1
|
Kurilovich E, Geva-Zatorsky N. Effects of bacteriophages on gut microbiome functionality. Gut Microbes 2025; 17:2481178. [PMID: 40160174 PMCID: PMC11959909 DOI: 10.1080/19490976.2025.2481178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/28/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The gut microbiome, composed of bacteria, fungi, and viruses, plays a crucial role in maintaining the delicate balance of human health. Emerging evidence suggests that microbiome disruptions can have far-reaching implications, ranging from the development of inflammatory diseases and cancer to metabolic disorders. Bacteriophages, or "phages", are viruses that specifically infect bacterial cells, and their interactions with the gut microbiome are receiving increased attention. Despite the recently revived interest in the gut phageome, it is still considered the "dark matter" of the gut, with more than 80% of viral genomes remaining uncharacterized. Today, research is focused on understanding the mechanisms by which phages influence the gut microbiota and their potential applications. Bacteriophages may regulate the relative abundance of bacterial communities, affect bacterial functions in various ways, and modulate mammalian host immunity. This review explores how phages can regulate bacterial functionality, particularly in gut commensals and pathogens, emphasizing their role in gut health and disease.
Collapse
Affiliation(s)
- Elena Kurilovich
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Humans and the Microbiome program, CIFAR, Toronto, ON, Canada
| |
Collapse
|
2
|
Steensen K, Séneca J, Bartlau N, Yu XA, Hussain FA, Polz MF. Tailless and filamentous prophages are predominant in marine Vibrio. THE ISME JOURNAL 2024; 18:wrae202. [PMID: 39423289 PMCID: PMC11630473 DOI: 10.1093/ismejo/wrae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Although tailed bacteriophages (phages) of the class Caudoviricetes are thought to constitute the most abundant and ecologically relevant group of phages that can integrate their genome into the host chromosome, it is becoming increasingly clear that other prophages are widespread. Here, we show that prophages derived from filamentous and tailless phages with genome sizes below 16 kb make up the majority of prophages in marine bacteria of the genus Vibrio. To estimate prophage prevalence unaffected by database biases, we combined comparative genomics and chemical induction of 58 diverse Vibrio cyclitrophicus isolates, resulting in 107 well-curated prophages. Complemented with computationally predicted prophages, we obtained 1158 prophages from 931 naturally co-existing strains of the family Vibrionaceae. Prophages resembling tailless and filamentous phages predominated, accounting for 80% of all prophages in V. cyclitrophicus and 60% across the Vibrionaceae. In our experimental model, prophages of all three viral realms actively replicated upon induction indicating their ability to transfer to new hosts. Indeed, prophages were rapidly gained and lost, as suggested by variable prophage content between closely related V. cyclitrophicus. Prophages related to filamentous and tailless phages were integrated into only three genomic locations and restored the function of their integration site. Despite their small size, they contained highly diverse accessory genes that may contribute to host fitness, such as phage defense systems. We propose that, like their well-studied tailed equivalent, tailless and filamentous temperate phages are active and highly abundant drivers of host ecology and evolution in marine Vibrio, which have been largely overlooked.
Collapse
Affiliation(s)
- Kerrin Steensen
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Joana Séneca
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Nina Bartlau
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Xiaoqian A Yu
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Fatima A Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge MA 02138, United States
| | - Martin F Polz
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| |
Collapse
|
3
|
Complete genome sequencing and characterization of single-stranded DNA Vibrio parahaemolyticus phage from inland saline aquaculture environment. Virus Genes 2022; 58:483-487. [DOI: 10.1007/s11262-022-01913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
4
|
Mauritzen JJ, Castillo D, Tan D, Svenningsen SL, Middelboe M. Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses 2020; 12:v12070730. [PMID: 32640584 PMCID: PMC7412436 DOI: 10.3390/v12070730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Zonula occludens toxin (Zot) is a conserved protein in filamentous vibriophages and has been reported as a putative toxin in Vibrio cholerae. Recently, widespread distribution of zot-encoding prophages was found among marine Vibrio species, including environmental isolates. However, little is known about the dynamics of these prophages beyond V. cholerae. In this study, we characterized and quantified the zot-encoding filamentous phage VAIϕ, spontaneously induced from the fish pathogen V. anguillarum. VAIϕ contained 6117 bp encoding 11 ORFs, including ORF8pVAI, exhibiting 27%–73% amino acid identity to Inovirus Zot-like proteins. A qPCR method revealed an average of four VAIϕ genomes per host genome during host exponential growth phase, and PCR demonstrated dissemination of induced VAIϕ to other V. anguillarum strains through re-integration in non-lysogens. VAIϕ integrated into both chromosomes of V. anguillarum by recombination, causing changes in a putative ORF in the phage genome. Phylogenetic analysis of the V. anguillarumInoviridae elements revealed mosaic genome structures related to mainly V. cholerae. Altogether, this study contributes to the understanding of Inovirus infection dynamics and mobilization of zot-like genes beyond human pathogenic vibrios, and discusses their potential role in the evolution of the fish pathogen V. anguillarum.
Collapse
Affiliation(s)
- Jesper Juel Mauritzen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
| | - Demeng Tan
- Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (D.T.); (S.L.S.)
| | - Sine Lo Svenningsen
- Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (D.T.); (S.L.S.)
| | - Mathias Middelboe
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
- Correspondence: ; Tel.: +45-35-32-19-91
| |
Collapse
|
5
|
Shapiro JW, Putonti C. UPΦ phages, a new group of filamentous phages found in several members of Enterobacteriales. Virus Evol 2020; 6:veaa030. [PMID: 32607251 PMCID: PMC7307601 DOI: 10.1093/ve/veaa030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Filamentous phages establish chronic infections in their bacterial hosts, and new phages are secreted by infected bacteria for multiple generations, typically without causing host death. Often, these viruses integrate in their host's genome by co-opting the host's XerCD recombinase system. In several cases, these viruses also encode genes that increase bacterial virulence in plants and animals. Here, we describe a new filamentous phage, UPϕ901, which we originally found integrated in a clinical isolate of Escherichia coli from urine. UPϕ901 and closely related phages can be found in published genomes of over 200 other bacteria, including strains of Citrobacter koseri, Salmonella enterica, Yersinia enterocolitica, and Klebsiella pneumoniae. Its closest relatives are consistently found in urine or in the blood and feces of patients with urinary tract infections. More distant relatives can be found in isolates from other environments, including sewage, water, soil, and contaminated food. Each of these phages, which we collectively call 'UPϕ viruses', also harbors two or more novel genes of unknown function.
Collapse
Affiliation(s)
- Jason W Shapiro
- Department of Biology, Loyola University Chicago, 1032 W Sheridan Rd, Chicago, IL 60660, USA
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, 1032 W Sheridan Rd, Chicago, IL 60660, USA.,Department of Computer Science, Loyola University Chicago, 1052 W Loyola Ave, Chicago, IL, 60626, USA.,Bioinformatics Program, Loyola University Chicago, 1052 W Loyola Ave, Chicago, IL 60626, USA.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, 2160 S First Ave, Maywood, IL 60153, USA
| |
Collapse
|
6
|
CTX phage of Vibrio cholerae: Genomics and applications. Vaccine 2019; 38 Suppl 1:A7-A12. [PMID: 31272871 DOI: 10.1016/j.vaccine.2019.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/22/2019] [Accepted: 06/11/2019] [Indexed: 01/03/2023]
Abstract
The bipartite genome of Vibrio cholerae is divided into two circular non-homologous chromosomes, which harbor several genetic elements like phages, plasmids, transposons, integrative conjugative elements, and pathogenic islands that encode functions responsible for disease development, antimicrobial resistance, and subsistence in hostile environments. These elements are highly heterogeneous, mobile in nature, and encode their own mobility functions or exploit host-encoded enzymes for intra- and inter-cellular movements. The key toxin of V. cholerae responsible for the life-threatening diarrheal disease cholera, the cholera toxin, is coded by part of the genome of a filamentous phage, CTXϕ. The replicative genome of CTXϕ is divided into two distinct modular structures and has adopted a unique strategy for its irreversible integration into the V. cholerae chromosomes. CTXϕ exploits two host-encoded tyrosine recombinases, XerC and XerD, for its integration in the highly conserved dimer resolution site (dif) of V. cholerae chromosomes. CTXϕ can replicate only in the limited number of Vibrio species. In contrast, the phage integration into the bacterial chromosome does not rely on its replication and could integrate to the dif site of large numbers of gram-negative bacteria. Recent pangenomic analysis revealed that like CTXϕ, the bacterial dif site is the integration spot for several other mobile genetic elements such as plasmids and genomic islands. In this review we discuss about current molecular insights into CTXϕ genomics and its replication and integration mechanisms into hosts. Particular emphasis has been given on the exploitation of CTXϕ genomics knowledge in developing genetic tools and designing environmentally safe recombinant live oral cholera vaccine strains.
Collapse
|
7
|
Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019; 20:e47427. [PMID: 30952693 PMCID: PMC6549030 DOI: 10.15252/embr.201847427] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage ("bacteria eaters") or phage is the collective term for viruses that infect bacteria. While most phages are pathogens that kill their bacterial hosts, the filamentous phages of the sub-class Inoviridae live in cooperative relationships with their bacterial hosts, akin to the principal behaviours found in the modern-day sharing economy: peer-to-peer support, to offset any burden. Filamentous phages impose very little burden on bacteria and offset this by providing service to help build better biofilms, or provision of toxins and other factors that increase virulence, or modified behaviours that provide novel motile activity to their bacterial hosts. Past, present and future biotechnology applications have been built on this phage-host cooperativity, including DNA sequencing technology, tools for genetic engineering and molecular analysis of gene expression and protein production, and phage-display technologies for screening protein-ligand and protein-protein interactions. With the explosion of genome and metagenome sequencing surveys around the world, we are coming to realize that our knowledge of filamentous phage diversity remains at a tip-of-the-iceberg stage, promising that new biology and biotechnology are soon to come.
Collapse
Affiliation(s)
- Iain D Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
8
|
Yu HJ, Cha DSR, Shin DH, Nair GB, Kim EJ, Kim DW. Design and Construction of Vibrio cholerae Strains That Harbor Various CTX Prophage Arrays. Front Microbiol 2018; 9:339. [PMID: 29563899 PMCID: PMC5846015 DOI: 10.3389/fmicb.2018.00339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Toxigenic Vibrio cholerae strains arise upon infection and integration of the lysogenic cholera toxin phage, the CTX phage, into bacterial chromosomes. The V. cholerae serogroup O1 strains identified to date can be broadly categorized into three main groups: the classical biotype strains, which harbor CTX-cla; the prototype El Tor strains (Wave 1 strains), which harbor CTX-1; and the atypical El Tor strains, which harbor CTX-2 (Wave 2 strains) or CTX-3~6 (Wave 3 strains). The efficiencies of replication and transmission of CTX phages are similar, suggesting the possibility of existence of more diverse bacterial strains harboring various CTX phages and their arrays in nature. In this study, a set of V. cholerae strains was constructed by the chromosomal integration of CTX phages into strains that already harbored CTX phages or those that did not harbor any CTX phage or RS1 element. Strains containing repeats of the same kind of CTX phage, strains containing the same kind of CTX phage in each chromosome, strains containing alternative CTX phages in one chromosome, or containing different CTX phages in each chromosome have been constructed. Thus, strains with any CTX array can be designed and constructed. Moreover, the strains described in this study contained the toxT-139F allele, which enhances the expression of TcpA and cholera toxin. These characteristics are considered to be important for cholera vaccine development. Once their capacity to provoke immunity in human against V. cholerae infection is evaluated, some of the generated strains could be developed further to yield cholera vaccine strains.
Collapse
Affiliation(s)
- Hyun J Yu
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, South Korea
| | - Da S R Cha
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, South Korea
| | - Dong-Hun Shin
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, South Korea
| | - Gopinath B Nair
- South East Asia Regional Office, World Health Organization, New Delhi, India
| | - Eun J Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, South Korea
| | - Dong W Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, South Korea
| |
Collapse
|
9
|
Kim EJ, Lee CH, Nair GB, Kim DW. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends Microbiol 2015; 23:479-89. [DOI: 10.1016/j.tim.2015.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
|
10
|
Ilyina TS. Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2015. [DOI: 10.3103/s0891416815010036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Fan F, Kan B. Survival and proliferation of the lysogenic bacteriophage CTXΦ in Vibrio cholerae. Virol Sin 2015; 30:19-25. [PMID: 25613689 DOI: 10.1007/s12250-014-3550-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/12/2015] [Indexed: 11/26/2022] Open
Abstract
The lysogenic phage CTXΦ of Vibrio cholerae can transfer the cholera toxin gene both horizontally (inter-strain) and vertically (cell proliferation). Due to its diversity in form and species, the complexity of regulatory mechanisms, and the important role of the infection mechanism in the production of new virulent strains of V. cholerae, the study of the lysogenic phage CTXΦ has attracted much attention. Based on the progress of current research, the genomic features and their arrangement, the host-dependent regulatory mechanisms of CTXΦ phage survival, proliferation and propagation were reviewed to further understand the phage's role in the evolutionary and epidemiological mechanisms of V. cholerae.
Collapse
Affiliation(s)
- Fenxia Fan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China,
| | | |
Collapse
|
12
|
Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014; 5:650. [PMID: 25506341 PMCID: PMC4246890 DOI: 10.3389/fmicb.2014.00650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/10/2014] [Indexed: 02/03/2023] Open
Abstract
Vibrio cholerae, the etiological agent of acute diarrhoeal disease cholera, harbors large numbers of lysogenic filamentous phages, contribute significantly to the host pathogenesis and provide fitness factors to the pathogen that help the bacterium to survive in natural environment. Most of the vibriophage genomes are not equipped with integrase and thus exploit two host-encoded tyrosine recombinases, XerC and XerD, for lysogenic conversion. Integration is site-specific and it occurs at dimer resolution site (dif) of either one or both chromosomes of V. cholerae. Each dif sequence contains two recombinase-binding sequences flanking a central region. The integration follows a sequential strand exchanges between dif and attP sites within a DNA-protein complex consisting of one pair of each recombinase and two DNA fragments. During entire process of recombination, both the DNA components and recombinases of the synaptic complex keep transiently interconnected. Within the context of synaptic complex, both of the actuated enzymes mediate cleavage of phosphodiester bonds. First cleavage generates a phosphotyrosyl-linked recombinase-DNA complex at the recombinase binding sequence and free 5′-hydroxyl end at the first base of the central region. Following the cleavage, the exposed bases with 5′-hydroxyl ends of the central region of dif and attP sites melt from their complementary strands and react with the recombinase-DNA phosphotyrosyl linkage of their recombining partner. Subsequent ligation between dif and attP strands requires complementary base pair interactions at the site of phosphodiester bond formation. Integration mechanism is mostly influenced by the compatibility of dif and attP sequences. dif sites are highly conserved across bacterial phyla. Different phage genomes have different attP sequences; therefore they rely on different mechanisms for integration. Here, I review our current understanding of integration mechanisms used by the vibriophages.
Collapse
Affiliation(s)
- Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute Gurgaon, India
| |
Collapse
|
13
|
Kim EJ, Lee D, Moon SH, Lee CH, Kim SJ, Lee JH, Kim JO, Song M, Das B, Clemens JD, Pape JW, Nair GB, Kim DW. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants. PLoS Pathog 2014; 10:e1004384. [PMID: 25233006 PMCID: PMC4169478 DOI: 10.1371/journal.ppat.1004384] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/05/2014] [Indexed: 01/22/2023] Open
Abstract
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Dokyung Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Se Hoon Moon
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Chan Hee Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Sang Jun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
| | - Jae Hyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
| | - Jae Ouk Kim
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Manki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - John D. Clemens
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- UCLA Fielding School of Public Health, Los Angeles, California, United States of America
| | - Jean William Pape
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Les Centres GHESKIO, Port-au-Prince, Haïti
| | - G. Balakrish Nair
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
- * E-mail:
| |
Collapse
|
14
|
RS1 satellite phage promotes diversity of toxigenic Vibrio cholerae by driving CTX prophage loss and elimination of lysogenic immunity. Infect Immun 2014; 82:3636-43. [PMID: 24935981 DOI: 10.1128/iai.01699-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In El Tor biotype strains of toxigenic Vibrio cholerae, the CTXϕ prophage often resides adjacent to a chromosomally integrated satellite phage genome, RS1, which produces RS1ϕ particles by using CTX prophage-encoded morphogenesis proteins. RS1 encodes RstC, an antirepressor against the CTXϕ repressor RstR, which cooperates with the host-encoded LexA protein to maintain CTXϕ lysogeny. We found that superinfection of toxigenic El Tor strains with RS1ϕ, followed by inoculation of the transductants into the adult rabbit intestine, caused elimination of the resident CTX prophage-producing nontoxigenic derivatives at a high frequency. Further studies using recA deletion mutants and a cloned rstC gene showed that the excision event was recA dependent and that introduction of additional copies of the cloned rstC gene instead of infection with RS1ϕ was sufficient to enhance CTXϕ elimination. Our data suggest that once it is excised from the chromosome, the elimination of CTX prophage from host cells is driven by the inability to reestablish CTXϕ lysogeny while RstC is overexpressed. However, with eventual loss of the additional copies of rstC, the nontoxigenic derivatives can act as precursors of new toxigenic strains by acquiring the CTX prophage either through reinfection with CTXϕ or by chitin-induced transformation. These results provide new insights into the role of RS1ϕ in V. cholerae evolution and the emergence of highly pathogenic clones, such as the variant strains associated with recent devastating epidemics of cholera in Asia, sub-Saharan Africa, and Haiti.
Collapse
|
15
|
Banerjee R, Das B, Balakrish Nair G, Basak S. Dynamics in genome evolution of Vibrio cholerae. INFECTION GENETICS AND EVOLUTION 2014; 23:32-41. [PMID: 24462909 DOI: 10.1016/j.meegid.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/31/2022]
Abstract
Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains.
Collapse
Affiliation(s)
- Rachana Banerjee
- Department of Bio-Physics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - G Balakrish Nair
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - Surajit Basak
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar 799 022, Tripura, India; Bioinformatics Centre, Tripura University, Suryamaninagar 799 022, Tripura, India.
| |
Collapse
|
16
|
Devault AM, Golding GB, Waglechner N, Enk JM, Kuch M, Tien JH, Shi M, Fisman DN, Dhody AN, Forrest S, Bos KI, Earn DJD, Holmes EC, Poinar HN. Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. N Engl J Med 2014; 370:334-40. [PMID: 24401020 DOI: 10.1056/nejmoa1308663] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the 19th century, there were several major cholera pandemics in the Indian subcontinent, Europe, and North America. The causes of these outbreaks and the genomic strain identities remain a mystery. We used targeted high-throughput sequencing to reconstruct the Vibrio cholerae genome from the preserved intestine of a victim of the 1849 cholera outbreak in Philadelphia, part of the second cholera pandemic. This O1 biotype strain has 95 to 97% similarity with the classical O395 genome, differing by 203 single-nucleotide polymorphisms (SNPs), lacking three genomic islands, and probably having one or more tandem cholera toxin prophage (CTX) arrays, which potentially affected its virulence. This result highlights archived medical remains as a potential resource for investigations into the genomic origins of past pandemics.
Collapse
Affiliation(s)
- Alison M Devault
- From the McMaster Ancient DNA Centre (A.M.D., J.M.E., M.K., S.F., K.I.B., H.N.P.), Departments of Anthropology (A.M.D., M.K., K.I.B., H.N.P.), Biology (J.M.E., G.B.G., H.N.P.), and Mathematics and Statistics (D.J.D.E.), and the Michael G. DeGroote Institute for Infectious Disease Research (N.W., D.J.D.E., H.N.P.), McMaster University, Hamilton, ON, and the Dalla Lana School of Public Health, Toronto (D.N.F.) - all in Canada; the Department of Mathematics, Ohio State University, Columbus (J.H.T.); Marie Bashir Institute for Infectious Diseases and Biosecurity Institute, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney (M.S., E.C.H.); and the College of Physicians of Philadelphia, Mütter Museum, Philadelphia (A.N.D.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Understanding the genetic and ecological factors which support the emergence of new clones of pathogenic bacteria is vital to develop preventive measures. Vibrio cholerae the causative agent of cholera epidemics represents a paradigm for this process in that this organism evolved from environmental non-pathogenic strains by acquisition of virulence genes. The major virulence factors of V. cholerae, cholera toxin (CT) and toxin coregulated pilus (TCP) are encoded by a lysogenic bacteriophage (CTXφ) and a pathogenicity island, respectively. Additional phages which cooperate with the CTXφ in horizontal transfer of genes in V. cholerae have been characterized, and the potential exists for discovering yet new phages or genetic elements which support the transfer of genes for environmental fitness and virulence leading to the emergence of new epidemic strains. Phages have also been shown to play a crucial role in modulating seasonal cholera epidemics. Thus, the complex array of natural phenomena driving the evolution of pathogenic V. cholerae includes, among other factors, phages that either participate in horizontal gene transfer or in a bactericidal selection process favoring the emergence of new clones of V. cholerae.
Collapse
Affiliation(s)
- Shah M Faruque
- Centre for Food and Waterborne Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | |
Collapse
|
18
|
Bashir A, Klammer A, Robins WP, Chin CS, Webster D, Paxinos E, Hsu D, Ashby M, Wang S, Peluso P, Sebra R, Sorenson J, Bullard J, Yen J, Valdovino M, Mollova E, Luong K, Lin S, LaMay B, Joshi A, Rowe L, Frace M, Tarr CL, Turnsek M, Davis BM, Kasarskis A, Mekalanos JJ, Waldor MK, Schadt EE. A hybrid approach for the automated finishing of bacterial genomes. Nat Biotechnol 2012; 30:701-707. [PMID: 22750883 DOI: 10.1038/nbt.2288] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/30/2012] [Indexed: 02/08/2023]
Abstract
Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lori Rowe
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta GA 30333
| | - Michael Frace
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta GA 30333
| | - Cheryl L Tarr
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta GA 30333
| | - Maryann Turnsek
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta GA 30333
| | - Brigid M Davis
- Channing Laboratory, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA.,Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA.,Howard Hughes Medical Institute, Boston, MA
| | | | | | - Matthew K Waldor
- Channing Laboratory, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA.,Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA.,Howard Hughes Medical Institute, Boston, MA
| | - Eric E Schadt
- Pacific Biosciences, Menlo Park, CA.,Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York City
| |
Collapse
|
19
|
Taviani E, Spagnoletti M, Ceccarelli D, Haley BJ, Hasan NA, Chen A, Colombo MM, Huq A, Colwell RR. Genomic analysis of ICEVchBan8: An atypical genetic element in Vibrio cholerae. FEBS Lett 2012; 586:1617-21. [PMID: 22673571 DOI: 10.1016/j.febslet.2012.03.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 11/20/2022]
Abstract
Genomic islands (GIs) and integrative conjugative elements (ICEs) are major players in bacterial evolution since they encode genes involved in adaptive functions of medical or environmental importance. Here we performed the genomic analysis of ICEVchBan8, an unusual ICE found in the genome of a clinical non-toxigenic Vibrio cholerae O37 isolate. ICEVchBan8 shares most of its genetic structure with SXT/R391 ICEs. However, this ICE codes for a different integration/excision module is located at a different insertion site, and part of its genetic cargo shows homology to other pathogenicity islands of V. cholerae.
Collapse
Affiliation(s)
- Elisa Taviani
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The role of bacteriophages as natural vectors for some of the most potent bacterial toxins is well recognized and includes classical type I membrane-acting superantigens, type II pore-forming lysins, and type III exotoxins, such as diphtheria and botulinum toxins. Among Gram-negative pathogens, a novel class of bacterial virulence factors called effector proteins (EPs) are phage encoded among pathovars of Escherichia coli, Shigella spp., and Salmonella enterica. This chapter gives an overview of the different types of virulence factors encoded within phage genomes based on their role in bacterial pathogenesis. It also discusses phage-pathogenicity island interactions uncovered from studies of phage-encoded EPs. A detailed examination of the filamentous phage CTXφ that encodes cholera toxin is given as the sole example to date of a single-stranded DNA phage that encodes a bacterial toxin.
Collapse
|
21
|
Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011; 75:610-35. [PMID: 22126996 PMCID: PMC3232739 DOI: 10.1128/mmbr.00011-11] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Dr. Roux, 75015 Paris, France.
| | | | | | | |
Collapse
|
22
|
Hassan F, Kamruzzaman M, Mekalanos JJ, Faruque SM. Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration. Nature 2010; 467:982-5. [PMID: 20944629 PMCID: PMC2967718 DOI: 10.1038/nature09469] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/27/2010] [Indexed: 12/23/2022]
Abstract
Bacterial chromosomes often carry integrated genetic elements (for example plasmids, transposons, prophages and islands) whose precise function and contribution to the evolutionary fitness of the host bacterium are unknown. The CTXφ prophage, which encodes cholera toxin in Vibrio cholerae, is known to be adjacent to a chromosomally integrated element of unknown function termed the toxin-linked cryptic (TLC). Here we report the characterization of a TLC-related element that corresponds to the genome of a satellite filamentous phage (TLC-Knφ1), which uses the morphogenesis genes of another filamentous phage (fs2φ) to form infectious TLC-Knφ1 phage particles. The TLC-Knφ1 phage genome carries a sequence similar to the dif recombination sequence, which functions in chromosome dimer resolution using XerC and XerD recombinases. The dif sequence is also exploited by lysogenic filamentous phages (for example CTXφ) for chromosomal integration of their genomes. Bacterial cells defective in the dimer resolution often show an aberrant filamentous cell morphology. We found that acquisition and chromosomal integration of the TLC-Knφ1 genome restored a perfect dif site and normal morphology to V. cholerae wild-type and mutant strains with dif(-) filamentation phenotypes. Furthermore, lysogeny of a dif(-) non-toxigenic V. cholerae with TLC-Knφ1 promoted its subsequent toxigenic conversion through integration of CTXφ into the restored dif site. These results reveal a remarkable level of cooperative interactions between multiple filamentous phages in the emergence of the bacterial pathogen that causes cholera.
Collapse
Affiliation(s)
- Faizule Hassan
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - M. Kamruzzaman
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115
| | - Shah M. Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| |
Collapse
|
23
|
Insights into the infective properties of YpfΦ, the Yersinia pestis filamentous phage. Virology 2010; 407:43-52. [PMID: 20728914 DOI: 10.1016/j.virol.2010.07.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/17/2010] [Accepted: 07/30/2010] [Indexed: 11/20/2022]
Abstract
YpfΦ is a filamentous phage that infected Yersinia pestis, the plague bacillus, during its emergence. Using an experimental transduction approach, we show here that this phage has the capacity to infect with variable efficiencies, all three pathogenic Yersinia species as well as Escherichia coli. Like other Inovirus phages, its genetic organization comprises three functional modules necessary for the production of infectious virions. Upon infection, YpfΦ integrates into the chromosomal dif site, but extrachromosomal forms are also frequently observed. Several pieces of evidence suggest that the absence of chromosomal YpfΦ in natural non-Orientalis Y. pestis isolates results from a higher chromosomal excision rate rather than from a defective integration machinery. A resident YpfΦ confers some protection against a superinfection. In contrast to other filamentous phages, the incoming YpfΦ genome inserts itself between two copies of the resident prophage. This analysis thus unravels infective properties specific to YpfΦ.
Collapse
|
24
|
Mantri CK, Mohapatra SS, Colwell RR, Singh DV. Sequence analysis of Vibrio cholerae orfU and zot from pre-CTXΦ and CTXΦ reveals multiple origin of pre-CTXΦ and CTXΦ. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:67-75. [PMID: 23766000 DOI: 10.1111/j.1758-2229.2009.00085.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A multiplex PCR was developed to detect pre-CTXΦ and CTXΦ in Vibrio cholerae. A total of 115 V. cholerae were tested, of which 42 V. cholerae O1 and 18 V. cholerae O139 contained CTXΦ. Six V. cholerae O139 contained only pre-CTXΦ and three V. cholerae O1 and 23 V. cholerae O139 contained both pre-CTXΦ and CTXΦ. None of the V. cholerae non-O1 and non-O139 that were tested had pre-CTXΦ or CTXΦ. Results of Restriction Fragment Length Polymorphism (RFLP) analysis revealed the V. cholerae isolates possessed single or multiple copies of pre-CTXΦ and CTXΦ, always proceeded by a tandemly arranged RS1 element. Comparative nucleotide sequence analyses of the core region genes, orfU and zot, of 15 V. cholerae showed pre-CTX(ET) Φ and CTX(ET) Φ lineage with V. cholerae El Tor and pre-CTX(Class) Φ, pre-CTX(Calc) Φ, and CTX(Calc) Φ with classical V. cholerae O1 and O139. Two distinct types of ctxB were detected in V. cholerae O139. Multi-locus Sequence Typing (MLST) of seven V. cholerae housekeeping genes indicated clonal origin, irrespective of the presence of pre-CTXΦ and/or CTXΦ.
Collapse
Affiliation(s)
- Chinmay K Mantri
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India. Center of Bioinformatics and Computation Biology, University of Maryland Institute for Advanced Computer Studies, 3013 Molecular Sciences Building, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
25
|
Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci U S A 2010; 107:4377-82. [PMID: 20133778 DOI: 10.1073/pnas.0910212107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cholera toxin is encoded in the genome of CTXvarphi, a lysogenic filamentous phage of Vibrio cholerae. CTXvarphi variants contribute to the genetic diversity of cholera epidemic strains. It has been shown that the El Tor variant of CTXvarphi hijacks XerC and XerD, two host-encoded tyrosine recombinases that normally function to resolve chromosome dimers, to integrate at dif1, the dimer resolution site of the larger of the two V. cholerae chromosomes. However, the exact mechanism of integration of CTXvarphi and the rules governing its integration remained puzzling, with phage variants integrated at either or both dimer resolution sites of the two V. cholerae chromosomes. We designed a genetic system to determine experimentally the tropism of integration of CTXvarphi and thus define rules of compatibility between phage variants and dimer resolution sites. We then showed in vitro how these rules are explained by the direct integration of the single-stranded phage genome into the double-stranded bacterial genome. Finally, we showed how the evolution of phage attachment and chromosome dimer resolution sites contributes to the generation of genetic diversity among cholera epidemic strains.
Collapse
|
26
|
Halder K, Das B, Nair GB, Bhadra RK. Molecular evidence favouring step-wise evolution of Mozambique Vibrio cholerae O1 El Tor hybrid strain. Microbiology (Reading) 2010; 156:99-107. [DOI: 10.1099/mic.0.032458-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ctxAB operon, encoding cholera toxin (CT) in Vibrio cholerae, is carried by the genome of a filamentous phage, CTXΦ. Usually, specific CTXΦ infect each of the two important biotypes, classical and El Tor, of epidemic V. cholerae strains belonging to serogroup O1, and are called CTXclassΦ and CTXETΦ, respectively. However, an unusual hybrid El Tor strain carrying CTXclassΦ caused the cholera epidemic in Mozambique in 2004. To understand the evolution of that strain, we have further analysed some representative hybrid El Tor strains isolated in Kolkata, India, in 1992, and the results indicate that both the Mozambique and the Indian strains are infected with a unique CTXclassΦ having only four copies of the tandem heptamer repeat sequence 5′-TTTTGAT-3′ present in the ctxAB promoter (P
ctxAB
) region, like in CTXETΦ. Usually, the P
ctxAB
of the classical biotype contains seven to eight copies of such sequences. However, sequence analyses of the P
ctxAB
regions of several classical strains indicated that the copy number of heptamer repeat sequences might vary from four to eight copies, which was previously unknown. Since the hybrid strains analysed in this study carry four copies of the heptamer sequences, it may thus serve as a marker to trace the strain in future. Interestingly, while the Mozambique strain is devoid of an El Tor-specific free RS1 element or pre-CTX prophage, the Indian hybrid strains carry such elements. The free RS1 has been mapped, cloned and sequenced. As in pre-CTX and CTX prophages, multiple copies of free RS1 elements were found to be integrated in tandem in the large chromosomal dif site. Since Indian hybrid El Tor strains carry either free RS1 or pre-CTX prophage in their large chromosomes, it is possible that the Mozambique hybrid El Tor strain has evolved from these progenitor strains by step-wise deletion of CTX genetic elements from their large chromosomes.
Collapse
Affiliation(s)
- Kalpataru Halder
- Indian Institute of Chemical Biology (CSIR), Kolkata 700 032, India
| | - Bhabatosh Das
- Indian Institute of Chemical Biology (CSIR), Kolkata 700 032, India
| | - G. Balakrish Nair
- National Institute of Cholera and Enteric Diseases (ICMR), Kolkata 700 010, India
| | - Rupak K. Bhadra
- Indian Institute of Chemical Biology (CSIR), Kolkata 700 032, India
| |
Collapse
|
27
|
Garriss G, Waldor MK, Burrus V. Mobile antibiotic resistance encoding elements promote their own diversity. PLoS Genet 2009; 5:e1000775. [PMID: 20019796 PMCID: PMC2786100 DOI: 10.1371/journal.pgen.1000775] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/16/2009] [Indexed: 12/27/2022] Open
Abstract
Integrating conjugative elements (ICEs) are a class of bacterial mobile genetic elements that disseminate via conjugation and then integrate into the host cell genome. The SXT/R391 family of ICEs consists of more than 30 different elements that all share the same integration site in the host chromosome but often encode distinct properties. These elements contribute to the spread of antibiotic resistance genes in several gram-negative bacteria including Vibrio cholerae, the agent of cholera. Here, using comparative analyses of the genomes of several SXT/R391 ICEs, we found evidence that the genomes of these elements have been shaped by inter–ICE recombination. We developed a high throughput semi-quantitative method to explore the genetic determinants involved in hybrid ICE formation. Recombinant ICE formation proved to be relatively frequent, and to depend on host (recA) and ICE (s065 and s066) loci, which can independently and potentially cooperatively mediate hybrid ICE formation. s065 and s066, which are found in all SXT/R391 ICEs, are orthologues of the bacteriophage λ Red recombination genes bet and exo, and the s065/s066 recombination system is the first Red-like recombination pathway to be described in a conjugative element. Neither ICE excision nor conjugative transfer proved to be essential for generation of hybrid ICEs. Instead conjugation facilitates the segregation of hybrids and could provide a means to select for functional recombinant ICEs containing novel combinations of genes conferring resistance to antibiotics. Thus, ICEs promote their own diversity and can yield novel mobile elements capable of disseminating new combinations of antibiotic resistance genes. Integrating and conjugative elements (ICEs) are a class of mobile elements found in diverse bacteria. ICEs of the SXT/R391 family have enabled the dissemination of genes conferring resistance to antibiotics among several important pathogens, including Vibrio cholerae, the agent of cholera. Here, using comparative analyses of the genomes of several SXT/R391 ICEs, we found that these elements are mosaics that have been shaped by inter–ICE recombination. We developed a plate-based method for semi-quantitative analyses of the genetic requirements for hybrid ICE formation. We discovered that hybrids form at relatively high frequencies and that both host and ICE genes can function independently and potentially cooperatively to mediate hybrid formation. The ICE–encoded recombination genes, which are found in all SXT/R391 ICEs, are related to genes that mediate recombination in bacteriophages, but have not been described previously in conjugative elements. Conjugative ICE transfer was not required for hybrid ICE formation but facilitates the segregation of hybrids. Thus, ICEs promote their own diversity and the generation of recombinant ICEs can yield novel mobile elements capable of disseminating new combinations of antibiotic resistance genes.
Collapse
Affiliation(s)
- Geneviève Garriss
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Matthew K. Waldor
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail: (MKW); (VB)
| | - Vincent Burrus
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail: (MKW); (VB)
| |
Collapse
|
28
|
Choi SY, Lee JH, Kim EJ, Lee HR, Jeon YS, von Seidlein L, Deen J, Ansaruzzaman M, Lucas GMES, Barreto A, Songane FF, Mondlane C, Nair GB, Czerkinsky C, Clemens JD, Chun J, Kim DW. Classical RS1 and environmental RS1 elements in Vibrio cholerae O1 El Tor strains harbouring a tandem repeat of CTX prophage: revisiting Mozambique in 2005. J Med Microbiol 2009; 59:302-308. [PMID: 20007761 DOI: 10.1099/jmm.0.017053-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, Vibrio cholerae O1 serogroup biotype El Tor strains producing classical type cholera toxin (altered strains or El Tor variants) are prevalent in Asia and in Mozambique. Mozambican strains collected in 2004 contained a tandem repeat of CTX prophage on the small chromosome and each CTX prophage harboured the classical rstR and classical ctxB. We found that the majority of the strains collected in 2005 in Mozambique contained extra elements on the large chromosome in addition to the tandem repeat of CTX prophage on the small chromosome. New type RS1 elements RS1(cla) and RS1(env), and a CTX(env) with rstR(env) and the classical ctxB were identified on the large chromosome of the Mozambican isolates collected in 2005.
Collapse
Affiliation(s)
- Seon Young Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,International Vaccine Institute, Seoul, Republic of Korea
| | - Je Hee Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,International Vaccine Institute, Seoul, Republic of Korea
| | - Eun Jin Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Hye Ri Lee
- International Vaccine Institute, Seoul, Republic of Korea
| | - Yoon-Seong Jeon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,International Vaccine Institute, Seoul, Republic of Korea
| | | | - Jaqueline Deen
- International Vaccine Institute, Seoul, Republic of Korea
| | - M Ansaruzzaman
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | | | | | | | | | - G Balakrish Nair
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - John D Clemens
- International Vaccine Institute, Seoul, Republic of Korea
| | - Jongsik Chun
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,International Vaccine Institute, Seoul, Republic of Korea
| | - Dong Wook Kim
- International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|
29
|
Safa A, Nair GB, Kong RYC. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 2009; 18:46-54. [PMID: 19942436 DOI: 10.1016/j.tim.2009.10.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Vibrio cholerae typically contains a prophage that carries the genes encoding the cholera toxin, which is responsible for the major clinical symptoms of the disease. In recent years, new pathogenic variants of V. cholerae have emerged and spread throughout many Asian and African countries. These variants display a mixture of phenotypic and genotypic traits from the two main biotypes (known as 'classical' and 'El Tor'), suggesting that they are genetic hybrids. Classical and El Tor biotypes have been the most epidemiologically successful cholera strains during the past century, and it is believed that the new variants (which we call here 'atypical El Tor') are likely to develop successfully in a manner similar to these biotypes. Here, we describe recent advances in our understanding of the epidemiology and evolution of the atypical El Tor strains.
Collapse
Affiliation(s)
- Ashrafus Safa
- Department of Biology and Chemistry and MERIT, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR
| | | | | |
Collapse
|
30
|
Gu J, Wang Y, Lilburn T. A comparative genomics, network-based approach to understanding virulence in Vibrio cholerae. J Bacteriol 2009; 191:6262-72. [PMID: 19666715 PMCID: PMC2753031 DOI: 10.1128/jb.00475-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/31/2009] [Indexed: 11/20/2022] Open
Abstract
Our views of the genes that drive phenotypes have generally been built up one locus or operon at a time. However, a given phenotype, such as virulence, is a multilocus phenomenon. To gain a more comprehensive view of the genes and interactions underlying a phenotype, we propose an approach that incorporates information from comparative genomics and network biology and illustrate it by examining the virulence phenotype of Vibrio cholerae O1 El Tor N16961. We assessed the associations among the virulence-associated proteins from Vibrio cholerae and all the other proteins from this bacterium using a functional-association network map. In the context of this map, we were able to identify 262 proteins that are functionally linked to the virulence-associated genes more closely than is typical of the proteins in this strain and 240 proteins that are functionally linked to the virulence-associated proteins with a confidence score greater than 0.9. The roles of these genes were investigated using functional information from online data sources, comparative genomics, and the relationships shown by the protein association map. We also incorporated core proteome data from the family Vibrionaceae; 35% of the virulence-associated proteins have orthologs among the 1,822 orthologous groups of proteins in the core proteome, indicating that they may be dual-role virulence genes or encode functions that have value outside the human host. This approach is a valuable tool in searching for novel functional associations and in investigating the relationship between genotype and phenotype.
Collapse
Affiliation(s)
- Jianying Gu
- Department of Biology, City University of New York, Staten Island, New York 10314, USA.
| | | | | |
Collapse
|
31
|
The intron-containing genome of the lytic Pseudomonas phage LUZ24 resembles the temperate phage PaP3. Virology 2008; 377:233-8. [PMID: 18519145 DOI: 10.1016/j.virol.2008.04.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/16/2008] [Accepted: 04/28/2008] [Indexed: 11/22/2022]
Abstract
The virulent Pseudomonas aeruginosa bacteriophage LUZ24 (45,625 bp) was isolated from hospital sewage. It belongs to the family of the Podoviridae, and carries a bidirectionally transcribed dsDNA genome delineated by two direct terminal repeats of 184 bp. In vitro transcriptional analysis identified seven sigma(70) promoters, revealing a bias towards stronger promoter strength in the late genomic region. Reverse transcription demonstrated in vivo splicing of a 668 bp Group I intron embedded inside the DNA polymerase gene. Using mass spectrometry, nine structural proteins were identified as part of the phage particle. The lytic characteristics of LUZ24 are evaluated against its genomic content, which displays an overall 71% sequence similarity to the temperate phage PaP3.
Collapse
|
32
|
Ledón T, Campos J, Suzarte E, Rodríguez B, Marrero K, Fando R. El Tor and Calcutta CTXΦ precursors coexisting with intact CTXΦ copies in Vibrio cholerae O139 isolates. Res Microbiol 2008; 159:81-7. [DOI: 10.1016/j.resmic.2007.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 11/15/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
|
33
|
Sikora AE, Lybarger SR, Sandkvist M. Compromised outer membrane integrity in Vibrio cholerae Type II secretion mutants. J Bacteriol 2007; 189:8484-95. [PMID: 17890307 PMCID: PMC2168955 DOI: 10.1128/jb.00583-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The type II secretion (T2S) system of Vibrio cholerae is a multiprotein complex that spans the cell envelope and secretes proteins important for pathogenesis as well as survival in different environments. Here we report that, in addition to the loss of extracellular secretion, removal or inhibition of expression of the T2S genes, epsC-N, results in growth defects and a broad range of alterations in the outer membrane that interfere with its barrier function. Specifically, the sensitivity to membrane-perturbing agents such as bile salts and the antimicrobial peptide polymyxin B is increased, and periplasmic constituents leak out into the culture medium. As a consequence, the sigma(E) stress response is induced. Furthermore, due to the defects caused by inactivation of the T2S system, the Deltaeps deletion mutant of V. cholerae strain N16961 is incapable of surviving the passage through the infant mouse gastrointestinal tract. The growth defect and leaky outer membrane phenotypes are suppressed when the culture medium is supplemented with 5% glucose or sucrose, although the eps mutants remain sensitive to membrane-damaging agents. This suggests that the sugars do not restore the integrity of the outer membrane in the eps mutant strains per se but may provide osmoprotective functions.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- University of Michigan Medical School, Department of Microbiology and Immunology, 1150 West Medical Center Drive, 6741 Medical Science Building II, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
34
|
Derbise A, Chenal-Francisque V, Pouillot F, Fayolle C, Prévost MC, Médigue C, Hinnebusch BJ, Carniel E. A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Mol Microbiol 2006; 63:1145-57. [PMID: 17238929 DOI: 10.1111/j.1365-2958.2006.05570.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yersinia pestis, the plague bacillus, has an exceptional pathogenicity but the factors responsible for its extreme virulence are still unknown. A genome comparison with its less virulent ancestor Yersinia pseudotuberculosis identified a few Y. pestis-specific regions acquired after their divergence. One of them potentially encodes a prophage (YpfPhi), similar to filamentous phages associated with virulence in other pathogens. We show here that YpfPhi forms filamentous phage particles infectious for other Y. pestis isolates. Although it was previously suggested that YpfPhi is restricted to the Orientalis branch, our results indicate that it was acquired by the Y. pestis ancestor. In Antiqua and Medievalis strains, YpfPhi genome forms an unstable episome whereas in Orientalis isolates it is stably integrated as tandem repeats. Deletion of the YpfPhi genome does not affect Y. pestis ability to colonize and block the flea proventriculus, but results in an alteration of Y. pestis pathogenicity in mice. Our results show that transformation of Y. pestis from a classical enteropathogen to the highly virulent plague bacillus was accompanied by the acquisition of an unstable filamentous phage. Continued maintenance of YpfPhi despite its high in vitro instability suggests that it confers selective advantages to Y. pestis under natural conditions.
Collapse
Affiliation(s)
- Anne Derbise
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Maiti D, Das B, Saha A, Nandy RK, Nair GB, Bhadra RK. Genetic organization of pre-CTX and CTX prophages in the genome of an environmental Vibrio cholerae non-O1, non-O139 strain. Microbiology (Reading) 2006; 152:3633-3641. [PMID: 17159216 DOI: 10.1099/mic.0.2006/000117-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cholera toxin (CT) is a critical determinant of the virulence of epidemic Vibrio cholerae strains. The ctxAB operon encoding CT is part of the genome of a filamentous bacteriophage CTXΦ, which may integrate as a single copy or as multiple copies in the genome of V. cholerae. The CTXΦ genome is composed of RS2 (2.4 kb) and core (4.5 kb) regions. In the present study extensive genetic mapping analyses indicated that two copies of tandemly arrayed CTX prophages are integrated in the small chromosome of an environmental V. cholerae strain, VCE232, belonging to serogroup O4. Further mapping revealed that the integration of prophages has occurred in the same genetic locus of the small chromosome of VCE232 as that of V. cholerae O1 biotype El Tor strains. Interestingly, a new type of RS2-like element 3.5 kb in size was found in the CTX prophage genome in the small chromosome of VCE232. Cloning followed by sequencing of the new RS2-like element of VCE232 revealed the presence of three ORFs, which probably encode highly divergent types of phage regulatory proteins. Furthermore, the strain VCE232 also harbours two copies of a tandemly arranged CTX prophage devoid of the ctxAB genes, called pre-CTX prophage, in its large chromosome. The presence of multiple copies of diverse CTX prophages in both the chromosomes of VCE232 suggests that toxigenic environmental V. cholerae non-O1, non-O139 strains could play a role in the emergence of new epidemic clones.
Collapse
Affiliation(s)
- Diganta Maiti
- Infectious Diseases Group, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Bhabatosh Das
- Infectious Diseases Group, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Arjun Saha
- Infectious Diseases Group, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Ranjan K Nandy
- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata 700 010, India
| | - G Balakrish Nair
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Rupak K Bhadra
- Infectious Diseases Group, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
36
|
McLeod SM, Burrus V, Waldor MK. Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer. J Bacteriol 2006; 188:5704-11. [PMID: 16885438 PMCID: PMC1540070 DOI: 10.1128/jb.00564-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The requirement for host factors in the transmission of integrative and conjugative elements (ICEs) has not been extensively explored. Here we tested whether integration host factor (IHF) or Fis, two host-encoded nucleoid proteins, are required for transfer of SXT, a Vibrio cholerae-derived ICE that can be transmitted to many gram-negative species. Fis did not influence the transfer of SXT to or from V. cholerae. In contrast, IHF proved to be required for V. cholerae to act as an SXT donor. In the absence of IHF, V. cholerae displayed a modest defect for serving as an SXT recipient. Surprisingly, SXT integration into or excision from the V. cholerae chromosome, which requires an SXT-encoded integrase related to lambda integrase, did not require IHF. Therefore, the defect in SXT transmission in the V. cholerae IHF mutant is probably not related to IHF's ability to promote DNA recombination. The V. cholerae IHF mutant was also highly impaired as a donor of RP4, a broad-host-range conjugative plasmid. Thus, the V. cholerae IHF mutant appears to have a general defect in conjugation. Escherichia coli IHF mutants were not impaired as donors or recipients of SXT or RP4, indicating that IHF is a V. cholerae-specific conjugation factor.
Collapse
Affiliation(s)
- Sarah M McLeod
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Howard Hughes Medical Institute, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | |
Collapse
|
37
|
Liu G, Yan M, Liang W, Qi G, Liu Y, Gao S, Kan B. Resistance of the cholera vaccine candidate IEM108 against CTXΦ infection. Vaccine 2006; 24:1749-55. [PMID: 16343705 DOI: 10.1016/j.vaccine.2005.09.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 09/27/2005] [Accepted: 09/27/2005] [Indexed: 11/23/2022]
Abstract
The cholera toxin (CT) genes ctxAB are carried on a lysogenic phage of Vibrio cholerae, CTXPhi, which can transfer ctxAB between toxigenic and nontoxigenic strains of bacteria. This transfer may pose a problem when live oral cholera vaccine is given to people in epidemic areas, because the toxin genes can be reacquired by the vaccine strains. To address this problem, we have constructed a live vaccine candidate, IEM108, which carries an El Tor-derived rstR gene. This gene encodes a repressor and can render bacterial resistance to CTXPhi infection. In this study, we evaluated the resistance of IEM108 against CTXPhi infection by using a CTXPhi marked for chloramphenicol (CAF) resistance and an in vivo model. We found that the cloned rstR gene rendered IEM108 immune to infection with the marked CTXPhi. In addition, the infection rate of IEM108 was even lower than that of the native CTXPhi-positive strain. These results suggest that the vaccine candidate IEM108 is resistant to infection by CTXPhi.
Collapse
Affiliation(s)
- Guangwen Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, P.O. Box 5, Changping, Beijing 102206, PR China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Lee JH, Han KH, Choi SY, Lucas MES, Mondlane C, Ansaruzzaman M, Nair GB, Sack DA, von Seidlein L, Clemens JD, Song M, Chun J, Kim DW. Multilocus sequence typing (MLST) analysis of Vibrio cholerae O1 El Tor isolates from Mozambique that harbour the classical CTX prophage. J Med Microbiol 2006; 55:165-170. [PMID: 16434708 DOI: 10.1099/jmm.0.46287-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae O1 isolates belonging to the Ogawa serotype, El Tor biotype, harbouring the classical CTX prophage were first isolated in Mozambique in 2004. Multilocus sequence typing (MLST) analysis using nine genetic loci showed that the Mozambique isolates have the same sequence type (ST) as O1 El Tor N16961, a representative of the current seventh cholera pandemic. Analysis of the CTX prophage in the Mozambique isolates indicated that there is one type of rstR in these isolates: the classical CTX prophage. It was also found that the ctxB-rstR-rstA-rstB-phs-cep fragment was PCR-amplified from these isolates, which indicates the presence of a tandem repeat of the classical CTX prophage in the genome of the Mozambique isolates. The possible origin of these isolates and the presence of the tandem repeat of the classical prophage in them implicate the presence of the classical CTX phage.
Collapse
Affiliation(s)
- Je Hee Lee
- School of Biological Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
- International Vaccine Institute, San 4-8 Bongcheon 7 dong, Kwanak gu, Seoul, 151-818, Republic of Korea
| | - Kyung Ho Han
- International Vaccine Institute, San 4-8 Bongcheon 7 dong, Kwanak gu, Seoul, 151-818, Republic of Korea
| | - Seon Young Choi
- School of Biological Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
- International Vaccine Institute, San 4-8 Bongcheon 7 dong, Kwanak gu, Seoul, 151-818, Republic of Korea
| | | | - C Mondlane
- Centro De Higiene Ambiental E Exames Medicos, Rua Correia De Brito N° 1815 Sofala - Beira, Mozambique
| | - M Ansaruzzaman
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - G Balakrish Nair
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - David A Sack
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Lorenz von Seidlein
- International Vaccine Institute, San 4-8 Bongcheon 7 dong, Kwanak gu, Seoul, 151-818, Republic of Korea
| | - John D Clemens
- International Vaccine Institute, San 4-8 Bongcheon 7 dong, Kwanak gu, Seoul, 151-818, Republic of Korea
| | - Manki Song
- International Vaccine Institute, San 4-8 Bongcheon 7 dong, Kwanak gu, Seoul, 151-818, Republic of Korea
| | - Jongsik Chun
- School of Biological Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
- International Vaccine Institute, San 4-8 Bongcheon 7 dong, Kwanak gu, Seoul, 151-818, Republic of Korea
| | - Dong Wook Kim
- International Vaccine Institute, San 4-8 Bongcheon 7 dong, Kwanak gu, Seoul, 151-818, Republic of Korea
| |
Collapse
|
39
|
McLeod SM, Kimsey HH, Davis BM, Waldor MK. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 2005; 57:347-56. [PMID: 15978069 DOI: 10.1111/j.1365-2958.2005.04676.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genes encoding cholera toxin, one of the principal virulence factors of the diarrhoeal pathogen Vibrio cholerae, are part of the genome of CTXphi, a filamentous bacteriophage. Thus, CTXphi has played a critical role in the evolution of the pathogenicity of V. cholerae. Unlike the well-studied F pilus-specific filamentous coliphages, CTXphi integrates site-specifically into its host chromosome and forms stable lysogens. Here we focus on the CTXphi life cycle and, in particular, on recent studies of the mechanism of CTXphi integration and the factors that govern lysogeny. These and other processes illustrate the remarkable dependence of CTXphi on host-encoded factors.
Collapse
Affiliation(s)
- Sarah M McLeod
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
40
|
Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 2005; 8:459-65. [PMID: 15979389 DOI: 10.1016/j.mib.2005.06.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 06/09/2005] [Indexed: 11/19/2022]
Abstract
In many pathogenic bacteria, genes that encode virulence factors are located in the genomes of prophages. Clearly bacteriophages are important vectors for disseminating virulence genes, but, in addition, do phage regulatory circuits contribute to expression of these genes? Phages of the lambda family that have genes encoding Shiga toxin are found in certain pathogenic Escherichia coli (known as Shiga toxin producing E. coli) and the filamentous phage CTXphi, that carries genes encoding cholera toxin (CTX), is found in Vibrio cholerae. Both the lambda and CTXphi phages have repressor systems that maintain their respective prophages in a quiescent state, and in both types of prophages this repressed state is abolished when the host cell SOS response is activated. In the lambda type of prophages, only binding of the phage-encoded repressor is involved in repression and this repressor ultimately controls Shiga toxin production and/or release. In the CTXphi prophage, binding of LexA, the bacterial regulator of SOS, in addition to binding of the repressor is involved in repression; the repressor has only limited control over CTX production and has no influence on its release.
Collapse
Affiliation(s)
- Matthew K Waldor
- Department of Microbiology, Tufts University School of Medicine and Howard Hughes Medical Institute, Boston, MA 02111, USA
| | | |
Collapse
|
41
|
Faruque SM, Bin Naser I, Fujihara K, Diraphat P, Chowdhury N, Kamruzzaman M, Qadri F, Yamasaki S, Ghosh AN, Mekalanos JJ. Genomic sequence and receptor for the Vibrio cholerae phage KSF-1phi: evolutionary divergence among filamentous vibriophages mediating lateral gene transfer. J Bacteriol 2005; 187:4095-103. [PMID: 15937172 PMCID: PMC1151723 DOI: 10.1128/jb.187.12.4095-4103.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
KSF-1phi, a novel filamentous phage of Vibrio cholerae, supports morphogenesis of the RS1 satellite phage by heterologous DNA packaging and facilitates horizontal gene transfer. We analyzed the genomic sequence, morphology, and receptor for KSF-1phi infection, as well as its phylogenetic relationships with other filamentous vibriophages. While strains carrying the mshA gene encoding mannose-sensitive hemagglutinin (MSHA) type IV pilus were susceptible to KSF-1phi infection, naturally occurring MSHA-negative strains and an mshA deletion mutant were resistant. Furthermore, d-mannose as well as a monoclonal antibody against MSHA inhibited infection of MSHA-positive strains by the phage, suggesting that MSHA is the receptor for KSF-1phi. The phage genome comprises 7,107 nucleotides, containing 14 open reading frames, 4 of which have predicted protein products homologous to those of other filamentous phages. Although the overall genetic organization of filamentous phages appears to be preserved in KSF-1phi, the genomic sequence of the phage does not have a high level of identity with that of other filamentous phages and reveals a highly mosaic structure. Separate phylogenetic analysis of genomic sequences encoding putative replication proteins, receptor-binding proteins, and Zot-like proteins of 10 different filamentous vibriophages showed different results, suggesting that the evolution of these phages involved extensive horizontal exchange of genetic material. Filamentous phages which use type IV pili as receptors were found to belong to different branches. While one of these branches is represented by CTXphi, which uses the toxin-coregulated pilus as its receptor, at least four evolutionarily diverged phages share a common receptor MSHA, and most of these phages mediate horizontal gene transfer. Since MSHA is present in a wide variety of V. cholerae strains and is presumed to express in the environment, diverse filamentous phages using this receptor are likely to contribute significantly to V. cholerae evolution.
Collapse
Affiliation(s)
- Shah M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jermyn WS, Boyd EF. Molecular evolution of Vibrio pathogenicity island-2 (VPI-2): mosaic structure among Vibrio cholerae and Vibrio mimicus natural isolates. MICROBIOLOGY-SGM 2005; 151:311-322. [PMID: 15632448 DOI: 10.1099/mic.0.27621-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio cholerae is a Gram-negative rod that inhabits the aquatic environment and is the aetiological agent of cholera, a disease that is endemic in much of Southern Asia. The 57.3 kb Vibrio pathogenicity island-2 (VPI-2) is confined predominantly to toxigenic V. cholerae O1 and O139 serogroup isolates and encodes 52 ORFs (VC1758 to VC1809), which include homologues of an integrase (VC1758), a restriction modification system, a sialic acid metabolism gene cluster (VC1773-VC1783), a neuraminidase (VC1784) and a gene cluster that shows homology to Mu phage. In this study, a 14.1 kb region of VPI-2 comprising ORFs VC1773 to VC1787 was identified by PCR and Southern blot analyses in all 17 Vibrio mimicus isolates examined. The VPI-2 region in V. mimicus was inserted adjacent to a serine tRNA similar to VPI-2 in V. cholerae. In 11 of the 17 V. mimicus isolates examined, an additional 5.3 kb region encoding VC1758 and VC1804 to VC1809 was present adjacent to VC1787. The evolutionary history of VPI-2 was reconstructed by comparative analysis of the nanH (VC1784) gene tree with the species gene tree, deduced from the housekeeping gene malate dehydrogenase (mdh), among V. cholerae and V. mimicus isolates. Both gene trees showed an overall congruence; on both gene trees V. cholerae O1 and O139 serogroup isolates clustered together, whereas non-O1/non-O139 serogroup isolates formed separate divergent branches with similar clustering of strains within the branches. One exception was noted: on the mdh gene tree, V. mimicus sequences formed a distinct divergent lineage from V. cholerae sequences; however, on the nanH gene tree, V. mimicus clustered with V. cholerae non-O1/non-O139 isolates, suggesting horizontal transfer of this region between these species.
Collapse
Affiliation(s)
- William S Jermyn
- Department of Microbiology, UCC, National University of Ireland-Cork, Cork, Ireland
| | - E Fidelma Boyd
- Department of Microbiology, UCC, National University of Ireland-Cork, Cork, Ireland
| |
Collapse
|
43
|
Quinones M, Kimsey HH, Waldor MK. LexA Cleavage Is Required for CTX Prophage Induction. Mol Cell 2005; 17:291-300. [PMID: 15664197 DOI: 10.1016/j.molcel.2004.11.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 10/12/2004] [Accepted: 11/19/2004] [Indexed: 10/25/2022]
Abstract
The physiologic conditions and molecular interactions that control phage production have been studied in few temperate phages. We investigated the mechanisms that regulate production of CTXphi, a temperate filamentous phage that infects Vibrio cholerae and encodes cholera toxin. In CTXphi lysogens, the activity of P(rstA), the only CTXphi promoter required for CTX prophage development, is repressed by RstR, the CTXvphi repressor. We found that the V. cholerae SOS response regulates CTXvphi production. The molecular mechanism by which this cellular response to DNA damage controls CTXphi production differs from that by which the E. coli SOS response controls induction of many prophages. UV-stimulated CTXphi production required RecA-dependent autocleavage of LexA, a repressor that controls expression of numerous host DNA repair genes. LexA and RstR both bind to and repress P(rstA). Thus, CTXphi production is controlled by a cellular repressor whose activity is regulated by the cell's response to DNA damage.
Collapse
Affiliation(s)
- Mariam Quinones
- Department of Molecular Microbiology, Tufts University School of Medicine and The Howard Hughes Medical Institute, Boston, MA 02111, USA
| | | | | |
Collapse
|
44
|
Ding Y, Waldor MK. Deletion of a Vibrio cholerae ClC channel results in acid sensitivity and enhanced intestinal colonization. Infect Immun 2003; 71:4197-200. [PMID: 12819118 PMCID: PMC161967 DOI: 10.1128/iai.71.7.4197-4200.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ClC chloride channels are found in all three kingdoms of life though little is known about their functions in prokaryotes. Here we investigated the role of a Vibrio cholerae ClC channel in acid resistance and intestinal colonization. The putative V. cholerae ClC channel was found to confer mild resistance to acid when pH was adjusted with HCl, but not with other acids. Surprisingly, a ClC channel deletion mutant exhibited enhanced intestinal colonization in infant mice.
Collapse
Affiliation(s)
- Yanpeng Ding
- Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center and Howard Hughes Medical Institute, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
45
|
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003; 67:238-76, table of contents. [PMID: 12794192 PMCID: PMC156470 DOI: 10.1128/mmbr.67.2.238-276.2003] [Citation(s) in RCA: 501] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Abstract
A partial screen for genetic elements integrated into completely sequenced bacterial genomes shows more significant bias in specificity for the tmRNA gene (ssrA) than for any type of tRNA gene. Horizontal gene transfer, a major avenue of bacterial evolution, was assessed by focusing on elements using this single attachment locus. Diverse elements use ssrA; among enterobacteria alone, at least four different integrase subfamilies have independently evolved specificity for ssrA, and almost every strain analyzed presents a unique set of integrated elements. Even elements using essentially the same integrase can be very diverse, as is a group with an ssrA-specific integrase of the P4 subfamily. This same integrase appears to promote damage routinely at attachment sites, which may be adaptive. Elements in arrays can recombine; one such event mediated by invertible DNA segments within neighboring elements likely explains the monophasic nature of Salmonella enterica serovar Typhi. One of a limited set of conserved sequences occurs at the attachment site of each enterobacterial element, apparently serving as a transcriptional terminator for ssrA. Elements were usually found integrated into tRNA-like sequence at the 3' end of ssrA, at subsites corresponding to those used in tRNA genes; an exception was found at the non-tRNA-like 3' end produced by ssrA gene permutation in cyanobacteria, suggesting that, during the evolution of new site specificity by integrases, tropism toward a conserved 3' end of an RNA gene may be as strong as toward a tRNA-like sequence. The proximity of ssrA and smpB, which act in concert, was also surveyed.
Collapse
Affiliation(s)
- Kelly P Williams
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
47
|
Abstract
Marine phages are the most abundant biological entities in the oceans. They play important roles in carbon cycling through marine food webs, gene transfer by transduction and conversion of hosts by lysogeny. The handful of marine phage genomes that have been sequenced to date, along with prophages in marine bacterial genomes, and partial sequencing of uncultivated phages are yielding glimpses of the tremendous diversity and physiological potential of the marine phage community. Common gene modules in diverse phages are providing the information necessary to make evolutionary comparisons. Finally, deciphering phage genomes is providing clues about the adaptive response of phages and their hosts to environmental cues.
Collapse
Affiliation(s)
- John H Paul
- College of Marine Sciences, University of South Florida, 140 Seventh Ave S, St Petersburg, FL 33701, USA.
| | | | | | | |
Collapse
|
48
|
Iida T, Makino K, Nasu H, Yokoyama K, Tagomori K, Hattori A, Okuno T, Shinagawa H, Honda T. Filamentous bacteriophages of vibrios are integrated into the dif-like site of the host chromosome. J Bacteriol 2002; 184:4933-5. [PMID: 12169621 PMCID: PMC135294 DOI: 10.1128/jb.184.17.4933-4935.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dif site is located in the replication terminus region of bacterial chromosomes, having a function of resolving dimeric chromosomes formed during replication. We demonstrate that filamentous bacteriophages of vibrios, such as f237 (Vibrio parahaemolyticus) and CTXphi (V. cholerae), are integrated into the dif-like site of host chromosome.
Collapse
Affiliation(s)
- Tetsuya Iida
- Department of Bacterial Infections. Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Davis BM, Kimsey HH, Kane AV, Waldor MK. A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J 2002; 21:4240-9. [PMID: 12169626 PMCID: PMC126166 DOI: 10.1093/emboj/cdf427] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CTXphi is a filamentous bacteriophage whose genome encodes cholera toxin, the principal virulence factor of Vibrio cholerae. We have found that the CTXphi-related element RS1 is a satellite phage whose transmission depends upon proteins produced from a CTX prophage (its helper phage). However, unlike other satellite phages and satellite animal viruses, RS1 can aid the CTX prophage as well as exploit it, due to the RS1-encoded protein RstC. RstC, whose function previously was unknown, is an antirepressor that counteracts the activity of the phage repressor RstR. RstC promotes transcription of genes required for phage production and thereby promotes transmission of both RS1 and CTXphi. Antirepression by RstC also induces expression of the cholera toxin genes, ctxAB, and thus may contribute to the virulence of V.cholerae. In vitro, RstC binds directly to RstR, producing unusual, insoluble aggregates containing both proteins. In vivo, RstC and RstR are both found at the cell pole, where they again appear to form stable complexes. The sequestration/inactivation process induced by RstC resembles those induced by mutant polyglutamine-containing proteins implicated in human neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Anne V. Kane
- Howard Hughes Medical Institute, Division of Geographic Medicine and Infectious Diseases and
GRASP Center, Department of Medicine, Tufts-New England Medical Center and Tufts University School of Medicine, Boston, MA 02111, USA Corresponding author e-mail:
| | - Matthew K. Waldor
- Howard Hughes Medical Institute, Division of Geographic Medicine and Infectious Diseases and
GRASP Center, Department of Medicine, Tufts-New England Medical Center and Tufts University School of Medicine, Boston, MA 02111, USA Corresponding author e-mail:
| |
Collapse
|
50
|
Abstract
Many bacteriophages and animal viruses integrate their genomes into the chromosomal DNA of their hosts as a method of promoting vertical transmission. Phages that integrate in a site-specific fashion encode an integrase enzyme that catalyses recombination between the phage and host genomes. CTX phi is a filamentous bacteriophage that contains the genes encoding cholera toxin, the principal virulence factor of the diarrhoea-causing Gram-negative bacterium Vibrio cholerae. CTX phi integrates into the V. cholerae genome in a site-specific manner; however, the approximately 6.9-kilobase (kb) CTX phi genome does not encode any protein with significant homology to known recombinases. Here we report that XerC and XerD, two chromosome-encoded recombinases that ordinarily function to resolve chromosome dimers at the dif recombination site, are essential for CTX phi integration into the V. cholerae genome. The CTX phi integration site was found to overlap with the dif site of the larger of the two V. cholerae chromosomes. Examination of sequences of the integration sites of other filamentous phages indicates that the XerCD recombinases also mediate the integration of these phage genomes at dif-like sites in various bacterial species.
Collapse
Affiliation(s)
- Kathryn E Huber
- Division of Geographic Medicine/Infectious Diseases, New England Medical Center and Department of Microbiology, Tufts University School of Medicine and Howard Hughes Medical Institute, 750 Washington Street, Boston, Massachusetts 02111, USA
| | | |
Collapse
|