1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Chung WC, Zhang S, Atfi A, Xu K. Lfng-expressing centroacinar cell is a unique cell-of-origin for p53 deficient pancreatic cancer. Oncogene 2025; 44:348-362. [PMID: 39548190 PMCID: PMC11790384 DOI: 10.1038/s41388-024-03226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with limited understanding of etiology. Studies in mice showed that both acinar and ductal cells of the pancreas can be targeted by combination of oncogenic Kras and p53 mutations to form PDAC. How the transforming capacities of pancreatic cells are constrained, and whether a subset of cells could serve as a prime target for oncogenic transformation, remain obscure. Here we report that expression of a Notch modulator, Lunatic Fringe (Lfng), is restricted to a limited number of cells with centroacinar location and morphology in the adult pancreas. Lfng-expressing cells are preferentially targeted by oncogenic Kras along with p53 deletion to form PDAC, and deletion of Lfng blocks tumor initiation from these cells. Notch3 is a functional Notch receptor for PDAC initiation and progression in this context. Lfng is upregulated in acinar- and ductal-derived PDAC and its deletion suppresses these tumors. Finally, high LFNG expression is associated with high grade and poor survival in human patients. Taken together, Lfng marks a centroacinar subpopulation that is uniquely susceptible to oncogenic transformation when p53 is lost, and Lfng functions as an oncogene in all three lineages of the exocrine pancreas.
Collapse
Affiliation(s)
- Wen-Cheng Chung
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, 39216, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, 39216, USA
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Keli Xu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, 39216, USA.
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, 39216, USA.
| |
Collapse
|
3
|
López-Gil JC, García-Silva S, Ruiz-Cañas L, Navarro D, Palencia-Campos A, Giráldez-Trujillo A, Earl J, Dorado J, Gómez-López G, Monfort-Vengut A, Alcalá S, Gaida MM, García-Mulero S, Cabezas-Sáinz P, Batres-Ramos S, Barreto E, Sánchez-Tomero P, Vallespinós M, Ambler L, Lin ML, Aicher A, García García de Paredes A, de la Pinta C, Sanjuanbenito A, Ruz-Caracuel I, Rodríguez-Garrote M, Guerra C, Carrato A, de Cárcer G, Sánchez L, Nombela-Arrieta C, Espinet E, Sanchez-Arevalo Lobo VJ, Heeschen C, Sainz B. The Peptidoglycan Recognition Protein 1 confers immune evasive properties on pancreatic cancer stem cells. Gut 2024; 73:1489-1508. [PMID: 38754953 PMCID: PMC11347225 DOI: 10.1136/gutjnl-2023-330995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) has limited therapeutic options, particularly with immune checkpoint inhibitors. Highly chemoresistant 'stem-like' cells, known as cancer stem cells (CSCs), are implicated in PDAC aggressiveness. Thus, comprehending how this subset of cells evades the immune system is crucial for advancing novel therapies. DESIGN We used the KPC mouse model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre) and primary tumour cell lines to investigate putative CSC populations. Transcriptomic analyses were conducted to pinpoint new genes involved in immune evasion. Overexpressing and knockout cell lines were established with lentiviral vectors. Subsequent in vitro coculture assays, in vivo mouse and zebrafish tumorigenesis studies, and in silico database approaches were performed. RESULTS Using the KPC mouse model, we functionally confirmed a population of cells marked by EpCAM, Sca-1 and CD133 as authentic CSCs and investigated their transcriptional profile. Immune evasion signatures/genes, notably the gene peptidoglycan recognition protein 1 (PGLYRP1), were significantly overexpressed in these CSCs. Modulating PGLYRP1 impacted CSC immune evasion, affecting their resistance to macrophage-mediated and T-cell-mediated killing and their tumourigenesis in immunocompetent mice. Mechanistically, tumour necrosis factor alpha (TNFα)-regulated PGLYRP1 expression interferes with the immune tumour microenvironment (TME) landscape, promoting myeloid cell-derived immunosuppression and activated T-cell death. Importantly, these findings were not only replicated in human models, but clinically, secreted PGLYRP1 levels were significantly elevated in patients with PDAC. CONCLUSIONS This study establishes PGLYRP1 as a novel CSC-associated marker crucial for immune evasion, particularly against macrophage phagocytosis and T-cell killing, presenting it as a promising target for PDAC immunotherapy.
Collapse
Affiliation(s)
- Juan Carlos López-Gil
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), Madrid, Spain
| | - Susana García-Silva
- Microenvironment and Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Ruiz-Cañas
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Biobanco Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Diego Navarro
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), Madrid, Spain
| | - Adrián Palencia-Campos
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Antonio Giráldez-Trujillo
- Grupo de Oncología Cutánea, Servicio de Anatomía Patológica, Hospiral Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Julie Earl
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
| | - Jorge Dorado
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Monfort-Vengut
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
| | - Sonia Alcalá
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), Madrid, Spain
| | - Matthias M Gaida
- Institute of Pathology, JGU-Mainz, University Medical Center Mainz, Mainz, Germany
- TRON, JGU-Mainz, Translational Oncology at the University Medical Center, Mainz, Germany
- Research Center for Immunotherapy, JGU-Mainz, University Medical Center Mainz, Mainz, Germany
| | - Sandra García-Mulero
- Department of Pathology and Experimental Therapy, Universidad de Barcelona Facultad de Medicina y Ciencias de La Salud, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), IDIBELL, Barcelona, Spain
| | - Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain
| | - Sandra Batres-Ramos
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Emma Barreto
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
- School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Patricia Sánchez-Tomero
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mireia Vallespinós
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Leah Ambler
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Meng-Lay Lin
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ana García García de Paredes
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Gastroenterology and Hepatology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Alfonso Sanjuanbenito
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Ignacio Ruz-Caracuel
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
- Ramon y Cajal University Hospital Anatomy Pathology Service, Madrid, Spain
- Molecular Pathology of Cancer Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mercedes Rodríguez-Garrote
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
- Medical Oncology Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Carmen Guerra
- Experimental Oncology Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alfredo Carrato
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
- Medical Oncology Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zürich, Switzerland
| | - Elisa Espinet
- Department of Pathology and Experimental Therapy, Universidad de Barcelona Facultad de Medicina y Ciencias de La Salud, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), IDIBELL, Barcelona, Spain
| | - Víctor Javier Sanchez-Arevalo Lobo
- Grupo de Oncología Cutánea, Servicio de Anatomía Patológica, Hospiral Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain
| | - Christopher Heeschen
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute - FPO - IRCCS, Candiolo (TO), Italy
| | - Bruno Sainz
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Saloman JL, Epouhe AY, Ruff CF, Albers KM. PDX1, a transcription factor essential for organ differentiation, regulates SERCA-dependent Ca 2+ homeostasis in sensory neurons. Cell Calcium 2024; 120:102884. [PMID: 38574509 PMCID: PMC11188734 DOI: 10.1016/j.ceca.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Pancreatic and duodenal homeobox 1 (PDX1) is a transcription factor required for the development and differentiation of the pancreas. Previous studies indicated that PDX1 expression was restricted to the gastrointestinal tract. Using a cre-dependent reporter, we observed PDX1-dependent expression of tdtomato (PDX1-tom) in a subpopulation of sensory nerves. Many of these PDX1-tom afferents expressed the neurofilament 200 protein and projected to the skin. Tdtomato-labeled terminals were associated with hair follicles in the form of longitudinal and circumferential lanceolate endings suggesting a role in tactile and proprioceptive perception. To begin to examine the functional significance of PDX1 in afferents, we used Fura-2 imaging to examine calcium (Ca2+) handling under naïve and nerve injury conditions. Neuropathic injury is associated with increased intracellular Ca2+ signaling that in part results from dysregulation of the sarco/endoplasmic reticulum calcium transport ATPase (SERCA). Here we demonstrate that under naïve conditions, PDX1 regulates expression of the SERCA2B isoform in sensory neurons. In response to infraorbital nerve injury, a significant reduction of PDX1 and SERCA2B expression and dysregulation of Ca2+ handling occurs in PDX1-tom trigeminal ganglia neurons. The identification of PDX1 expression in the somatosensory system and its regulation of SERCA2B and Ca2+ handling provide a new mechanism to explain pathological changes in primary afferents that may contribute to pain associated with nerve injury.
Collapse
Affiliation(s)
- Jami L Saloman
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ariel Y Epouhe
- Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine F Ruff
- Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn M Albers
- Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
D'Amico S, Kirillov V, Petrenko O, Reich NC. STAT3 is a genetic modifier of TGF-beta induced EMT in KRAS mutant pancreatic cancer. eLife 2024; 13:RP92559. [PMID: 38573819 PMCID: PMC10994661 DOI: 10.7554/elife.92559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Oncogenic mutations in KRAS are among the most common in cancer. Classical models suggest that loss of epithelial characteristics and the acquisition of mesenchymal traits are associated with cancer aggressiveness and therapy resistance. However, the mechanistic link between these phenotypes and mutant KRAS biology remains to be established. Here, we identify STAT3 as a genetic modifier of TGF-beta-induced epithelial to mesenchymal transition. Gene expression profiling of pancreatic cancer cells identifies more than 200 genes commonly regulated by STAT3 and oncogenic KRAS. Functional classification of the STAT3-responsive program reveals its major role in tumor maintenance and epithelial homeostasis. The signatures of STAT3-activated cell states can be projected onto human KRAS mutant tumors, suggesting that they faithfully reflect characteristics of human disease. These observations have implications for therapeutic intervention and tumor aggressiveness.
Collapse
Affiliation(s)
- Stephen D'Amico
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| | - Oleksi Petrenko
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| | - Nancy C Reich
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
6
|
Adekolujo OS, Wahab A, Akanbi MO, Oyasiji T, Hrinczenko B, Alese OB. Isolated pulmonary metastases in pancreatic ductal adenocarcinoma: a review of current evidence. Cancer Biol Ther 2023; 24:2198479. [PMID: 37526431 PMCID: PMC10395259 DOI: 10.1080/15384047.2023.2198479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/24/2023] [Indexed: 08/02/2023] Open
Abstract
Despite recent advances in cancer therapeutics, pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease with a 5-year overall survival of only 10%. Since either at or within a few months of diagnosis, most patients with PDAC will present with metastatic disease, a more individualized approach to select patients who may benefit from more aggressive therapy has been suggested. Although studies have reported improved survival in PDAC and isolated pulmonary metastasis (ISP) compared to extrapulmonary metastases, such findings remain controversial. Furthermore, the added benefit of pulmonary metastasectomy and other lung-directed therapies remains unclear. In this review, we discuss the metastatic pattern of PDAC, evaluate the available evidence in the literature for improved survival in PDAC and ISP, evaluate the evidence for the added benefit of pulmonary metastasectomy and other lung-directed therapies, identify prognostic factors for survival, discuss the biological basis for the reported improved survival and identify areas for further research.
Collapse
Affiliation(s)
- Orimisan Samuel Adekolujo
- Department of Medicine, Michigan State University, East Lansing, MI, USA
- Medical Oncology, Karmanos Cancer Institute at McLaren Greater Lansing, Lansing, MI, USA
| | - Ahsan Wahab
- Department of Medicine, Prattville Baptist Hospital, Prattville, AL, USA
| | - Maxwell Oluwole Akanbi
- Department of Medicine, Michigan State University, East Lansing, MI, USA
- Department of Medicine, McLaren Flint, Flint, MI, USA
| | - Tolutope Oyasiji
- Department of Oncology, Barbara Ann Karmanos Cancer Institute at McLaren Flint, Wayne State University, Flint, MI, USA
| | - Borys Hrinczenko
- Department of Medicine, Michigan State University, East Lansing, MI, USA
- Medical Oncology, Karmanos Cancer Institute at McLaren Greater Lansing, Lansing, MI, USA
| | - Olatunji Boladale Alese
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
D’Amico S, Kirillov V, Petrenko O, Reich NC. STAT3 is a genetic modifier of TGF-beta induced EMT in KRAS mutant pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555946. [PMID: 37732258 PMCID: PMC10508731 DOI: 10.1101/2023.09.01.555946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Oncogenic mutations in KRAS are among the most common in cancer. Classical models suggest that loss of epithelial characteristics and the acquisition of mesenchymal traits are associated with cancer aggressiveness and therapy resistance. However, the mechanistic link between these phenotypes and mutant KRAS biology remains to be established. Here we identify STAT3 as a genetic modifier of TGF-beta-induced epithelial to mesenchymal transition. Gene expression profiling of pancreatic cancer cells identifies more than 200 genes commonly regulated by STAT3 and oncogenic KRAS. Functional classification of STAT3 responsive program reveals its major role in tumor maintenance and epithelial homeostasis. The signatures of STAT3-activated cell states can be projected onto human KRAS mutant tumors, suggesting that they faithfully reflect characteristics of human disease. These observations have implications for therapeutic intervention and tumor aggressiveness.
Collapse
Affiliation(s)
- Stephen D’Amico
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Oleksi Petrenko
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Qian Q, Song J, Pu Q, Chen C, Yan J, Wang H. Acute/chronic exposure to bisphenol A induced immunotoxicity in zebrafish and its potential association with pancreatic cancer risk. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106514. [PMID: 37019016 DOI: 10.1016/j.aquatox.2023.106514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Previous studies have confirmed that bisphenol A (BPA) induced immune toxicity and affected diseases, however, the underlying mechanism remains unknown. In the present study, zebrafish was employed as the model to assess the immunotoxicity and the potential disease risk of BPA exposure. Upon BPA exposure, a series of abnormalities were found, which included the increased oxidative stress, damaged innate and adaptive immune functions and the elevated insulin and blood glucose levels. According to the target prediction and RNA sequencing data of BPA, the differential expression genes were found enriched in immune- and pancreatic cancer-related pathway and process, and the potential role of stat3 in the regulation of these processes was revealed. The key immune- and pancreatic cancer-related genes were selected for further confirmation by RT-qPCR. Based on the changes in the expression levels of these genes, our hypothesis that BPA induced the occurrence of pancreatic cancer by modulating immune responses was further evidenced. Deeper mechanism was further disclosed by molecular dock simulation and survival analysis of key genes, proving that BPA stably bound to STAT3 and IL10 and STAT3 may serve as the target of BPA-inducing pancreatic cancer. These results are of great significance in deepening the molecular mechanism of immunotoxicity induced by BPA and our understanding of the risk assessment of contaminants.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Chen Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China.
| |
Collapse
|
9
|
Agrawal R, Natarajan KN. Oncogenic signaling pathways in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:251-283. [PMID: 37268398 DOI: 10.1016/bs.acr.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common (∼90% cases) pancreatic neoplasm and one of the most lethal cancer among all malignances. PDAC harbor aberrant oncogenic signaling that may result from the multiple genetic and epigenetic alterations such as the mutation in driver genes (KRAS, CDKN2A, p53), genomic amplification of regulatory genes (MYC, IGF2BP2, ROIK3), deregulation of chromatin-modifying proteins (HDAC, WDR5) among others. A key event is the formation of Pancreatic Intraepithelial Neoplasia (PanIN) that often results from the activating mutation in KRAS. Mutated KRAS can direct a variety of signaling pathways and modulate downstream targets including MYC, which play an important role in cancer progression. In this review, we discuss recent literature shedding light on the origins of PDAC from the perspective of major oncogenic signaling pathways. We highlight how MYC directly and indirectly, with cooperation with KRAS, affect epigenetic reprogramming and metastasis. Additionally, we summarize the recent findings from single cell genomic approaches that highlight heterogeneity in PDAC and tumor microenvironment, and provide molecular avenues for PDAC treatment in the future.
Collapse
Affiliation(s)
- Rahul Agrawal
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
10
|
Chung WC, Xu K. Notch signaling pathway in pancreatic tumorigenesis. Adv Cancer Res 2023. [DOI: 10.1016/bs.acr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
11
|
De Angelis ML, Francescangeli F, Nicolazzo C, Signore M, Giuliani A, Colace L, Boe A, Magri V, Baiocchi M, Ciardi A, Scarola F, Spada M, La Torre F, Gazzaniga P, Biffoni M, De Maria R, Zeuner A. An organoid model of colorectal circulating tumor cells with stem cell features, hybrid EMT state and distinctive therapy response profile. J Exp Clin Cancer Res 2022; 41:86. [PMID: 35260172 PMCID: PMC8903172 DOI: 10.1186/s13046-022-02263-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are responsible for the metastatic dissemination of colorectal cancer (CRC) to the liver, lungs and lymph nodes. CTCs rarity and heterogeneity strongly limit the elucidation of their biological features, as well as preclinical drug sensitivity studies aimed at metastasis prevention. METHODS We generated organoids from CTCs isolated from an orthotopic CRC xenograft model. CTCs-derived organoids (CTCDOs) were characterized through proteome profiling, immunohistochemistry, immunofluorescence, flow cytometry, tumor-forming capacity and drug screening assays. The expression of intra- and extracellular markers found in CTCDOs was validated on CTCs isolated from the peripheral blood of CRC patients. RESULTS CTCDOs exhibited a hybrid epithelial-mesenchymal transition (EMT) state and an increased expression of stemness-associated markers including the two homeobox transcription factors Goosecoid and Pancreatic Duodenal Homeobox Gene-1 (PDX1), which were also detected in CTCs from CRC patients. Functionally, CTCDOs showed a higher migratory/invasive ability and a different response to pathway-targeted drugs as compared to xenograft-derived organoids (XDOs). Specifically, CTCDOs were more sensitive than XDOs to drugs affecting the Survivin pathway, which decreased the levels of Survivin and X-Linked Inhibitor of Apoptosis Protein (XIAP) inducing CTCDOs death. CONCLUSIONS These results indicate that CTCDOs recapitulate several features of colorectal CTCs and may be used to investigate the features of metastatic CRC cells, to identify new prognostic biomarkers and to devise new potential strategies for metastasis prevention.
Collapse
Affiliation(s)
- Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Chiara Nicolazzo
- Department of Molecular Medicine, Liquid Biopsy Unit, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Lidia Colace
- Department of Surgical Sciences, Policlinico Umberto I/Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Valentina Magri
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, Viale del Policlinico 155, 00161, Rome, Italy
| | - Marta Baiocchi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonio Ciardi
- Department of Surgery "Pietro Valdoni", Policlinico Umberto I/Sapienza University, Viale del Policlinico 155, 00161, Rome, Italy
| | - Francesco Scarola
- Department of Surgery "Pietro Valdoni", Policlinico Umberto I/Sapienza University, Viale del Policlinico 155, 00161, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Filippo La Torre
- Surgical Sciences and Emergency Department, Policlinico Umberto I/Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Paola Gazzaniga
- Department of Molecular Medicine, Liquid Biopsy Unit, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
12
|
Zhuang H, Wang S, Chen B, Zhang Z, Ma Z, Li Z, Liu C, Zhou Z, Gong Y, Huang S, Hou B, Chen Y, Zhang C. Prognostic Stratification Based on HIF-1 Signaling for Evaluating Hypoxic Status and Immune Infiltration in Pancreatic Ductal Adenocarcinomas. Front Immunol 2021; 12:790661. [PMID: 34925373 PMCID: PMC8677693 DOI: 10.3389/fimmu.2021.790661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a hypoxic and desmoplastic tumor microenvironment (TME), leading to treatment failure. We aimed to develop a prognostic classifier to evaluate hypoxia status and hypoxia-related molecular characteristics of PDAC. In this study, we classified PDAC into three clusters based on 16 known hypoxia-inducible factor 1 (HIF-1)-related genes. Nine differentially expressed genes were identified to construct an HIF-1 score system, whose predictive efficacy was evaluated. Furthermore, we investigated oncogenic pathways and immune-cell infiltration status of PDAC with different scores. The C-index of the HIF-1score system for OS prediction in the meta-PDAC cohort and the other two validation cohorts were 0.67, 0.63, and 0.65, respectively, indicating that it had a good predictive value for patient survival. Furthermore, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve of the HIF-1α score system for predicting 1-, 3-, and 4-year OS indicated the HIF-1α score system had an optimal discrimination of prognostic prediction for PDAC. Importantly, our model showed superior predictive ability compared to previous hypoxia signatures. We also classified PDAC into HIF-1 scores of low, medium, and high groups. Then, we found high enrichment of glycolysis, mTORC1 signaling, and MYC signaling in the HIF-1 score high group, whereas the cGMP metabolic process was activated in the low score group. Of note, analysis of public datasets and our own dataset showed a high HIF-1 score was associated with high immunosuppressive TME, evidenced by fewer infiltrated CD8+ T cells, B cells, and type 1 T-helper cells and reduced cytolytic activity of CD8+ T cells. In summary, we established a specific HIF-1 score system to discriminate PDAC with various hypoxia statuses and immune microenvironments. For highly hypoxic and immunosuppressive tumors, a combination treatment strategy should be considered in the future.
Collapse
Affiliation(s)
- Hongkai Zhuang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shujie Wang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenchong Li
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunsheng Liu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanfeng Gong
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
13
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Wijnen R, Pecoraro C, Carbone D, Fiuji H, Avan A, Peters GJ, Giovannetti E, Diana P. Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2021; 13:4389. [PMID: 34503199 PMCID: PMC8430873 DOI: 10.3390/cancers13174389] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
The role of CDK1 in PDAC onset and development is two-fold. Firstly, since CDK1 activity regulates the G2/M cell cycle checkpoint, overexpression of CDK1 can lead to progression into mitosis even in cells with DNA damage, a potentially tumorigenic process. Secondly, CDK1 overexpression leads to the stimulation of a range of proteins that induce stem cell properties, which can contribute to the development of cancer stem cells (CSCs). CSCs promote tumor-initiation and metastasis and play a crucial role in the development of PDAC. Targeting CDK1 showed promising results for PDAC treatment in different preclinical models, where CDK1 inhibition induced cell cycle arrest in the G2/M phase and led to induction of apoptosis. Next to this, PDAC CSCs are uniquely sensitive to CDK1 inhibition. In addition, targeting of CDK1 has shown potential for combination therapy with both ionizing radiation treatment and conventional chemotherapy, through sensitizing tumor cells and reducing resistance to these treatments. To conclude, CDK1 inhibition induces G2/M cell cycle arrest, stimulates apoptosis, and specifically targets CSCs, which makes it a promising treatment for PDAC. Screening of patients for CDK1 overexpression and further research into combination treatments is essential for optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Rosa Wijnen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (R.W.); (C.P.); (G.J.P.)
| | - Camilla Pecoraro
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (R.W.); (C.P.); (G.J.P.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy;
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy;
| | - Hamid Fiuji
- Department of Biochemistry, Payame-Noor University, Mashhad 19395-4697, Iran;
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad 91886-17871, Iran;
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (R.W.); (C.P.); (G.J.P.)
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (R.W.); (C.P.); (G.J.P.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56124 Pisa, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy;
| |
Collapse
|
15
|
Milan M, Diaferia GR, Natoli G. Tumor cell heterogeneity and its transcriptional bases in pancreatic cancer: a tale of two cell types and their many variants. EMBO J 2021; 40:e107206. [PMID: 33844319 PMCID: PMC8246061 DOI: 10.15252/embj.2020107206] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the most highly lethal tumors, is characterized by complex histology, with a massive fibrotic stroma in which both pseudo-glandular structures and compact nests of abnormally differentiated tumor cells are embedded, in different proportions and with different mutual relationships in space. This complexity and the heterogeneity of the tumor component have hindered the development of a broadly accepted, clinically actionable classification of PDACs, either on a morphological or a molecular basis. Here, we discuss evidence suggesting that such heterogeneity can to a large extent, albeit not exclusively, be traced back to two main classes of PDAC cells that commonly coexist in the same tumor: cells that maintained their ability to differentiate toward endodermal, mucin-producing epithelia and epithelial cells unable to form glandular structures and instead characterized by various levels of squamous differentiation and the expression of mesenchymal lineage genes. The underlying gene regulatory networks and how they are controlled by distinct transcription factors, as well as the practical implications of these two different populations of tumor cells, are discussed.
Collapse
Affiliation(s)
- Marta Milan
- Department of Experimental OncologyEuropean Institute of Oncology (IEO) IRCCSMilanItaly
- Present address:
The Francis Crick InstituteLondonUK
| | - Giuseppe R Diaferia
- Department of Experimental OncologyEuropean Institute of Oncology (IEO) IRCCSMilanItaly
| | - Gioacchino Natoli
- Department of Experimental OncologyEuropean Institute of Oncology (IEO) IRCCSMilanItaly
- Humanitas UniversityMilanItaly
| |
Collapse
|
16
|
Ischenko I, D'Amico S, Rao M, Li J, Hayman MJ, Powers S, Petrenko O, Reich NC. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat Commun 2021; 12:1482. [PMID: 33674596 PMCID: PMC7935870 DOI: 10.1038/s41467-021-21736-w] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Immune evasion is a hallmark of KRAS-driven cancers, but the underlying causes remain unresolved. Here, we use a mouse model of pancreatic ductal adenocarcinoma to inactivate KRAS by CRISPR-mediated genome editing. We demonstrate that at an advanced tumor stage, dependence on KRAS for tumor growth is reduced and is manifested in the suppression of antitumor immunity. KRAS-deficient cells retain the ability to form tumors in immunodeficient mice. However, they fail to evade the host immune system in syngeneic wild-type mice, triggering strong antitumor response. We uncover changes both in tumor cells and host immune cells attributable to oncogenic KRAS expression. We identify BRAF and MYC as key mediators of KRAS-driven tumor immune suppression and show that loss of BRAF effectively blocks tumor growth in mice. Applying our results to human PDAC we show that lowering KRAS activity is likewise associated with a more vigorous immune environment.
Collapse
Affiliation(s)
- Irene Ischenko
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Stephen D'Amico
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Manisha Rao
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Michael J Hayman
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Oleksi Petrenko
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.
| | - Nancy C Reich
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
17
|
Huang YH, Hu J, Chen F, Lecomte N, Basnet H, David CJ, Witkin MD, Allen PJ, Leach SD, Hollmann TJ, Iacobuzio-Donahue CA, Massagué J. ID1 Mediates Escape from TGFβ Tumor Suppression in Pancreatic Cancer. Cancer Discov 2020; 10:142-157. [PMID: 31582374 PMCID: PMC6954299 DOI: 10.1158/2159-8290.cd-19-0529] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/27/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022]
Abstract
TGFβ is an important tumor suppressor in pancreatic ductal adenocarcinoma (PDA), yet inactivation of TGFβ pathway components occurs in only half of PDA cases. TGFβ cooperates with oncogenic RAS signaling to trigger epithelial-to-mesenchymal transition (EMT) in premalignant pancreatic epithelial progenitors, which is coupled to apoptosis owing to an imbalance of SOX4 and KLF5 transcription factors. We report that PDAs that develop with the TGFβ pathway intact avert this apoptotic effect via ID1. ID1 family members are expressed in PDA progenitor cells and encode components of a set of core transcriptional regulators shared by PDAs. PDA progression selects against TGFβ-mediated repression of ID1. The sustained expression of ID1 uncouples EMT from apoptosis in PDA progenitors. AKT signaling and mechanisms linked to low-frequency genetic events converge on ID1 to preserve its expression in PDA. Our results identify ID1 as a crucial node and potential therapeutic target in PDA. SIGNIFICANCE: Half of PDAs escape TGFβ-induced tumor suppression without inactivating the TGFβ pathway. We report that ID1 expression is selected for in PDAs and that ID1 uncouples TGFβ-induced EMT from apoptosis. ID1 thus emerges as a crucial regulatory node and a target of interest in PDA.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Yun-Han Huang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Sloan Kettering/Rockefeller Tri-Institutional MD-PhD Program, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York
| | - Jing Hu
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fei Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicolas Lecomte
- The David M. Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles J David
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew D Witkin
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter J Allen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven D Leach
- The David M. Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine A Iacobuzio-Donahue
- The David M. Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
18
|
D'Amico S, Shi J, Martin BL, Crawford HC, Petrenko O, Reich NC. STAT3 is a master regulator of epithelial identity and KRAS-driven tumorigenesis. Genes Dev 2018; 32:1175-1187. [PMID: 30135074 PMCID: PMC6120712 DOI: 10.1101/gad.311852.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/12/2018] [Indexed: 01/02/2023]
Abstract
A dichotomy exists regarding the role of signal transducer and activator of transcription 3 (STAT3) in cancer. Functional and genetic studies demonstrate either an intrinsic requirement for STAT3 or a suppressive effect on common types of cancer. These contrasting actions of STAT3 imply context dependency. To examine mechanisms that underlie STAT3 function in cancer, we evaluated the impact of STAT3 activity in KRAS-driven lung and pancreatic cancer. Our study defines a fundamental and previously unrecognized function of STAT3 in the maintenance of epithelial cell identity and differentiation. Loss of STAT3 preferentially associates with the acquisition of mesenchymal-like phenotypes and more aggressive tumor behavior. In contrast, persistent STAT3 activation through Tyr705 phosphorylation confers a differentiated epithelial morphology that impacts tumorigenic potential. Our results imply a mechanism in which quantitative differences of STAT3 Tyr705 phosphorylation, as compared with other activation modes, direct discrete outcomes in tumor progression.
Collapse
Affiliation(s)
- Stephen D'Amico
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Oleksi Petrenko
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Nancy C Reich
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
19
|
Subramaniam D, Kaushik G, Dandawate P, Anant S. Targeting Cancer Stem Cells for Chemoprevention of Pancreatic Cancer. Curr Med Chem 2018; 25:2585-2594. [PMID: 28137215 DOI: 10.2174/0929867324666170127095832] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest cancers worldwide and the fourth leading cause of cancer-related deaths in United States. Regardless of the advances in molecular pathogenesis and consequential efforts to suppress the disease, this cancer remains a major health problem in United States. By 2030, the projection is that pancreatic cancer will be climb up to be the second leading cause of cancer-related deaths in the United States. Pancreatic cancer is a rapidly invasive and highly metastatic cancer, and does not respond to standard therapies. Emerging evidence supports that the presence of a unique population of cells called cancer stem cells (CSCs) as potential cancer inducing cells and efforts are underway to develop therapeutic strategies targeting these cells. CSCs are rare quiescent cells, and with the capacity to self-renew through asymmetric/symmetric cell division, as well as differentiate into various lineages of cells in the cancer. Studies have been shown that CSCs are highly resistant to standard therapy and also responsible for drug resistance, cancer recurrence and metastasis. To overcome this problem, we need novel preventive agents that target these CSCs. Natural compounds or phytochemicals have ability to target these CSCs and their signaling pathways. Therefore, in the present review article, we summarize our current understanding of pancreatic CSCs and their signaling pathways, and the phytochemicals that target these cells including curcumin, resveratrol, tea polyphenol EGCG (epigallocatechin- 3-gallate), crocetinic acid, sulforaphane, genistein, indole-3-carbinol, vitamin E δ- tocotrienol, Plumbagin, quercetin, triptolide, Licofelene and Quinomycin. These natural compounds or phytochemicals, which inhibit cancer stem cells may prove to be promising agents for the prevention and treatment of pancreatic cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States.,The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Gaurav Kaushik
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Prasad Dandawate
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Shrikant Anant
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States.,The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
20
|
Wang L, Zhao L, Wei G, Saur D, Seidler B, Wang J, Wang C, Qi T. Homoharringtonine could induce quick protein synthesis of PSMD11 through activating MEK1/ERK1/2 signaling pathway in pancreatic cancer cells. J Cell Biochem 2018; 119:6644-6656. [PMID: 29665121 DOI: 10.1002/jcb.26847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/09/2018] [Indexed: 02/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most devastating disease with the 5-year survival rate less than 6%. In this study, we investigated if inhibiting protein synthesis directly with homoharringtonine (HHT) could induce acute apoptosis in pancreatic cancer cells through quick depletion of multiple short-lived critical members of the central proteome, example, PSMD11(26S proteasome non-ATPase regulatory subunit 11). It was shown that although HHT could inhibit proliferation and growth of MiaPaCa-2 and PANC-1 cells in a time- and dose-dependent manner, only part of pancreatic cancer cells could be induced to die through acute apoptosis. Mechanistic studies showed that HHT could induce quick protein synthesis of PSMD11 through activating MEK1/ERK1/2 signaling pathway in pancreatic cancer cells. Inhibiting MEK1/ERK1/2 pathway with sorafenib could improve the cytotoxity of HHT in vitro and in a genetically engineered mouse model of pancreatic cancer. These results suggest that quick induction of PSMD11 or other acute apoptosis inhibitors through activation of the MEK1/ERK1/2 signaling pathway may be one of the important surviving mechanism which can help pancreatic cancer cells avoid acute apoptosis, it may have significant implications for the targeted therapy of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Lele Wang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Linlin Zhao
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Guo Wei
- Department of Dermatology, The Second Hospital of Shandong University, Jinan, China
| | - Dieter Saur
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, München, Germany
| | - Barbara Seidler
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, München, Germany
| | - Junyan Wang
- Department of Internal Medicine, Dezhou People's Hospital, Dezhou, China
| | - Chuanxin Wang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Tonggang Qi
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China.,The Third People's Hospital of Tibet, Central Laboratory, Lhasa, China
| |
Collapse
|
21
|
He P, Yang JW, Yang VW, Bialkowska AB. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology 2018; 154:1494-1508.e13. [PMID: 29248441 PMCID: PMC5880723 DOI: 10.1053/j.gastro.2017.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Activating mutations in KRAS are detected in most pancreatic ductal adenocarcinomas (PDACs). Expression of an activated form of KRAS (KrasG12D) in pancreata of mice is sufficient to induce formation of pancreatic intraepithelial neoplasia (PanINs)-a precursor of PDAC. Pancreatitis increases formation of PanINs in mice that express KrasG12D by promoting acinar-to-ductal metaplasia (ADM). We investigated the role of the transcription factor Krüppel-like factor 5 (KLF5) in ADM and KRAS-mediated formation of PanINs. METHODS We performed studies in adult mice with conditional disruption of Klf5 (Klf5fl/fl) and/or expression of KrasG12D (LSL-KrasG12D) via CreERTM recombinase regulated by an acinar cell-specific promoter (Ptf1a). Activation of KrasG12D and loss of KLF5 was achieved by administration of tamoxifen. Pancreatitis was induced in mice by administration of cerulein; pancreatic tissues were collected, analyzed by histology and immunohistochemistry, and transcriptomes were compared between mice that did or did not express KLF5. We performed immunohistochemical analyses of human tissue microarrays, comparing levels of KLF5 among 96 human samples of PDAC. UN-KC-6141 cells (pancreatic cancer cells derived from Pdx1-Cre;LSL-KrasG12D mice) were incubated with inhibitors of different kinases and analyzed in proliferation assays and by immunoblots. Expression of KLF5 was knocked down with small hairpin RNAs or CRISPR/Cas9 strategies; cells were analyzed in proliferation and gene expression assays, and compared with cells expressing control vectors. Cells were subcutaneously injected into flanks of syngeneic mice and tumor growth was assessed. RESULTS Of the 96 PDAC samples analyzed, 73% were positive for KLF5 (defined as nuclear staining in more than 5% of tumor cells). Pancreata from Ptf1a-CreERTM;LSL-KrasG12D mice contained ADM and PanIN lesions, which contained high levels of nuclear KLF5 within these structures. In contrast, Ptf1a-CreERTM;LSL-KrasG12D;Klf5fl/fl mice formed fewer PanINs. After cerulein administration, Ptf1a-CreERTM;LSL-KrasG12D mice formed more extensive ADM than Ptf1a-CreERTM;LSL-KrasG12D;Klf5fl/fl mice. Pancreata from Ptf1a-CreERTM;LSL-KrasG12D;Klf5fl/fl mice had increased expression of the tumor suppressor NDRG2 and reduced phosphorylation (activation) of STAT3, compared with Ptf1a-CreERTM;LSL-KrasG12D mice. In UN-KC-6141 cells, PI3K and MEK signaling increased expression of KLF5; a high level of KLF5 increased proliferation. Cells with knockdown of Klf5 had reduced proliferation, compared with control cells, had reduced expression of ductal markers, and formed smaller tumors (71.61 ± 30.79 mm3 vs 121.44 ± 34.90 mm3 from control cells) in flanks of mice. CONCLUSION Levels of KLF5 are increased in human PDAC samples and in PanINs of Ptf1a-CreERTM;LSL-KrasG12D mice, compared with controls. KLF5 disruption increases expression of NDRG2 and reduces activation of STAT3 and reduces ADM and PanINs formation in mice. Strategies to reduce KLF5 activity might reduce progression of acinar cells from ADM to PanIN and pancreatic tumorigenesis.
Collapse
MESH Headings
- Animals
- Carcinoma in Situ/genetics
- Carcinoma in Situ/metabolism
- Carcinoma in Situ/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Ceruletide
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Genes, ras
- Humans
- Kruppel-Like Transcription Factors/deficiency
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Metaplasia
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatitis/chemically induced
- Pancreatitis/genetics
- Pancreatitis/metabolism
- Pancreatitis/pathology
- RNA Interference
- Signal Transduction
- Time Factors
- Transfection
- Tumor Burden
Collapse
Affiliation(s)
- Ping He
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - Jong Won Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - Vincent W Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York; Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Agnieszka B Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York.
| |
Collapse
|
22
|
δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis. Oncotarget 2018; 8:31554-31567. [PMID: 28404939 PMCID: PMC5458229 DOI: 10.18632/oncotarget.15767] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/27/2017] [Indexed: 01/06/2023] Open
Abstract
The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases.
Collapse
|
23
|
Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Biomedicines 2017; 5:biomedicines5040065. [PMID: 29156578 PMCID: PMC5744089 DOI: 10.3390/biomedicines5040065] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of <10%. PDAC arises from different types of non-invasive precursor lesions: intraductal papillary mucinous neoplasms, mucinous cystic neoplasms and pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments.
Collapse
|
24
|
Vinogradova TV, Sverdlov ED. PDX1: A Unique Pancreatic Master Regulator Constantly Changes Its Functions during Embryonic Development and Progression of Pancreatic Cancer. BIOCHEMISTRY (MOSCOW) 2017; 82:887-893. [PMID: 28941456 DOI: 10.1134/s000629791708003x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multifunctional activity of the PDX1 gene product is reviewed. The PDX1 protein is unique in that being expressed exclusively in the pancreas it exhibits various functional activities in this organ both during embryonic development and during induction and progression of pancreatic cancer. Hence, PDX1 belongs to the family of master regulators with multiple and often antagonistic functions.
Collapse
Affiliation(s)
- T V Vinogradova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | |
Collapse
|
25
|
|
26
|
Shah K, Patel S, Mirza S, Raval A, Rawal RM. Data mining and manual curation of published microarray datasets to establish a multi-gene panel for prediction of liver metastasis. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Roy N, Takeuchi KK, Ruggeri JM, Bailey P, Chang D, Li J, Leonhardt L, Puri S, Hoffman MT, Gao S, Halbrook CJ, Song Y, Ljungman M, Malik S, Wright CVE, Dawson DW, Biankin AV, Hebrok M, Crawford HC. PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes Dev 2016; 30:2669-2683. [PMID: 28087712 PMCID: PMC5238727 DOI: 10.1101/gad.291021.116] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
Aberrant activation of embryonic signaling pathways is frequent in pancreatic ductal adenocarcinoma (PDA), making developmental regulators therapeutically attractive. Here we demonstrate diverse functions for pancreatic and duodenal homeobox 1 (PDX1), a transcription factor indispensable for pancreas development, in the progression from normal exocrine cells to metastatic PDA. We identify a critical role for PDX1 in maintaining acinar cell identity, thus resisting the formation of pancreatic intraepithelial neoplasia (PanIN)-derived PDA. Upon neoplastic transformation, the role of PDX1 changes from tumor-suppressive to oncogenic. Interestingly, subsets of malignant cells lose PDX1 expression while undergoing epithelial-to-mesenchymal transition (EMT), and PDX1 loss is associated with poor outcome. This stage-specific functionality arises from profound shifts in PDX1 chromatin occupancy from acinar cells to PDA. In summary, we report distinct roles of PDX1 at different stages of PDA, suggesting that therapeutic approaches against this potential target need to account for its changing functions at different stages of carcinogenesis. These findings provide insight into the complexity of PDA pathogenesis and advocate a rigorous investigation of therapeutically tractable targets at distinct phases of PDA development and progression.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Kenneth K Takeuchi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jeanine M Ruggeri
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Peter Bailey
- Wolfson Wohl Cancer Research Center, University of Glasgow, Glasgow G61 1BD, Scotland
| | - David Chang
- Wolfson Wohl Cancer Research Center, University of Glasgow, Glasgow G61 1BD, Scotland
| | - Joey Li
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Laura Leonhardt
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Sapna Puri
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shan Gao
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yan Song
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shivani Malik
- Department of Medicine/ Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Center, University of Glasgow, Glasgow G61 1BD, Scotland
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
28
|
Beglyarova N, Banina E, Zhou Y, Mukhamadeeva R, Andrianov G, Bobrov E, Lysenko E, Skobeleva N, Gabitova L, Restifo D, Pressman M, Serebriiskii IG, Hoffman JP, Paz K, Behrens D, Khazak V, Jablonski SA, Golemis EA, Weiner LM, Astsaturov I. Screening of Conditionally Reprogrammed Patient-Derived Carcinoma Cells Identifies ERCC3-MYC Interactions as a Target in Pancreatic Cancer. Clin Cancer Res 2016; 22:6153-6163. [PMID: 27384421 PMCID: PMC5161635 DOI: 10.1158/1078-0432.ccr-16-0149] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Even when diagnosed prior to metastasis, pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with almost 90% lethality, emphasizing the need for new therapies optimally targeting the tumors of individual patients. EXPERIMENTAL DESIGN We first developed a panel of new physiologic models for study of PDAC, expanding surgical PDAC tumor samples in culture using short-term culture and conditional reprogramming with the Rho kinase inhibitor Y-27632, and creating matched patient-derived xenografts (PDX). These were evaluated for sensitivity to a large panel of clinical agents, and promising leads further evaluated mechanistically. RESULTS Only a small minority of tested agents was cytotoxic in minimally passaged PDAC cultures in vitro Drugs interfering with protein turnover and transcription were among most cytotoxic. Among transcriptional repressors, triptolide, a covalent inhibitor of ERCC3, was most consistently effective in vitro and in vivo causing prolonged complete regression in multiple PDX models resistant to standard PDAC therapies. Importantly, triptolide showed superior activity in MYC-amplified PDX models and elicited rapid and profound depletion of the oncoprotein MYC, a transcriptional regulator. Expression of ERCC3 and MYC was interdependent in PDACs, and acquired resistance to triptolide depended on elevated ERCC3 and MYC expression. The Cancer Genome Atlas analysis indicates ERCC3 expression predicts poor prognosis, particularly in CDKN2A-null, highly proliferative tumors. CONCLUSIONS This provides initial preclinical evidence for an essential role of MYC-ERCC3 interactions in PDAC, and suggests a new mechanistic approach for disruption of critical survival signaling in MYC-dependent cancers. Clin Cancer Res; 22(24); 6153-63. ©2016 AACR.
Collapse
Affiliation(s)
- Natalya Beglyarova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eugenia Banina
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Grigorii Andrianov
- Department of Biochemistry, Kazan Federal University, Kazan, Russian Federation
| | - Egor Bobrov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elena Lysenko
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Natalya Skobeleva
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Linara Gabitova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Diana Restifo
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Max Pressman
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ilya G Serebriiskii
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - John P Hoffman
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Keren Paz
- Champions Oncology, Baltimore, Maryland
| | - Diana Behrens
- EPO Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | | | - Sandra A Jablonski
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Louis M Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Igor Astsaturov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
29
|
Calle AS, Nair N, Oo AK, Prieto-Vila M, Koga M, Khayrani AC, Hussein M, Hurley L, Vaidyanath A, Seno A, Iwasaki Y, Calle M, Kasai T, Seno M. A new PDAC mouse model originated from iPSCs-converted pancreatic cancer stem cells (CSCcm). Am J Cancer Res 2016; 6:2799-2815. [PMID: 28042501 PMCID: PMC5199755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most representative form of pancreatic cancers. PDAC solid tumours are constituted of heterogeneous populations of cells including cancer stem cells (CSCs), differentiated cancer cells, desmoplastic stroma and immune cells. The identification and consequent isolation of pancreatic CSCs facilitated the generation of genetically engineered murine models. Nonetheless, the current models may not be representative for the spontaneous tumour occurrence. In the present study, we show the generation of a novel pancreatic iPSC-converted cancer stem cell lines (CSCcm) as a cutting-edge model for the study of PDAC. The CSCcm lines were achieved only by the influence of pancreatic cancer cell lines conditioned medium and were not subjected to any genetic manipulation. The xenografts tumours from CSCcm lines displayed histopathological features of ADM, PanIN and PDAC lesions. Further molecular characterization from RNA-sequencing analysis highlighted primary culture cell lines (1st CSCcm) as potential candidates to represent the pancreatic CSCs and indicated the establishment of the pancreatic cancer molecular pattern in their subsequent progenies 2nd CSCcm and 3rd CSCcm. In addition, preliminary RNA-seq SNPs analysis showed that the distinct CSCcm lines did not harbour single point mutations for the oncogene Kras codon 12 or 13. Therefore, PDAC-CSCcm model may provide new insights about the actual occurrence of the pancreatic cancer leading to develop different approaches to target CSCs and abrogate the progression of this fatidic disease.
Collapse
Affiliation(s)
- Anna Sanchez Calle
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Neha Nair
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Aung KoKo Oo
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Marta Prieto-Vila
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Megumi Koga
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Apriliana Cahya Khayrani
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Maram Hussein
- Department of Chemistry, Faculty of Science, Menoufia UniversityShebin El-Koam 32511, Egypt
| | - Laura Hurley
- Cancer Biology Graduate Program, School of Medicine, Wayne State University10 E Warren, Avenue, Suite 2215, Detroit, Michigan 48201, USA
| | - Arun Vaidyanath
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Akimasa Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiaki Iwasaki
- Department of Gastroenterology and Hepatology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama 700-8558, Japan
| | - Malu Calle
- Department of Systems Biology, University of VicVic, Barcelona 08500, Spain
| | - Tomonari Kasai
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Masaharu Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
30
|
Wirth M, Mahboobi S, Krämer OH, Schneider G. Concepts to Target MYC in Pancreatic Cancer. Mol Cancer Ther 2016; 15:1792-8. [PMID: 27406986 DOI: 10.1158/1535-7163.mct-16-0050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/12/2016] [Indexed: 11/16/2022]
Abstract
Current data suggest that MYC is an important signaling hub and driver in pancreatic ductal adenocarcinoma (PDAC), a tumor entity with a strikingly poor prognosis. No targeted therapies with a meaningful clinical impact were successfully developed against PDAC so far. This points to the need to establish novel concepts targeting the relevant drivers of PDAC, like KRAS or MYC. Here, we discuss recent developments of direct or indirect MYC inhibitors and their potential mode of action in PDAC. Mol Cancer Ther; 15(8); 1792-8. ©2016 AACR.
Collapse
Affiliation(s)
- Matthias Wirth
- II. Medizinische Klinik, Technische Universität München, München, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical Chemistry I, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Oliver H Krämer
- Department of Toxicology, University of Mainz Medical Center, Mainz, Germany
| | - Günter Schneider
- II. Medizinische Klinik, Technische Universität München, München, Germany.
| |
Collapse
|
31
|
Carugo A, Genovese G, Seth S, Nezi L, Rose JL, Bossi D, Cicalese A, Shah PK, Viale A, Pettazzoni PF, Akdemir KC, Bristow CA, Robinson FS, Tepper J, Sanchez N, Gupta S, Estecio MR, Giuliani V, Dellino GI, Riva L, Yao W, Di Francesco ME, Green T, D'Alesio C, Corti D, Kang Y, Jones P, Wang H, Fleming JB, Maitra A, Pelicci PG, Chin L, DePinho RA, Lanfrancone L, Heffernan TP, Draetta GF. In Vivo Functional Platform Targeting Patient-Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer. Cell Rep 2016; 16:133-147. [PMID: 27320920 DOI: 10.1016/j.celrep.2016.05.063] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/21/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022] Open
Abstract
Current treatment regimens for pancreatic ductal adenocarcinoma (PDAC) yield poor 5-year survival, emphasizing the critical need to identify druggable targets essential for PDAC maintenance. We developed an unbiased and in vivo target discovery approach to identify molecular vulnerabilities in low-passage and patient-derived PDAC xenografts or genetically engineered mouse model-derived allografts. Focusing on epigenetic regulators, we identified WDR5, a core member of the COMPASS histone H3 Lys4 (H3K4) MLL (1-4) methyltransferase complex, as a top tumor maintenance hit required across multiple human and mouse tumors. Mechanistically, WDR5 functions to sustain proper execution of DNA replication in PDAC cells, as previously suggested by replication stress studies involving MLL1, and c-Myc, also found to interact with WDR5. We indeed demonstrate that interaction with c-Myc is critical for this function. By showing that ATR inhibition mimicked the effects of WDR5 suppression, these data provide rationale to test ATR and WDR5 inhibitors for activity in this disease.
Collapse
Affiliation(s)
- Alessandro Carugo
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy.
| | - Giannicola Genovese
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sahil Seth
- Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luigi Nezi
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Johnathon Lynn Rose
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniela Bossi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Angelo Cicalese
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | | | - Andrea Viale
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Piergiorgio Francesco Pettazzoni
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kadir Caner Akdemir
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Frederick Scott Robinson
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James Tepper
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nora Sanchez
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sonal Gupta
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marcos Roberto Estecio
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Virginia Giuliani
- Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Laura Riva
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Wantong Yao
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Emilia Di Francesco
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tessa Green
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carolina D'Alesio
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Denise Corti
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ya'an Kang
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip Jones
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jason Bates Fleming
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anirban Maitra
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Lynda Chin
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy.
| | | | - Giulio Francesco Draetta
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
A MEK/PI3K/HDAC inhibitor combination therapy for KRAS mutant pancreatic cancer cells. Oncotarget 2016; 6:15814-27. [PMID: 26158412 PMCID: PMC4599239 DOI: 10.18632/oncotarget.4538] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/14/2015] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive, metastatic disease with limited treatment options. Factors contributing to the metastatic predisposition and therapy resistance in pancreatic cancer are not well understood. Here, we used a mouse model of KRAS-driven pancreatic carcinogenesis to define distinct subtypes of PDAC metastasis: epithelial, mesenchymal and quasi-mesenchymal. We examined pro-survival signals in these cells and the therapeutic response differences between them. Our data indicate that the initiation and maintenance of the transformed state are separable, and that KRAS dependency is not a fundamental constant of KRAS-initiated tumors. Moreover, some cancer cells can shuttle between the KRAS dependent (drug-sensitive) and independent (drug-tolerant) states and thus escape extinction. We further demonstrate that inhibition of KRAS signaling alone via co-targeting the MAPK and PI3K pathways fails to induce extensive tumor cell death and, therefore, has limited efficacy against PDAC. However, the addition of histone deacetylase (HDAC) inhibitors greatly improves outcomes, reduces the self-renewal of cancer cells, and blocks cancer metastasis in vivo. Our results suggest that targeting HDACs in combination with KRAS or its effector pathways provides an effective strategy for the treatment of PDAC.
Collapse
|
35
|
Whatcott CJ, Han H, Von Hoff DD. Orchestrating the Tumor Microenvironment to Improve Survival for Patients With Pancreatic Cancer: Normalization, Not Destruction. Cancer J 2016. [PMID: 26222082 DOI: 10.1097/ppo.0000000000000140] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in the United States. The microenvironment of pancreatic cancer could be one of the "perfect storms" that support the growth of a cancer. Indeed, pancreatic cancer may be the poster child of a problem with the microenvironment. In this article, we review the rationale and attempts to date on modifying or targeting structural proteins in the microenvironment including hyaluronan (HA) (in primary and metastases), collagen, and SPARC (secreted protein, acidic, and rich in cysteine). Indeed, working in this area has produced a regimen that improves survival for patients with advanced pancreatic cancer (nab-paclitaxel + gemcitabine). In addition, in initial clinical trials, PEGylated hyaluronidase appears promising. We also review a new approach that is different than targeting/destroying the microenvironment and that is orchestrating, reengineering, reprogramming, or normalizing the microenvironment (including normalizing structural proteins, normalizing an immunologically tumor-friendly environment to a less friendly environment, reversing epithelial-to-mesenchymal transition, and so on). We believe this will be most effectively done by agents that have global effects on transcription. There is initial evidence that this can be done by agents such as vitamin D derivatives and other new agents. There is no doubt these opportunities can now be tried in the clinic with hopefully beneficial effects.
Collapse
Affiliation(s)
- Clifford J Whatcott
- From the Clinical Translational Research Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ
| | | | | |
Collapse
|
36
|
Sancho P, Alcala S, Usachov V, Hermann PC, Sainz B. The ever-changing landscape of pancreatic cancer stem cells. Pancreatology 2016; 16:489-96. [PMID: 27161173 DOI: 10.1016/j.pan.2016.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Over the past decade, the cancer stem cell (CSC) concept in solid tumors has gained enormous momentum as an attractive model to explain tumor heterogeneity. The model proposes that tumors contain a subpopulation of rare cancer cells with stem-like properties that maintain the hierarchy of the tumor and drive tumor initiation, progression, metastasis, and chemoresistance. The identification and subsequent isolation of CSCs in pancreatic ductal adenocarcinoma (PDAC) in 2007 provided enormous insight into this extremely metastatic and chemoresistant tumor and renewed hope for developing more specific therapies against this disease. Unfortunately, we have made only marginal advances in applying the knowledge learned to the development of new and more effective treatments for pancreatic cancer. The latter has been partly due to the lack of adequate in vitro and in vivo systems compounded by the use of markers that do not reproducibly nor exclusively select for an enriched CSC population. Thus, attempts to define a pancreatic CSC-specific genetic, epigenetic or proteomic signature has been challenging. Fortunately recent advances in the CSC field have overcome many of these challenges and have opened up new opportunities for developing therapies that target the CSC population. In this review, we discuss these current advances, specifically new methods for the identification and isolation of pancreatic CSCs, new insights into the metabolic profile of CSCs at the level of mitochondrial respiration, and the utility of genetically engineered mouse models as surrogate systems to both study CSC biology and evaluate CSC-specific targeted therapies in vivo.
Collapse
Affiliation(s)
- Patricia Sancho
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, UK
| | - Sonia Alcala
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
37
|
Wei D, Wang L, Yan Y, Jia Z, Gagea M, Li Z, Zuo X, Kong X, Huang S, Xie K. KLF4 Is Essential for Induction of Cellular Identity Change and Acinar-to-Ductal Reprogramming during Early Pancreatic Carcinogenesis. Cancer Cell 2016; 29:324-338. [PMID: 26977883 PMCID: PMC4794756 DOI: 10.1016/j.ccell.2016.02.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/12/2015] [Accepted: 02/08/2016] [Indexed: 12/30/2022]
Abstract
Understanding the molecular mechanisms of tumor initiation has significant impact on early cancer detection and intervention. To define the role of KLF4 in pancreatic ductal adenocarcinoma (PDA) initiation, we used molecular biological analyses and mouse models of klf4 gain- and loss-of-function and mutant Kras. KLF4 is upregulated in and required for acinar-to-ductal metaplasia. Klf4 ablation drastically attenuates the formation of pancreatic intraepithelial neoplasia induced by mutant Kras(G12D), whereas upregulation of KLF4 does the opposite. Mutant KRAS and cellular injuries induce KLF4 expression, and ectopic expression of KLF4 in acinar cells reduces acinar lineage- and induces ductal lineage-related marker expression. These results demonstrate that KLF4 induces ductal identity in PanIN initiation and may be a potential target for prevention of PDA initiation.
Collapse
Affiliation(s)
- Daoyan Wei
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Liang Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Yongmin Yan
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Zhiwei Li
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xiangyu Kong
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Gastroenterology, Hepatology & Nutrition, Unit 1644, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Hamilton G, Hochmair M, Rath B, Klameth L, Zeillinger R. Small cell lung cancer: Circulating tumor cells of extended stage patients express a mesenchymal-epithelial transition phenotype. Cell Adh Migr 2016; 10:360-7. [PMID: 26919626 DOI: 10.1080/19336918.2016.1155019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small cell lung cancer (SCLC) is distinguished by aggressive growth, early dissemination and a poor prognosis at advanced stage. The remarkably high count of circulating tumor cells (CTCs) of SCLC allowed for the establishment of permanent CTC cultures at our institution for the first time. CTCs are assumed to have characteristics of cancer stem cells (CSCs) and an epithelial-mesenchymal transition (EMT) phenotype, but extravasation of tumors at distal sites is marked by epithelial features. Two SCLC CTC cell lines, namely BHGc7 and BHGc10, as well as SCLC cell lines derived from primary tumors and metastases were analyzed for the expression of pluripotent stem cell markers and growth factors. Expression of E-cadherin and β-Catenin were determined by flow cytometry. Stem cell-associated markers SOX17, α-fetoprotein, OCT-3/4, KDR, Otx2, GATA-4, Nanog, HCG, TP63 and Goosecoid were not expressed in the 2 CTC lines. In contrast, high expression was found for HNF-3β/FOXA2, SOX2, PDX-1/IPF1 and E-cadherin. E-cadherin expression was restricted to the 2 CTCs and 2 cell lines derived from pleural effusion (SCLC26A) and bone metastases (NCI-H526), respectively. Thus, these SCLC CTCs established from extended disease SCLC patients lack expression of stem cell markers which suppress the epithelial phenotype. Instead they express high levels of E-cadherin consistent with a mesenchymal-epithelial transition (MET or EMrT) and form large tumorospheres possibly in response to the selection pressure of first-line chemotherapy. HNF-3β/FOXA2 and PDX-1/IPF1 expression seem to be related to growth factor dependence on insulin/IGF-1 receptors and IGF-binding proteins.
Collapse
Affiliation(s)
- Gerhard Hamilton
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| | | | - Barbara Rath
- c Ludwig Boltzmann Cluster of Translational Oncology , Vienna , Austria
| | - Lukas Klameth
- c Ludwig Boltzmann Cluster of Translational Oncology , Vienna , Austria.,d Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna , Vienna , Austria
| | - Robert Zeillinger
- e Molecular Oncology Group , Department of Obstetrics and Gynecology , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
39
|
Ito H, Tanaka S, Akiyama Y, Shimada S, Adikrisna R, Matsumura S, Aihara A, Mitsunori Y, Ban D, Ochiai T, Kudo A, Arii S, Yamaoka S, Tanabe M. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis. PLoS One 2016; 11:e0146564. [PMID: 26764906 PMCID: PMC4713149 DOI: 10.1371/journal.pone.0146564] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/18/2015] [Indexed: 01/25/2023] Open
Abstract
Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs), but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1) was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.
Collapse
Affiliation(s)
- Hiromitsu Ito
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rama Adikrisna
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Matsumura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Aihara
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Ochiai
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
40
|
Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene 2015; 35:3880-6. [PMID: 26592448 PMCID: PMC4877299 DOI: 10.1038/onc.2015.437] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/24/2014] [Accepted: 10/15/2015] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) signaling has a critical role in oncogenic Kras-driven pancreatic carcinogenesis. However, the downstream targets of this signaling network are largely unknown. We developed a novel model system utilizing murine primary pancreatic ductal epithelial cells (PDECs), genetically engineered to allow time-specific expression of oncogenic KrasG12D from the endogenous promoter. We show that primary PDECs are susceptible to KrasG12D-driven transformation and form pancreatic ductal adenocarcinomas (PDAC) in vivo after Cdkn2a inactivation. In addition, we demonstrate that activation of KrasG12D induces an EGFR signaling loop to drive proliferation. Interestingly, pharmacological inhibition of EGFR fails to decrease KrasG12D-activated ERK or PI3K signaling. Instead our data provide novel evidence that EGFR signaling is needed to activate the oncogenic and pro-proliferative transcription factor c-MYC. EGFR and c-MYC have been shown to be essential for pancreatic carcinogenesis. Importantly, our data link both pathways and thereby, explain the crucial role of EGFR for KrasG12D-driven carcinogenesis in the pancreas.
Collapse
|
41
|
Roy N, Malik S, Villanueva KE, Urano A, Lu X, Von Figura G, Seeley ES, Dawson DW, Collisson EA, Hebrok M. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation. Genes Dev 2015; 29:658-71. [PMID: 25792600 PMCID: PMC4378197 DOI: 10.1101/gad.256628.114] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) develops predominantly through pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) precursor lesions. Roy et al. identify critical antagonistic roles for Brg1, a catalytic subunit of the SWI/SNF complexes, during IPMN-PDA development. In mature duct cells Brg1 inhibits the dedifferentiation that precedes neoplastic transformation. In contrast, Brg1 promotes tumorigenesis in full-blown PDA by supporting a mesenchymal-like transcriptional landscape. JQ1 impairs PDA tumorigenesis by both mimicking some and inhibiting other Brg1-mediated functions. Pancreatic ductal adenocarcinoma (PDA) develops predominantly through pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) precursor lesions. Pancreatic acinar cells are reprogrammed to a “ductal-like” state during PanIN-PDA formation. Here, we demonstrate a parallel mechanism operative in mature duct cells during which functional cells undergo “ductal retrogression” to form IPMN-PDA. We further identify critical antagonistic roles for Brahma-related gene 1 (Brg1), a catalytic subunit of the SWI/SNF complexes, during IPMN-PDA development. In mature duct cells, Brg1 inhibits the dedifferentiation that precedes neoplastic transformation, thus attenuating tumor initiation. In contrast, Brg1 promotes tumorigenesis in full-blown PDA by supporting a mesenchymal-like transcriptional landscape. We further show that JQ1, a drug that is currently being tested in clinical trials for hematological malignancies, impairs PDA tumorigenesis by both mimicking some and inhibiting other Brg1-mediated functions. In summary, our study demonstrates the context-dependent roles of Brg1 and points to potential therapeutic treatment options based on epigenetic regulation in PDA.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Shivani Malik
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Karina E Villanueva
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Atsushi Urano
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Xinyuan Lu
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Guido Von Figura
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - E Scott Seeley
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Eric A Collisson
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA;
| |
Collapse
|
42
|
Salaria S, Means A, Revetta F, Idrees K, Liu E, Shi C. Expression of CD24, a Stem Cell Marker, in Pancreatic and Small Intestinal Neuroendocrine Tumors. Am J Clin Pathol 2015; 144:642-8. [PMID: 26386086 DOI: 10.1309/ajcpmzy5p9twnjjv] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES CD24 has been considered a normal and cancer stem cell marker. Potential intestinal stem cells weakly express CD24. In the pancreas, CD24 is a possible cancer stem cell marker for ductal adenocarcinoma. METHODS Expression of CD24 in intestinal and pancreatic neuroendocrine tumors (NETs) was examined. Immunohistochemistry was performed on benign duodenum, ileum mucosa, and pancreas, as well as primary duodenal, primary and metastatic ileal, and pancreatic NETs. RESULTS Scattered CD24-positive cells were noted in the duodenal and ileal crypts, most of which showed a strong subnuclear labeling pattern. Similar expression was observed in 41 (95%) of 43 primary ileal NETs but in only four (15%) of 26 duodenal NETs (P < .01). In addition, metastatic ileal NETs retained CD24 expression. Pancreatic islets did not express CD24, and only rare cells had subnuclear labeling of CD24 in the pancreatic ducts. Unlike ileal NETs, only five (5%) of 92 pancreatic NETs expressed CD24 in the subnuclear compartment (P < .01). All five NETs showed a unique morphology with prominent stromal fibrosis. CONCLUSIONS CD24 expression was frequent in primary and metastatic midgut NETs but rare in pancreatic and duodenal NETs. Expression of CD24 in ileal NETs may have future diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Safia Salaria
- Departments of Pathology, Microbiology, and Immunology
| | - Anna Means
- Surgery, Vanderbilt University Hospital, Nashville, TN
| | - Frank Revetta
- Departments of Pathology, Microbiology, and Immunology
| | - Kamran Idrees
- Surgical Oncology, Vanderbilt University Hospital, Nashville, TN
| | - Eric Liu
- Surgical Oncology, Vanderbilt University Hospital, Nashville, TN
| | - Chanjuan Shi
- Departments of Pathology, Microbiology, and Immunology
| |
Collapse
|
43
|
Dosch JS, Ziemke EK, Shettigar A, Rehemtulla A, Sebolt-Leopold JS. Cancer stem cell marker phenotypes are reversible and functionally homogeneous in a preclinical model of pancreatic cancer. Cancer Res 2015; 75:4582-92. [PMID: 26359451 DOI: 10.1158/0008-5472.can-14-2793] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 07/25/2015] [Indexed: 01/16/2023]
Abstract
Survival rates associated with pancreatic cancer remain dismal despite advancements in detection and experimental treatment strategies. Genetically engineered mouse models of pancreatic tumorigenesis have gained considerable attention based on their ability to recapitulate key clinical features of human disease including chemotherapeutic resistance and fibrosis. However, it is unclear if transgenic systems exemplified by the Kras(G12D)/Trp53(R172H)/Pdx-1-Cre (KPC) mouse model recapitulate the functional heterogeneity of human pancreatic tumors harboring distinct cells with tumorigenic properties. To facilitate tracking of heterogeneous tumor cell populations, we incorporated a luciferase-based tag into the genetic background of the KPC mouse model. We isolated pancreatic cancer cells from multiple independent tumor lines and found that roughly 1 out of 87 cells exhibited tumorigenic capability. Notably, this frequency is significantly higher than reported for human pancreatic adenocarcinomas. Cancer stem cell (CSC) markers, including CD133, CD24, Sca-1, and functional Aldefluor activity, were unable to discriminate tumorigenic from nontumorigenic cells in syngeneic transplants. Furthermore, three-dimensional spheroid cultures originating from KPC tumors did not enrich for cells with stem-like characteristics and were not significantly more tumorigenic than cells cultured as monolayers. Additionally, we did not observe significant differences in response to gemcitabine or salinomycin in several isolated subpopulations. Taken together, these studies show that the hierarchical organization of CSCs in human disease is not recapitulated in a commonly used mouse model of pancreatic cancer and therefore provide a new view of the phenotypic and functional heterogeneity of tumor cells.
Collapse
Affiliation(s)
- Joseph S Dosch
- Translational Oncology Program, University of Michigan Medical School, Ann Arbor, Michigan. Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Elizabeth K Ziemke
- Translational Oncology Program, University of Michigan Medical School, Ann Arbor, Michigan. Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Amrith Shettigar
- Translational Oncology Program, University of Michigan Medical School, Ann Arbor, Michigan. Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alnawaz Rehemtulla
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan. Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Judith S Sebolt-Leopold
- Translational Oncology Program, University of Michigan Medical School, Ann Arbor, Michigan. Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan. Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
44
|
MINCR is a MYC-induced lncRNA able to modulate MYC's transcriptional network in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 2015; 112:E5261-70. [PMID: 26351698 DOI: 10.1073/pnas.1505753112] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the established role of the transcription factor MYC in cancer, little is known about the impact of a new class of transcriptional regulators, the long noncoding RNAs (lncRNAs), on MYC ability to influence the cellular transcriptome. Here, we have intersected RNA-sequencing data from two MYC-inducible cell lines and a cohort of 91 B-cell lymphomas with or without genetic variants resulting in MYC overexpression. We identified 13 lncRNAs differentially expressed in IG-MYC-positive Burkitt lymphoma and regulated in the same direction by MYC in the model cell lines. Among them, we focused on a lncRNA that we named MYC-induced long noncoding RNA (MINCR), showing a strong correlation with MYC expression in MYC-positive lymphomas. To understand its cellular role, we performed RNAi and found that MINCR knockdown is associated with an impairment in cell cycle progression. Differential gene expression analysis after RNAi showed a significant enrichment of cell cycle genes among the genes down-regulated after MINCR knockdown. Interestingly, these genes are enriched in MYC binding sites in their promoters, suggesting that MINCR acts as a modulator of the MYC transcriptional program. Accordingly, MINCR knockdown was associated with a reduction in MYC binding to the promoters of selected cell cycle genes. Finally, we show that down-regulation of Aurora kinases A and B and chromatin licensing and DNA replication factor 1 may explain the reduction in cellular proliferation observed on MINCR knockdown. We, therefore, suggest that MINCR is a newly identified player in the MYC transcriptional network able to control the expression of cell cycle genes.
Collapse
|
45
|
Zhang S, Chung WC, Xu K. Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer. Oncogene 2015; 35:2485-95. [DOI: 10.1038/onc.2015.306] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 02/08/2023]
|
46
|
Raj D, Aicher A, Heeschen C. Concise Review: Stem Cells in Pancreatic Cancer: From Concept to Translation. Stem Cells 2015. [PMID: 26202953 DOI: 10.1002/stem.2114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer stem cells (CSCs) have been first described in 2007 and since then have emerged as an intriguing entity of cancer cells with distinct functional features including self-renewal and exclusive in vivo tumorigenicity. The heterogeneous pancreatic CSC pool has been implicated in tumor propagation as well as metastatic spread. Clinically, the most important feature of CSCs is their strong resistance to standard chemotherapy, which results in fast disease relapse, even with today's more advanced chemotherapeutic regimens. Therefore, novel therapeutic strategies to most efficiently target pancreatic CSCs are being developed and their careful clinical translation should provide new avenues to eradicate this deadly disease.
Collapse
Affiliation(s)
- Deepak Raj
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alexandra Aicher
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Christopher Heeschen
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
47
|
LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials 2015; 71:84-99. [PMID: 26318819 DOI: 10.1016/j.biomaterials.2015.07.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 12/28/2022]
Abstract
This is the first ever attempt to combine anti-cancer therapeutic effects of emerging anticancer biodrug bovine lactoferrin (bLf), and multimodal imaging efficacy of Fe3O4 nanoparticles (NPs) together, as a saturated Fe3O4-bLf. For cancer stem cell specific uptake of nanocapsules/nanocarriers (NCs), Fe3O4-bLf was encapsulated in alginate enclosed chitosan coated calcium phosphate (AEC-CP) NCs targeted (Tar) with locked nucleic acid (LNA) modified aptamers against epithelial cell adhesion molecule (EpCAM) and nucleolin markers. The nanoformulation was fed orally to mice injected with triple positive (EpCAM, CD133, CD44) sorted colon cancer stem cells in the xenograft cancer stem cell mice model. The complete regression of tumor was observed in 70% of mice fed on non-targeted (NT) NCs, with 30% mice showing tumor recurrence after 30 days, while only 10% mice fed with Tar NCs showed tumor recurrence indicating a significantly higher survival rate. From tumor tissue analyses of 35 apoptotic markers, 55 angiogenesis markers, 40 cytokines, 15 stem cell markers and gene expression studies of important signaling molecules, it was revealed that the anti-cancer mechanism of Fe3O4-bLf was intervened through TRAIL, Fas, Fas-associated protein with death domain (FADD) mediated phosphorylation of p53, to induce activation of second mitochondria-derived activator of caspases (SMAC)/DIABLO (inhibiting survivin) and mitochondrial depolarization leading to release of cytochrome C. Induction of apoptosis was observed by inhibition of the Akt pathway and activation of cytokines released from monocytes/macrophages and dendritic cells (interleukin (IL) 27, keratinocyte chemoattractant (KC)). On the other hand, the recurrence of tumor in AEC-CP-Fe3O4-bLf NCs fed mice mainly occurred due to activation of alternative pathways such as mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) and Wnt signaling leading to an increase in expression of survivin, survivin splice variant (survivin 2B) and other anti-apoptotic proteins Bad, Bcl-2 and XIAP. Apart from the promising anti-cancer efficacy and the exceptional tumor targeting ability observed by multimodal imaging using near-infrared (NIR) imaging, magnetic resonance imaging (MRI) and computerized tomographic (CT) techniques, these NCs also maintained the immunomodulatory benefits of bLf as they were able to increase the RBC, hemoglobin, iron calcium and zinc levels in mice.
Collapse
|
48
|
Downs-Canner S, Zenati M, Boone BA, Varley PR, Steve J, Hogg ME, Zureikat A, Zeh HJ, Lee KKW. The indolent nature of pulmonary metastases from ductal adenocarcinoma of the pancreas. J Surg Oncol 2015; 112:80-5. [PMID: 26153355 DOI: 10.1002/jso.23943] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/28/2015] [Accepted: 05/13/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVES The natural history of pulmonary metastases from pancreatic ductal adenocarcinoma (PDAC) is not well studied. Limited evidence suggests patients with isolated pulmonary metastases from PDAC follow a more benign clinical course than those with other sites of metastases. METHODS We performed a retrospective review of all patients with pulmonary metastases from PDAC from 2000 to 2010 and analyzed survival utilizing the Kaplan-Meier method based upon location of first metastasis (lung first, intra-abdominal first, or synchronous intra-abdominal and lung metastases). RESULTS Median survival among subjects with lung as the only site of metastases was significantly longer than those with other metastatic patterns. In subjects that had undergone resection of their PDAC, survival in those with lung as a first site of recurrence remained significantly longer than those with abdominal first or synchronous intra-abdominal and lung recurrence. Among resected patients that developed lung only recurrence, survival was significantly prolonged (67.5 months) in those who underwent surgical resection/stereotactic radiosurgery compared to chemotherapy (33.8 months) or observation (29.9 months) for treatment of lung recurrence. CONCLUSION Patients with isolated pulmonary recurrence from PDAC may realize a survival benefit from surgical intervention or stereotactic radiosurgery compared to chemotherapy or observation for treatment of lung recurrence.
Collapse
Affiliation(s)
| | - Mazen Zenati
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian A Boone
- Divisionof Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick R Varley
- Divisionof Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer Steve
- Divisionof Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melissa E Hogg
- Divisionof Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amer Zureikat
- Divisionof Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Herbert J Zeh
- Divisionof Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kenneth K W Lee
- Divisionof Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
49
|
MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies. Oncogene 2015; 35:1609-18. [PMID: 26119937 DOI: 10.1038/onc.2015.216] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022]
Abstract
Owing to its aggressiveness, late detection and marginal therapeutic accessibility, pancreatic ductal adenocarcinoma (PDAC) remains a most challenging malignant disease. Despite scientific progress in the understanding of the mechanisms that underly PDAC initiation and progression, the successful translation of experimental findings into effective new therapeutic strategies remains a largely unmet need. The oncogene MYC is activated in many PDAC cases and is a master regulator of vital cellular processes. Excellent recent studies have shed new light on the tremendous functions of MYC in cancer and identified inhibition of MYC as a likewise beneficial and demanding effort. This review will focus on mechanisms that contribute to deregulation of MYC expression in pancreatic carcinogenesis and progression and will summarize novel biological findings from recent in vivo models. Finally, we provide a perspective, how regulation of MYC in PDAC may contribute to the development of new therapeutic approaches.
Collapse
|
50
|
Rao CV, Mohammed A. New insights into pancreatic cancer stem cells. World J Stem Cells 2015; 7:547-555. [PMID: 25914762 PMCID: PMC4404390 DOI: 10.4252/wjsc.v7.i3.547] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has been one of the deadliest of all cancers, with almost uniform lethality despite aggressive treatment. Recently, there have been important advances in the molecular, pathological and biological understanding of pancreatic cancer. Even after the emergence of recent new targeted agents and the use of multiple therapeutic combinations, no treatment option is viable in patients with advanced cancer. Developing novel strategies to target progression of PC is of intense interest. A small population of pancreatic cancer stem cells (CSCs) has been found to be resistant to chemotherapy and radiation therapy. CSCs are believed to be responsible for tumor initiation, progression and metastasis. The CSC research has recently achieved much progress in a variety of solid tumors, including pancreatic cancer to some extent. This leads to focus on understanding the role of pancreatic CSCs. The focus on CSCs may offer new targets for prevention and treatment of this deadly cancer. We review the most salient developments in important areas of pancreatic CSCs. Here, we provide a review of current updates and new insights on the role of CSCs in pancreatic tumor progression with special emphasis on DclK1 and Lgr5, signaling pathways altered by CSCs, and the role of CSCs in prevention and treatment of PC.
Collapse
|