iberian western honey bee (Apis mellifera iberiensis). For this purpose, workers were infected with N. ceranae and subjected to a sugar-water diet with field concentrations of the pesticides sulfoxaflor, azoxystrobin and glyphosate. Increased sugar intake and altered immune and cytochrome P450 gene expression were observed in workers exposed to sulfoxaflor and infected with N. ceranae. None of the pesticides affected Nosema spore production in honey bee gut. Of the three pesticides tested (alone or in combination) only sulfoxaflor increased mortality in honey bees. Taken together, our results suggest that the effects of sulfoxaflor were attenuated in contact with other pesticides, and that Nosema infection leads to increase sugar intake in sulfoxaflor-exposed bees. Overall, this underlines the importance of studying the interaction between different stressors to understand their overall impact not only on honey bee but also on wild bees health.
Collapse
Affiliation(s)
- Álvaro Urueña
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Nuria Blasco-Lavilla
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
46
|
Hester KP, Stoner KA, Eitzer BD, Koethe RW, Lehmann DM. Pesticide residues in honey bee (Apis mellifera) pollen collected in two ornamental plant nurseries in Connecticut: Implications for bee health and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122037. [PMID: 37348699 PMCID: PMC10732578 DOI: 10.1016/j.envpol.2023.122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Honey bees (Apis mellifera L.) are one of the most important managed pollinators of agricultural crops. While potential effects of agricultural pesticides on honey bee health have been investigated in some settings, risks to honey bees associated with exposures occurring in the plant nursery setting have received little attention. We sought to identify and quantify pesticide levels present in honey bee-collected pollen harvested in two ornamental plant nurseries (i.e., Nursery A and Nursery B) in Connecticut. From June to September 2018, pollen was collected weekly from 8 colonies using bottom-mounted pollen traps. Fifty-five unique pesticides (including related metabolites) were detected: 24 insecticides, 20 fungicides, and 11 herbicides. Some of the pesticide contaminants detected in the pollen had not been applied by the nurseries, indicating that the honey bee colonies did not exclusively forage on pollen at their respective nursery. The average number of pesticides per sample was similar at both nurseries (i.e., 12.9 at Nursery A and 14.2 at Nursery B). To estimate the potential risk posed to honey bees from these samples, we utilized the USEPA's BeeREX tool to calculate risk quotients (RQs) for each pesticide within each sample. The median aggregate RQ for nurse bees was 0.003 at both nurseries, well below the acute risk level of concern (LOC) of ≥0.4. We also calculated RQs for larvae due to their increased sensitivity to certain pesticides. In total, 6 samples had larval RQs above the LOC (0.45-2.51), resulting from the organophosphate insecticide diazinon. Since 2015, the frequency and amount of diazinon detected in pollen increased at one of our study locations, potentially due to pressure to reduce the use of neonicotinoid insecticides. Overall, these data highlight the importance of considering all life stages when estimating potential risk to honey bee colonies from pesticide exposure.
Collapse
Affiliation(s)
- K P Hester
- Center for Public Health and Environmental Assessment, Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - K A Stoner
- Retired, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - B D Eitzer
- Retired, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - R W Koethe
- Region 1 Office, Land, Chemicals and Redevelopment Division, RCRA Waste, Underground Storage Tanks and Pesticides Section, U.S. Environmental Protection Agency, Boston, MA, 02109, USA
| | - D M Lehmann
- Center for Public Health and Environmental Assessment, Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
47
|
Chau KD, Shamekh M, Huisken J, Rehan SM. The effects of maternal care on the developmental transcriptome and metatranscriptome of a wild bee. Commun Biol 2023; 6:904. [PMID: 37709905 PMCID: PMC10502028 DOI: 10.1038/s42003-023-05275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
Maternal care acts as a strong environmental stimulus that can induce phenotypic plasticity in animals and may also alter their microbial communities through development. Here, we characterize the developmental metatranscriptome of the small carpenter bee, Ceratina calcarata, across developmental stages and in the presence or absence of mothers. Maternal care had the most influence during early development, with the greatest number and magnitude of differentially expressed genes between maternal care treatments, and enrichment for transcription factors regulating immune response in motherless early larvae. Metatranscriptomic data revealed fungi to be the most abundant group in the microbiome, with Aspergillus the most abundant in early larvae raised without mothers. Finally, integrative analysis between host transcriptome and metatranscriptome highlights several fungi correlating with developmental and immunity genes. Our results provide characterizations of the influence of maternal care on gene expression and the microbiome through development in a wild bee.
Collapse
Affiliation(s)
| | | | - Jesse Huisken
- Department of Biology, York University, Toronto, Canada
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
48
|
Deutsch KR, Graham JR, Boncristiani HF, Bustamante T, Mortensen AN, Schmehl DR, Wedde AE, Lopez DL, Evans JD, Ellis JD. Widespread distribution of honey bee-associated pathogens in native bees and wasps: Trends in pathogen prevalence and co-occurrence. J Invertebr Pathol 2023; 200:107973. [PMID: 37479057 DOI: 10.1016/j.jip.2023.107973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Pollinators have experienced significant declines in the past decade, in part due to emerging infectious diseases. Historically, studies have primarily focused on pathogens in the Western honey bee, Apis mellifera. However, recent work has demonstrated that these pathogens are shared by other pollinators and can negatively affect their health. Here, we surveyed honey bees and 15 native bee and wasp species for 13 pathogens traditionally associated with honey bees. The native bee and wasp species included 11 species not previously screened for pathogens. We found at least one honey bee-associated pathogen in 53% of native bee and wasp samples. The most widely distributed and commonly detected pathogens were the microsporidian Nosema ceranae, the bacterium Melissococcus plutonius, and the viruses deformed wing virus and black queen cell virus. The prevalence of viruses was generally higher in honey bees than in native bees and wasps. However, the prevalence of M. plutonius and the brood fungus Ascosphaera apis was significantly higher in some native bee species than in honey bees. The data also reveal novel trends in the association between co-occurring pathogens in honey bees and native bees and wasps at the pathogen community level. These results can inform the assessment of risks that native pollinator species face from pathogen stress, and indicate that many non-viral pathogens, notably M. plutonius and N. ceranae, are far more widely distributed and commonly found in native bees and wasps than previously thought.
Collapse
Affiliation(s)
| | - Jason R Graham
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Planet Bee Foundation, San Francisco, CA 94132, USA
| | - Humberto F Boncristiani
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Inside The Hive Media, Consulting Inc., Odenton, MD 21113, USA
| | - Tomas Bustamante
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Independent Collaborator, Dallas, TX, USA
| | - Ashley N Mortensen
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; The New Zealand Institute for Plant and Food Research Limited, Bisley Road, Hamilton 3214, New Zealand
| | - Daniel R Schmehl
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Bayer CropScience LP, 700 Chesterfield Pwky. W., Chesterfield, MO 63017, USA
| | - Ashlyn E Wedde
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Driscoll's Global R&D, Watsonville, CA, USA
| | - Dawn L Lopez
- Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Jay D Evans
- Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Giordano R, Weber EP, Mitacek R, Flores A, Ledesma A, De AK, Herman TK, Soto-Adames FN, Nguyen MQ, Hill CB, Hartman GL. Patterns of asexual reproduction of the soybean aphid, Aphis glycines (Matsumura), with and without the secondary symbionts Wolbachia and Arsenophonus, on susceptible and resistant soybean genotypes. Front Microbiol 2023; 14:1209595. [PMID: 37720159 PMCID: PMC10501154 DOI: 10.3389/fmicb.2023.1209595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Plant breeding is used to develop crops with host resistance to aphids, however, virulent biotypes often develop that overcome host resistance genes. We tested whether the symbionts, Arsenophonus (A) and Wolbachia (W), affect virulence and fecundity in soybean aphid biotypes Bt1 and Bt3 cultured on whole plants and detached leaves of three resistant, Rag1, Rag2 and Rag1 + 2, and one susceptible, W82, soybean genotypes. Whole plants and individual aphid experiments of A. glycines with and without Arsenophonus and Wolbachia did not show differences in overall fecundity. Differences were observed in peak fecundity, first day of deposition, and day of maximum nymph deposition of individual aphids on detached leaves. Bt3 had higher fecundity than Bt1 on detached leaves of all plant genotypes regardless of bacterial profile. Symbionts did not affect peak fecundity of Bt1 but increased it in Bt3 (A+W+) and all Bt3 strains began to deposit nymphs earlier than the Bt1 (A+W-). Arsenophonus in Bt1 delayed the first day of nymph deposition in comparison to aposymbiotic Bt1 except when reared on Rag1 + 2. For the Bt1 and Bt3 strains, symbionts did not result in a significant difference in the day they deposited the maximum number of nymphs nor was there a difference in survival or variability in number of nymphs deposited. Variability of number of aphids deposited was higher in aphids feeding on resistant plant genotypes. The impact of Arsenophonus on soybean aphid patterns of fecundity was dependent on the aphid biotype and plant genotype. Wolbachia alone had no detectable impact but may have contributed to the increased fecundity of Bt3 (A+W+). An individual based model, using data from the detached leaves experiment and with intraspecific competition removed, found patterns similar to those observed in the greenhouse and growth chamber experiments including a significant interaction between soybean genotype and aphid strain. Combining individual data with the individual based model of population growth isolated the impact of fecundity and host resistance from intraspecific competition and host health. Changes to patterns of fecundity, influenced by the composition and concentration of symbionts, may contribute to competitive interactions among aphid genotypes and influence selection on virulent aphid populations.
Collapse
Affiliation(s)
- Rosanna Giordano
- Institute of Environment, Florida International University, Miami, FL, United States
- Puerto Rico Science Technology and Research Trust, San Juan, Puerto Rico
| | - Everett P. Weber
- Office of Institutional Research, Dartmouth College, Hanover, NH, United States
| | - Ryan Mitacek
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Alejandra Flores
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alonso Ledesma
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Arun K. De
- Animal Sciences Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | | | - Felipe N. Soto-Adames
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, United States
| | - Minh Q. Nguyen
- Neochromosome, Inc., Long Island City, NY, United States
| | - Curtis B. Hill
- Neochromosome, Inc., Long Island City, NY, United States
| | - Glen L. Hartman
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
50
|
Shi M, Guo Y, Wu YY, Dai PL, Dai SJ, Diao QY, Gao J. Acute and chronic effects of sublethal neonicotinoid thiacloprid to Asian honey bee (Apis cerana cerana). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105483. [PMID: 37532314 DOI: 10.1016/j.pestbp.2023.105483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023]
Abstract
Pesticide pollution is one of the most important factors for global bee declines. Despite many studies have revealed that the most important Chinese indigenous species,Apis cerana, is presenting a high risk on exposure to neonicotinoids, the toxicology information on Apis cerana remain limited. This study was aimed to determine the acute and chronic toxic effects of thiacloprid (IUPAC name: {(2Z)-3-[(6-Chloro-3-pyridinyl)methyl]-1,3-thiazolidin-2-ylidene}cyanamide) on behavioral and physiological performance as well as genome-wide transcriptome in A. cerana. We found the 1/5 LC50 of thiacloprid significantly impaired learning and memory abilities after both acute and chronic exposure, nevertheless, has no effects on the sucrose responsiveness and phototaxis climbing ability of A. cerana. Moreover, activities of detoxification enzyme P450 monooxygenases and CarE were increased by short-term exposure to thiacloprid, while prolonged exposure caused suppression of CarE activity. Neither acute nor chronic exposure to thiacloprid altered honey bee AChE activities. To further study the potential defense molecular mechanisms in Asian honey bee under pesticide stress, we analyzed the transcriptomes of honeybees in response to thiacloprid stress. The transcriptomic profiles revealed consistent upregulation of immune- and stress-related genes by both acute or chronic treatments. Our results suggest that the chronic exposure to thiacloprid produced greater toxic effects than a single administration to A. cerana. Altogether, our study deepens the understanding of the toxicological characteristic of A. cerana against thiacloprid, and could be used to further investigate the complex molecular mechanisms in Asian honey bee under pesticide stress.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Yi Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yan-Yan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ping-Li Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shao-Jun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Qing-Yun Diao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|