1
|
Fabiano M, Oikawa N, Kerksiek A, Furukawa JI, Yagi H, Kato K, Schweizer U, Annaert W, Kang J, Shen J, Lütjohann D, Walter J. Presenilin Deficiency Results in Cellular Cholesterol Accumulation by Impairment of Protein Glycosylation and NPC1 Function. Int J Mol Sci 2024; 25:5417. [PMID: 38791456 PMCID: PMC11121565 DOI: 10.3390/ijms25105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Presenilin proteins (PS1 and PS2) represent the catalytic subunit of γ-secretase and play a critical role in the generation of the amyloid β (Aβ) peptide and the pathogenesis of Alzheimer disease (AD). However, PS proteins also exert multiple functions beyond Aβ generation. In this study, we examine the individual roles of PS1 and PS2 in cellular cholesterol metabolism. Deletion of PS1 or PS2 in mouse models led to cholesterol accumulation in cerebral neurons. Cholesterol accumulation was also observed in the lysosomes of embryonic fibroblasts from Psen1-knockout (PS1-KO) and Psen2-KO (PS2-KO) mice and was associated with decreased expression of the Niemann-Pick type C1 (NPC1) protein involved in intracellular cholesterol transport in late endosomal/lysosomal compartments. Mass spectrometry and complementary biochemical analyses also revealed abnormal N-glycosylation of NPC1 and several other membrane proteins in PS1-KO and PS2-KO cells. Interestingly, pharmacological inhibition of N-glycosylation resulted in intracellular cholesterol accumulation prominently in lysosomes and decreased NPC1, thereby resembling the changes in PS1-KO and PS2-KO cells. In turn, treatment of PS1-KO and PS2-KO mouse embryonic fibroblasts (MEFs) with the chaperone inducer arimoclomol partially normalized NPC1 expression and rescued lysosomal cholesterol accumulation. Additionally, the intracellular cholesterol accumulation in PS1-KO and PS2-KO MEFs was prevented by overexpression of NPC1. Collectively, these data indicate that a loss of PS function results in impaired protein N-glycosylation, which eventually causes decreased expression of NPC1 and intracellular cholesterol accumulation. This mechanism could contribute to the neurodegeneration observed in PS KO mice and potentially to the pathogenesis of AD.
Collapse
Affiliation(s)
- Marietta Fabiano
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jun-ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya 466-8550, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jochen Walter
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| |
Collapse
|
2
|
Homanics GE, Park JE, Bailey L, Schaeffer DJ, Schaeffer L, He J, Li S, Zhang T, Haber A, Spruce C, Greenwood A, Murai T, Schultz L, Mongeau L, Ha S, Oluoch J, Stein B, Choi SH, Huhe H, Thathiah A, Strick PL, Carter GW, Silva AC, Sukoff Rizzo SJ. Early molecular events of autosomal-dominant Alzheimer's disease in marmosets with PSEN1 mutations. Alzheimers Dement 2024; 20:3455-3471. [PMID: 38574388 PMCID: PMC11095452 DOI: 10.1002/alz.13806] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Fundamental questions remain about the key mechanisms that initiate Alzheimer's disease (AD) and the factors that promote its progression. Here we report the successful generation of the first genetically engineered marmosets that carry knock-in (KI) point mutations in the presenilin 1 (PSEN1) gene that can be studied from birth throughout lifespan. METHODS CRISPR/Cas9 was used to generate marmosets with C410Y or A426P point mutations in PSEN1. Founders and their germline offspring are comprehensively studied longitudinally using non-invasive measures including behavior, biomarkers, neuroimaging, and multiomics signatures. RESULTS Prior to adulthood, increases in plasma amyloid beta were observed in PSEN1 mutation carriers relative to non-carriers. Analysis of brain revealed alterations in several enzyme-substrate interactions within the gamma secretase complex prior to adulthood. DISCUSSION Marmosets carrying KI point mutations in PSEN1 provide the opportunity to study the earliest primate-specific mechanisms that contribute to the molecular and cellular root causes of AD onset and progression. HIGHLIGHTS We report the successful generation of genetically engineered marmosets harboring knock-in point mutations in the PSEN1 gene. PSEN1 marmosets and their germline offspring recapitulate the early emergence of AD-related biomarkers. Studies as early in life as possible in PSEN1 marmosets will enable the identification of primate-specific mechanisms that drive disease progression.
Collapse
Affiliation(s)
- Gregg E. Homanics
- Department of Anesthesiology & Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jung Eun Park
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lauren Bailey
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - David J. Schaeffer
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lauren Schaeffer
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jie He
- Department of StatisticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Shuoran Li
- Department of StatisticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tingting Zhang
- Department of StatisticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | | | | | - Takeshi Murai
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Laura Schultz
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lauren Mongeau
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Seung‐Kwon Ha
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Julia Oluoch
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Brianne Stein
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sang Ho Choi
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hasi Huhe
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Amantha Thathiah
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Peter L. Strick
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Afonso C. Silva
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Stacey J. Sukoff Rizzo
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Eccles MK, Main N, Carlessi R, Armstrong AM, Sabale M, Roberts-Mok B, Tirnitz-Parker JEE, Agostino M, Groth D, Fraser PE, Verdile G. Quantitative comparison of presenilin protein expression reveals greater activity of PS2-γ-secretase. FASEB J 2024; 38:e23396. [PMID: 38156414 DOI: 10.1096/fj.202300954rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
γ-secretase processing of amyloid precursor protein (APP) has long been of interest in the pathological progression of Alzheimer's disease (AD) due to its role in the generation of amyloid-β. The catalytic component of the enzyme is the presenilins of which there are two homologues, Presenilin-1 (PS1) and Presenilin-2 (PS2). The field has focussed on the PS1 form of this enzyme, as it is typically considered the more active at APP processing. However, much of this work has been completed without appropriate consideration of the specific levels of protein expression of PS1 and PS2. We propose that expression is an important factor in PS1- and PS2-γ-secretase activity, and that when this is considered, PS1 does not have greater activity than PS2. We developed and validated tools for quantitative assessment of PS1 and PS2 protein expression levels to enable the direct comparison of PS in exogenous and endogenous expression systems, in HEK-293 PS1 and/or PS2 knockout cells. We show that exogenous expression of Myc-PS1-NTF is 5.5-times higher than Myc-PS2-NTF. Quantitating endogenous PS protein levels, using a novel PS1/2 fusion standard we developed, showed similar results. When the marked difference in PS1 and PS2 protein levels is considered, we show that compared to PS1-γ-secretase, PS2-γ-secretase has equal or more activity on APP and Notch1. This study has implications for understanding the PS1- and PS2-specific contributions to substrate processing, and their potential influence in AD pathogenesis.
Collapse
Affiliation(s)
- Melissa K Eccles
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Nathan Main
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Ayeisha Milligan Armstrong
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Miheer Sabale
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Brigid Roberts-Mok
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Janina E E Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Mark Agostino
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - David Groth
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Giuseppe Verdile
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
4
|
Gao Y, Sun Y, Islam S, Nakamura T, Tomita T, Zou K, Michikawa M. Presenilin 1 deficiency impairs Aβ42-to-Aβ40- and angiotensin-converting activities of ACE. Front Aging Neurosci 2023; 15:1098034. [PMID: 36875692 PMCID: PMC9981673 DOI: 10.3389/fnagi.2023.1098034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is associated with amyloid β-protein 1-42 (Aβ42) accumulation in the brain. Aβ42 and Aβ40 are the major two species generated from amyloid precursor protein. We found that angiotensin-converting enzyme (ACE) converts neurotoxic Aβ42 to neuroprotective Aβ40 in an ACE domain- and glycosylation-dependent manner. Presenilin 1 (PS1) mutations account for most of cases of familial AD and lead to an increased Aβ42/40 ratio. However, the mechanism by which PSEN1 mutations induce a higher Aβ42/40 ratio is unclear. Methods We over expressed human ACE in mouse wild-type and PS1-deficient fibroblasts. The purified ACE protein was used to analysis the Aβ42-to-Aβ40- and angiotensin-converting activities. The distribution of ACE was determined by Immunofluorescence staining. Result We found that ACE purified from PS1-deficient fibroblasts exhibited altered glycosylation and significantly reduced Aβ42-to-Aβ40- and angiotensin-converting activities compared with ACE from wild-type fibroblasts. Overexpression of wild-type PS1 in PS1-deficient fibroblasts restored the Aβ42-to-Aβ40- and angiotensin-converting activities of ACE. Interestingly, PS1 mutants completely restored the angiotensin-converting activity in PS1-deficient fibroblasts, but some PS1 mutants did not restore the Aβ42-to-Aβ40-converting activity. We also found that the glycosylation of ACE in adult mouse brain differed from that of embryonic brain and that the Aβ42-to-Aβ40-converting activity in adult mouse brain was lower than that in embryonic brain. Conclusion PS1 deficiency altered ACE glycosylation and impaired its Aβ42-to-Aβ40- and angiotensin-converting activities. Our findings suggest that PS1 deficiency and PSEN1 mutations increase the Aβ42/40 ratio by reducing the Aβ42-to-Aβ40-converting activity of ACE.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomohisa Nakamura
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo, Japan
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
5
|
Hur JY. γ-Secretase in Alzheimer's disease. Exp Mol Med 2022; 54:433-446. [PMID: 35396575 PMCID: PMC9076685 DOI: 10.1038/s12276-022-00754-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is caused by synaptic and neuronal loss in the brain. One of the characteristic hallmarks of AD is senile plaques containing amyloid β-peptide (Aβ). Aβ is produced from amyloid precursor protein (APP) by sequential proteolytic cleavages by β-secretase and γ-secretase, and the polymerization of Aβ into amyloid plaques is thought to be a key pathogenic event in AD. Since γ-secretase mediates the final cleavage that liberates Aβ, γ-secretase has been widely studied as a potential drug target for the treatment of AD. γ-Secretase is a transmembrane protein complex containing presenilin, nicastrin, Aph-1, and Pen-2, which are sufficient for γ-secretase activity. γ-Secretase cleaves >140 substrates, including APP and Notch. Previously, γ-secretase inhibitors (GSIs) were shown to cause side effects in clinical trials due to the inhibition of Notch signaling. Therefore, more specific regulation or modulation of γ-secretase is needed. In recent years, γ-secretase modulators (GSMs) have been developed. To modulate γ-secretase and to understand its complex biology, finding the binding sites of GSIs and GSMs on γ-secretase as well as identifying transiently binding γ-secretase modulatory proteins have been of great interest. In this review, decades of findings on γ-secretase in AD are discussed.
Collapse
Affiliation(s)
- Ji-Yeun Hur
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Golde TE. Alzheimer’s disease – the journey of a healthy brain into organ failure. Mol Neurodegener 2022; 17:18. [PMID: 35248124 PMCID: PMC8898417 DOI: 10.1186/s13024-022-00523-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
As the most common dementia, Alzheimer’s disease (AD) exacts an immense personal, societal, and economic toll. AD was first described at the neuropathological level in the early 1900s. Today, we have mechanistic insight into select aspects of AD pathogenesis and have the ability to clinically detect and diagnose AD and underlying AD pathologies in living patients. These insights demonstrate that AD is a complex, insidious, degenerative proteinopathy triggered by Aβ aggregate formation. Over time Aβ pathology drives neurofibrillary tangle (NFT) pathology, dysfunction of virtually all cell types in the brain, and ultimately, overt neurodegeneration. Yet, large gaps in our knowledge of AD pathophysiology and huge unmet medical need remain. Though we largely conceptualize AD as a disease of aging, heritable and non-heritable factors impact brain physiology, either continuously or at specific time points during the lifespan, and thereby alter risk for devolvement of AD. Herein, I describe the lifelong journey of a healthy brain from birth to death with AD, while acknowledging the many knowledge gaps that remain regarding our understanding of AD pathogenesis. To ensure the current lexicon surrounding AD changes from inevitable, incurable, and poorly manageable to a lexicon of preventable, curable, and manageable we must address these knowledge gaps, develop therapies that have a bigger impact on clinical symptoms or progression of disease and use these interventions at the appropriate stage of disease.
Collapse
|
7
|
Noorani AA, Yamashita H, Gao Y, Islam S, Sun Y, Nakamura T, Enomoto H, Zou K, Michikawa M. High temperature promotes amyloid β-protein production and γ-secretase complex formation via Hsp90. J Biol Chem 2020; 295:18010-18022. [PMID: 33067321 PMCID: PMC7939388 DOI: 10.1074/jbc.ra120.013845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss and accumulation of β-amyloid-protein (Aβ) in the brain parenchyma. Sleep impairment is associated with AD and affects about 25-40% of patients in the mild-to-moderate stages of the disease. Sleep deprivation leads to increased Aβ production; however, its mechanism remains largely unknown. We hypothesized that the increase in core body temperature induced by sleep deprivation may promote Aβ production. Here, we report temperature-dependent regulation of Aβ production. We found that an increase in temperature, from 37 °C to 39 °C, significantly increased Aβ production in amyloid precursor protein-overexpressing cells. We also found that high temperature (39 °C) significantly increased the expression levels of heat shock protein 90 (Hsp90) and the C-terminal fragment of presenilin 1 (PS1-CTF) and promoted γ-secretase complex formation. Interestingly, Hsp90 was associated with the components of the premature γ-secretase complex, anterior pharynx-defective-1 (APH-1), and nicastrin (NCT) but was not associated with PS1-CTF or presenilin enhancer-2. Hsp90 knockdown abolished the increased level of Aβ production and the increased formation of the γ-secretase complex at high temperature in culture. Furthermore, with in vivo experiments, we observed increases in the levels of Hsp90, PS1-CTF, NCT, and the γ-secretase complex in the cortex of mice housed at higher room temperature (30 °C) compared with those housed at standard room temperature (23 °C). Our results suggest that high temperature regulates Aβ production by modulating γ-secretase complex formation through the binding of Hsp90 to NCT/APH-1.
Collapse
Affiliation(s)
- Arshad Ali Noorani
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Yuan Gao
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomohisa Nakamura
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroyuki Enomoto
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
8
|
Bi HR, Zhou CH, Zhang YZ, Cai XD, Ji MH, Yang JJ, Chen GQ, Hu YM. Neuron-specific deletion of presenilin enhancer2 causes progressive astrogliosis and age-related neurodegeneration in the cortex independent of the Notch signaling. CNS Neurosci Ther 2020; 27:174-185. [PMID: 32961023 PMCID: PMC7816208 DOI: 10.1111/cns.13454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Presenilin enhancer2 (Pen‐2) is an essential subunit of γ‐secretase, which is a key protease responsible for the cleavage of amyloid precursor protein (APP) and Notch. Mutations on Pen‐2 cause familial Alzheimer disease (AD). However, it remains unknown whether Pen‐2 regulates neuronal survival and neuroinflammation in the adult brain. Methods Forebrain neuron‐specific Pen‐2 conditional knockout (Pen‐2 cKO) mice were generated for this study. Pen‐2 cKO mice expressing Notch1 intracellular domain (NICD) conditionally in cortical neurons were also generated. Results Loss of Pen‐2 causes astrogliosis followed by age‐dependent cortical atrophy and neuronal loss. Loss of Pen‐2 results in microgliosis and enhanced inflammatory responses in the cortex. Expression of NICD in Pen‐2 cKO cortices ameliorates neither neurodegeneration nor neuroinflammation. Conclusions Pen‐2 is required for neuronal survival in the adult cerebral cortex. The Notch signaling may not be involved in neurodegeneration caused by loss of Pen‐2.
Collapse
Affiliation(s)
- Hui-Ru Bi
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Cui-Hua Zhou
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yi-Zhi Zhang
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Xu-Dong Cai
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gui-Quan Chen
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Yi-Min Hu
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
9
|
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105:12-26. [DOI: 10.1016/j.semcdb.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
|
10
|
Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol 2020; 105:102-109. [PMID: 32171519 DOI: 10.1016/j.semcdb.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
Abstract
Genetic research on familial cases of Alzheimer disease have identified presenilin (PS) as an important membrane protein in the pathomechanism of this disease. PS is the catalytic subunit of γ-secretase, which is responsible for the generation of amyloid-β peptide deposited in the brains of Alzheimer disease patients. γ-Secretase is an atypical protease composed of four membrane proteins (i.e., presenilin, nicastrin, anterior pharynx defective-1 (Aph-1), and presenilin enhancer-2 (Pen-2)) and mediates intramembrane proteolysis. Numerous investigations have been conducted toward understanding the structural features of γ-secretase components as well as the cleavage mechanism of γ-secretase. In this review, we summarize our current understanding of the structure and activity relationship of the γ-secretase complex.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
11
|
Wolfe MS. Unraveling the complexity of γ-secretase. Semin Cell Dev Biol 2020; 105:3-11. [PMID: 31980377 PMCID: PMC7371508 DOI: 10.1016/j.semcdb.2020.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/26/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Abstract
γ-Secretase was initially defined as a proteolytic activity that cleaves within the transmembrane of the amyloid precursor protein (APP) to produce the amyloid β-peptide of Alzheimer's disease. The discovery of mutations in APP and the presenilins associated with familial Alzheimer's disease and their effects on APP processing dovetailed with pharmacological studies on γ-secretase, leading to the revelation that presenilins are unprecedented membrane-embedded aspartyl proteases. Other members of what became known as the γ-secretase complex were subsequently identified. In parallel with these advances, connections between presenilins and Notch receptors essential to metazoan development became evident, resulting in the concurrent realization that γ-secretase also carries out intramembrane proteolysis of Notch as part of its signaling mechanism. Substantial progress has been made toward elucidating how γ-secretase carries out complex processing of transmembrane domains, how it goes awry in familial Alzheimer's disease, the scope of its substrates, and the atomic details of its structure. Critical questions remain for future study, toward further unraveling the complexity of this unique membrane-embedded proteolytic machine and its roles in biology and disease.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
12
|
Vöglein J, Willem M, Trambauer J, Schönecker S, Dieterich M, Biskup S, Giudici C, Utz K, Oberstein T, Brendel M, Rominger A, Danek A, Steiner H, Haass C, Levin J. Identification of a rare presenilin 1 single amino acid deletion mutation (F175del) with unusual amyloid-β processing effects. Neurobiol Aging 2019; 84:241.e5-241.e11. [DOI: 10.1016/j.neurobiolaging.2019.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
13
|
Gerber H, Mosser S, Boury-Jamot B, Stumpe M, Piersigilli A, Goepfert C, Dengjel J, Albrecht U, Magara F, Fraering PC. The APMAP interactome reveals new modulators of APP processing and beta-amyloid production that are altered in Alzheimer's disease. Acta Neuropathol Commun 2019; 7:13. [PMID: 30704515 PMCID: PMC6354426 DOI: 10.1186/s40478-019-0660-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
The adipocyte plasma membrane-associated protein APMAP is expressed in the brain where it associates with γ-secretase, a protease responsible for the generation of the amyloid-β peptides (Aβ) implicated in the pathogenesis of Alzheimer's disease (AD). In this study, behavioral investigations revealed spatial learning and memory deficiencies in our newly generated mouse line lacking the protein APMAP. In a mouse model of AD, the constitutive deletion of APMAP worsened the spatial memory phenotype and led to increased Aβ production and deposition into senile plaques. To investigate at the molecular level the neurobiological functions of APMAP (memory and Aβ formation) and a possible link with the pathological hallmarks of AD (memory impairment and Aβ pathology), we next developed a procedure for the high-grade purification of cellular APMAP protein complexes. The biochemical characterization of these complexes revealed a series of new APMAP interactomers. Among these, the heat shock protein HSPA1A and the cation-dependent mannose-6-phosphate receptor (CD-M6PR) negatively regulated APP processing and Aβ production, while clusterin, calnexin, arginase-1, PTGFRN and the cation-independent mannose-6-phosphate receptor (CI-M6PR/IGF2R) positively regulated APP and Aβ production. Several of the newly identified APMAP interactomers contribute to the autophagy-lysosome system, further supporting an emergent agreement that this pathway can modulate APP metabolism and Aβ generation. Importantly, we have also demonstrated increased alternative splicing of APMAP and lowered levels of the Aβ controllers HSPA1A and CD-M6PR in human brains from neuropathologically verified AD cases.
Collapse
Affiliation(s)
- Hermeto Gerber
- Foundation Eclosion, CH-1228, Plan-les-Ouates, Switzerland
- Campus Biotech Innovation Park, CH-1202, Geneva, Switzerland
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Sebastien Mosser
- Foundation Eclosion, CH-1228, Plan-les-Ouates, Switzerland
- Campus Biotech Innovation Park, CH-1202, Geneva, Switzerland
| | - Benjamin Boury-Jamot
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CH-1015, Lausanne, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Alessandra Piersigilli
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, CH-3012, Bern, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Christine Goepfert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, CH-3012, Bern, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Joern Dengjel
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Fulvio Magara
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CH-1015, Lausanne, Switzerland
| | - Patrick C Fraering
- Foundation Eclosion, CH-1228, Plan-les-Ouates, Switzerland.
- Campus Biotech Innovation Park, CH-1202, Geneva, Switzerland.
| |
Collapse
|
14
|
Zhou R, Yang G, Shi Y. Dominant negative effect of the loss-of-function γ-secretase mutants on the wild-type enzyme through heterooligomerization. Proc Natl Acad Sci U S A 2017; 114:12731-12736. [PMID: 29078389 PMCID: PMC5715776 DOI: 10.1073/pnas.1713605114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
γ-secretase is an intramembrane protease complex consisting of nicastrin, presenilin-1/2, APH-1a/b, and Pen-2. Hydrolysis of the 99-residue transmembrane fragment of amyloid precursor protein (APP-C99) by γ-secretase produces β-amyloid (Aβ) peptides. Pathogenic mutations in PSEN1 and PSEN2, which encode the catalytic subunit presenilin-1/2 of γ-secretase, lead to familial Alzheimer's disease in an autosomal dominant manner. However, the underlying mechanism of how the mutant PSEN gene may affect the function of the WT allele remains to be elucidated. Here we report that each of the loss-of-function γ-secretase variants that carries a PSEN1 mutation suppresses the protease activity of the WT γ-secretase on Aβ production. Each of these γ-secretase variants forms a stable oligomer with the WT γ-secretase in vitro in the presence of the detergent CHAPSO {3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate}, but not digitonin. Importantly, robust protease activity of γ-secretase is detectable in the presence of CHAPSO, but not digitonin. These experimental observations suggest a dominant negative effect of the γ-secretase, in which the protease activity of WT γ-secretase is suppressed by the loss-of-function γ-secretase variants through hetero-oligomerization. The relevance of this finding to the genesis of Alzheimer's disease is critically evaluated.
Collapse
Affiliation(s)
- Rui Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China;
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanghui Yang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China;
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China;
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310064, Zhejiang Province, China
| |
Collapse
|
15
|
Zhu B, Jiang L, Huang T, Zhao Y, Liu T, Zhong Y, Li X, Campos A, Pomeroy K, Masliah E, Zhang D, Xu H. ER-associated degradation regulates Alzheimer's amyloid pathology and memory function by modulating γ-secretase activity. Nat Commun 2017; 8:1472. [PMID: 29133892 PMCID: PMC5684335 DOI: 10.1038/s41467-017-01799-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic-reticulum-associated degradation (ERAD) is an important protein quality control system which maintains protein homeostasis. Constituents of the ERAD complex and its role in neurodegeneration are not yet fully understood. Here, using proteomic and FRET analyses, we demonstrate that the ER protein membralin is an ERAD component, which mediates degradation of ER luminal and membrane substrates. Interestingly, we identify nicastrin, a key component of the γ-secretase complex, as a membralin binding protein and membralin-associated ERAD substrate. We demonstrate a reduction of membralin mRNA and protein levels in Alzheimer's disease (AD) brain, the latter of which inversely correlates with nicastrin abundance. Furthermore, membralin deficiency enhances γ-secretase activity and neuronal degeneration. In a mouse AD model, downregulating membralin results in β-amyloid pathology, neuronal death, and exacerbates synaptic/memory deficits. Our results identify membralin as an ERAD component and demonstrate a critical role for ERAD in AD pathogenesis.
Collapse
Affiliation(s)
- Bing Zhu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - LuLin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Timothy Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yingjun Zhao
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Tongfei Liu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaoguang Li
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Alexandre Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Kenneth Pomeroy
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dongxian Zhang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
16
|
Yeates EFA, Tesco G. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation. J Biol Chem 2016; 291:15753-66. [PMID: 27302062 DOI: 10.1074/jbc.m116.718023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 01/04/2023] Open
Abstract
The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease.
Collapse
Affiliation(s)
| | - Giuseppina Tesco
- From the Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
17
|
Chen AC, Kim S, Shepardson N, Patel S, Hong S, Selkoe DJ. Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis. J Cell Biol 2015; 211:1157-76. [PMID: 26694839 PMCID: PMC4687875 DOI: 10.1083/jcb.201502001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022] Open
Abstract
Many single-transmembrane proteins are sequentially cleaved by ectodomain-shedding α-secretases and the γ-secretase complex, a process called regulated intramembrane proteolysis (RIP). These cleavages are thought to be spatially and temporally separate. In contrast, we provide evidence for a hitherto unrecognized multiprotease complex containing both α- and γ-secretase. ADAM10 (A10), the principal neuronal α-secretase, interacted and cofractionated with γ-secretase endogenously in cells and mouse brain. A10 immunoprecipitation yielded γ-secretase proteolytic activity and vice versa. In agreement, superresolution microscopy showed that portions of A10 and γ-secretase colocalize. Moreover, multiple γ-secretase inhibitors significantly increased α-secretase processing (r = -0.86) and decreased β-secretase processing of β-amyloid precursor protein. Select members of the tetraspanin web were important both in the association between A10 and γ-secretase and the γ → α feedback mechanism. Portions of endogenous BACE1 coimmunoprecipitated with γ-secretase but not A10, suggesting that β- and α-secretases can form distinct complexes with γ-secretase. Thus, cells possess large multiprotease complexes capable of sequentially and efficiently processing transmembrane substrates through a spatially coordinated RIP mechanism.
Collapse
Affiliation(s)
- Allen C Chen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Sumin Kim
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Nina Shepardson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Sarvagna Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Soyon Hong
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
18
|
Joshi G, Bekier ME, Wang Y. Golgi fragmentation in Alzheimer's disease. Front Neurosci 2015; 9:340. [PMID: 26441511 PMCID: PMC4585163 DOI: 10.3389/fnins.2015.00340] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
The Golgi apparatus is an essential cellular organelle for post-translational modifications, sorting, and trafficking of membrane and secretory proteins. Proper functionality of the Golgi requires the formation of its unique cisternal-stacking morphology. The Golgi structure is disrupted in a variety of neurodegenerative diseases, suggesting a common mechanism and contribution of Golgi defects in neurodegenerative disorders. A recent study on Alzheimer's disease (AD) revealed that phosphorylation of the Golgi stacking protein GRASP65 disrupts its function in Golgi structure formation, resulting in Golgi fragmentation. Inhibiting GRASP65 phosphorylation restores the Golgi morphology from Aβ-induced fragmentation and reduces Aβ production. Perturbing Golgi structure and function in neurons may directly impact trafficking, processing, and sorting of a variety of proteins essential for synaptic and dendritic integrity. Therefore, Golgi defects may ultimately promote the development of AD. In the current review, we focus on the cellular impact of impaired Golgi morphology and its potential relationship to AD disease development.
Collapse
Affiliation(s)
- Gunjan Joshi
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Michael E Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA ; Department of Neurology, University of Michigan School of Medicine Ann Arbor, MI, USA
| |
Collapse
|
19
|
Goodchild RE, Buchwalter AL, Naismith TV, Holbrook K, Billion K, Dauer WT, Liang CC, Dear ML, Hanson PI. Access of torsinA to the inner nuclear membrane is activity dependent and regulated in the endoplasmic reticulum. J Cell Sci 2015; 128:2854-65. [PMID: 26092934 DOI: 10.1242/jcs.167452] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/12/2015] [Indexed: 11/20/2022] Open
Abstract
TorsinA (also known as torsin-1A) is a membrane-embedded AAA+ ATPase that has an important role in the nuclear envelope lumen. However, most torsinA is localized in the peripheral endoplasmic reticulum (ER) lumen where it has a slow mobility that is incompatible with free equilibration between ER subdomains. We now find that nuclear-envelope-localized torsinA is present on the inner nuclear membrane (INM) and ask how torsinA reaches this subdomain. The ER system contains two transmembrane proteins, LAP1 and LULL1 (also known as TOR1AIP1 and TOR1AIP2, respectively), that reversibly co-assemble with and activate torsinA. Whereas LAP1 localizes on the INM, we show that LULL1 is in the peripheral ER and does not enter the INM. Paradoxically, interaction between torsinA and LULL1 in the ER targets torsinA to the INM. Native gel electrophoresis reveals torsinA oligomeric complexes that are destabilized by LULL1. Mutations in torsinA or LULL1 that inhibit ATPase activity reduce the access of torsinA to the INM. Furthermore, although LULL1 binds torsinA in the ER lumen, its effect on torsinA localization requires cytosolic-domain-mediated oligomerization. These data suggest that LULL1 oligomerizes to engage and transiently disassemble torsinA oligomers, and is thereby positioned to transduce cytoplasmic signals to the INM through torsinA.
Collapse
Affiliation(s)
- Rose E Goodchild
- VIB Centre for the Biology of Disease and KU Leuven, Department of Human Genetics, Campus Gasthuisberg, Leuven 3000, Belgium
| | - Abigail L Buchwalter
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Kristen Holbrook
- Department of Biochemistry, Cell and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Karolien Billion
- VIB Centre for the Biology of Disease and KU Leuven, Department of Human Genetics, Campus Gasthuisberg, Leuven 3000, Belgium
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chun-Chi Liang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mary Lynn Dear
- Department of Biochemistry, Cell and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
20
|
Chu Y, Peng X, Long Z, Wang K, Luo S, Sharma A, He G. Distribution and expression of Pen-2 in the central nervous system of APP/PS1 double transgenic mice. Acta Biochim Biophys Sin (Shanghai) 2015; 47:258-66. [PMID: 25736404 DOI: 10.1093/abbs/gmv010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The γ-secretase complex catalyzes the final cleavage step of amyloid β-protein precursor (APP) to generate amyloid β (Aβ) peptide, a pathogenic component of senile plaques in the brain of Alzheimer's disease (AD) patients. Recent studies have shown that presenilin enhancer-2 (Pen-2), presenilin (PS, including PS1 and PS2), nicastrin, and anterior pharynx-defective 1 are essential components of the γ-secretase. The structure and function of Pen-2 in vitro have been well defined. However, little is known about the neuroanatomical distribution and expression of Pen-2 in the central nervous system (CNS) of AD model mice. We report here, using various methods such as immunohistochemical staining and immunoblotting, that Pen-2 is widely expressed at specific neuronal cells of major areas in AD model mice, including the olfactory bulb, basal forebrain, striatum, cortex, hippocampus, amygdala, thalamus, hypothalamus, cerebellum, brainstem, and spinal cord. It is co-expressed with PS1 in specific neuronal cells in mouse brain. Pen-2 is distributed much more extensively than extracellular amyloid deposits, suggesting the importance of other factors in localized amyloid deposition. Pen-2 is localized predominantly in cell membrane and cytoplasma in adult AD mice, but only distributed at cell membrane in controls. At the early stages of postnatal development, the expression level of Pen-2 is relatively high in CNS, but declines, gradually in adult mice. The present study provides an anatomical basis for Pen-2 as a key component of γ-secretase complex in the brain of developing and adult mice, and Pen-2 might be closely related to Aβ burden in aging nervous system.
Collapse
Affiliation(s)
- Yanan Chu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Xuehua Peng
- Department of Radiology, Pediatric Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhiming Long
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Kejian Wang
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Shifang Luo
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Akhilesh Sharma
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
Gong H, Yan Y, Fang B, Xue Y, Yin P, Li L, Zhang G, Sun X, Chen Z, Ma H, Yang C, Ding Y, Yong Y, Zhu Y, Yang H, Komuro I, Ge J, Zou Y. Knockdown of nucleosome assembly protein 1-like 1 induces mesoderm formation and cardiomyogenesis via notch signaling in murine-induced pluripotent stem cells. Stem Cells 2015; 32:1759-73. [PMID: 24648372 DOI: 10.1002/stem.1702] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 02/11/2014] [Accepted: 02/21/2014] [Indexed: 11/06/2022]
Abstract
Low efficiency of cardiomyocyte differentiation from induced pluripotent stem cells (iPSCs) hinders the clinical application of iPSC technology for cardiac repair strategy. Recently, we screened out nucleosome assembly protein 1-like 1 (Nap1l1), which was downregulated during the differentiation of P19CL6 cells into cardiomyocytes. Here, we attempted to study the role of Nap1l1 in cardiomyogenesis of iPSC. Nap1l1 was downregulated during the differentiation of iPSC. Knockdown of Nap1l1 dramatically enhanced the differentiation of iPSC into functional cardiomyocytes while overexpression of Nap1l1 sharply lowered the differentiation. Moreover, although Nap1l1-knockdown had little effect on endoderm differentiation, the Nap1l1 modulation significantly accelerated mesoderm development. Re-expressing Nap1l1 in Nap1l1-knockdown-iPSC rescued the effects of Nap1l1. Inducibly overexpressing Nap1l1 at early stage of differentiation greatly inhibited mesoderm induction and cardiogenesis of iPSC. However, mesoderm stem cells (Flk-1-positive cells) originated from Nap1l1-knockdown- or -overexpression-iPSC showed no difference in further cardiomyocyte differentiation compared with that of control-iPSC. Further study revealed that Nap1l1-overexpression increased γ-secretase activity and the expression of Notch intracellular domain (NICD) and downstream genes during the differentiation of iPSC. γ-Secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycinet-butyl ester) greatly suppressed the production of NICD and abolished the inhibitory effects of Nap1l1-overexpression on mesoderm induction and cardiogenesis. These findings demonstrate that downregulation of Nap1l1 significantly enhances mesodermal induction and subsequent cardiogenesis of murine iPSC via inhibition of γ-secretase-regulated Notch signaling, which would facilitate the application of iPSC in heart diseases.
Collapse
Affiliation(s)
- Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Marinangeli C, Tasiaux B, Opsomer R, Hage S, Sodero AO, Dewachter I, Octave JN, Smith SO, Constantinescu SN, Kienlen-Campard P. Presenilin transmembrane domain 8 conserved AXXXAXXXG motifs are required for the activity of the γ-secretase complex. J Biol Chem 2015; 290:7169-84. [PMID: 25614624 DOI: 10.1074/jbc.m114.601286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the molecular mechanisms controlling the physiological and pathological activity of γ-secretase represents a challenging task in Alzheimer disease research. The assembly and proteolytic activity of this enzyme require the correct interaction of the 19 transmembrane domains (TMDs) present in its four subunits, including presenilin (PS1 or PS2), the γ-secretase catalytic core. GXXXG and GXXXG-like motifs are critical for TMDs interactions as well as for protein folding and assembly. The GXXXG motifs on γ-secretase subunits (e.g. APH-1) or on γ-secretase substrates (e.g. APP) are known to be involved in γ-secretase assembly and in Aβ peptide production, respectively. We identified on PS1 and PS2 TMD8 two highly conserved AXXXAXXXG motifs. The presence of a mutation causing an inherited form of Alzheimer disease (familial Alzheimer disease) in the PS1 motif suggested their involvement in the physiopathological configuration of the γ-secretase complex. In this study, we targeted the role of these motifs on TMD8 of PSs, focusing on their role in PS assembly and catalytic activity. Each motif was mutated, and the impact on complex assembly, activity, and substrate docking was monitored. Different amino acid substitutions on the same motif resulted in opposite effects on γ-secretase activity, without affecting the assembly or significantly impairing the maturation of the complex. Our data suggest that AXXXAXXXG motifs in PS TMD8 are key determinants for the conformation of the mature γ-secretase complex, participating in the switch between the physiological and pathological functional conformations of the γ-secretase.
Collapse
Affiliation(s)
| | | | | | - Salim Hage
- the Louvain Drug Research Institute, and
| | | | | | | | - Steven O Smith
- the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Stefan N Constantinescu
- the de Duve Institute and Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels 1200, Belgium and
| | | |
Collapse
|
23
|
Delay C, Dorval V, Fok A, Grenier-Boley B, Lambert JC, Hsiung GY, Hébert SS. MicroRNAs targeting Nicastrin regulate Aβ production and are affected by target site polymorphisms. Front Mol Neurosci 2014; 7:67. [PMID: 25100943 PMCID: PMC4103510 DOI: 10.3389/fnmol.2014.00067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/02/2014] [Indexed: 12/31/2022] Open
Abstract
Despite the growing number of genome-wide association studies, the involvement of polymorphisms in microRNA target sites (polymiRTS) in Alzheimer’s disease (AD) remains poorly investigated. Recently, we have shown that AD-associated single-nucleotide polymorphisms (SNPs) present in the 3′ untranslated region (3′UTR) of amyloid precursor protein (APP) could directly affect miRNA function. In theory, loss of microRNA (miRNA) function could lead to risk for AD by increasing APP expression and Aβ peptide production. In this study, we tested the hypothesis that Nicastrin, a γ-secretase subunit involved in Aβ generation, could be regulated by miRNAs, and consequently affected by 3′UTR polymorphisms. Bioinformatic analysis identified 22 putative miRNA binding sites located in or near Nicastrin 3′UTR polymorphisms. From these miRNA candidates, six were previously shown to be expressed in human brain. We identified miR-24, miR-186, and miR-455 as regulators of Nicastrin expression, both in vitro and under physiological conditions in human cells, which resulted in altered Aβ secretion. Using luciferase-based assays, we further demonstrated that rs113810300 and rs141849450 SNPs affected miRNA-mediated repression of Nicastrin. Notably, rs141849450 completely abolished the miR-455-mediated repression of Nicastrin. Finally, the rs141849450 variant was identified in 1 out of 511 AD cases but not in 631 controls. These observations set the stage for future studies exploring the role of miRNAs and 3′UTR polymorphisms in AD.
Collapse
Affiliation(s)
- Charlotte Delay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec QC, Canada ; Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec QC, Canada ; Institut Pasteur de Lille, INSERM U744, Université Lille Nord de France Lille (Nord), France
| | - Véronique Dorval
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec QC, Canada ; Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec QC, Canada
| | - Alice Fok
- Division of Neurology, Department of Medicine, University of British Columbia Vancouver, QC, Canada
| | - Benjamin Grenier-Boley
- Institut Pasteur de Lille, INSERM U744, Université Lille Nord de France Lille (Nord), France
| | - Jean-Charles Lambert
- Institut Pasteur de Lille, INSERM U744, Université Lille Nord de France Lille (Nord), France
| | - G-Y Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia Vancouver, QC, Canada
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec QC, Canada ; Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec QC, Canada
| |
Collapse
|
24
|
Wolfe MS. Toward the structure of presenilin/γ-secretase and presenilin homologs. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:2886-97. [PMID: 24099007 PMCID: PMC3801419 DOI: 10.1016/j.bbamem.2013.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 01/30/2023]
Abstract
Presenilin is the catalytic component of the γ-secretase complex, a membrane-embedded aspartyl protease that plays a central role in biology and in the pathogenesis of Alzheimer's disease. Upon assembly with its three protein cofactors (nicastrin, Aph-1 and Pen-2), presenilin undergoes autoproteolysis into two subunits, each of which contributes one of the catalytic aspartates to the active site. A family of presenilin homologs, including signal peptide peptidase, possess proteolytic activity without the need for other protein factors, and these simpler intramembrane aspartyl proteases have given insight into the action of presenilin within the γ-secretase complex. Cellular and molecular studies support a nine-transmembrane topology for presenilins and their homologs, and small-molecule inhibitors and cysteine scanning with crosslinking have suggested certain presenilin residues and regions that contribute to substrate recognition and handling. Identification of partial complexes has also offered clues to protein-protein interactions within the γ-secretase complex. Biophysical methods have allowed 3D views of the γ-secretase complex and presenilins. Most recently, the crystal structure of a microbial presenilin homolog has confirmed a nine-transmembrane topology and intramembranous location and proximity of the two conserved and essential aspartates. The crystal structure also provides a platform for the formulation of specific hypotheses regarding substrate interaction and catalysis as well as the pathogenic mechanism of Alzheimer-causing presenilin mutations. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, H.I.M. 754, Boston, MA 02115 USA.
| |
Collapse
|
25
|
Sesele K, Thanopoulou K, Paouri E, Tsefou E, Klinakis A, Georgopoulos S. Conditional inactivation of nicastrin restricts amyloid deposition in an Alzheimer's disease mouse model. Aging Cell 2013; 12:1032-40. [PMID: 23826707 DOI: 10.1111/acel.12131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2013] [Indexed: 12/15/2022] Open
Abstract
Production of Aβ by γ-secretase is a key event in Alzheimer's disease (AD). The γ-secretase complex consists of presenilin (PS) 1 or 2, nicastrin (ncstn), Pen-2, and Aph-1 and cleaves type I transmembrane proteins, including the amyloid precursor protein (APP). Although ncstn is widely accepted as an essential component of the complex required for γ-secretase activity, recent in vitro studies have suggested that ncstn is dispensable for APP processing and Aβ production. The focus of this study was to answer this controversy and evaluate the role of ncstn in Aβ generation and the development of the amyloid-related phenotype in the mouse brain. To eliminate ncstn expression in the mouse brain, we used a ncstn conditional knockout mouse that we mated with an established AD transgenic mouse model (5XFAD) and a neuronal Cre-expressing transgenic mouse (CamKIIα-iCre), to generate AD mice (5XFAD/CamKIIα-iCre/ncstn(f/f) mice) where ncstn was conditionally inactivated in the brain. 5XFAD/CamKIIα-iCre/ncstn(f/f) mice at 10 week of age developed a neurodegenerative phenotype with a significant reduction in Aβ production and formation of Aβ aggregates and the absence of amyloid plaques. Inactivation of nctsn resulted in substantial accumulation of APP-CTFs and altered PS1 expression. These results reveal a key role for ncstn in modulating Aβ production and amyloid plaque formation in vivo and suggest ncstn as a target in AD therapeutics.
Collapse
Affiliation(s)
- Katia Sesele
- Department of Cell Biology; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| | - Kalliopi Thanopoulou
- Department of Cell Biology; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| | - Evi Paouri
- Department of Cell Biology; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| | - Eliona Tsefou
- Department of Cell Biology; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| | - Apostolos Klinakis
- Department of Genetics and Gene Therapy; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| | - Spiros Georgopoulos
- Department of Cell Biology; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| |
Collapse
|
26
|
Schedin-Weiss S, Winblad B, Tjernberg LO. The role of protein glycosylation in Alzheimer disease. FEBS J 2013; 281:46-62. [PMID: 24279329 DOI: 10.1111/febs.12590] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/18/2022]
Abstract
Glycosylation is one of the most common, and the most complex, forms of post-translational modification of proteins. This review serves to highlight the role of protein glycosylation in Alzheimer disease (AD), a topic that has not been thoroughly investigated, although glycosylation defects have been observed in AD patients. The major pathological hallmarks in AD are neurofibrillary tangles and amyloid plaques. Neurofibrillary tangles are composed of phosphorylated tau, and the plaques are composed of amyloid β-peptide (Aβ), which is generated from amyloid precursor protein (APP). Defects in glycosylation of APP, tau and other proteins have been reported in AD. Another interesting observation is that the two proteases required for the generation of amyloid β-peptide (Aβ), i.e. γ-secretase and β-secretase, also have roles in protein glycosylation. For instance, γ-secretase and β-secretase affect the extent of complex N-glycosylation and sialylation of APP, respectively. These processes may be important in AD pathogenesis, as proper intracellular sorting, processing and export of APP are affected by how it is glycosylated. Furthermore, lack of one of the key components of γ-secretase, presenilin, leads to defective glycosylation of many additional proteins that are related to AD pathogenesis and/or neuronal function, including nicastrin, reelin, butyrylcholinesterase, cholinesterase, neural cell adhesion molecule, v-ATPase, and tyrosine-related kinase B. Improved understanding of the effects of AD on protein glycosylation, and vice versa, may therefore be important for improving the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Sophia Schedin-Weiss
- Karolinska Institutet Alzheimer Disease Research Center (KI-ADRC), Novum, Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Peltonen HM, Haapasalo A, Hiltunen M, Kataja V, Kosma VM, Mannermaa A. Γ-secretase components as predictors of breast cancer outcome. PLoS One 2013; 8:e79249. [PMID: 24223915 PMCID: PMC3815159 DOI: 10.1371/journal.pone.0079249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022] Open
Abstract
γ-secretase is a large ubiquitously expressed protease complex composed of four core subunits: presenilin, Aph1, PEN-2, and nicastrin. The function of γ-secretase in the cells is to proteolytically cleave various proteins within their transmembrane domains. Presenilin and Aph1 occur as alternative variants belonging to mutually exclusive γ-secretase complexes and providing the complexes with heterogeneous biochemical and physiological properties. γ-secretase is proposed to have a role in the development and progression of cancer and γ-secretase inhibitors are intensively studied for their probable anti-tumor effects in various types of cancer models. Here, we for the first time determined mRNA expression levels of presenilin-1, presenilin-2, Aph1a, Aph1b, PEN-2, and nicastrin in a set of breast cancer tissue samples (N = 55) by quantitative real-time PCR in order to clarify the clinical significance of the expression of different γ-secretase complex components in breast cancer. We found a high positive correlation between the subunit expression levels implying a common regulation of transcription. Our univariate Kaplan-Meier survival analyses established low expression level of γ-secretase complex as a risk factor for breast cancer specific mortality. The tumors expressing low levels of γ-secretase complex were characterized by high histopathological tumor grade, low or no expression of estrogen and progesterone receptors and consequently high probability to fall into the class of triple negative breast cancer tumors. These results may provide novel tools to further categorize breast cancer tumors, especially the highly aggressive and poorly treatable breast cancer type of triple negative cases, and suggest a significant role for γ-secretase in breast cancer.
Collapse
Affiliation(s)
- Hanna M. Peltonen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine – Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland, Kuopio, Finland
| | - Vesa Kataja
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
28
|
Zhang X, Song W. The role of APP and BACE1 trafficking in APP processing and amyloid-β generation. ALZHEIMERS RESEARCH & THERAPY 2013; 5:46. [PMID: 24103387 PMCID: PMC3978418 DOI: 10.1186/alzrt211] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuritic plaques in the brain are a major neuropathological hallmark of Alzheimer’s disease. They are formed by the deposition and aggregation of extracellular amyloid-β protein (Aβ). Aβ is derived from the sequential cleavage of amyloid-β precursor protein (APP) by β-secretase and γ-secretase. β-Site APP cleaving enzyme 1 (BACE1) functions as the primary, if not sole, β-secretase in vivo and is essential for Aβ production. Regulation of APP processing is a major focus of research into AD pathogenesis. The trafficking systems of APP and its cleavage enzymes are complex. Transporting APP and secretases into the same subcellular organelles facilitates their interaction and favors APP processing. The role of APP and BACE1 trafficking in the amyloidgenic pathway and the underlying mechanisms for Aβ production are discussed in this review. In addition, the distinct mechanisms of amino- and carboxy-terminal Aβ generation are reviewed.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver BC V6T 1Z3, Canada
| |
Collapse
|
29
|
Trans-dominant negative effects of pathogenic PSEN1 mutations on γ-secretase activity and Aβ production. J Neurosci 2013; 33:11606-17. [PMID: 23843529 DOI: 10.1523/jneurosci.0954-13.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mutations in the PSEN1 gene encoding Presenilin-1 (PS1) are the predominant cause of familial Alzheimer's disease (FAD), but the underlying mechanisms remain unresolved. To reconcile the dominant action of pathogenic PSEN1 mutations with evidence that they confer a loss of mutant protein function, we tested the hypothesis that PSEN1 mutations interfere with γ-secretase activity in a dominant-negative manner. Here, we show that pathogenic PSEN1 mutations act in cis to impair mutant PS1 function and act in trans to inhibit wild-type PS1 function. Coexpression of mutant and wild-type PS1 at equal gene dosage in presenilin-deficient mouse embryo fibroblasts resulted in trans-dominant-negative inhibition of wild-type PS1 activity, suppressing γ-secretase-dependent cleavage of APP and Notch. Surprisingly, mutant PS1 could stimulate production of Aβ42 by wild-type PS1 while decreasing its production of Aβ40. Mutant and wild-type PS1 efficiently coimmunoprecipitated, suggesting that mutant PS1 interferes with wild-type PS1 activity via physical interaction. These results support the conclusion that mutant PS1 causes wild-type PS1 to adopt an altered conformation with impaired catalytic activity and substrate specificity. Our findings reveal a novel mechanism of action for pathogenic PSEN1 mutations and suggest that dominant-negative inhibition of presenilin activity plays an important role in FAD pathogenesis.
Collapse
|
30
|
García-Ayllón MS, Campanari ML, Brinkmalm G, Rábano A, Alom J, Saura CA, Andreasen N, Blennow K, Sáez-Valero J. CSF Presenilin-1 complexes are increased in Alzheimer's disease. Acta Neuropathol Commun 2013; 1:46. [PMID: 24252417 PMCID: PMC3893612 DOI: 10.1186/2051-5960-1-46] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/04/2013] [Indexed: 11/24/2022] Open
Abstract
Background Presenilin-1 (PS1) is the active component of the amyloid precursor protein cleaving γ-secretase complex. PS1 protein is a transmembrane protein containing multiple hydrophobic regions which presence in cerebrospinal fluid (CSF) has not been measured to date. This study assesses whether PS1 and other components of the γ-secretase complex are present in CSF. Results Here, we show that PS1 is present in ventricular post-mortem and lumbar ante-mortem CSF, and plasma as 100–150-kDa hetero-complexes containing both the N- and C-terminal fragments (NTF and CTF) of the protein. Immunoprecipitation and immunoblotting with different antibodies confirmed the identity of the PS1 species. The γ-secretase components, APH-1 (anterior pharynx-defective 1) and PEN-2 (presenilin enhancer 2), as well as presenilin-2 (PS2) fragments, co-exist within these CSF complexes, while nicastrin is not detected. These CSF-PS1 complexes differ from active γ-secretase membrane-complexes, and may represent nonspecific aggregation of the PS1 protein. Levels of PS1 complexes are increased in CSF samples from autopsy-confirmed Alzheimer’s disease (AD) cases and were found to be more stable than complexes in CSF from control subjects. Despite similar levels of total PS1 in CSF from probable AD patients and cognitively normal subjects, an increased proportion of highly stable PS1 complexes were observed in AD CSF. Conclusions Our data suggest that fragments of the PS1 protein present in CSF as complexes may be useful as a biomarker for AD.
Collapse
|
31
|
Crump CJ, Johnson DS, Li YM. Development and mechanism of γ-secretase modulators for Alzheimer's disease. Biochemistry 2013; 52:3197-216. [PMID: 23614767 DOI: 10.1021/bi400377p] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
γ-Secretase is an aspartyl intramembranal protease composed of presenilin, Nicastrin, Aph1, and Pen2 with 19 transmembrane domains. γ-Secretase cleaves the amyloid precursor proteins (APP) to release Aβ peptides that likely play a causative role in the pathogenesis of Alzheimer's disease (AD). In addition, γ-secretase cleaves Notch and other type I membrane proteins. γ-Secretase inhibitors (GSIs) have been developed and used for clinical studies. However, clinical trials have shown adverse effects of GSIs that are potentially linked with nondiscriminatory inhibition of Notch signaling, overall APP processing, and other substrate cleavages. Therefore, these findings call for the development of disease-modifying agents that target γ-secretase activity to lower levels of Aβ42 production without blocking the overall processing of γ-secretase substrates. γ-Secretase modulators (GSMs) originally derived from nonsteroidal anti-inflammatory drugs (NSAIDs) display such characteristics and are the focus of this review. However, first-generation GSMs have limited potential because of the low potency and undesired neuropharmacokinetic properties. This generation of GSMs has been suggested to interact with the APP substrate, γ-secretase, or both. To improve the potency and brain availability, second-generation GSMs, including NSAID-derived carboxylic acid and non-NSAID-derived heterocyclic chemotypes, as well as natural product-derived GSMs have been developed. Animal studies of this generation of GSMs have shown encouraging preclinical profiles. Moreover, using potent GSM photoaffinity probes, multiple studies unambiguously have showed that both carboxylic acid and heterocyclic GSMs specifically target presenilin, the catalytic subunit of γ-secretase. In addition, two types of GSMs have distinct binding sites within the γ-secretase complex and exhibit different Aβ profiles. GSMs induce a conformational change of γ-secretase to achieve modulation. Various models are proposed and discussed. Despite the progress of GSM research, many outstanding issues remain to be investigated to achieve the ultimate goal of developing GSMs as effective AD therapies.
Collapse
Affiliation(s)
- Christina J Crump
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States
| | | | | |
Collapse
|
32
|
Goo JS, Kim YB, Shim SB, Jee SW, Lee SH, Kim JE, Hwang IS, Lee YJ, Kwak MH, Lim CJ, Hong JT, Hwang DY. Nicastrin overexpression in transgenic mice induces aberrant behavior and APP processing. Mol Neurobiol 2013; 48:232-43. [PMID: 23595812 DOI: 10.1007/s12035-013-8453-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/02/2013] [Indexed: 10/27/2022]
Abstract
Nicastrin (NCT) is a component of the presenilin protein complex, which is involved in the cleavage of β-amyloid precursor protein (βAPP) and Notch. The aim of this study was to determine the manner in which overexpression of wild-type human nicastrin (hNCTw) or mutant human nicastrin (hNCTm, D336A/Y337A) regulates brain functions and amyloid precusor protein (APP) processing. For this, we created transgenic (Tg) mice expressing neuron-specific enolase (NSE)-controlled hNCTw or hNCTm and measured their phenotypes as time passed. The NSE/hNCTw and NSE/hNCTm Tg groups exhibited greater behavioral dysfunction from 10 months of age than the non-Tg group, although their severities differed. Further, activity and component levels of the γ-secretase complex were significantly elevated in NSE/hNCTw Tg mice, expect for PEN-2. These alterations induced stimulation of APP processing, resulting in overproduction of Aβ-42 peptide in the NSE/hNCTw Tg group, whereas the NSE/hNCTm Tg group showed a comparatively weaker effect. Furthermore, the highest expression levels of β-secretase and NICD were observed in the NSE/hNCTw Tg group, similar to other phenotypes. Especially, a significances interference on the interaction between NCT and γ-secretase substrates was detected in NSE/hNCTm Tg groups compare with NSE/hNCTw Tg group. These results indicate that hNCTw overexpression in Tg mice promoted active assembly of the γ-secretase complex through modulation of APP processing and behavior, whereas the lesser effect in NSE/hNCTm Tg mice was due to reduced expression of hNCTm. These Tg mice could be useful for the development and application of therapeutic drugs in an animal model of Alzheimer's disease.
Collapse
Affiliation(s)
- Jun Seo Goo
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup, Miryang-si, Gyeongsangnam-do, 627-706, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Loss of PAFAH1B2 reduces amyloid-β generation by promoting the degradation of amyloid precursor protein C-terminal fragments. J Neurosci 2013; 32:18204-14. [PMID: 23238734 DOI: 10.1523/jneurosci.2681-12.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid-β peptide (Aβ) is believed to play a central role in the pathogenesis of Alzheimer's disease. In view of the side effects associated with inhibiting the secretases that produce Aβ, new molecular targets are required to provide alternative therapeutic options. We used RNA interference (RNAi) to systematically screen the Drosophila genome to identify genes that modulate Aβ production upon knockdown. RNAi of 41 genes in Drosophila cells significantly lowered Aβ without affecting general secretion or viability. After the γ-secretase complex components, the most potent effect was observed for platelet activating factor acetylhydrolase α (Paf-AHα), and, in mammalian cells, the effect was replicated for its ortholog PAFAH1B2. Knockdown of PAFAH1B2 strongly reduced Aβ secretion from human cells, and this effect was confirmed in primary cells derived from PAFAH1B2 knock-out mice. Reduced Aβ production was not attributable to altered β-amyloid precursor protein (APP) ectodomain shedding but was a result of an enhanced degradation of APP C-terminal fragments (CTFs) in the absence of PAFAH1B2 but not its close homolog PAFAH1B3. Enhanced degradation of APP CTFs was selective because no such effects were obtained for Notch or E-/N-cadherin. Thus, we have identified an important protein that can selectively modify Aβ generation via a novel mechanism, namely enhanced degradation of its immediate precursor. In view of the absence of a neurological phenotype in PAFAH1B2 knock-out mice, targeted downregulation of PAFAH1B2 may be a promising new strategy for lowering Aβ.
Collapse
|
34
|
Alattia JR, Schweizer C, Cacquevel M, Dimitrov M, Aeschbach L, Oulad-Abdelghani M, Fraering PC. Generation of monoclonal antibody fragments binding the native γ-secretase complex for use in structural studies. Biochemistry 2012; 51:8779-90. [PMID: 23066899 DOI: 10.1021/bi300997e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detailed understanding of γ-secretase structure is crucially needed to elucidate its unique properties of intramembrane protein cleavage and to design therapeutic compounds for the safe treatment of Alzheimer's disease. γ-Secretase is an enzyme complex composed of four membrane proteins, and the scarcity of its supply associated with the challenges of crystallizing membrane proteins is a major hurdle for the determination of its high-resolution structure. This study addresses some of these issues, first by adapting CHO cells overexpressing γ-secretase to growth in suspension, thus yielding multiliter cultures and milligram quantities of highly purified, active γ-secretase. Next, the amounts of γ-secretase were sufficient for immunization of mice and allowed generation of Nicastrin- and Aph-1-specific monoclonal antibodies, from which Fab fragments were proteolytically prepared and subsequently purified. The amounts of γ-secretase produced are compatible with robot-assisted crystallogenesis using nanoliter technologies. In addition, our Fab fragments bind exposed regions of native γ-secretase in a dose-dependent manner without interfering with its catalytic properties and can therefore be used as specific tools to facilitate crystal formation.
Collapse
Affiliation(s)
- Jean-René Alattia
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Maraver A, Fernández-Marcos PJ, Herranz D, Muñoz-Martin M, Gomez-Lopez G, Cañamero M, Mulero F, Megías D, Sanchez-Carbayo M, Shen J, Sanchez-Cespedes M, Palomero T, Ferrando A, Serrano M. Therapeutic effect of γ-secretase inhibition in KrasG12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell 2012; 22:222-34. [PMID: 22897852 PMCID: PMC3813920 DOI: 10.1016/j.ccr.2012.06.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/02/2012] [Accepted: 06/19/2012] [Indexed: 02/05/2023]
Abstract
Here, we have investigated the role of the Notch pathway in the generation and maintenance of Kras(G12V)-driven non-small cell lung carcinomas (NSCLCs). We demonstrate by genetic means that γ-secretase and RBPJ are essential for the formation of NSCLCs. Of importance, pharmacologic treatment of mice carrying autochthonous NSCLCs with a γ-secretase inhibitor (GSI) blocks cancer growth. Treated carcinomas present reduced HES1 levels and reduced phosphorylated ERK without changes in phosphorylated MEK. Mechanistically, we show that HES1 directly binds to and represses the promoter of DUSP1, encoding a dual phosphatase that is active against phospho-ERK. Accordingly, GSI treatment upregulates DUSP1 and decreases phospho-ERK. These data provide proof of the in vivo therapeutic potential of GSIs in primary NSCLCs.
Collapse
Affiliation(s)
- Antonio Maraver
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Correspondence to:,
| | | | - Daniel Herranz
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Institute of Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Maribel Muñoz-Martin
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Gonzalo Gomez-Lopez
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Cañamero
- Comparative Pathology Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Jie Shen
- Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Teresa Palomero
- Institute of Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Adolfo Ferrando
- Institute of Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Correspondence to:,
| |
Collapse
|
36
|
Nogalska A, D'Agostino C, Engel WK, Askanas V. Activation of the γ-secretase complex and presence of γ-secretase-activating protein may contribute to Aβ42 production in sporadic inclusion-body myositis muscle fibers. Neurobiol Dis 2012; 48:141-9. [PMID: 22750528 DOI: 10.1016/j.nbd.2012.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/22/2012] [Accepted: 06/22/2012] [Indexed: 01/07/2023] Open
Abstract
The muscle-fiber phenotype of sporadic inclusion-body myositis (s-IBM), the most common muscle disease associated with aging, shares several pathological abnormalities with Alzheimer disease (AD) brain, including accumulation of amyloid-β 42 (Aβ42) and its cytotoxic oligomers. The exact mechanisms leading to Aβ42 production within s-IBM muscle fibers are not known. Aβ42 and Aβ40 are generated after the amyloid-precursor protein (AβPP) is cleaved by β-secretase and the γ-secretase complex. Aβ42 is considered more cytotoxic than Aβ40, and it has a higher propensity to oligomerize, form amyloid fibrils, and aggregate. Recently, we have demonstrated in cultured human muscle fibers that experimental inhibition of lysosomal enzyme activities leads to Aβ42 oligomerization. In s-IBM muscle, we here demonstrate prominent abnormalities of the γ-secretase complex, as evidenced by: a) increase of γ-secretase components, namely active presenilin 1, presenilin enhancer 2, nicastrin, and presence of its mature, glycosylated form; b) increase of mRNAs of these γ-secretase components; c) increase of γ-secretase activity; d) presence of an active form of a newly-discovered γ-secretase activating protein (GSAP); and e) increase of GSAP mRNA. Furthermore, we demonstrate that experimental inhibition of lysosomal autophagic enzymes in cultured human muscle fibers a) activates γ-secretase, and b) leads to posttranslational modifications of AβPP and increase of Aβ42. Since autophagy is impaired in biopsied s-IBM muscle, the same mechanism might be responsible for its having increased γ-secretase activity and Aβ42 production. Accordingly, improving lysosomal function might be a therapeutic strategy for s-IBM patients.
Collapse
Affiliation(s)
- Anna Nogalska
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA 90017‐1912, USA
| | | | | | | |
Collapse
|
37
|
Identification of a tetratricopeptide repeat-like domain in the nicastrin subunit of γ-secretase using synthetic antibodies. Proc Natl Acad Sci U S A 2012; 109:8534-9. [PMID: 22586122 DOI: 10.1073/pnas.1202691109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The γ-secretase complex, composed of presenilin, anterior-pharynx-defective 1, nicastrin, and presenilin enhancer 2, catalyzes the intramembranous processing of a wide variety of type I membrane proteins, including amyloid precursor protein (APP) and Notch. Earlier studies have revealed that nicastrin, a type I membrane-anchored glycoprotein, plays a role in γ-secretase assembly and trafficking and has been proposed to bind substrates. To gain more insights regarding nicastrin structure and function, we generated a conformation-specific synthetic antibody and used it as a molecular probe to map functional domains within nicastrin ectodomain. The antibody bound to a conformational epitope within a nicastrin segment encompassing residues 245-630 and inhibited the processing of APP and Notch substrates in in vitro γ-secretase activity assays, suggesting that a functional domain pertinent to γ-secretase activity resides within this region. Epitope mapping and database searches revealed the presence of a structured segment, located downstream of the previously identified DAP domain (DYIGS and peptidase; residues 261-502), that is homologous to a tetratricopeptide repeat (TPR) domain commonly involved in peptide recognition. Mutagenesis analyses within the predicted TPR-like domain showed that disruption of the signature helical structure resulted in the loss of γ-secretase activity but not the assembly of the γ-secretase and that Leu571 within the TPR-like domain plays an important role in mediating substrate binding. Taken together, these studies offer provocative insights pertaining to the structural basis for nicastrin function as a "substrate receptor" within the γ-secretase complex.
Collapse
|
38
|
Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2012; 2:a006270. [PMID: 22553493 PMCID: PMC3331683 DOI: 10.1101/cshperspect.a006270] [Citation(s) in RCA: 769] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accumulations of insoluble deposits of amyloid β-peptide are major pathological hallmarks of Alzheimer disease. Amyloid β-peptide is derived by sequential proteolytic processing from a large type I trans-membrane protein, the β-amyloid precursor protein. The proteolytic enzymes involved in its processing are named secretases. β- and γ-secretase liberate by sequential cleavage the neurotoxic amyloid β-peptide, whereas α-secretase prevents its generation by cleaving within the middle of the amyloid domain. In this chapter we describe the cell biological and biochemical characteristics of the three secretase activities involved in the proteolytic processing of the precursor protein. In addition we outline how the precursor protein maturates and traffics through the secretory pathway to reach the subcellular locations where the individual secretases are preferentially active. Furthermore, we illuminate how neuronal activity and mutations which cause familial Alzheimer disease affect amyloid β-peptide generation and therefore disease onset and progression.
Collapse
Affiliation(s)
- Christian Haass
- DZNE-German Center for Neurodegenerative Diseases, 80336 Munich, Germany; Adolf Butenandt-Institute, Biochemistry, Ludwig-Maximilians University, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
39
|
Nesic I, Guix FX, Vennekens K, Michaki V, Van Veldhoven PP, Feiguin F, De Strooper B, Dotti CG, Wahle T. Alterations in phosphatidylethanolamine levels affect the generation of Aβ. Aging Cell 2012; 11:63-72. [PMID: 22023223 DOI: 10.1111/j.1474-9726.2011.00760.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several studies suggest that the generation of Aβ is highly dependent on the levels of cholesterol within membranes' detergent-resistant microdomains (DRM). Indeed, the β-amyloid precursor protein (APP) cleaving machinery, namely β- and γ-secretases, has been shown to be present in DRM and its activity depends on membrane cholesterol levels. Counterintuitive to the localization of the cleavage machinery, the substrate, APP, localizes to membranes' detergent-soluble microdomains enriched in phospholipids (PL), indicating that Aβ generation is highly dependent on the capacity of enzyme and substrate to diffuse along the lateral plane of the membrane and therefore on the internal equilibrium of the different lipids of DRM and non-DRM domains. Here, we studied to which extent changes in the content of a main non-DRM lipid might affect the proteolytic processing of APP. As phosphatidylethanolamine (PE) accounts for the majority of PL, we focused on its impact on the regulation of APP proteolysis. In mammalian cells, siRNA-mediated knock-down of PE synthesis resulted in decreased Aβ owing to a dual effect: promoted α-secretase cleavage and decreased γ-secretase processing of APP. In vivo, in Drosophila melanogaster, genetic reduction in PL synthesis results in decreased γ-secretase-dependent cleavage of APP. These results suggest that modulation of the membrane-soluble domains could be a valuable alternative to reduce excessive Aβ generation.
Collapse
Affiliation(s)
- Iva Nesic
- Center for Human Genetics, Leuven Institute for Neurodegenerative diseases, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Qi X, Cai J, Ruan Q, Liu L, Boye SL, Chen Z, Hauswirth WW, Ryals RC, Shaw L, Caballero S, Grant MB, Boulton ME. γ-Secretase inhibition of murine choroidal neovascularization is associated with reduction of superoxide and proinflammatory cytokines. Invest Ophthalmol Vis Sci 2012; 53:574-85. [PMID: 22205609 DOI: 10.1167/iovs.11-8728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE This study aimed to determine whether upregulation of γ-secretase could inhibit laser-induced choroidal neovascularization (CNV) and if this was associated with a reduction in both oxidative stress and proinflammatory cytokines. METHODS γ-Secretase, or its catalytic subunit presenilin 1 (PS1), were upregulated by exposure to either pigment epithelial derived factor (PEDF) or an AAV2 vector containing a PS1 gene driven by a vascular endothelial-cadherin promoter. Retinal endothelial cells were infected with AAV2 or exposed to PEDF in the presence or absence of VEGF and in vitro angiogenesis determined. Mouse eyes either received intravitreal injection of PEDF, DAPT (a γ-secretase inhibitor) or PEDF + DAPT at the time of laser injury, or AAV2 infection 3 weeks before receiving laser burns. Lesion volume was determined 14 days post laser injury. Superoxide generation, antioxidant activity and the production of proinflammatory mediators were assessed. Knockdown of γ-secretase was achieved using siRNA. RESULTS γ-Secretase upregulation and PS1 overexpression suppressed VEGF-induced in vitro angiogenesis and in vivo laser-induced CNV. This was associated with a reduction in the expression of VEGF and angiogenin 1 together with reduced superoxide anion generation and an increase in MnSOD compared with untreated CNV eyes. PS1 overexpression reduced proinflammatory factors and microglial activation in eyes with CNV compared with control. siRNA inhibition of γ-secretase resulted in increased angiogenesis. CONCLUSIONS γ-Secretase, and in particular PS1 alone, are potent regulators of angiogenesis and this is due in part to stabilizing endogenous superoxide generation and reducing proinflammatory cytokine expression during CNV.
Collapse
Affiliation(s)
- Xiaoping Qi
- Departments of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610-0235, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fluhrer R, Kamp F, Grammer G, Nuscher B, Steiner H, Beyer K, Haass C. The Nicastrin ectodomain adopts a highly thermostable structure. Biol Chem 2012; 392:995-1001. [PMID: 21848507 DOI: 10.1515/bc.2011.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nicastrin is a type I transmembrane glycoprotein, which is part of the high molecular weight γ-secretase complex. γ-Secretase is one of the key players associated with the generation of Alzheimer's disease pathology, since it liberates the neurotoxic amyloid β-peptide. Four proteins Nicastrin, anterior pharynx-defective-1 (Aph-1), presenilin enhancer-2 (Pen-2) and Presenilin are essential to form the active γ-secretase complex. Recently it has been shown, that Nicastrin has a key function in stabilizing the mature γ-secretase complex and may also be involved in substrate recognition. So far no structural data for the Nicastrin ectodomain or any other γ-secretase component are available. We therefore used Circular Dichroism (CD) spectroscopy to demonstrate that Nicastrin, similar to its homologues, the Streptomyces griseus aminopeptidase (SGAP) and the transferrin receptor (TfR), adopts a thermostable secondary structure. Furthermore, the Nicastrin ectodomain has an exceptionally high propensity to refold after thermal denaturation. These findings provide evidence to further support the hypothesis that Nicastrin may share evolutionary conserved properties with the aminopeptidase and the transferrin receptor family.
Collapse
Affiliation(s)
- Regina Fluhrer
- Adolf-Butenandt-Institute, Biochemistry, Ludwig Maximilians University, Schillerstrasse 44, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Grimm MOW, Rothhaar TL, Grösgen S, Burg VK, Hundsdörfer B, Haupenthal VJ, Friess P, Kins S, Grimm HS, Hartmann T. Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP). J Nutr Biochem 2011; 23:1214-23. [PMID: 22209004 DOI: 10.1016/j.jnutbio.2011.06.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/22/2011] [Accepted: 06/29/2011] [Indexed: 01/20/2023]
Abstract
Hydrogenation of oils and diary products of ruminant animals leads to an increasing amount of trans fatty acids in the human diet. Trans fatty acids are incorporated in several lipids and accumulate in the membrane of cells. Here we systematically investigate whether the regulated intramembrane proteolysis of the amyloid precursor protein (APP) is affected by trans fatty acids compared to the cis conformation. Our experiments clearly show that trans fatty acids compared to cis fatty acids increase amyloidogenic and decrease nonamyloidogenic processing of APP, resulting in an increased production of amyloid beta (Aβ) peptides, main components of senile plaques, which are a characteristic neuropathological hallmark for Alzheimer's disease (AD). Moreover, our results show that oligomerization and aggregation of Aβ are increased by trans fatty acids. The mechanisms identified by this in vitro study suggest that the intake of trans fatty acids potentially increases the AD risk or causes an earlier onset of the disease.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Deutsches Institut für DemenzPrävention (DIDP), Neurodegeneration and Neurobiology, 66421 Homburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
D'Onofrio G, Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Paroni G, Cascavilla L, Seripa D, Pilotto A. Advances in the identification of γ-secretase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Discov 2011; 7:19-37. [DOI: 10.1517/17460441.2012.645534] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Michaki V, Guix FX, Vennekens K, Munck S, Dingwall C, Davis JB, Townsend DM, Tew KD, Feiguin F, De Strooper B, Dotti CG, Wahle T. Down-regulation of the ATP-binding cassette transporter 2 (Abca2) reduces amyloid-β production by altering Nicastrin maturation and intracellular localization. J Biol Chem 2011; 287:1100-11. [PMID: 22086926 DOI: 10.1074/jbc.m111.288258] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clinical, pharmacological, biochemical, and genetic evidence support the notion that alteration of cholesterol homeostasis strongly predisposes to Alzheimer disease (AD). The ATP-binding cassette transporter-2 (Abca2), which plays a role in intracellular sterol trafficking, has been genetically linked to AD. It is unclear how these two processes are related. Here we demonstrate that down-regulation of Abca2 in mammalian cells leads to decreased amyloid-β (Aβ) generation. In vitro studies revealed altered γ-secretase complex formation in Abca2 knock-out cells due to the altered levels, post-translational modification, and subcellular localization of Nicastrin. Reduced Abca2 levels in mammalian cells in vitro, in Drosophila melanogaster and in mice resulted in altered γ-secretase processing of APP, and thus Aβ generation, without affecting Notch cleavage.
Collapse
Affiliation(s)
- Vasiliki Michaki
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Quintero-Monzon O, Martin MM, Fernandez MA, Cappello CA, Krzysiak AJ, Osenkowski P, Wolfe MS. Dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer's disease-causing presenilin mutations. Biochemistry 2011; 50:9023-35. [PMID: 21919498 PMCID: PMC3205908 DOI: 10.1021/bi2007146] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The amyloid β-peptide (Aβ), strongly implicated in the pathogenesis of Alzheimer's disease (AD), is produced from the amyloid β-protein precursor (APP) through consecutive proteolysis by β- and γ-secretases. The latter protease contains presenilin as the catalytic component of a membrane-embedded aspartyl protease complex. Missense mutations in presenilin are associated with early-onset familial AD, and these mutations generally both decrease Aβ production and increase the ratio of the aggregation-prone 42-residue form (Aβ42) to the 40-residue form (Aβ40). The connection between these two effects is not understood. Besides Aβ40 and Aβ42, γ-secretase produces a range of Aβ peptides, the result of initial cutting at the ε site to form Aβ48 or Aβ49 and subsequent trimming every three or four residues. Thus, γ-secretase displays both overall proteolytic activity (ε cutting) and processivity (trimming) toward its substrate APP. Here we tested whether a decrease in total activity correlates with decreased processivity using wild-type and AD-mutant presenilin-containing protease complexes. Changes in pH, temperature, and salt concentration that reduced the overall activity of the wild-type enzyme did not consistently result in increased proportions of longer Aβ peptides. Low salt concentrations and acidic pH were notable exceptions that subtly alter the proportion of individual Aβ peptides, suggesting that the charged state of certain residues may influence processivity. Five different AD mutant complexes, representing a broad range of effects on overall activity, Aβ42:Aβ40 ratios, and ages of disease onset, were also tested, revealing again that changes in total activity and processivity can be dissociated. Factors that control initial proteolysis of APP at the ε site apparently differ significantly from factors affecting subsequent trimming and the distribution of Aβ peptides.
Collapse
Affiliation(s)
| | | | - Marty A. Fernandez
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
| | - Christina A. Cappello
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
| | - Amanda J. Krzysiak
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
| | - Pamela Osenkowski
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
| | - Michael S. Wolfe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
| |
Collapse
|
46
|
γ-secretase inhibitors for treating Alzheimer’s disease: rationale and clinical data. ACTA ACUST UNITED AC 2011. [DOI: 10.4155/cli.11.86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Fraering PC. Structural and Functional Determinants of gamma-Secretase, an Intramembrane Protease Implicated in Alzheimer's Disease. Curr Genomics 2011; 8:531-49. [PMID: 19415127 PMCID: PMC2647162 DOI: 10.2174/138920207783769521] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/27/2007] [Accepted: 12/27/2007] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease is the most common form of neurodegenerative diseases in humans, characterized by the progressive accumulation and aggregation of amyloid-β peptides (Aβ) in brain regions subserving memory and cognition. These 39-43 amino acids long peptides are generated by the sequential proteolytic cleavages of the amyloid-β precursor protein (APP) by β- and γ-secretases, with the latter being the founding member of a new class of intramembrane-cleaving proteases (I-CliPs) characterized by their intramembranous catalytic residues hydrolyzing the peptide bonds within the transmembrane regions of their respective substrates. These proteases include the S2P family of metalloproteases, the Rhomboid family of serine proteases, and two aspartyl proteases: the signal peptide peptidase (SPP) and γ-secretase. In sharp contrast to Rhomboid and SPP that function as a single component, γ-secretase is a multi-component protease with complex assembly, maturation and activation processes. Recently, two low-resolution three-dimensional structures of γ-secretase and three high-resolution structures of the GlpG rhomboid protease have been obtained almost simultaneously by different laboratories. Although these proteases are unrelated by sequence or evolution, they seem to share common functional and structural mechanisms explaining how they catalyze intramembrane proteolysis. Indeed, a water-containing chamber in the catalytic cores of both γ-secretase and GlpG rhomboid provides the hydrophilic environment required for proteolysis and a lateral gating mechanism controls substrate access to the active site. The studies that have identified and characterized the structural determinants critical for the assembly and activity of the γ-secretase complex are reviewed here.
Collapse
Affiliation(s)
- Patrick C Fraering
- Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Lichtenthaler SF, Haass C, Steiner H. Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing. J Neurochem 2011; 117:779-96. [PMID: 21413990 DOI: 10.1111/j.1471-4159.2011.07248.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Regulated intramembrane proteolysis (RIP) controls the communication between cells and the extracellular environment. RIP is essential in the nervous system, but also in other tissues. In the RIP process, a membrane protein typically undergoes two consecutive cleavages. The first one results in the shedding of its ectodomain. The second one occurs within its transmembrane domain, resulting in secretion of a small peptide and the release of the intracellular domain into the cytosol. The proteolytic cleavage fragments act as versatile signaling molecules or are further degraded. An increasing number of membrane proteins undergo RIP. These include growth factors, cytokines, cell adhesion proteins, receptors, viral proteins and signal peptides. A dysregulation of RIP is found in diseases, such as leukemia and Alzheimer's disease. One of the first RIP substrates discovered was the amyloid precursor protein (APP). RIP processing of APP controls the generation of the amyloid β-peptide, which is believed to cause Alzheimer's disease. Focusing on APP as the best-studied RIP substrate, this review describes the function and mechanism of the APP RIP proteases with the goal to elucidate cellular mechanisms and common principles of the RIP process in general.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- DZNE-German Center for Neurodegenerative Diseases, Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | | | | |
Collapse
|
49
|
Imbimbo BP, Panza F, Frisardi V, Solfrizzi V, D'Onofrio G, Logroscino G, Seripa D, Pilotto A. Therapeutic intervention for Alzheimer's disease with γ-secretase inhibitors: still a viable option? Expert Opin Investig Drugs 2011; 20:325-41. [DOI: 10.1517/13543784.2011.550572] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Via Palermo 26/A, 43100 Parma, Italy ;
| | - Francesco Panza
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Vincenza Frisardi
- University of Bari, Center for Aging Brain, Department of Geriatrics, Memory Unit, Bari, Italy
| | - Vincenzo Solfrizzi
- University of Bari, Center for Aging Brain, Department of Geriatrics, Memory Unit, Bari, Italy
| | - Grazia D'Onofrio
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Giancarlo Logroscino
- University of Bari, Department of Neurological and Psychiatric Sciences, Bari, Italy
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Alberto Pilotto
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
50
|
Abstract
Presenilin is the catalytic component of gamma-secretase, a complex aspartyl protease and a founding member of intramembrane-cleaving proteases. gamma-Secretase is involved in the pathogenesis of Alzheimer's disease and a top target for therapeutic intervention. However, the protease complex processes a variety of transmembrane substrates, including the Notch receptor, raising concerns about toxicity. Nevertheless, gamma-secretase inhibitors and modulators have been identified that allow Notch processing and signaling to continue, and promising compounds are entering clinical trials. Molecular and biochemical studies offer a model for how this protease hydrolyzes transmembrane domains in the confines of the lipid bilayer. Progress has also been made toward structure elucidation of presenilin and the gamma-secretase complex by electron microscopy as well as by studying cysteine-mutant presenilins. The signal peptide peptidase (SPP) family of proteases are distantly related to presenilins. However, the SPPs work as single polypeptides without the need for cofactors and otherwise appear to be simple model systems for presenilin in the gamma-secretase complex. SPP biology, structure, and inhibition will also be discussed.
Collapse
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|