1
|
Liu C, Wang J, Li H, Shangguan Q, Jin W, Zhu W, Wang P, Chen X, Wang Q. Loss aversion and evidence accumulation in short-video addiction: A behavioral and neuroimaging investigation. Neuroimage 2025; 313:121250. [PMID: 40324736 DOI: 10.1016/j.neuroimage.2025.121250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025] Open
Abstract
Excessive use of short-video platforms not only impairs decision-making processes but also predisposes individuals to addictive behaviors. This study investigated the relationship between short-video addiction (SVA) symptoms and loss aversion (LA), delving into the underlying computational and neural mechanisms using the drift diffusion model (DDM) and the inter-subject representational similarity analysis (IS-RSA). Behavioral analyses revealed a significant negative correlation between SVA symptoms and the LA coefficient (lnλ). Additionally, the DDM-based drift rate (v) was found to mediate this relationship. Neuroimaging analyses further indicated that SVA symptoms were negatively associated with gain-related activity in the right precuneus, while positively correlating with loss-related activity in the right cerebellum and left postcentral gyrus. Notably, precuneus activation during gain processing mediated the relationship between SVA symptoms and both lnλ and drift rate. IS-RSA revealed that inter-subject variations in SVA symptoms were significantly associated with distinct activation patterns related to gain processing in the frontoparietal network (e.g., frontal pole, inferior frontal gyrus, and supramarginal gyrus) and motor network (e.g., precentral), as well as loss-related activation patterns in the motor networks (e.g., postcentral and pre-supplementary motor area). Similar patterns emerged when examining simultaneous gain and loss-related activation patterns. Mediation analyses further demonstrated that functional activation patterns in the motor network mediated the relationships between inter-subject variations in SVA symptoms and both loss-aversion and psychological processing patterns (e.g., decision threshold, drift rate, and non-decision time). These findings provide novel insights into the cognitive and neural mechanisms underlying the influence of SVA symptoms on loss aversion, and suggest the critical roles of evidence accumulation speed and specific brain activation patterns-particularly within the cognitive control and motor network-in shaping decision-making biases associated with addiction.
Collapse
Affiliation(s)
- Chang Liu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Jinlian Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Hanbing Li
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Qianyi Shangguan
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Weipeng Jin
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, PR China
| | - Wenwei Zhu
- School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Pinchun Wang
- College of Early Childhood Education, Tianjin Normal University, Tianjin 300387, PR China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin 300162, PR China.
| | - Qiang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
2
|
Khanal N, Padawer-Curry JA, Voss T, Schulte KA, Bice AR, Bauer AQ. Concurrent optogenetic motor mapping of multiple limbs in awake mice reveals cortical organization of coordinated movements. Brain Stimul 2024; 17:1229-1240. [PMID: 39476952 DOI: 10.1016/j.brs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Motor mapping allows for determining the macroscopic organization of motor circuits and corresponding motor movement representations on the cortex. Techniques such as intracortical microstimulation (ICMS) are robust, but can be time consuming and invasive, making them non-ideal for cortex-wide mapping or longitudinal studies. In contrast, optogenetic motor mapping offers a rapid and minimally invasive technique, enabling mapping with high spatiotemporal resolution. However, motor mapping has seen limited use in tracking 3-dimensonal, multi-limb movements in awake animals. This gap has left open questions regarding the underlying organizational principles of motor control of coordinated, ethologically-relevant movements involving multiple limbs. OBJECTIVE Our first objective was to develop Multi-limb Optogenetic Motor Mapping (MOMM) to concurrently map motor movement representations of multiple limbs with high fidelity in awake mice. Having established MOMM, our next objective was determine whether maps of coordinated and ethologically-relevant motor output were topographically organized on the cortex. METHODS We combine optogenetic stimulation with a deep learning driven pose-estimation toolbox, DeepLabCut (DLC), and 3-dimensional triangulation to concurrently map motor movements of multiple limbs in awake mice. RESULTS MOMM consistently revealed cortical topographies for all mapped features within and across mice. Many motor maps overlapped and were topographically similar. Several motor movement representations extended beyond cytoarchitecturally defined somatomotor cortex. Finer articulations of the forepaw resided within gross motor movement representations of the forelimb. Moreover, many cortical sites exhibited concurrent limb coactivation when photostimulated, prompting the identification of several cortical regions harboring coordinated and ethologically-relevant movements. CONCLUSIONS The cortex appears to be topographically organized by motor programs, which are responsible for coordinated, multi-limbed, and behavior-like movements.
Collapse
Affiliation(s)
- Nischal Khanal
- Imaging Science Program, Washington University in St. Louis, St. Louis, Missouri, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States.
| | - Jonah A Padawer-Curry
- Imaging Science Program, Washington University in St. Louis, St. Louis, Missouri, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States.
| | - Trevor Voss
- Biophotonics Center, School of Engineering, Vanderbilt University, Keck FEL Center, Suite 200, 410 24th Ave. South, Nashville, TN 37232, United States.
| | - Kevin A Schulte
- University of Missouri School of Medicine, 1 Hospital Dr, Columbia, MO 65212, United States.
| | - Annie R Bice
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States.
| | - Adam Q Bauer
- Imaging Science Program, Washington University in St. Louis, St. Louis, Missouri, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States.
| |
Collapse
|
3
|
Kim JJ, Day MA. The neuroscience of itch in relation to transdiagnostic psychological approaches. Sci Rep 2024; 14:21476. [PMID: 39277649 PMCID: PMC11401925 DOI: 10.1038/s41598-024-69973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/12/2024] [Indexed: 09/17/2024] Open
Abstract
The experience of itch and its associated chronic conditions (i.e., atopic dermatitis) form a significant burden of disease. Knowledge of how the brain processes itch, that might occur uniquely for chronic itch populations, could be used to guide more effective psychotherapeutic interventions for these groups. To build the evidence base for such approaches, we conducted a series of coordinates-based fMRI analyses, to identify the shared neural mechanisms for itch across the published literature. Upon so doing, we identified a core "itch network" that spans the Basal Ganglia/Thalamus, Claustrum and Insula. Additionally, we found evidence that the Paracentral Lobule and Medial Frontal Gyrus, regions associated with cognitive control and response inhibition, deactivate during itch. Interestingly, a separate analysis for chronic itch populations identified significant recruitment of the Left Paracentral Lobule, potentially suggesting the recruitment of cognitive control mechanisms to resist the urge to scratch. We position these results in light of further integrative studies that could use neuroimaging alongside clinical studies, to explore how transdiagnostic psychological approaches-such as mindfulness and compassion training-might help to improve quality of life for individuals who experience chronic itch.
Collapse
Affiliation(s)
- Jeffrey J Kim
- School of Psychology, The University of Queensland, St Lucia, Australia.
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Australia.
- Clinical Skills Development Service, Royal Brisbane & Women's Hospital, Herston, Australia.
| | - Melissa A Day
- School of Psychology, The University of Queensland, St Lucia, Australia
- Department of Rehabilitation Medicine, The University of Washington, Seattle, USA
| |
Collapse
|
4
|
Fang P, Gao Y, Li Y, Li C, Zhang T, Wu L, Zhu Y, Xie Y. Effects of computerized working memory training on neuroplasticity in healthy individuals: A combined neuroimaging and neurotransmitter study. Neuroimage 2024; 298:120785. [PMID: 39154869 DOI: 10.1016/j.neuroimage.2024.120785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Working memory (WM) is an essential cognitive function that underpins various higher-order cognitive processes. Improving WM capacity through targeted training interventions has emergered as a potential approach for enhancing cognitive abilities. The present study employed an 8-week regimen of computerized WM training (WMT) to investigate its effect on neuroplasticity in healthy individuals, utilizing neuroimaging data gathered both before and after the training. The key metrics assessed included the amplitude of low-frequency fluctuations (ALFF), voxel-based morphometry (VBM), and the spatial distribution correlations of neurotransmitter. The results indicated that post-training, compared to baseline, there was a reduction in ALFF in the medial superior frontal gyrus and an elevation in ALFF in the left middle occipital gyrus within the training group. In comparison to the control group, the training group also exhibited decreased ALFF in the anterior cingulate cortex, angular gyrus, and superior parietal lobule, along with increased ALFF in the postcentral gyrus post-training. VBM analysis revealed a significant increase in gray matter volume (GMV) in the right dorsal superior frontal gyrus after the training period, compared to the initial baseline measurement. Furthermore, the training group showed GMV increases in the dorsal superior frontal gyrus, Rolandic operculum, precentral gyrus, and postcentral gyrus when compared to the control group. In addition, significant associations were identifed between neuroimaging measurements (AFLL and VBM) and the spatial patterns of neurotransmitters such as serotonin (5-HT), dopamine (DA), and N-methyl-D-aspartate (NMDA), providing insights into the underlying neurochemical processes. These findings clarify the neuroplastic changes caused by WMT, offering a deeper understanding of brain plasticity and highlighting the potential advantages of cognitive training interventions.
Collapse
Affiliation(s)
- Peng Fang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China; School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yuntao Gao
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Yijun Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Lin Wu
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yuanjun Xie
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Khanal N, Padawer-Curry J, Voss T, Schulte K, Bice A, Bauer A. Concurrent optogenetic motor mapping of multiple limbs in awake mice reveals cortical organization of coordinated movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602302. [PMID: 39005269 PMCID: PMC11245104 DOI: 10.1101/2024.07.05.602302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Motor mapping allows for determining the macroscopic organization of motor circuits and corresponding motor movement representations on the cortex. Techniques such as intracortical microstimulation (ICMS) are robust, but can be time consuming and invasive, making them non-ideal for cortex-wide mapping or longitudinal studies. In contrast, optogenetic motor mapping offers a rapid and minimally invasive technique, enabling mapping with high spatiotemporal resolution. However, motor mapping has seen limited use in tracking 3-dimensonal, multi-limb movements in awake animals. This gap has left open questions regarding the underlying organizational principles of motor control of coordinated, ethologically relevant movements involving multiple limbs. Objective Our first objective was to develop Multi-limb Optogenetic Motor Mapping (MOMM) to concurrently map motor movement representations of multiple limbs with high fidelity in awake mice. Having established MOMM, our next objective was determine whether maps of coordinated and ethologically relevant motor output were topographically organized on the cortex. Methods We combine optogenetic stimulation with a deep learning driven pose-estimation toolbox, DeepLabCut (DLC), and 3-dimentional triangulation to concurrently map motor movements of multiple limbs in awake mice. Results MOMM consistently revealed cortical topographies for all mapped features within and across mice. Many motor maps overlapped and were topographically similar. Several motor movement representations extended beyond cytoarchitecturally defined somatomotor cortex. Finer articulations of the forepaw resided within gross motor movement representations of the forelimb. Moreover, many cortical sites exhibited concurrent limb coactivation when photostimulated, prompting the identification of several cortical regions harboring coordinated and ethologically relevant movements. Conclusions The cortex appears to be topographically organized by motor programs, which are responsible for coordinated, multi-limbed, and behavioral-like movements.
Collapse
|
6
|
Gauduel T, Blondet C, Gonzalez-Monge S, Bonaiuto J, Gomez A. Alteration of body representation in typical and atypical motor development. Dev Sci 2024; 27:e13455. [PMID: 37926863 DOI: 10.1111/desc.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Developmental coordination disorder (DCD) impacts the quality of life and ability to perform coordinated actions in 5% of school-aged children. The quality of body representations of individuals with DCD has been questioned, but never assessed. We hypothesize that children with DCD have imprecise body representations in the sensory and motor domains. Twenty neurotypical children, seventeen children with DCD (8-12 years old) and twenty neurotypical adults (25-45 years old) performed both sensory and motor body representation tasks: a limb identification and a limb movement task. We observed lower accuracy in the sensory task but not in the motor task. In both tasks, we observe a larger amplitude of errors, or synkinesis, in children with DCD than in neurotypical children. In neurotypical children, accuracy was lower than in neurotypical adults in the motor and sensory task, and the amplitude of sensory errors and synkinesis was higher than in neurotypical adults. Using a linear regression model, we showed that sensory accuracy is a good predictor of synkinesis production, and that synkinesis production is a good predictor of sensory accuracy, as can be expected by the perception-action loop. Results support the hypothesis of an imprecision of body representation in DCD. We suggest that this imprecision arises from noise in the body representation used at the level of internal models of action. Future studies may assess whether slower plasticity of body representations, initial imprecision, or both may account for this observation. At the clinical level, prevention strategies targeting body representation in early childhood are strategically important to limit such impairments. RESEARCH HIGHLIGHTS: Body representation is impaired in children with DCD and has a significant cost in terms of the accuracy of sensory identification of body parts and associated movements. Inaccuracies in the body representation measured in perception and in action (error amplitude and synkinesis) are related in both NT children and adults. In typical development, we provide evidence of a strong link between body schema and body image.
Collapse
Affiliation(s)
- Thomas Gauduel
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR 5292, University of Lyon, Bron, France
| | - Camille Blondet
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR 5292, University of Lyon, Bron, France
| | - Sibylle Gonzalez-Monge
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR 5292, University of Lyon, Bron, France
| | - James Bonaiuto
- CNRS UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Lyon, France
| | - Alice Gomez
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR 5292, University of Lyon, Bron, France
| |
Collapse
|
7
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
8
|
Kaas J, Stepniewska I. The basal ganglia are a target for sensorimotor domains in posterior parietal, premotor, and motor cortex in primates. Curr Opin Neurobiol 2023; 83:102783. [PMID: 37734361 DOI: 10.1016/j.conb.2023.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Our research focused on defining and characterizing parieto-frontal circuits for specific actions in primates. Part of the posterior parietal cortex is divided into eight or more domains where electrical stimulation evokes a meaningful complex movement. Domains in the posterior parietal cortex compete with each other over excitatory connections that activate inhibitory neurons, while selectively activating functionally matched domains in the premotor cortex and motor cortex. Thus, the selection process involves competition and cooperation between domains over three different regions of cortex. In addition, projections from functionally matched domains in motor regions converge in the matrix of the striatum, whereas projections from different functionally unmatched domains are separate. Thus, the projections of action-specific domains include the basal ganglia, where actions can be permitted or blocked.
Collapse
Affiliation(s)
- Jon Kaas
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, Nashville TN 37240, USA.
| | - Iwona Stepniewska
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, Nashville TN 37240, USA
| |
Collapse
|
9
|
Stepniewska I, Kaas JH. The dorsal stream of visual processing and action-specific domains in parietal and frontal cortex in primates. J Comp Neurol 2023; 531:1897-1908. [PMID: 37118872 PMCID: PMC10611900 DOI: 10.1002/cne.25489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
This review summarizes our findings obtained from over 15 years of research on parietal-frontal networks involved in the dorsal stream of cortical processing. We have presented considerable evidence for the existence of similar, partially independent, parietal-frontal networks involved in specific motor actions in a number of primates. These networks are formed by connections between action-specific domains representing the same complex movement evoked by electrical microstimulation. Functionally matched domains in the posterior parietal (PPC) and frontal (M1-PMC) motor regions are hierarchically related. M1 seems to be a critical link in these networks, since the outputs of M1 are essential to the evoked behavior, whereas PPC and PMC mediate complex movements mostly via their connections with M1. Thus, lesioning or deactivating M1 domains selectively blocks matching PMC and PPC domains, while having limited impact on other domains. When pairs of domains are stimulated together, domains within the same parietal-frontal network (matching domains) are cooperative in evoking movements, while they are mainly competitive with other domains (mismatched domains) within the same set of cortical areas. We propose that the interaction of different functional domains in each cortical region (as well as in striatum) occurs mainly via mutual suppression. Thus, the domains at each level are in competition with each other for mediating one of several possible behavioral outcomes.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
10
|
Zhang Z, Wang S, Du X, Qi Y, Wang L, Dong GH. Brain responses to positive and negative events in individuals with internet gaming disorder during real gaming. J Behav Addict 2023; 12:758-774. [PMID: 37651282 PMCID: PMC10562809 DOI: 10.1556/2006.2023.00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Objective This study sought to investigate brain responses to positive and negative events in individuals with internet gaming disorder (IGD) during real gaming as a direct assessment of the neural features of IGD. This investigation reflects the neural deficits in individuals with IGD while playing games, providing direct and effective targets for prevention and treatment of IGD. Methods Thirty subjects with IGD and fifty-two matched recreational game use (RGU) subjects were scanned while playing an online game. Abnormal brain activities during positive and negative events were detected using a general linear model. Functional connectivity (FC) and correlation analyses between neural features and addiction severity were conducted to provide additional support for the underlying neural features. Results Compared to the RGU subjects, the IGD subjects exhibited decreased activation in the dorsolateral prefrontal cortex (DLPFC) during positive events and decreased activation in the middle frontal gyrus (MFG), precentral gyrus and postcentral gyrus during negative events. Decreased FC between the DLPFC and putamen during positive events and between the MFG and amygdala during negative events were observed among the IGD subjects. Neural features and addiction severity were significantly correlated. Conclusions Individuals with IGD exhibited deficits in regulating game craving, maladaptive habitual gaming behaviors and negative emotions when experiencing positive and negative events during real game-playing compared to RGU gamers. These abnormalities in neural substrates during real gaming provide direct evidence for explaining why individuals with IGD uncontrollably and continuously engage in game playing, despite negative consequences.
Collapse
Affiliation(s)
- Zhengjie Zhang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Shizhen Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yanyan Qi
- Department of Psychology, School of Education, Zhengzhou University, Zhengzhou, China
| | - Lingxiao Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Guang-Heng Dong
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province, China
| |
Collapse
|
11
|
Bardi L, Langford ZD, Cristofori I. Visual sensitivity to biological motion invariants in humans at birth: Comment on "Motor invariants in action execution and perception" by Francesco Torricelli et al. Phys Life Rev 2023; 46:122-124. [PMID: 37356361 DOI: 10.1016/j.plrev.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Affiliation(s)
- Lara Bardi
- Institut des Sciences Cognitives Marc Jeannerod, CNRS/UMR 5229, Bron, France; Université Claude Bernard, Lyon 1, Villeurbanne, France.
| | - Zachary D Langford
- Institut des Sciences Cognitives Marc Jeannerod, CNRS/UMR 5229, Bron, France; Université Claude Bernard, Lyon 1, Villeurbanne, France
| | - Irene Cristofori
- Institut des Sciences Cognitives Marc Jeannerod, CNRS/UMR 5229, Bron, France; Université Claude Bernard, Lyon 1, Villeurbanne, France
| |
Collapse
|
12
|
Torres FDF, Ramalho BL, Rodrigues MR, Schmaedeke AC, Moraes VH, Reilly KT, Carvalho RDP, Vargas CD. Plasticity of face-hand sensorimotor circuits after a traumatic brachial plexus injury. Front Neurosci 2023; 17:1221777. [PMID: 37609451 PMCID: PMC10440702 DOI: 10.3389/fnins.2023.1221777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Background Interactions between the somatosensory and motor cortices are of fundamental importance for motor control. Although physically distant, face and hand representations are side by side in the sensorimotor cortex and interact functionally. Traumatic brachial plexus injury (TBPI) interferes with upper limb sensorimotor function, causes bilateral cortical reorganization, and is associated with chronic pain. Thus, TBPI may affect sensorimotor interactions between face and hand representations. Objective The aim of this study was to investigate changes in hand-hand and face-hand sensorimotor integration in TBPI patients using an afferent inhibition (AI) paradigm. Method The experimental design consisted of electrical stimulation (ES) applied to the hand or face followed by transcranial magnetic stimulation (TMS) to the primary motor cortex to activate a hand muscle representation. In the AI paradigm, the motor evoked potential (MEP) in a target muscle is significantly reduced when preceded by an ES at short-latency (SAI) or long-latency (LAI) interstimulus intervals. We tested 18 healthy adults (control group, CG), evaluated on the dominant upper limb, and nine TBPI patients, evaluated on the injured or the uninjured limb. A detailed clinical evaluation complemented the physiological investigation. Results Although hand-hand SAI was present in both the CG and the TBPI groups, hand-hand LAI was present in the CG only. Moreover, less AI was observed in TBPI patients than the CG both for face-hand SAI and LAI. Conclusion Our results indicate that sensorimotor integration involving both hand and face sensorimotor representations is affected by TBPI.
Collapse
Affiliation(s)
- Fernanda de Figueiredo Torres
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia Lima Ramalho
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Marcelle Ribeiro Rodrigues
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Schmaedeke
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Moraes
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen T. Reilly
- Trajectoires Team, Lyon Neuroscience Research Center, Lyon, France
- University UCBL Lyon 1, University of Lyon, Lyon, France
| | - Raquel de Paula Carvalho
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
- Laboratory of Child Development and Motricity, Department of Human Movement Science, Institute of Health and Society, Universidade Federal de São Paulo, Santos, Brazil
| | - Claudia D. Vargas
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Anderton W, Tew S, Ferguson S, Hernandez J, Charles SK. Movement preferences of the wrist and forearm during activities of daily living. J Hand Ther 2023; 36:580-592. [PMID: 36127238 DOI: 10.1016/j.jht.2022.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND During activities of daily living, the main degrees of freedom of the forearm and wrist-forearm pronation-supination (PS), wrist flexion-extension (FE), and wrist radial-ulnar deviation (RUD)-combine seamlessly to allow the hand to engage with and manipulate objects in our environment. Yet the combined behavior of these three degrees of freedom is relatively unknown. PURPOSE To provide a characterization of natural forearm and wrist kinematics (joint configuration, movement direction, and speed) during activities of daily living. STUDY DESIGN This is a descriptive cross-sectional study. METHODS Ten healthy subjects performed 24 activities of daily living chosen to represent a wide variety of activities, while we measured their PS, FE, and RUD angles using electromagnetic motion capture. The orientation of the forearm and wrist was represented in the three-dimensional "configuration space" spanned by PS, FE, and RUD. From the time course of forearm and wrist orientation in configuration space, we extracted three-dimensional distributions of joint configuration, movement direction, and speed. RESULTS Most joint configurations were focused in a relatively small area: subjects spent roughly 50% of the time in the central 20% of their functional range of motion. Some movement directions were significantly more common than others (p < 0.001); in particular, the direction of the dart-thrower's motion (DTM) was about three times more common than motion perpendicular to it. Most movements were slow: the likelihood of moving at increasing speeds dropped off exponentially. Interestingly, the most common high-speed motion combined the DTM with a twist from pronation to supination. As this motion allows one to pick up an object in front of one's body and bring it to the head, it is essential for self-care. Thus, although many activities of daily living follow the DTM without significant forearm rotation, the greatest importance of the DTM may lie in its combination with forearm rotation. CONCLUSIONS Despite the wide variety of activities, we found evidence of preferred movement behavior, and this behavior showed significant coupling between the wrist and forearm.
Collapse
Affiliation(s)
- Will Anderton
- Mechanical Engineering, Brigham Young University, Provo, UT, USA
| | - Scott Tew
- Mechanical Engineering, Brigham Young University, Provo, UT, USA
| | - Spencer Ferguson
- Mechanical Engineering, Brigham Young University, Provo, UT, USA
| | | | - Steven K Charles
- Mechanical Engineering, Brigham Young University, Provo, UT, USA; Neuroscience, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
14
|
Ye S, Wang M, Yang Q, Dong H, Dong GH. Predicting the severity of internet gaming disorder with resting-state brain features: A multi-voxel pattern analysis. J Affect Disord 2022; 318:113-122. [PMID: 36031000 DOI: 10.1016/j.jad.2022.08.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Internet gaming disorder (IGD) has become a worldwide mental health concern; however, the neural mechanism underlying this disorder remains unclear. Multivoxel pattern analysis (MVPA), a newly developed data-driven approach, can be used to investigate the neural features of IGD based on massive neural data. METHODS Resting-state fMRI data from four hundred and two participants with varying levels of IGD severity were recruited. Regional homogeneity (ReHo) and the amplitude of low-frequency fluctuation (ALFF) were calculated and subsequently decoded by applying MVPA. The highly weighted regions in both predictive models were selected as regions of interest for further graph theory and Granger causality analysis (GCA) to explore how they affect IGD severity. RESULTS The results revealed that the neural patterns of ReHo and ALFF can independently and significantly predict IGD severity. The highly weighted regions that contributed to both predictive models were the right precentral gyrus and left postcentral gyrus. Moreover, topological properties of the right precentral gyrus were significantly correlated with IGD severity; further GCA revealed effective connectivity from the right precentral gyrus to left precentral gyrus and dorsal anterior cingulate cortex, both of which were significantly associated with IGD severity. CONCLUSIONS The present study demonstrated that IGD has distinctive neural patterns, and this pattern could be found by machine learning. In addition, the neural features in the right precentral gyrus play a key role in predicting IGD severity. The current study revealed the neural features of IGD and provided a potential target for IGD interventions using brain modulation.
Collapse
Affiliation(s)
- Shuer Ye
- Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, PR China; Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China; Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Min Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Qun Yang
- Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, PR China.
| | - Haohao Dong
- Department of Psychology, Zhejiang Normal University, Jinhua, PR China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
15
|
Ji Y, Cheng Q, Fu WW, Zhong PP, Huang SQ, Chen XL, Wu XR. Exploration of abnormal dynamic spontaneous brain activity in patients with high myopia via dynamic regional homogeneity analysis. Front Hum Neurosci 2022; 16:959523. [PMID: 35992950 PMCID: PMC9390771 DOI: 10.3389/fnhum.2022.959523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Patients with high myopia (HM) reportedly exhibit changes in functional brain activity, but the mechanism underlying such changes is unclear. This study was conducted to observe differences in dynamic spontaneous brain activity between patients with HM and healthy controls (HCs) via dynamic regional homogeneity (dReHo) analysis. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on 82 patients with HM and 59 HCs who were closely matched for age, sex, and weight. The dReHo approach was used to assess local dynamic activity in the human brain. The association between mean dReHo signal values and clinical symptoms in distinct brain areas in patients with HM was determined via correlation analysis. Results In the left fusiform gyrus (L-FG), right inferior temporal gyrus (R-ITG), right Rolandic operculum (R-ROL), right postcentral gyrus (R-PoCG), and right precentral gyrus (R-PreCG), dReHo values were significantly greater in patients with HM than in HCs. Conclusion Patients with HM have distinct functional changes in various brain regions that mainly include the L-FG, R-ITG, R-ROL, R-PoCG, and R-PreCG. These findings constitute important evidence for the roles of brain networks in the pathophysiological mechanisms of HM and may aid in the diagnosis of HM.
Collapse
|
16
|
Pei D, Olikkal P, Adali T, Vinjamuri R. Reconstructing Synergy-Based Hand Grasp Kinematics from Electroencephalographic Signals. SENSORS (BASEL, SWITZERLAND) 2022; 22:5349. [PMID: 35891029 PMCID: PMC9318424 DOI: 10.3390/s22145349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Brain-machine interfaces (BMIs) have become increasingly popular in restoring the lost motor function in individuals with disabilities. Several research studies suggest that the CNS may employ synergies or movement primitives to reduce the complexity of control rather than controlling each DoF independently, and the synergies can be used as an optimal control mechanism by the CNS in simplifying and achieving complex movements. Our group has previously demonstrated neural decoding of synergy-based hand movements and used synergies effectively in driving hand exoskeletons. In this study, ten healthy right-handed participants were asked to perform six types of hand grasps representative of the activities of daily living while their neural activities were recorded using electroencephalography (EEG). From half of the participants, hand kinematic synergies were derived, and a neural decoder was developed, based on the correlation between hand synergies and corresponding cortical activity, using multivariate linear regression. Using the synergies and the neural decoder derived from the first half of the participants and only cortical activities from the remaining half of the participants, their hand kinematics were reconstructed with an average accuracy above 70%. Potential applications of synergy-based BMIs for controlling assistive devices in individuals with upper limb motor deficits, implications of the results in individuals with stroke and the limitations of the study were discussed.
Collapse
|
17
|
Bono D, Belyk M, Longo MR, Dick F. Beyond language: The unspoken sensory-motor representation of the tongue in non-primates, non-human and human primates. Neurosci Biobehav Rev 2022; 139:104730. [PMID: 35691470 DOI: 10.1016/j.neubiorev.2022.104730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The English idiom "on the tip of my tongue" commonly acknowledges that something is known, but it cannot be immediately brought to mind. This phrase accurately describes sensorimotor functions of the tongue, which are fundamental for many tongue-related behaviors (e.g., speech), but often neglected by scientific research. Here, we review a wide range of studies conducted on non-primates, non-human and human primates with the aim of providing a comprehensive description of the cortical representation of the tongue's somatosensory inputs and motor outputs across different phylogenetic domains. First, we summarize how the properties of passive non-noxious mechanical stimuli are encoded in the putative somatosensory tongue area, which has a conserved location in the ventral portion of the somatosensory cortex across mammals. Second, we review how complex self-generated actions involving the tongue are represented in more anterior regions of the putative somato-motor tongue area. Finally, we describe multisensory response properties of the primate and non-primate tongue area by also defining how the cytoarchitecture of this area is affected by experience and deafferentation.
Collapse
Affiliation(s)
- Davide Bono
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK.
| | - Michel Belyk
- Department of Speech, Hearing, and Phonetic Sciences, UCL Division of Psychology and Language Sciences, 2 Wakefield Street, London WC1N 1PJ, UK
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK
| | - Frederic Dick
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK; Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK.
| |
Collapse
|
18
|
De Stefani E, Barbot A, Zannoni C, Belluardo M, Bertolini C, Cosoli R, Bianchi B, Ferri A, Zito F, Bergonzani M, Schiano Lomoriello A, Sessa P, Ferrari PF. Post-surgery Rehabilitative Intervention Based on Imitation Therapy and Mouth-Hand Motor Synergies Provides Better Outcomes in Smile Production in Children and Adults With Long Term Facial Paralysis. Front Neurol 2022; 13:757523. [PMID: 35665048 PMCID: PMC9156860 DOI: 10.3389/fneur.2022.757523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Rehabilitation after free gracilis muscle transfer (smile surgery, SS) is crucial for a functional recovery of the smiling skill, mitigating social and psychological problems resulting from facial paralysis. We compared two post-SS rehabilitation treatments: the traditional based on teeth clenching exercises and the FIT-SAT (facial imitation and synergistic activity treatment). FIT-SAT, based on observation/imitation therapy and on hand-mouth motor synergies would facilitate neuronal activity in the facial motor cortex avoiding unwanted contractions of the jaw, implementing muscle control. We measured the smile symmetry on 30 patients, half of whom after SS underwent traditional treatment (control group, CG meanage = 20 ± 9) while the other half FIT-SAT (experimental group, EG meanage= 21 ± 14). We compared pictures of participants while holding two postures: maximum and gentle smile. The former corresponds to the maximal muscle contraction, whereas the latter is strongly linked to the control of muscle strength during voluntary movements. No differences were observed between the two groups in the maximum smile, whereas in the gentle smile the EG obtained a better symmetry than the CG. These results support the efficacy of FIT-SAT in modulating the smile allowing patients to adapt their smile to the various social contexts, aspect which is crucial during reciprocal interactions.
Collapse
Affiliation(s)
- Elisa De Stefani
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Child and Adolescent Neuropsychiatry–NPIA District of Scandiano, AUSL of Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Elisa De Stefani
| | - Anna Barbot
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Cecilia Zannoni
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Mauro Belluardo
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Chiara Bertolini
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Rita Cosoli
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Bernardo Bianchi
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Andrea Ferri
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Francesca Zito
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Michela Bergonzani
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | | | - Paola Sessa
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | | |
Collapse
|
19
|
Vainio L, Vainio M. Interaction between grasping and articulation: How vowel and consonant pronunciation influences precision and power grip responses. PLoS One 2022; 17:e0265651. [PMID: 35316305 PMCID: PMC8939804 DOI: 10.1371/journal.pone.0265651] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/05/2022] [Indexed: 11/19/2022] Open
Abstract
Grasping and mouth movements have been proposed to be integrated anatomically, functionally and evolutionarily. In line with this, we have shown that there is a systematic interaction between particular speech units and grip performance. For example, when the task requires pronouncing a speech unit simultaneously with grasp response, the speech units [i] and [t] are associated with relatively rapid and accurate precision grip responses, while [ɑ] and [k] are associated with power grip responses. This study is aimed at complementing the picture about which vowels and consonants are associated with these grasp types. The study validated our view that the high-front vowels and the alveolar consonants are associated with precision grip responses, while low and high-back vowels as well as velar consonants or those whose articulation involves the lowering of the tongue body are associated with power grip responses. This paper also proposes that one reason why small/large concepts are associated with specific speech sounds in the sound-magnitude symbolism is because articulation of these sounds is programmed within the overlapping mechanisms of precision or power grasping.
Collapse
Affiliation(s)
- Lari Vainio
- Phonetics and Speech Synthesis Research Group, Department of Digital Humanities, University of Helsinki, Helsinki, Finland
- Perception, Action & Cognition Research Group, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Martti Vainio
- Phonetics and Speech Synthesis Research Group, Department of Digital Humanities, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Kaas JH, Qi HX, Stepniewska I. Escaping the nocturnal bottleneck, and the evolution of the dorsal and ventral streams of visual processing in primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210293. [PMID: 34957843 PMCID: PMC8710890 DOI: 10.1098/rstb.2021.0293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Early mammals were small and nocturnal. Their visual systems had regressed and they had poor vision. After the extinction of the dinosaurs 66 mya, some but not all escaped the 'nocturnal bottleneck' by recovering high-acuity vision. By contrast, early primates escaped the bottleneck within the age of dinosaurs by having large forward-facing eyes and acute vision while remaining nocturnal. We propose that these primates differed from other mammals by changing the balance between two sources of visual information to cortex. Thus, cortical processing became less dependent on a relay of information from the superior colliculus (SC) to temporal cortex and more dependent on information distributed from primary visual cortex (V1). In addition, the two major classes of visual information from the retina became highly segregated into magnocellular (M cell) projections from V1 to the primate-specific temporal visual area (MT), and parvocellular-dominated projections to the dorsolateral visual area (DL or V4). The greatly expanded P cell inputs from V1 informed the ventral stream of cortical processing involving temporal and frontal cortex. The M cell pathways from V1 and the SC informed the dorsal stream of cortical processing involving MT, surrounding temporal cortex, and parietal-frontal sensorimotor domains. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Jon H. Kaas
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| | - Hui-Xin Qi
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| | - Iwona Stepniewska
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| |
Collapse
|
21
|
Chu Y, Wu J, Wang D, Huang J, Li W, Zhang S, Ren H. Altered voxel-mirrored homotopic connectivity in right temporal lobe epilepsy as measured using resting-state fMRI and support vector machine analyses. Front Psychiatry 2022; 13:958294. [PMID: 35958657 PMCID: PMC9360423 DOI: 10.3389/fpsyt.2022.958294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Prior reports revealed abnormalities in voxel-mirrored homotopic connectivity (VMHC) when analyzing neuroimaging data from patients with various psychiatric conditions, including temporal lobe epilepsy (TLE). Whether these VHMC changes can be leveraged to aid in the diagnosis of right TLE (rTLE), however, remains to be established. This study was thus developed to examine abnormal VMHC findings associated with rTLE to determine whether these changes can be used to guide rTLE diagnosis. METHODS The resultant imaging data of resting-state functional MRI (rs-fMRI) analyses of 59 patients with rTLE and 60 normal control individuals were analyzed using VMHC and support vector machine (SVM) approaches. RESULTS Relative to normal controls, patients with rTLE were found to exhibit decreased VMHC values in the bilateral superior and the middle temporal pole (STP and MTP), the bilateral middle and inferior temporal gyri (MTG and ITG), and the bilateral orbital portion of the inferior frontal gyrus (OrbIFG). These patients further exhibited increases in VMHC values in the bilateral precentral gyrus (PreCG), the postcentral gyrus (PoCG), and the supplemental motor area (SMA). The ROC curve of MTG VMHC values showed a great diagnostic efficacy in the diagnosis of rTLE with AUCs, sensitivity, specificity, and optimum cutoff values of 0.819, 0.831, 0.717, and 0.465. These findings highlight the value of the right middle temporal gyrus (rMTG) when differentiating between rTLE and control individuals, with a corresponding SVM analysis yielding respective accuracy, sensitivity, and specificity values of 70.59% (84/119), 78.33% (47/60), and 69.49% (41/59). CONCLUSION In summary, patients with rTLE exhibit various forms of abnormal functional connectivity, and SVM analyses support the potential value of abnormal VMHC values as a neuroimaging biomarker that can aid in the diagnosis of this condition.
Collapse
Affiliation(s)
- Yongqiang Chu
- Department of Imaging Center, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Occupational Hazards and Identification, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wu
- Department of Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Du Wang
- Department of Imaging Center, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Junli Huang
- Department of Imaging Center, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Asia General Hospital, Wuhan, China
| | - Sheng Zhang
- Department of Psychiatry, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Imaging Center, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Spille JL, Grunwald M, Martin S, Mueller SM. Stop touching your face! A systematic review of triggers, characteristics, regulatory functions and neuro-physiology of facial self touch. Neurosci Biobehav Rev 2021; 128:102-116. [PMID: 34126163 DOI: 10.1016/j.neubiorev.2021.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022]
Abstract
Spontaneous face touching (sFST) is an ubiquitous behavior that occurs in people of all ages and all sexes, up to 800 times a day. Despite their high frequency, they have rarely been considered as an independent phenomenon. Recently, sFST have sparked scientific interest since they contribute to self-infection with pathogens. This raises questions about trigger mechanisms and functions of sFST and whether they can be prevented. This systematic comprehensive review compiles relevant evidence on these issues. Facial self-touches seem to increase in frequency and duration in socially, emotionally as well as cognitively challenging situations. They have been associated with attention focus, working memory processes and emotion regulating functions as well as the development and maintenance of a sense of self and body. The dominance of face touch over other body parts is discussed in light of the proximity of hand-face cortical representations and the peculiarities of facial innervations. The results show that underlying psychological and neuro-physiological mechanisms of sFST are still poorly understood and that various basic questions remain unanswered.
Collapse
Affiliation(s)
- Jente L Spille
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Haptic Research Lab, 04103 Leipzig, Germany
| | - Martin Grunwald
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Haptic Research Lab, 04103 Leipzig, Germany
| | - Sven Martin
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Haptic Research Lab, 04103 Leipzig, Germany
| | - Stephanie M Mueller
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Haptic Research Lab, 04103 Leipzig, Germany.
| |
Collapse
|
23
|
Nazarova M, Novikov P, Ivanina E, Kozlova K, Dobrynina L, Nikulin VV. Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test-retest reliability. Hum Brain Mapp 2021; 42:2508-2528. [PMID: 33682975 PMCID: PMC8090785 DOI: 10.1002/hbm.25383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.
Collapse
Affiliation(s)
- Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Federal State Budgetary Institution «Federal center of brain research and neurotechnologies» of the Federal Medical Biological AgencyMoscowRussian Federation
| | - Pavel Novikov
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ekaterina Ivanina
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ksenia Kozlova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | | | - Vadim V. Nikulin
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
24
|
Richard N, Desmurget M, Teillac A, Beuriat PA, Bardi L, Coudé G, Szathmari A, Mottolese C, Sirigu A, Hiba B. Anatomical bases of fast parietal grasp control in humans: A diffusion-MRI tractography study. Neuroimage 2021; 235:118002. [PMID: 33789136 DOI: 10.1016/j.neuroimage.2021.118002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
Collapse
Affiliation(s)
- Nathalie Richard
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Michel Desmurget
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Achille Teillac
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Institut de neurosciences cognitives et intégratives d'Aquitaine, CNRS / UMR 5287, 33076 Bordeaux, France
| | - Pierre-Aurélien Beuriat
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Lara Bardi
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Gino Coudé
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Alexandru Szathmari
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Carmine Mottolese
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Angela Sirigu
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Bassem Hiba
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France.
| |
Collapse
|
25
|
A New Neurorehabilitative Postsurgery Intervention for Facial Palsy Based on Smile Observation and Hand-Mouth Motor Synergies. Neural Plast 2021; 2021:8890541. [PMID: 33833792 PMCID: PMC8016575 DOI: 10.1155/2021/8890541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To perform a preliminary test of a new rehabilitation treatment (FIT-SAT), based on mirror mechanisms, for gracile muscles after smile surgery. Method A pre- and postsurgery longitudinal design was adopted to study the efficacy of FIT-SAT. Four patients with bilateral facial nerve paralysis (Moebius syndrome) were included. They underwent two surgeries with free muscle transfers, one year apart from each other. The side of the face first operated on was rehabilitated with the traditional treatment, while the second side was rehabilitated with FIT-SAT. The FIT-SAT treatment includes video clips of an actor performing a unilateral or a bilateral smile to be imitated (FIT condition). In addition to this, while smiling, the participants close their hand in order to exploit the overlapped cortical motor representation of the hand and the mouth, which may facilitate the synergistic activity of the two effectors during the early phases of recruitment of the transplanted muscles (SAT). The treatment was also aimed at avoiding undesired movements such as teeth grinding. Discussion. Results support FIT-SAT as a viable alternative for smile rehabilitation after free muscle transfer. We propose that the treatment potentiates the effect of smile observation by activating the same neural structures responsible for the execution of the smile and therefore by facilitating its production. Closing of the hand induces cortical recruitment of hand motor neurons, recruiting the transplanted muscles, and reducing the risk of associating other unwanted movements such as teeth clenching to the smile movements.
Collapse
|
26
|
Sun F, Zhang G, Ren L, Yu T, Ren Z, Gao R, Zhang X. Functional organization of the human primary somatosensory cortex: A stereo-electroencephalography study. Clin Neurophysiol 2021; 132:487-497. [PMID: 33465535 DOI: 10.1016/j.clinph.2020.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The classical homunculus of the human primary somatosensory cortex (S1) established by Penfield has mainly portrayed the functional organization of convexial cortex, namely Brodmann area (BA) 1. However, little is known about the functions in fissural cortex including BA2 and BA3. We aim at drawing a refined and detailed somatosensory homunculus of the entire S1. METHODS We recruited 20 patients with drug-resistant focal epilepsy who underwent stereo-electroencephalography for preoperative assessments. Direct electrical stimulation was performed for functional mapping. Montreal Neurological Institute coordinates of the stimulation sites lying in S1 were acquired. RESULTS Stimulation of 177 sites in S1 yielded 149 positive sites (84%), most of which were located in the sulcal cortex. The spatial distribution of different body-part representations across the S1 surface revealed that the gross medial-to-lateral sequence of body representations within the entire S1 was consistent with the classical "homunculus". And we identified several unreported body-part representations from the sulcal cortex, such as forehead, deep elbow and wrist joints, and some dorsal body regions. CONCLUSIONS Our results reveal general somatotopical characteristics of the entire S1 cortex and differences with the previous works of Penfield. SIGNIFICANCE The classical S1 homunculus was extended by providing further refinement and additional detail.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
27
|
Säisänen L, Könönen M, Niskanen E, Lakka T, Lintu N, Vanninen R, Julkunen P, Määttä S. Primary hand motor representation areas in healthy children, preadolescents, adolescents, and adults. Neuroimage 2020; 228:117702. [PMID: 33385558 DOI: 10.1016/j.neuroimage.2020.117702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 01/28/2023] Open
Abstract
The development of the organization of the motor representation areas in children and adolescents is not well-known. This cross-sectional study aimed to provide an understanding for the development of the functional motor areas of the upper extremity muscles by studying healthy right-handed children (6-9 years, n = 10), preadolescents (10-12 years, n = 13), adolescents (15-17 years, n = 12), and adults (22-34 years, n = 12). The optimal representation site and resting motor threshold (rMT) for the abductor pollicis brevis (APB) were assessed in both hemispheres using navigated transcranial magnetic stimulation (nTMS). Motor mapping was performed at 110% of the rMT while recording the EMG of six upper limb muscles in the hand and forearm. The association between the motor map and manual dexterity (box and block test, BBT) was examined. The mapping was well-tolerated and feasible in all but the youngest participant whose rMT exceeded the maximum stimulator output. The centers-of-gravity (CoG) for individual muscles were scattered to the greatest extent in the group of preadolescents and centered and became more focused with age. In preadolescents, the CoGs in the left hemisphere were located more laterally, and they shifted medially with age. The proportion of hand compared to arm representation increased with age (p = 0.001); in the right hemisphere, this was associated with greater fine motor ability. Similarly, there was less overlap between hand and forearm muscles representations in children compared to adults (p<0.001). There was a posterior-anterior shift in the APB hotspot coordinate with age, and the APB coordinate in the left hemisphere exhibited a lateral to medial shift with age from adolescence to adulthood (p = 0.006). Our results contribute to the elucidation of the developmental course in the organization of the motor cortex and its associations with fine motor skills. It was shown that nTMS motor mapping in relaxed muscles is feasible in developmental studies in children older than seven years of age.
Collapse
Affiliation(s)
- Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo Lakka
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland; Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Niina Lintu
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| |
Collapse
|
28
|
Latchoumane CFV, Barany DA, Karumbaiah L, Singh T. Neurostimulation and Reach-to-Grasp Function Recovery Following Acquired Brain Injury: Insight From Pre-clinical Rodent Models and Human Applications. Front Neurol 2020; 11:835. [PMID: 32849253 PMCID: PMC7396659 DOI: 10.3389/fneur.2020.00835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
Reach-to-grasp is an evolutionarily conserved motor function that is adversely impacted following stroke and traumatic brain injury (TBI). Non-invasive brain stimulation (NIBS) methods, such as transcranial magnetic stimulation and transcranial direct current stimulation, are promising tools that could enhance functional recovery of reach-to-grasp post-brain injury. Though the rodent literature provides a causal understanding of post-injury recovery mechanisms, it has had a limited impact on NIBS protocols in human research. The high degree of homology in reach-to-grasp circuitry between humans and rodents further implies that the application of NIBS to brain injury could be better informed by findings from pre-clinical rodent models and neurorehabilitation research. Here, we provide an overview of the advantages and limitations of using rodent models to advance our current understanding of human reach-to-grasp function, cortical circuitry, and reorganization. We propose that a cross-species comparison of reach-to-grasp recovery could provide a mechanistic framework for clinically efficacious NIBS treatments that could elicit better functional outcomes for patients.
Collapse
Affiliation(s)
- Charles-Francois V. Latchoumane
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Deborah A. Barany
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Lohitash Karumbaiah
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Tarkeshwar Singh
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
29
|
On Primitives in Motor Control. Motor Control 2020; 24:318-346. [DOI: 10.1123/mc.2019-0099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 11/18/2022]
Abstract
The concept of primitives has been used in motor control both as a theoretical construct and as a means of describing the results of experimental studies involving multiple moving elements. This concept is close to Bernstein’s notion of engrams and level of synergies. Performance primitives have been explored in spaces of peripheral variables but interpreted in terms of neural control primitives. Performance primitives reflect a variety of mechanisms ranging from body mechanics to spinal mechanisms and to supraspinal circuitry. This review suggests that primitives originate at the task level as preferred time functions of spatial referent coordinates or at mappings from higher level referent coordinates to lower level, frequently abundant, referent coordinate sets. Different patterns of performance primitives can emerge depending, in particular, on the external force field.
Collapse
|
30
|
Li Y, Tan Z, Wang Y, Wang Y, Li D, Chen Q, Huang W. Detection of differentiated changes in gray matter in children with progressive hydrocephalus and chronic compensated hydrocephalus using voxel-based morphometry and machine learning. Anat Rec (Hoboken) 2019; 303:2235-2247. [PMID: 31654555 DOI: 10.1002/ar.24306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 08/31/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022]
Abstract
Currently, no neuroimaging study has reported the detection of specific imaging biomarkers that distinguish the progressive hydrocephalus (PH) and chronic compensated hydrocephalus (CH). Our main focus is to evaluate the different structural changes in classifying the two types of hydrocephalus children. Twenty-two children with hydrocephalus (12 PHs and 10 CHs) and 30 age-matched healthy controls were enrolled and the T1-weighted imaging was collected in the study. A customized voxel-based morphometry (VBM) approach and support vector machine (SVM) were combined to investigate the structural changes and group classification. Comparing with the controls and CH, PH groups invariably showed a significant decrease of GM volume in the bilateral hippocampus/parahippocampus, insula, and motor-related areas. SVM applied to the GM volumes of bilateral hippocampus/parahippocampus, insula, and motor-related areas correctly identified hydrocephalus children from normal controls with a statistically significant accuracy of 88.46% (p ≤ .001). In addition, SVM applied to GM volumes of the same regions correctly identified PH from CH with a statistically significant accuracy of 77.27% (p ≤ .009). Using VBM analysis, we characterized and visualized the GM changes in children with hydrocephalus. Machine learning results further confirmed that a significant decrease of the bilateral hippocampus/parahippocampus, insula, and motor-related GM volume can serve as a specific neuroimaging index to distinguish the children with PH from the children with CH and controls at individual. The findings could help to aid the identification of individuals with PH in clinical practice.
Collapse
Affiliation(s)
- Yongxin Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Ya Wang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanfang Wang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ding Li
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenhua Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Vainio L, Vainio M, Lipsanen J, Ellis R. The Sound of Grasp Affordances: Influence of Grasp-Related Size of Categorized Objects on Vocalization. Cogn Sci 2019; 43:e12793. [PMID: 31621124 DOI: 10.1111/cogs.12793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022]
Abstract
Previous research shows that simultaneously executed grasp and vocalization responses are faster when the precision grip is performed with the vowel [i] and the power grip is performed with the vowel [ɑ]. Research also shows that observing an object that is graspable with a precision or power grip can activate the grip congruent with the object. Given the connection between vowel articulation and grasping, this study explores whether grasp-related size of observed objects can influence not only grasp responses but also vowel pronunciation. The participants had to categorize small and large objects into natural and manufactured categories by pronouncing the vowel [i] or [ɑ]. As predicted, [i] was produced faster when the object's grasp-related size was congruent with the precision grip while [ɑ] was produced faster when the size was congruent with the power grip (Experiment 1). The effect was not, however, observed when the participants were presented with large objects that are not typically grasped by the power grip (Experiment 2). This study demonstrates that vowel production is systematically influenced by grasp-related size of a viewed object, supporting the account that sensory-motor processes related to grasp planning and representing grasp-related properties of viewed objects interact with articulation processes. The paper discusses these findings in the context of size-sound symbolism, suggesting that mechanisms that transform size-grasp affordances into corresponding grasp- and articulation-related motor programs might provide a neural basis for size-sound phenomena that links small objects with closed-front vowels and large objects with open-back vowels.
Collapse
Affiliation(s)
- Lari Vainio
- Helsinki Collegium for Advanced Studies, University of Helsinki.,Perception, Action & Cognition Research Group, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki.,Phonetics and Speech Synthesis Research Group, Department of Digital Humanities, University of Helsinki
| | - Martti Vainio
- Phonetics and Speech Synthesis Research Group, Department of Digital Humanities, University of Helsinki
| | - Jari Lipsanen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki
| | - Rob Ellis
- School of Psychology, University of Plymouth
| |
Collapse
|
32
|
Parnandi A, Uddin J, Nilsen DM, Schambra HM. The Pragmatic Classification of Upper Extremity Motion in Neurological Patients: A Primer. Front Neurol 2019; 10:996. [PMID: 31620070 PMCID: PMC6759636 DOI: 10.3389/fneur.2019.00996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/02/2019] [Indexed: 11/13/2022] Open
Abstract
Recent advances in wearable sensor technology and machine learning (ML) have allowed for the seamless and objective study of human motion in clinical applications, including Parkinson's disease, and stroke. Using ML to identify salient patterns in sensor data has the potential for widespread application in neurological disorders, so understanding how to develop this approach for one's area of inquiry is vital. We previously proposed an approach that combined wearable inertial measurement units (IMUs) and ML to classify motions made by stroke patients. However, our approach had computational and practical limitations. We address these limitations here in the form of a primer, presenting how to optimize a sensor-ML approach for clinical implementation. First, we demonstrate how to identify the ML algorithm that maximizes classification performance and pragmatic implementation. Second, we demonstrate how to identify the motion capture approach that maximizes classification performance but reduces cost. We used previously collected motion data from chronic stroke patients wearing off-the-shelf IMUs during a rehabilitation-like activity. To identify the optimal ML algorithm, we compared the classification performance, computational complexity, and tuning requirements of four off-the-shelf algorithms. To identify the optimal motion capture approach, we compared the classification performance of various sensor configurations (number and location on the body) and sensor type (IMUs vs. accelerometers). Of the algorithms tested, linear discriminant analysis had the highest classification performance, low computational complexity, and modest tuning requirements. Of the sensor configurations tested, seven sensors on the paretic arm and trunk led to the highest classification performance, and IMUs outperformed accelerometers. Overall, we present a refined sensor-ML approach that maximizes both classification performance and pragmatic implementation. In addition, with this primer, we showcase important considerations for appraising off-the-shelf algorithms and sensors for quantitative motion assessment.
Collapse
Affiliation(s)
- Avinash Parnandi
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Jasim Uddin
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Dawn M Nilsen
- Department of Rehabilitation and Regenerative Medicine, Columbia University Medical Center, New York, NY, United States
| | - Heidi M Schambra
- Department of Neurology, New York University School of Medicine, New York, NY, United States.,Department of Rehabilitation Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
33
|
Schambra HM, Parnandi A, Pandit NG, Uddin J, Wirtanen A, Nilsen DM. A Taxonomy of Functional Upper Extremity Motion. Front Neurol 2019; 10:857. [PMID: 31481922 PMCID: PMC6710387 DOI: 10.3389/fneur.2019.00857] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Functional upper extremity (UE) motion enables humans to execute activities of daily living (ADLs). There currently exists no universal language to systematically characterize this type of motion or its fundamental building blocks, called functional primitives. Without a standardized classification approach, pooling mechanistic knowledge and unpacking rehabilitation content will remain challenging. Methods: We created a taxonomy to characterize functional UE motions occurring during ADLs, classifying them by motion presence, temporal cyclicity, upper body effector, and contact type. We identified five functional primitives by their phenotype and purpose: reach, reposition, transport, stabilize, and idle. The taxonomy was assessed for its validity and interrater reliability in right-paretic chronic stroke patients performing a selection of ADL tasks. We applied the taxonomy to identify the primitive content and motion characteristics of these tasks, and to evaluate the influence of impairment level on these outcomes. Results: The taxonomy could account for all motions in the sampled activities. Interrater reliability was high for primitive identification (Cohen's kappa = 0.95–0.99). Using the taxonomy, the ADL tasks were found to be composed primarily of transport and stabilize primitives mainly executed with discrete, proximal motions. Compared to mildly impaired patients, moderately impaired patients used more repeated reaches and axial-proximal UE motion to execute the tasks. Conclusions: The proposed taxonomy yields objective, quantitative data on human functional UE motion. This new method could facilitate the decomposition and quantification of UE rehabilitation, the characterization of functional abnormality after stroke, and the mechanistic examination of shared behavior in motor studies.
Collapse
Affiliation(s)
- Heidi M Schambra
- Mobilis Lab, Department of Neurology, New York University School of Medicine, New York, NY, United States.,Department of Rehabilitation Medicine, New York University School of Medicine, New York, NY, United States
| | - Avinash Parnandi
- Mobilis Lab, Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Natasha G Pandit
- Mobilis Lab, Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Jasim Uddin
- Department of Neurology, Columbia University, New York, NY, United States
| | - Audre Wirtanen
- Mobilis Lab, Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Dawn M Nilsen
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
34
|
De Stefani E, Nicolini Y, Belluardo M, Ferrari PF. Congenital facial palsy and emotion processing: The case of Moebius syndrome. GENES BRAIN AND BEHAVIOR 2019; 18:e12548. [PMID: 30604920 DOI: 10.1111/gbb.12548] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 12/15/2018] [Indexed: 12/13/2022]
Abstract
According to the Darwinian perspective, facial expressions of emotions evolved to quickly communicate emotional states and would serve adaptive functions that promote social interactions. Embodied cognition theories suggest that we understand others' emotions by reproducing the perceived expression in our own facial musculature (facial mimicry) and the mere observation of a facial expression can evoke the corresponding emotion in the perceivers. Consequently, the inability to form facial expressions would affect the experience of emotional understanding. In this review, we aimed at providing account on the link between the lack of emotion production and the mechanisms of emotion processing. We address this issue by taking into account Moebius syndrome, a rare neurological disorder that primarily affects the muscles controlling facial expressions. Individuals with Moebius syndrome are born with facial paralysis and inability to form facial expressions. This makes them the ideal population to study whether facial mimicry is necessary for emotion understanding. Here, we discuss behavioral ambiguous/mixed results on emotion recognition deficits in Moebius syndrome suggesting the need to investigate further aspects of emotional processing such as the physiological responses associated with the emotional experience during developmental age.
Collapse
Affiliation(s)
- Elisa De Stefani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ylenia Nicolini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mauro Belluardo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Pier Francesco Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Institut des Sciences Cognitives Marc Jeannerod, CNRS, Université de Lyon, Lyon, France
| |
Collapse
|
35
|
Vainio L. Connection between movements of mouth and hand: Perspectives on development and evolution of speech. Neurosci Biobehav Rev 2019; 100:211-223. [PMID: 30871957 DOI: 10.1016/j.neubiorev.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/25/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
Mounting evidence shows interaction between manipulative hand movements and movements of tongue, lips and mouth in a vocal and non-vocal context. The current article reviews this evidence and discusses its contribution to perspectives of development and evolution of speech. In particular, the article aims to present novel insight on how processes controlling the two primary grasp components of manipulative hand movements, the precision and power grip, might be systematically connected to motor processes involved in producing certain articulatory gestures. This view assumes that due to these motor overlaps between grasping and articulation, development of these grip types in infancy can facilitate development of specific articulatory gestures. In addition, the hand-mouth connections might have even boosted the evolution of some articulatory gestures. This account also proposes that some semantic sound-symbolic pairings between a speech sound and a referent concept might be partially based on these hand-mouth interactions.
Collapse
Affiliation(s)
- Lari Vainio
- University of Helsinki, Helsinki Collegium for Advanced Studies, P.O. Box 4 (Fabianinkatu 24), FIN 00014, Finland; Perception, Action & Cognition Research Group, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00014, Finland; Phonetics and Speech Synthesis Research Group, Department of Digital Humanities, University of Helsinki, Unioninkatu 40, 00014, Finland.
| |
Collapse
|
36
|
Labruna L, Tischler C, Cazares C, Greenhouse I, Duque J, Lebon F, Ivry RB. Planning face, hand, and leg movements: anatomical constraints on preparatory inhibition. J Neurophysiol 2019; 121:1609-1620. [PMID: 30785815 DOI: 10.1152/jn.00711.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor-evoked potentials (MEPs), elicited by transcranial magnetic stimulation (TMS) over the motor cortex, are reduced during the preparatory period in delayed response tasks. In this study we examined how MEP suppression varies as a function of the anatomical organization of the motor cortex. MEPs were recorded from a left index muscle while participants prepared a hand or leg movement in experiment 1 or prepared an eye or mouth movement in experiment 2. In this manner, we assessed if the level of MEP suppression in a hand muscle varied as a function of the anatomical distance between the agonist for the forthcoming movement and the muscle targeted by TMS. MEP suppression was attenuated when the cued effector was anatomically distant from the hand (e.g., leg or facial movement compared with finger movement). A similar effect was observed in experiment 3 in which MEPs were recorded from a muscle in the leg and the forthcoming movement involved the upper limb or face. These results demonstrate an important constraint on preparatory inhibition: it is sufficiently broad to be manifest in a muscle that is not involved in the task, but it is not global, showing a marked attenuation when the agonist muscle belongs to a different segment of the body. NEW & NOTEWORTHY Using transcranial magnetic stimulation, we examined changes in corticospinal excitability as people prepared to move. Consistent with previous work, we observed a reduction in excitability during the preparatory period, an effect observed in both task-relevant and task-irrelevant muscles. However, this preparatory inhibition is anatomically constrained, attenuated in muscles belonging to a different body segment than the agonist of the forthcoming movement.
Collapse
Affiliation(s)
- Ludovica Labruna
- Department of Psychology, University of California , Berkeley, California.,Helen Wills Neuroscience Institute, University of California , Berkeley, California
| | - Claudia Tischler
- Department of Psychology, University of California , Berkeley, California
| | - Christian Cazares
- Neurosciences Graduate Program, University of California , San Diego
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Julie Duque
- Institute of Neuroscience, Laboratory of Neurophysiology, Université catholique de Louvain , Brussels , Belgium
| | - Florent Lebon
- 1INSERM, UMR 1093, Cognition, Action et Plasticité Sensorimotrice, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon , France
| | - Richard B Ivry
- Department of Psychology, University of California , Berkeley, California.,Helen Wills Neuroscience Institute, University of California , Berkeley, California
| |
Collapse
|
37
|
Selective Inhibition of Volitional Hand Movements after Stimulation of the Dorsoposterior Parietal Cortex in Humans. Curr Biol 2018; 28:3303-3309.e3. [DOI: 10.1016/j.cub.2018.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 11/21/2022]
|
38
|
Coudé G, Ferrari PF. Reflections on the differential organization of mirror neuron systems for hand and mouth and their role in the evolution of communication in primates. INTERACTION STUDIES 2018; 19:38-53. [PMID: 35283699 PMCID: PMC8916705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is now generally accepted that the motor system is not purely dedicated to the control of behavior, but also has cognitive functions. Mirror neurons have provided a new perspective on how sensory information regarding others' actions and gestures is coupled with the internal cortical motor representation of them. This coupling allows an individual to enrich his interpretation of the social world through the activation of his own motor representations. Such mechanisms have been highly preserved in evolution as they are present in humans, apes and monkeys. Recent neuroanatomical data showed that there are two different connectivity patterns in mirror neuron networks in the macaque: one is concerned with sensorimotor transformation in relation to reaching and hand grasping within the traditional parietal-premotor circuits; the second one is linked to the mouth/face motor control and the new data show that it is connected with limbic structures. The mouth mirror sector seems to be wired not only for ingestive behaviors but also for orofacial communicative gestures and vocalizations. Notably, the hand and mouth mirror networks partially overlap, suggesting the importance of hand-mouth synergies not only for sensorimotor transformation, but also for communicative purposes in order to better convey and control social signals.
Collapse
Affiliation(s)
- Gino Coudé
- Institut des Sciences Cognitives - Marc Jeannerod, CNRS and Université Claude Bernard Lyon, 67 Pinel, 69675 Bron, Cedex, France
| | - Pier Francesco Ferrari
- Institut des Sciences Cognitives - Marc Jeannerod, CNRS and Université Claude Bernard Lyon, 67 Pinel, 69675 Bron, Cedex, France
| |
Collapse
|
39
|
Berkowitz A. You Can Observe a Lot by Watching: Hughlings Jackson's Underappreciated and Prescient Ideas about Brain Control of Movement. Neuroscientist 2018; 24:448-455. [PMID: 29900803 DOI: 10.1177/1073858418781819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
John Hughlings Jackson, the 19th-century British neurologist, first described what are today called Jacksonian seizures. He is generally associated with somatotopy, the idea that neighboring brain regions control neighboring body parts, as later represented pictorially in Wilder Penfield's "homunculus," or little man in the brain. Jackson's own views, however, were quite different, though this is seldom appreciated. In an 1870 article, Jackson advanced the hypotheses that each region of the cerebrum controls movements of multiple body parts, but to different degrees, and that the "march" of movements that typically occurs during Jacksonian seizures is caused by the downstream connections of the overactive neurons at the seizure focus, rather than a somatotopic organization of the cerebrum. Jackson's hypotheses, which were based almost entirely on his careful observations of movements during seizures, are well within the range of current hypotheses about how the frontal lobe is organized to control movements and thus deserve renewed attention.
Collapse
Affiliation(s)
- Ari Berkowitz
- 1 Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
40
|
Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements. Sci Rep 2018; 8:8391. [PMID: 29849101 PMCID: PMC5976658 DOI: 10.1038/s41598-018-26780-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Voluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task features. We found that the temporal and spatial aspects of the movements were encoded by different temporal and spatial muscle synergies, respectively, consistent with the intuition that there should a correspondence between major attributes of movement and major features of synergies. This approach led to the development of a novel computational method for comparing muscle synergies from different participants according to their functional role. This functional similarity analysis yielded a small set of temporal and spatial synergies that describes the main features of whole-body reaching movements.
Collapse
|
41
|
Hilt PM, Delis I, Pozzo T, Berret B. Space-by-Time Modular Decomposition Effectively Describes Whole-Body Muscle Activity During Upright Reaching in Various Directions. Front Comput Neurosci 2018; 12:20. [PMID: 29666576 PMCID: PMC5891645 DOI: 10.3389/fncom.2018.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
The modular control hypothesis suggests that motor commands are built from precoded modules whose specific combined recruitment can allow the performance of virtually any motor task. Despite considerable experimental support, this hypothesis remains tentative as classical findings of reduced dimensionality in muscle activity may also result from other constraints (biomechanical couplings, data averaging or low dimensionality of motor tasks). Here we assessed the effectiveness of modularity in describing muscle activity in a comprehensive experiment comprising 72 distinct point-to-point whole-body movements during which the activity of 30 muscles was recorded. To identify invariant modules of a temporal and spatial nature, we used a space-by-time decomposition of muscle activity that has been shown to encompass classical modularity models. To examine the decompositions, we focused not only on the amount of variance they explained but also on whether the task performed on each trial could be decoded from the single-trial activations of modules. For the sake of comparison, we confronted these scores to the scores obtained from alternative non-modular descriptions of the muscle data. We found that the space-by-time decomposition was effective in terms of data approximation and task discrimination at comparable reduction of dimensionality. These findings show that few spatial and temporal modules give a compact yet approximate representation of muscle patterns carrying nearly all task-relevant information for a variety of whole-body reaching movements.
Collapse
Affiliation(s)
- Pauline M Hilt
- Institut National de la Santé et de la Recherche Médicale, U1093, Cognition Action Plasticité Sensorimotrice, Dijon, France.,Italian Institute of Technology CTNSC@UniFe (Center of Translational Neurophysiology for Speech and Communication), Ferrara, Italy
| | - Ioannis Delis
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Thierry Pozzo
- Institut National de la Santé et de la Recherche Médicale, U1093, Cognition Action Plasticité Sensorimotrice, Dijon, France.,Italian Institute of Technology CTNSC@UniFe (Center of Translational Neurophysiology for Speech and Communication), Ferrara, Italy
| | - Bastien Berret
- CIAMS, Université Paris-Sud, Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
42
|
Baldwin MKL, Cooke DF, Krubitzer L. Intracortical Microstimulation Maps of Motor, Somatosensory, and Posterior Parietal Cortex in Tree Shrews (Tupaia belangeri) Reveal Complex Movement Representations. Cereb Cortex 2018; 27:1439-1456. [PMID: 26759478 DOI: 10.1093/cercor/bhv329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Long-train intracortical microstimulation (LT-ICMS) is a popular method for studying the organization of motor and posterior parietal cortex (PPC) in mammals. In primates, LT-ICMS evokes both multijoint and multiple-body-part movements in primary motor, premotor, and PPC. In rodents, LT-ICMS evokes complex movements of a single limb in motor cortex. Unfortunately, very little is known about motor/PPC organization in other mammals. Tree shrews are closely related to both primates and rodents and could provide insights into the evolution of complex movement domains in primates. The present study investigated the extent of cortex in which movements could be evoked with ICMS and the characteristics of movements elicited using both short train (ST) and LT-ICMS in tree shrews. We demonstrate that LT-ICMS and ST-ICMS maps are similar, with the movements elicited with ST-ICMS being truncated versions of those elicited with LT-ICMS. In addition, LT-ICMS-evoked complex movements within motor cortex similar to those in rodents. More complex movements involving multiple body parts such as the hand and mouth were also elicited in motor cortex and PPC, as in primates. Our results suggest that complex movement networks present in PPC and motor cortex were present in mammals prior to the emergence of primates.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Dylan F Cooke
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Leah Krubitzer
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| |
Collapse
|
43
|
Mazurek KA, Schieber MH. Injecting Instructions into Premotor Cortex. Neuron 2017; 96:1282-1289.e4. [PMID: 29224724 DOI: 10.1016/j.neuron.2017.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/10/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
The premotor cortex (PM) receives inputs from parietal cortical areas representing processed visuospatial information, translates that information into programs for particular movements, and communicates those programs to the primary motor cortex (M1) for execution. Consistent with this general function, intracortical microstimulation (ICMS) in the PM of sufficient frequency, amplitude, and duration has been shown to evoke complex movements of the arm and hand that vary systematically depending on the locus of stimulation. Using frequencies and amplitudes too low to evoke muscle activity, however, we found that ICMS in the PM can provide instructions to perform specific reach, grasp, and manipulate movements. These instructed actions were not fixed but rather were learned through associations between the arbitrary stimulation locations and particular movements. Low-amplitude ICMS at different PM locations thus evokes distinguishable experiences that can become associated with specific movements arbitrarily, providing a novel means of injecting information into the nervous system.
Collapse
Affiliation(s)
- Kevin A Mazurek
- Department of Neurology, University of Rochester, Rochester, NY, USA; Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.
| | - Marc H Schieber
- Department of Neurology, University of Rochester, Rochester, NY, USA; Department of Neuroscience, University of Rochester, Rochester, NY, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
44
|
Ferrari PF, Barbot A, Bianchi B, Ferri A, Garofalo G, Bruno N, Coudé G, Bertolini C, Ardizzi M, Nicolini Y, Belluardo M, Stefani ED. A proposal for new neurorehabilitative intervention on Moebius Syndrome patients after 'smile surgery'. Proof of concept based on mirror neuron system properties and hand-mouth synergistic activity. Neurosci Biobehav Rev 2017; 76:111-122. [PMID: 28434583 DOI: 10.1016/j.neubiorev.2017.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 10/19/2022]
Abstract
Studies of the last twenty years on the motor and premotor cortices of primates demonstrated that the motor system is involved in the control and initiation of movements, and in higher cognitive processes, such as action understanding, imitation, and empathy. Mirror neurons are only one example of such theoretical shift. Their properties demonstrate that motor and sensory processing are coupled in the brain. Such knowledge has been also central for designing new neurorehabilitative therapies for patients suffering from brain injuries and consequent motor deficits. Moebius Syndrome patients, for example, are incapable of moving their facial muscles, which are fundamental for affective communication. These patients face an important challenge after having undergone a corrective surgery: reanimating the transplanted muscles to achieve a voluntarily control of smiling. We propose two new complementary rehabilitative approaches on MBS patients based on observation/imitation therapy (Facial Imitation Therapy, FIT) and on hand-mouth motor synergies (Synergistic Activity Therapy, SAT). Preliminary results show that our intervention protocol is a promising approach for neurorehabilitation of patients with facial palsy.
Collapse
Affiliation(s)
- Pier Francesco Ferrari
- Institut des Sciences Cognitives Marc Jeannerod UMR 5229, CNRS, Université de Lyon, Bron Cedex, France; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Anna Barbot
- Unit of Audiology and Pediatric Otorhinolaryngology, University Hospital of Parma, Parma, Italy
| | - Bernardo Bianchi
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Andrea Ferri
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | | | - Nicola Bruno
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gino Coudé
- Institut des Sciences Cognitives Marc Jeannerod UMR 5229, CNRS, Université de Lyon, Bron Cedex, France; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Chiara Bertolini
- Unit of Audiology and Pediatric Otorhinolaryngology, University Hospital of Parma, Parma, Italy
| | - Martina Ardizzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ylenia Nicolini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mauro Belluardo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisa De Stefani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
45
|
Fricke C, Gentner R, Rumpf JJ, Weise D, Saur D, Classen J. Differential spatial representation of precision and power grasps in the human motor system. Neuroimage 2017; 158:58-69. [DOI: 10.1016/j.neuroimage.2017.06.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022] Open
|
46
|
Automatized set-up procedure for transcranial magnetic stimulation protocols. Neuroimage 2017; 153:307-318. [DOI: 10.1016/j.neuroimage.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/03/2017] [Accepted: 04/01/2017] [Indexed: 12/15/2022] Open
|
47
|
Soil Lead and Children's Blood Lead Disparities in Pre- and Post-Hurricane Katrina New Orleans (USA). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040407. [PMID: 28417939 PMCID: PMC5409608 DOI: 10.3390/ijerph14040407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/04/2022]
Abstract
This study appraises New Orleans soil lead and children’s lead exposure before and ten years after Hurricane Katrina flooded the city. Introduction: Early childhood exposure to lead is associated with lifelong and multiple health, learning, and behavioral disorders. Lead exposure is an important factor hindering the long-term resilience and sustainability of communities. Lead exposure disproportionately affects low socioeconomic status of communities. No safe lead exposure is known and the common intervention is not effective. An essential responsibility of health practitioners is to develop an effective primary intervention. Methods: Pre- and post-Hurricane soil lead and children’s blood lead data were matched by census tract communities. Soil lead and blood lead data were described, mapped, blood lead graphed as a function of soil lead, and Multi-Response Permutation Procedures statistics established disparities. Results: Simultaneous decreases occurred in soil lead accompanied by an especially large decline in children’s blood lead 10 years after Hurricane Katrina. Exposure disparities still exist between children living in the interior and outer areas of the city. Conclusions: At the scale of a city, this study demonstrates that decreasing soil lead effectively reduces children’s blood lead. Primary prevention of lead exposure can be accomplished by reducing soil lead in the urban environment.
Collapse
|
48
|
Lin J, Lv X, Niu M, Liu L, Chen J, Xie F, Zhong M, Qiu S, Li L, Huang R. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy. NEUROIMAGE-CLINICAL 2017; 14:610-621. [PMID: 28348952 PMCID: PMC5357686 DOI: 10.1016/j.nicl.2017.02.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/02/2017] [Accepted: 02/28/2017] [Indexed: 01/08/2023]
Abstract
Conventional MRI studies showed that radiation-induced brain necrosis in patients with nasopharyngeal carcinoma (NPC) in years after radiotherapy (RT) could involve brain gray matter (GM) and impair brain function. However, it is still unclear the radiation-induced brain morphological changes in NPC patients with normal-appearing GM in the early period after RT. In this study, we acquired high-resolution brain structural MRI data from three groups of patients, 22 before radiotherapy (pre-RT) NPC patients with newly diagnosed but not yet medically treated, 22 NPC patients in the early-delayed stage after radiotherapy (post-RT-ED), and 20 NPC patients in the late-delayed stage after radiotherapy (post-RT-LD), and then analyzed the radiation-induced cortical thickness alteration in NPC patients after RT. Using a vertex-wise surface-based morphometry (SBM) approach, we detected significantly decreased cortical thickness in the precentral gyrus (PreCG) in the post-RT-ED group compared to the pre-RT group. And the post-RT-LD group showed significantly increased cortical thickness in widespread brain regions, including the bilateral inferior parietal, left isthmus of the cingulate, left bank of the superior temporal sulcus and left lateral occipital regions, compared to the pre-RT group, and in the bilateral PreCG compared to the post-RT-ED group. Similar analysis with ROI-wise SBM method also found the consistent results. These results indicated that radiation-induced brain injury mainly occurred in the post-RT-LD group and the cortical thickness alterations after RT were dynamic in different periods. Our findings may reflect the pathogenesis of radiation-induced brain injury in NPC patients with normal-appearing GM and an early intervention is necessary for protecting GM during RT.
Collapse
Key Words
- 2D-CRT, conventional two-dimensional radiotherapy
- AJCC, American Joint Committee on Cancer
- ANOVA, analysis of variance
- Brain injury
- CMBs, cerebral microbleeds
- CT, cortical thickness
- Cortical thickness
- DMN, default mode network
- FDR, false discovery rate
- FWHM, full width at half maximum
- GLM, general linear model
- GM, gray matter
- ICC, isthmus of the cingulate cortex
- IMRT, intensity-modulated radiation therapy
- IPC, inferior parietal cortex
- KPS, Karnofsky performance status scale
- LOC, lateral occipital cortex
- MTC, middle temporal cortex
- NPC, nasopharyngeal carcinoma
- PoCG, postcentral gyrus
- PreCG, precentral gyrus
- PreCUN, precuneus
- RA, relative alteration
- RT, radiotherapy
- Radiotherapy
- SBM, surface-based morphometry
- STC, superior temporal cortex
- Structural MRI
- Surface-based morphometry
- VBM, voxel-based morphometry
- WM, white matter
- bSTS, bank of the superior temporal sulcus
- cMFC, caudal middle frontal cortex
- post-RT-ED, in the early-delayed stage after radiotherapy
- post-RT-LD, in the late-delayed stage after radiotherapy
- pre-RT, before radiotherapy
Collapse
Affiliation(s)
- Jiabao Lin
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Xiaofei Lv
- Department of Medical Imaging, Collaborative Innovation Centre for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou 510060, PR China
| | - Meiqi Niu
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Lizhi Liu
- Department of Medical Imaging, Collaborative Innovation Centre for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou 510060, PR China
| | - Jun Chen
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Fei Xie
- Department of Medical Imaging, Collaborative Innovation Centre for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou 510060, PR China
| | - Miao Zhong
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Shijun Qiu
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Chinese Traditional Medicine, Guangzhou 510405, PR China
| | - Li Li
- Department of Medical Imaging, Collaborative Innovation Centre for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou 510060, PR China
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
49
|
Abstract
While some autoimmune disorders remain extremely rare, others largely predominate the epidemiology of human autoimmunity. Notably, these include psoriasis, diabetes, vitiligo, thyroiditis, rheumatoid arthritis and multiple sclerosis. Thus, despite the quasi-infinite number of "self" antigens that could theoretically trigger autoimmune responses, only a limited set of antigens, referred here as superautoantigens, induce pathogenic adaptive responses. Several lines of evidence reviewed in this paper indicate that, irrespective of the targeted organ (e.g. thyroid, pancreas, joints, brain or skin), a significant proportion of superautoantigens are highly expressed in the synaptic compartment of the central nervous system (CNS). Such an observation applies notably for GAD65, AchR, ribonucleoproteins, heat shock proteins, collagen IV, laminin, tyrosine hydroxylase and the acetylcholinesterase domain of thyroglobulin. It is also argued that cognitive alterations have been described in a number of autoimmune disorders, including psoriasis, rheumatoid arthritis, lupus, Crohn's disease and autoimmune thyroiditis. Finally, the present paper points out that a great majority of the "incidental" autoimmune conditions notably triggered by neoplasms, vaccinations or microbial infections are targeting the synaptic or myelin compartments. On this basis, the concept of an immunological homunculus, proposed by Irun Cohen more than 25 years ago, is extended here in a model where physiological autoimmunity against brain superautoantigens confers both: i) a crucial evolutionary-determined advantage via cognition-promoting autoimmunity; and ii) a major evolutionary-determined vulnerability, leading to the emergence of autoimmune disorders in Homo sapiens. Moreover, in this theoretical framework, the so called co-development/co-evolution model, both the development (at the scale of an individual) and evolution (at the scale of species) of the antibody and T-cell repertoires are coupled to those of the neural repertoires (i.e. the distinct neuronal populations and synaptic circuits supporting cognitive and sensorimotor functions). Clinical implications and future experimental insights are also presented and discussed.
Collapse
Affiliation(s)
- Serge Nataf
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), CarMeN Laboratory, INSERM 1060, INRA 1397, INSA Lyon, Université Claude Bernard Lyon-1, Lyon, F-69000, France
| |
Collapse
|
50
|
Preparation and execution of teeth clenching and foot muscle contraction influence on corticospinal hand-muscle excitability. Sci Rep 2017; 7:41249. [PMID: 28117368 PMCID: PMC5259748 DOI: 10.1038/srep41249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022] Open
Abstract
Contraction of a muscle modulates not only the corticospinal excitability (CSE) of the contracting muscle but also that of different muscles. We investigated to what extent the CSE of a hand muscle is modulated during preparation and execution of teeth clenching and ipsilateral foot dorsiflexion either separately or in combination. Hand-muscle CSE was estimated based on motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and recorded from the first dorsal interosseous (FDI) muscle. We found higher excitability during both preparation and execution of all the motor tasks than during mere observation of a fixation cross. As expected, the excitability was greater during the execution phase than the preparation one. Furthermore, both execution and preparation of combined motor tasks led to higher excitability than individual tasks. These results extend our current understanding of the neural interactions underlying simultaneous contraction of muscles in different body parts.
Collapse
|