1
|
Liu J, Cheng P, Xu C, Pu K. Molecular probes for in vivo optical imaging of immune cells. Nat Biomed Eng 2025; 9:618-637. [PMID: 39984703 DOI: 10.1038/s41551-024-01275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/23/2024] [Indexed: 02/23/2025]
Abstract
Advancing the understanding of the various roles and components of the immune system requires sophisticated methods and technology for the detection of immune cells in their natural states. Recent advancements in the development of molecular probes for optical imaging have paved the way for non-invasive visualization and real-time monitoring of immune responses and functions. Here we discuss recent progress in the development of molecular probes for the selective imaging of specific immune cells. We emphasize the design principles of the probes and their comparative performance when using various optical modalities across disease contexts. We highlight molecular probes for imaging tumour-infiltrating immune cells, and their applications in drug screening and in the prediction of therapeutic outcomes of cancer immunotherapies. We also discuss the use of these probes in visualizing immune cells in atherosclerosis, lung inflammation, allograft rejection and other immune-related conditions, and the translational opportunities and challenges of using optical molecular probes for further understanding of the immune system and disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
2
|
Wang H, Ayala A, Aziz M, Billiar TR, Deutschman CS, Jeyaseelan S, Tang D, Wang P. Value of animal sepsis research in navigating the translational labyrinth. Front Immunol 2025; 16:1593342. [PMID: 40303397 PMCID: PMC12037402 DOI: 10.3389/fimmu.2025.1593342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Affiliation(s)
- Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Alfred Ayala
- Division of Surgical Research, Brown University Health-Rhode Island Hospital, Providence, RI, United States
- Department of Surgery, the Warren Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Monowar Aziz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Clifford S. Deutschman
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Samithamby Jeyaseelan
- Department of Pathobiological Science, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ping Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
3
|
Kunze M, Malfatti F. Towards a Conceptual Framework to Better Understand the Advantages and Limitations of Model Organisms. Eur J Neurosci 2025; 61:e70071. [PMID: 40165014 DOI: 10.1111/ejn.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Model organisms (MO) are widely used in neuroscience to study brain processes, behavior, and the biological foundation of human diseases. However, the use of MO has also been criticized for low reliability and insufficient success rate in the development of therapeutic approaches, because the success of MO use also led to overoptimistic and simplistic applications, which sometimes resulted in wrong conclusions. Here, we develop a conceptual framework of MO to support scientists in their practical work and to foster discussions about their power and limitations. For this purpose, we take advantage of concepts developed in the philosophy of science and adjust them for practical application by neuroscientists. We suggest that MO can be best understood as tools that are used to gain information about a group of species or a phenomenon in a species of interest. These learning processes are made possible by some properties of MO, which facilitate the process of acquisition of understanding or provide practical advantages, and the possibility to transfer information between species. However, residual uncertainty in the reliability of information transfer remains, and incorrect generalizations can be side-effects of epistemic benefits, which we consider as representational and epistemic risks. This suggests that to use MO most effectively, scientists should analyze the similarity relation between the involved species, weigh advantages and risks of certain epistemic benefits, and invest in carefully designed validation experiments. Altogether, our analysis illustrates how scientists can benefit from philosophical concepts for their research practice.
Collapse
Affiliation(s)
- Markus Kunze
- Center for Brain Research, Department of Pathobiology of the Nervous System, Medical University of Vienna, Vienna, Austria
| | - Federica Malfatti
- Institut für Christliche Philosophie, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Naganishi S, Hagihara H, Miyakawa T. Gene Expression Signatures of Immaturity, Decreased pH, and Neural Hyperexcitation in the Hippocampus of Alzheimer's Disease Model Mice. Neuropsychopharmacol Rep 2025; 45:e70001. [PMID: 39907034 PMCID: PMC11795175 DOI: 10.1002/npr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
AIMS Alzheimer's disease (AD) is a leading cause of dementia, with increasing prevalence. Mutations in genes like MAPT, PSEN1, and PSEN2 are risk factors, leading to the development of several AD model mice. Recent hypotheses suggest AD brain pathology involves abnormal neurodevelopment, decreased pH, and neural hyperexcitation. However, it remains unclear to what extent these pathologies are reflected in the gene expression changes of AD models. This study aims to compare gene expression patterns in the brains of multiple AD model mice with those related to these three factors, evaluating the extent of overlap. METHODS We conducted a comprehensive search of public databases, collecting 20 gene expression datasets from the hippocampus of AD model mice. These datasets were compared with gene sets related to hippocampal maturation, brain pH, and neural hyperexcitation to statistically assess overlap. Pathway enrichment analysis explored the biological relevance of these gene expression changes. RESULTS The extent of overlap with maturity-, pH-, and hyperexcitation-associated genes varied across AD models, showing significant correlations between lower maturity, lower pH, and increased neural hyperexcitation. In MAPT mutant and APP+PSEN1 homozygous transgenic mice, these signatures became more pronounced with age. Pathway meta-analysis revealed that genes associated with maturity, pH, and hyperexcitation in AD models are involved in synaptic and channel functions, as well as inflammatory responses, consistent with previous studies. CONCLUSION These findings suggest that pathophysiological changes related to maturity, pH, and neural hyperexcitation play varying roles across individual AD model mice. Our recent study found a negative correlation between disease progression and actual pH levels in human AD patients. Considering the results presented in this study, maturity and neural hyperexcitation, which are correlated with pH, may also be linked to disease progression. Thus, gene expression changes in these factors could be useful markers for assessing the pathology in AD models.
Collapse
Affiliation(s)
- Sayaka Naganishi
- Department of Systems Medical ScienceFujita Health University Graduate School of MedicineToyoakeAichiJapan
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeAichiJapan
| | - Hideo Hagihara
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeAichiJapan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeAichiJapan
| |
Collapse
|
5
|
Frost MR, Ball BK, Pendyala M, Douglas SR, Brubaker DK, Chan DD. Computational Translation of Mouse Models of Osteoarthritis Predicts Human Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639777. [PMID: 40060529 PMCID: PMC11888325 DOI: 10.1101/2025.02.23.639777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Objective Translation of biological insights from preclinical studies to human disease is a pressing challenge in biomedical research, including in osteoarthritis. Translatable Components Regression (TransComp-R) is a computational framework that has previously been used to synthesize preclinical and human OA data to identify biological pathways predictive of human disease conditions. We aimed to evaluate the translatability of two common murine models of post-traumatic osteoarthritis - surgical destabilization of the medial meniscus (DMM) and noninvasive anterior cruciate ligament rupture (ACLR) - to transcriptomics cartilage data from human OA outcomes. Design Transcriptomics cartilage data of DMM and ACLR mouse and human data was acquired from Gene Expression Omnibus. TransComp-R was used to project human OA data into a mouse model (DMM or ACLR) principal component analysis space. The principal components (PCs) were regressed against human OA conditions using increasing complexity of linear regression models incorporating human demographic covariates of OA, sex, and age. Biological pathways of the mouse PCs that significantly stratified human OA and control groups were then interpreted using Gene Set Enrichment Analysis. Results From the TransComp-R model, we identified different enriched biological pathways across DMM and ACLR models. While PCs among the DMM models revealed pathways associated with cell signaling and metabolism, ACLR PCs represented immune function and cellular pathways associated with OA condition. The immune pathways presented in the ACLR further highlighted the potential relevance of the OA pathways observed in human conditions. Conclusions The ACLR mouse model more successfully predicted human OA conditions, particularly with the human control groups without a history of joint injury or disease. Cross-species translational approaches support the selection of preclinical models intended for therapeutic discovery and pathway analysis in humans.
Collapse
Affiliation(s)
- Maya R Frost
- Weldon School of Biomedical Engineering, Purdue University
| | - Brendan K Ball
- Weldon School of Biomedical Engineering, Purdue University
| | - Meghana Pendyala
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | - Douglas K Brubaker
- Center for Global Health and Diseases, Department of Pathology, School of Medicine, Case Western Reserve University
- Blood Heart Lung Immunology Research Center, University Hospitals Cleveland Medical Center
| | - Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University
- School of Mechanical Engineering, Purdue University
| |
Collapse
|
6
|
Mathias FAS, Carvalho MGR, Ruiz JC. Therapeutic Vaccines for Hematological Cancers: A Scoping Review of This Immunotherapeutic Approach as Alternative to the Treatment of These Malignancies. Vaccines (Basel) 2025; 13:114. [PMID: 40006660 PMCID: PMC11860334 DOI: 10.3390/vaccines13020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The need for innovative cancer treatments has brought immunotherapies to the forefront as a promising approach, with therapeutic vaccines demonstrating the potential to mobilize immune cells to eliminate tumor cells. However, challenges such as genetic variability among patients, immune evasion mechanisms, and disease relapse contribute to the complexity of achieving an ideal therapy, especially for hematological cancers. This review systematically identifies and analyzes recent studies focused on the development of therapeutic immunotherapy vaccines, examining critical aspects such as development stages, key assays for therapeutic validation, treatment outcomes, and study limitations. Methods: A scoping review was conducted following the PRISMA extension guidelines (PRISMA-ScR). Literature searches were conducted across Scopus, PubMed, Web of Science, and Science Direct databases using keywords including "immunotherapy", "vaccines", "immunization", "hematological malignancies", "blood cancer", "hematopoietic neoplasms", and "leukemia". Results: A total of 56 articles published from 2013 to 2024 were included in the analysis. The majority of studies are in the preclinical stage, with some advancing to phase 1 and phase 2 clinical trials. Acute myeloid leukemia emerged as the most frequently studied malignancy. While first- and second-generation vaccines dominate the field, innovative approaches, such as dendritic-cell-based vaccines and mRNA vaccines, are gaining prominence. Notably, preclinical models often demonstrate superior outcomes compared to clinical trials, as results observed in animal models are not fully replicated in human studies. Conclusions: Despite challenges related to disease progression and patient loss, the studies reviewed highlight significant advancements in patient prognosis, emphasizing the potential of novel therapeutic vaccines as an effective alternative for the treatment of hematological cancers.
Collapse
Affiliation(s)
| | - Maria Gabriela Reis Carvalho
- Grupo de Informática de Biossistemas, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Jeronimo Conceição Ruiz
- Grupo de Informática de Biossistemas, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
7
|
Li Y, Sun K, Shao Y, Wang C, Xue F, Chu C, Gu Z, Chen Z, Bai J. Next-Generation Approaches for Biomedical Materials Evaluation: Microfluidics and Organ-on-a-Chip Technologies. Adv Healthc Mater 2025; 14:e2402611. [PMID: 39440635 DOI: 10.1002/adhm.202402611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Biological evaluation of biomedical materials faces constraints imposed by the limitations of traditional in vitro and animal experiments. Currently, miniaturized and biomimetic microfluidic technologies and organ-on-chip systems have garnered widespread attention in the field of drug development. However, their exploration in the context of biomedical material evaluation and medical device development remains relatively limited. In this review, a summary of existing biological evaluation methods, highlighting their respective advantages and drawbacks is provided. The application of microfluidic technologies in the evaluation of biomedical materials, emphasizing the potential of organ-on-chip systems as highly biomimetic in vitro models in material evaluation is then focused. Finally, the challenges and opportunities associated with utilizing organ-on-chip systems to evaluate biomedical materials in the field of material evaluation are discussed. In conclusion, the integration of advanced microfluidic technologies and organ-on-chip systems presents a potential paradigm shift in the biological assessment of biomedical materials, offering the prospective of more accurate and predictive in vitro models in the development of medical devices.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Ke Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Yi Shao
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
| | - Zhongze Gu
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zaozao Chen
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| |
Collapse
|
8
|
Ojeh N, Vecin NM, Pastar I, Volk SW, Wilgus T, Griffiths S, Ramey‐Ward AN, Driver VR, DiPietro LA, Gould LJ, Tomic‐Canic M. The Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines. Wound Repair Regen 2025; 33:e13232. [PMID: 39639458 PMCID: PMC11621255 DOI: 10.1111/wrr.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Preclinical studies for wound healing disorders are an essential step in translating discoveries into therapies. Also, they are an integral component of initial safety screening and gaining mechanistic insights using an in vivo approach. Given the complexity of the wound healing process, existing guidelines for animal testing do not capture key information due to the inevitable variability in experimental design. Variations in study interpretation are increased by complexities associated with wound aetiology, wounding procedure, multiple treatment conditions, wound assessment, and analysis, as well as lack of acknowledgement of limitation of the model used. Yet, no standards exist to guide reporting crucial experimental information required to interpret results in translational studies of wound healing. Consistency in reporting allows transparency, comparative, and meta-analysis studies and avoids repetition and redundancy. Therefore, there is a critical and unmet need to standardise reporting for preclinical wound studies. To aid in reporting experimental conditions, The Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines have now been created by the authors working with the Wound Care Collaborative Community (WCCC) GAPS group to provide a checklist and reporting template for the most frequently used preclinical models in support of development for human clinical trials for wound healing disorders. It is anticipated that the WRAHPS Guidelines will standardise comprehensive methods for reporting in scientific manuscripts and the wound healing field overall. This article is not intended to address regulatory requirements but is intended to provide general guidelines on important scientific considerations for such studies.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of Preclinical and Health Sciences, Faculty of Medical SciencesThe University of the West IndiesBridgetownBarbados
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Susan W. Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Traci Wilgus
- Department of PathologyThe Ohio State UniversityColumbusOhioUSA
| | | | | | - Vickie R. Driver
- School of MedicineWashington State UniversitySpokaneWashingtonUSA
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue RegenerationUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lisa J. Gould
- South Shore Hospital Center for Wound HealingWeymouthMassachusettsUSA
| | - Marjana Tomic‐Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
9
|
Pellegrina D, Wilson HL, Mutwiri GK, Helmy M. Transcriptional Systems Vaccinology Approaches for Vaccine Adjuvant Profiling. Vaccines (Basel) 2025; 13:33. [PMID: 39852812 PMCID: PMC11768747 DOI: 10.3390/vaccines13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Adjuvants are a diverse group of substances that can be added to vaccines to enhance antigen-specific immune responses and improve vaccine efficacy. The first adjuvants, discovered almost a century ago, were soluble crystals of aluminium salts. Over the following decades, oil emulsions, vesicles, oligodeoxynucleotides, viral capsids, and other complex organic structures have been shown to have adjuvant potential. However, the detailed mechanisms of how adjuvants enhance immune responses remain poorly understood and may be a barrier that reduces the rational selection of vaccine components. Previous studies on mechanisms of action of adjuvants have focused on how they activate innate immune responses, including the regulation of cell recruitment and activation, cytokine/chemokine production, and the regulation of some "immune" genes. This approach provides a narrow perspective on the complex events involved in how adjuvants modulate antigen-specific immune responses. A comprehensive and efficient way to investigate the molecular mechanism of action for adjuvants is to utilize systems biology approaches such as transcriptomics in so-called "systems vaccinology" analysis. While other molecular biology methods can verify if one or few genes are differentially regulated in response to vaccination, systems vaccinology provides a more comprehensive picture by simultaneously identifying the hundreds or thousands of genes that interact with complex networks in response to a vaccine. Transcriptomics tools such as RNA sequencing (RNA-Seq) allow us to simultaneously quantify the expression of practically all expressed genes, making it possible to make inferences that are only possible when considering the system as a whole. Here, we review some of the challenges in adjuvant studies, such as predicting adjuvant activity and toxicity when administered alone or in combination with antigens, or classifying adjuvants in groups with similar properties, while underscoring the significance of transcriptomics in systems vaccinology approaches to propel vaccine development forward.
Collapse
Affiliation(s)
- Diogo Pellegrina
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
| | - Heather L. Wilson
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - George K. Mutwiri
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Mohamed Helmy
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Department of Computer Science, Idaho State University, Pocatello, ID 83209, USA
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| |
Collapse
|
10
|
Helmy MW, Youssef MH, Yamari I, Amr A, Moussa FI, El Wakil A, Chtita S, El-Samad LM, Hassan MA. Repurposing of sericin combined with dactolisib or vitamin D to combat non-small lung cancer cells through computational and biological investigations. Sci Rep 2024; 14:27034. [PMID: 39505930 PMCID: PMC11541877 DOI: 10.1038/s41598-024-76947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This study aims to repurpose sericin in combating non-small lung cancer cells (A549 and H460) by combining it with dactolisib or vitamin D to reduce the dose of dactolisib and boost the anticancer effectiveness of dactolisib and vitamin D. Therefore, the binding affinities of individual and combined drugs were examined using in silico and protein-protein interaction studies, targeting NF-κB, Cyclin D1, p-AKT, and VEGF1 proteins. The findings manifested remarkable affinities for combinatorial drugs compared to individual compounds. To substantiate these findings, the combined IC50 for each combination (sericin + dactolisib and sericin + vitamin D) were determined, reporting 31.9 and 41.8 µg/ml, respectively, against A549 cells and 47.9 and 55.3 µg/ml, respectively, against H460 cells. Furthermore, combination indices were assessed to lower the doses of each drug. Interestingly, in vitro results exhibited marked diminutions in NF-κB, Cyclin D1, p-AKT, and VEGF1 after treatment with sericin + dactolisib and sericin + vitamin D compared to control lung cancer cells and those treated with a single drug. Moreover, A549 and H460 cells treated with both combinations demonstrated augmented caspase-3 levels, implying substantial apoptotic activity. Altogether, these results accentuated the prospective implementation of sericin in combination with dactolisib and vitamin D at low doses to preclude lung cancer cell proliferation.
Collapse
Affiliation(s)
- Maged W Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Damanhour, Egypt
| | - Mariam H Youssef
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P. O. Box 7955, Casablanca, Morocco
| | - Alaa Amr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Farouzia I Moussa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P. O. Box 7955, Casablanca, Morocco
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
11
|
Leal APF, Nieto Marín V, Cabistany VV, Morales J, Buccini DF, Franco OL. Applicability of mouse models for induction of severe acute lung injury. Pulm Pharmacol Ther 2024; 86:102316. [PMID: 39069252 DOI: 10.1016/j.pupt.2024.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Acute lung injury (ALI) is a significant clinical challenge associated with high morbidity and mortality. Worldwide, it affects approximately 200.000 individuals annually, with a staggering 40 % mortality rate in hospitalized cases and persistent complications in out-of-hospital cases. This review focuses on the key immunological pathways underlying bacterial ALI and the exploration of mouse models as tools for its induction. These models serve as indispensable platforms for unraveling the inflammatory cascades and biological responses inherent to ALI, while also facilitating the evaluation of novel therapeutic agents. However, their utility is not without challenges, mainly due to the stringent biosafety protocols required by the diverse bacterial virulence profiles. Simple and reproducible models of pulmonary bacterial infection are currently available, including intratracheal, intranasal, pleural and, intraperitoneal approaches. These models use endotoxins such as commercially available lipopolysaccharide (LPS) or live pathogens such as Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Streptococcus pneumoniae, all of which are implicated in the pathogenesis of ALI. Combining murine models of bacterial lung infection with in-depth studies of the underlying immunological mechanisms is a cornerstone in advancing the therapeutic landscape for acute bacterial lung injury.
Collapse
Affiliation(s)
- Ana Paula Ferreira Leal
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Valentina Nieto Marín
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Vinícius Varzim Cabistany
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Júlia Morales
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Pontifícia Universidade Católica de Brasília, Brasília, DF, 70790160, Brazil.
| |
Collapse
|
12
|
Yuan H, Mancuso CA, Johnson K, Braasch I, Krishnan A. Computational strategies for cross-species knowledge transfer and translational biomedicine. ARXIV 2024:arXiv:2408.08503v1. [PMID: 39184546 PMCID: PMC11343225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Research organisms provide invaluable insights into human biology and diseases, serving as essential tools for functional experiments, disease modeling, and drug testing. However, evolutionary divergence between humans and research organisms hinders effective knowledge transfer across species. Here, we review state-of-the-art methods for computationally transferring knowledge across species, primarily focusing on methods that utilize transcriptome data and/or molecular networks. We introduce the term "agnology" to describe the functional equivalence of molecular components regardless of evolutionary origin, as this concept is becoming pervasive in integrative data-driven models where the role of evolutionary origin can become unclear. Our review addresses four key areas of information and knowledge transfer across species: (1) transferring disease and gene annotation knowledge, (2) identifying agnologous molecular components, (3) inferring equivalent perturbed genes or gene sets, and (4) identifying agnologous cell types. We conclude with an outlook on future directions and several key challenges that remain in cross-species knowledge transfer.
Collapse
Affiliation(s)
- Hao Yuan
- Genetics and Genome Science Program; Ecology, Evolution, and Behavior Program, Michigan State University
| | - Christopher A. Mancuso
- Department of Biostatistics & Informatics, University of Colorado Anschutz Medical Campus
| | - Kayla Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus
| | - Ingo Braasch
- Department of Integrative Biology; Genetics and Genome Science Program; Ecology, Evolution, and Behavior Program, Michigan State University
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus
| |
Collapse
|
13
|
Silva AB, Martins AS, Tosta TAA, Loyola AM, Cardoso SV, Neves LA, de Faria PR, do Nascimento MZ. OralEpitheliumDB: A Dataset for Oral Epithelial Dysplasia Image Segmentation and Classification. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1691-1710. [PMID: 38409608 PMCID: PMC11589032 DOI: 10.1007/s10278-024-01041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
Early diagnosis of potentially malignant disorders, such as oral epithelial dysplasia, is the most reliable way to prevent oral cancer. Computational algorithms have been used as an auxiliary tool to aid specialists in this process. Usually, experiments are performed on private data, making it difficult to reproduce the results. There are several public datasets of histological images, but studies focused on oral dysplasia images use inaccessible datasets. This prevents the improvement of algorithms aimed at this lesion. This study introduces an annotated public dataset of oral epithelial dysplasia tissue images. The dataset includes 456 images acquired from 30 mouse tongues. The images were categorized among the lesion grades, with nuclear structures manually marked by a trained specialist and validated by a pathologist. Also, experiments were carried out in order to illustrate the potential of the proposed dataset in classification and segmentation processes commonly explored in the literature. Convolutional neural network (CNN) models for semantic and instance segmentation were employed on the images, which were pre-processed with stain normalization methods. Then, the segmented and non-segmented images were classified with CNN architectures and machine learning algorithms. The data obtained through these processes is available in the dataset. The segmentation stage showed the F1-score value of 0.83, obtained with the U-Net model using the ResNet-50 as a backbone. At the classification stage, the most expressive result was achieved with the Random Forest method, with an accuracy value of 94.22%. The results show that the segmentation contributed to the classification results, but studies are needed for the improvement of these stages of automated diagnosis. The original, gold standard, normalized, and segmented images are publicly available and may be used for the improvement of clinical applications of CAD methods on oral epithelial dysplasia tissue images.
Collapse
Affiliation(s)
- Adriano Barbosa Silva
- Faculty of Computer Science (FACOM) - Federal University of Uberlândia (UFU), Av. João Naves de Ávila 2121, BLB, 38400-902, Uberlândia, MG, Brazil.
| | - Alessandro Santana Martins
- Federal Institute of Triângulo Mineiro (IFTM), R. Belarmino Vilela Junqueira, S/N, 38305-200, Ituiutaba, MG, Brazil
| | - Thaína Aparecida Azevedo Tosta
- Science and Technology Institute, Federal University of São Paulo (UNIFESP), Av. Cesare Mansueto Giulio Lattes, 1201, 12247-014, São José dos Campos, SP, Brazil
| | - Adriano Mota Loyola
- School of Dentistry, Federal University of Uberlândia (UFU), Av. Pará - 1720, 38405-320, Uberlândia, MG, Brazil
| | - Sérgio Vitorino Cardoso
- School of Dentistry, Federal University of Uberlândia (UFU), Av. Pará - 1720, 38405-320, Uberlândia, MG, Brazil
| | - Leandro Alves Neves
- Department of Computer Science and Statistics (DCCE), São Paulo State University (UNESP), R. Cristóvão Colombo, 2265, 38305-200, São José do Rio Preto, SP, Brazil
| | - Paulo Rogério de Faria
- Department of Histology and Morphology, Institute of Biomedical Science, Federal University of Uberlândia (UFU), Av. Amazonas, S/N, 38405-320, Uberlândia, MG, Brazil
| | - Marcelo Zanchetta do Nascimento
- Faculty of Computer Science (FACOM) - Federal University of Uberlândia (UFU), Av. João Naves de Ávila 2121, BLB, 38400-902, Uberlândia, MG, Brazil
| |
Collapse
|
14
|
Marsh EB, Snyder-Warwick AK, Mackinnon SE, Wood MD. Interpretation of Data from Translational Rodent Nerve Injury and Repair Models. Hand Clin 2024; 40:429-440. [PMID: 38972687 PMCID: PMC11228394 DOI: 10.1016/j.hcl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
This article highlights the use of rodents as preclinical models to evaluate the management of nerve injuries, describing the pitfalls and value from rodent nerve injury and regeneration outcomes, as well as treatments derived from these rodent models. The anatomic structure, size, and cellular and molecular differences and similarities between rodent and human nerves are summarized. Specific examples of success and failure when assessing outcome metrics are presented for context. Evidence for translation to clinical practice includes the topics of electrical stimulation, Tacrolimus (FK506), and acellular nerve allografts.
Collapse
Affiliation(s)
- Evan B Marsh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
15
|
Yin T, He L, Du Y, Liu J, Peng L, Yang M, Sun S, Liu J, Li J, Cao J, Zhu H, Wang S. Macrophage WNK1 senses intracellular hypo-chlorine to regulate vulnerability to sepsis attack during hypochloremia. Int Immunopharmacol 2024; 139:112721. [PMID: 39033662 DOI: 10.1016/j.intimp.2024.112721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Sepsis is one of the leading causes of death in critical patients worldwide and its occurrence is related to the excessive activation of macrophages. Chloride loss worsens the prognosis of patients with sepsis but the underlying mechanism is currently unclear. In this study, we founded that macrophages deficient in intracellular Cl- secrete more inflammatory cytokines such as IL-1β, IL-6 and TNF-α compared with control group. The intracellular chloride level decreased in WNK1 deficiency or activity inhibited macrophages with more severe inflammatory response after LPS treatment. Remimazolam, as classic GABAa receptor agonist, alleviates excessive inflammation cascade by promoting macrophage chloride influx during sepsis progression. Collectively, this study proves that macrophage WNK1 acts as a negative regulator of inflammatory response by sensing chloride to maintain intracellular chloride balance during sepsis coupled with hypochloremia.
Collapse
Affiliation(s)
- Tianyue Yin
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Lingwei He
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Yuhao Du
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Mengmeng Yang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, Anhui 230001, China
| | - Shuaijie Sun
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, Anhui 230001, China
| | - Jingya Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jun Li
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiangbing Cao
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, Anhui 230001, China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
16
|
McDonald K, Rodriguez A, Muthukrishnan G. Humanized Mouse Models of Bacterial Infections. Antibiotics (Basel) 2024; 13:640. [PMID: 39061322 PMCID: PMC11273811 DOI: 10.3390/antibiotics13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial infections continue to represent a significant healthcare burden worldwide, causing considerable mortality and morbidity every year. The emergence of multidrug-resistant bacterial strains continues to rise, posing serious risks to controlling global disease outbreaks. To develop novel and more effective treatment and vaccination programs, there is a need for clinically relevant small animal models. Since multiple bacterial species have human-specific tropism for numerous virulence factors and toxins, conventional mouse models do not fully represent human disease. Several human disease characteristic phenotypes, such as lung granulomas in the case of Mycobacterium tuberculosis infections, are absent in standard mouse models. Alternatively, certain pathogens, such as Salmonella enterica serovar typhi and Staphylococcus aureus, can be well tolerated in mice and cleared quickly. To address this, multiple groups have developed humanized mouse models and observed enhanced susceptibility to infection and a more faithful recapitulation of human disease. In the last two decades, multiple humanized mouse models have been developed to attempt to recapitulate the human immune system in a small animal model. In this review, we first discuss the history of immunodeficient mice that has enabled the engraftment of human tissue and the engraftment methods currently used in the field. We then highlight how humanized mouse models successfully uncovered critical human immune responses to various bacterial infections, including Salmonella enterica serovar Typhi, Mycobacterium tuberculosis, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Katya McDonald
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Adryiana Rodriguez
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
17
|
Hori H, Fukushima H, Nagayoshi T, Ishikawa R, Zhuo M, Yoshida F, Kunugi H, Okamoto K, Kim Y, Kida S. Fear memory regulation by the cAMP signaling pathway as an index of reexperiencing symptoms in posttraumatic stress disorder. Mol Psychiatry 2024; 29:2105-2116. [PMID: 38409596 PMCID: PMC11408251 DOI: 10.1038/s41380-024-02453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder associated with traumatic memory, yet its etiology remains unclear. Reexperiencing symptoms are specific to PTSD compared to other anxiety-related disorders. Importantly, reexperiencing can be mimicked by retrieval-related events of fear memory in animal models of traumatic memory. Recent studies revealed candidate PTSD-associated genes that were related to the cyclic adenosine monophosphate (cAMP) signaling pathway. Here, we demonstrate the tight linkage between facilitated cAMP signaling and PTSD by analyzing loss- and gain-of-cAMP signaling effects on fear memory in mice and the transcriptomes of fear memory-activated mice and female PTSD patients with reexperiencing symptoms. Pharmacological and optogenetic upregulation or downregulation of cAMP signaling transduction enhanced or impaired, respectively, the retrieval and subsequent maintenance of fear memory in mice. In line with these observations, integrative mouse and human transcriptome analysis revealed the reduced mRNA expression of phosphodiesterase 4B (PDE4B), an enzyme that degrades cAMP, in the peripheral blood of PTSD patients showing more severe reexperiencing symptoms and the mouse hippocampus after fear memory retrieval. Importantly, more severe reexperiencing symptoms and lower PDE4B mRNA levels were correlated with decreased DNA methylation of a locus within PDE4B, suggesting the involvement of methylation in the mechanism of PTSD. These findings raise the possibility that the facilitation of cAMP signaling mediating the downregulation of PDE4B expression enhances traumatic memory, thereby playing a key role in the reexperiencing symptoms of PTSD patients as a functional index of these symptoms.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
| | - Hotaka Fukushima
- Department of Bioscience, Graduate School of Life Sciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Taikai Nagayoshi
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rie Ishikawa
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
| | - Satoshi Kida
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
18
|
Hou M, Liu L, Zhang Y, Pan Y, Ding N, Zhang Y. In vivo study of chelating agent-modified nano zero-valent iron: Biodistribution and toxicity in mice. WATER RESEARCH 2024; 257:121649. [PMID: 38718655 DOI: 10.1016/j.watres.2024.121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
In this study, the distribution and toxicity of nanoscale zero valent iron (nZVI) and nZVIs coated with citric acid and sodium tripolyphosphate (CA-nZVI and STPP-nZVI) in mice were investigated. nZVIs were primarily found in the livers and spleens, followed by the lungs, hearts, and kidneys. Histologic analysis revealed no significant histopathologic abnormalities or lesions in all organs except the liver at 14th d gavage. nZVIs did not have a noticeable impact on the body weight of the mice or the weight of their organs. Compared with the control group, there were no significant changes in hematology indexes in the nZVIs groups. However, the nZVIs groups exhibited varying levels of elevation in alanine aminotransferase, aspartate aminotransferase, and creatinine, suggesting liver and kidney inflammation in mice. The up-regulation of Nuclear Factor erythroid 2-Related Factor 2 and Heme oxygenase 1 in the nZVIs groups may be a response to nZVIs-induced oxidative stress. Immunohistochemical analysis confirmed the inflammatory response induced by the three nZVI groups. Chelating agents did not have a significant impact on the distribution or toxicity of nZVIs in mice. This study contributes to a comprehensive and detailed insight into nZVI toxicity in the environmental field.
Collapse
Affiliation(s)
- Minhui Hou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Linwei Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuqing Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ning Ding
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Ying Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
19
|
Yaykasli KO, van Schie KA, Toes REM, Wuhrer M, Koeleman CAM, Bila G, Negrych N, Schett G, Knopf J, Herrmann M, Bilyy R. Neutrophil Depletion Changes the N-Glycosylation Pattern of IgG in Experimental Murine Sepsis. Int J Mol Sci 2024; 25:6478. [PMID: 38928183 PMCID: PMC11203722 DOI: 10.3390/ijms25126478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation. However, the exact effector mechanism of action still remains a mystery. Changes in the glycosylation pattern of the immunoglobulin G (IgG) Fc region are described for several diseases including meningococcal sepsis. In this study, we investigated the possible contribution of neutrophils and neutrophil implication, potentially related to degranulation or neutrophil extracellular trap (NET) formation in changing the IgG Fc N-glycosylation pattern in a murine sepsis model. We have measured the serum level of cytokines/chemokines and immunoglobulins, the serum activity of neutrophil elastase (NE), and analyzed the IgG Fc glycosylation pattern by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) and Lectin enzyme-linked immunosorbent assay (ELISA). We observed an increased activity of NE- and neutrophil-associated cytokines such as keratinocyte chemoattractant (KC) with the development of sepsis. Regarding the IgG Fc N-glycosylation, we observed an increase in fucosylation and α1,3-galactosylation and a decrease for sialyation. Interestingly, these changes were not uniform for all IgG subclasses. After depletion of neutrophils, we saw a change in the exposure of fucose and α2,6-linked sialic acid during the time course of our experimental sepsis model. In conclusion, neutrophils can influence changes in the IgG glycosylation pattern in experimental sepsis.
Collapse
Affiliation(s)
- Kursat O. Yaykasli
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Karin A. van Schie
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - René E. M. Toes
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Carolien A. M. Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Galyna Bila
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’, 050568 Bucharest, Romania
| | - Nazar Negrych
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’, 050568 Bucharest, Romania
| |
Collapse
|
20
|
Kittaka M, Mizuno N, Morino H, Yoshimoto T, Zhu T, Liu S, Wang Z, Mayahara K, Iio K, Kondo K, Kondo T, Hayashi T, Coghlan S, Teno Y, Doan AAP, Levitan M, Choi RB, Matsuda S, Ouhara K, Wan J, Cassidy AM, Pelletier S, Nampoothiri S, Urtizberea AJ, Robling AG, Ono M, Kawakami H, Reichenberger EJ, Ueki Y. Loss-of-function OGFRL1 variants identified in autosomal recessive cherubism families. JBMR Plus 2024; 8:ziae050. [PMID: 38699440 PMCID: PMC11062026 DOI: 10.1093/jbmrpl/ziae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 05/05/2024] Open
Abstract
Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.
Collapse
Affiliation(s)
- Mizuho Kittaka
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroyuki Morino
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Tetsuya Yoshimoto
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Tianli Zhu
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Sheng Liu
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama 700-8558, Japan
| | - Kotoe Mayahara
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Kyohei Iio
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kaori Kondo
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo 113-8677, Japan
| | - Toshio Kondo
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama 700-8558, Japan
| | - Tatsuhide Hayashi
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University, Aichi 464-8650, Japan
| | - Sarah Coghlan
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Yayoi Teno
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Andrew Anh Phung Doan
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Marcus Levitan
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Roy B Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Jun Wan
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Annelise M Cassidy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Kerala 682041, India
| | | | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama 700-8558, Japan
| | - Hideshi Kawakami
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, CT 06030, United States
| | - Yasuyoshi Ueki
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| |
Collapse
|
21
|
Atre R, Sharma R, Obukhov AG, Saqib U, Umar S, Darwhekar GN, Baig MS. An improved mouse model of sepsis based on intraperitoneal injections of the enriched culture of cecum slurry. Life Sci 2024; 345:122584. [PMID: 38527668 DOI: 10.1016/j.lfs.2024.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
AIM Sepsis is a life-threatening clinical syndrome comprising multiorgan dysfunctions caused by a disproportionate body immune response. There are several animal sepsis models which are based on cecum ligation, cecal puncture, and cecum slurry injection. The major limitation of all current sepsis models is the high variability owing to the variable degree of ligation, puncture and inconsistent microbial composition used for sepsis initiation. The primary objective of this work is to demonstrate the feasibility of a standardized method for sepsis development. MATERIALS AND METHODS The cecal slurry bacterial culture was developed and preserved in glycerol stocks. Antibiotics aztreonam and vancomycin were used for generating several defined, enriched cecal slurry bacterial cultures. Mice survival was assessed until 48 hrs post injection, and the tissue samples were collected after 10 hrs from sepsis initiation. KEY FINDINGS The results indicate that increasing polymicrobial load resulted in lower survival rates and was associated with the higher number of infiltrating immune cells and necrosis. H&E (haematoxylin & eosin) staining & serum markers revealed that septic mice exhibited increased inflammation and significant damage to the liver and kidneys. The defined Gram-negative and Gram-positive specific cecal slurry bacterial cultures were developed and their efficiency in inducing sepsis was characterized. SIGNIFICANCE Enriched cecal slurry bacterial cultures can be stored in glycerol stocks at -80 °C. This has an ethical advantage of avoiding unnecessary animal euthanasia for each experiment and provides a standardization capability of sepsis development.
Collapse
Affiliation(s)
- Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, MP 453552, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, MP 453552, India
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Uzma Saqib
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Vigyan Bhawan, Indore, MP 452 001, India
| | - Sadiq Umar
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gajanan N Darwhekar
- Acropolis Institute of Pharmaceutical Education and Research (AIPER), Indore, MP 453771, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, MP 453552, India.
| |
Collapse
|
22
|
Fu Y, Xiang Y, Wei Q, Ilatovskaya D, Dong Z. Rodent models of AKI and AKI-CKD transition: an update in 2024. Am J Physiol Renal Physiol 2024; 326:F563-F583. [PMID: 38299215 PMCID: PMC11208034 DOI: 10.1152/ajprenal.00402.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Despite known drawbacks, rodent models are essential tools in the research of renal development, physiology, and pathogenesis. In the past decade, rodent models have been developed and used to mimic different etiologies of acute kidney injury (AKI), AKI to chronic kidney disease (CKD) transition or progression, and AKI with comorbidities. These models have been applied for both mechanistic research and preclinical drug development. However, current rodent models have their limitations, especially since they often do not fully recapitulate the pathophysiology of AKI in human patients, and thus need further refinement. Here, we discuss the present status of these rodent models, including the pathophysiologic compatibility, clinical translational significance, key factors affecting model consistency, and their main limitations. Future efforts should focus on establishing robust models that simulate the major clinical and molecular phenotypes of human AKI and its progression.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Yu Xiang
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Daria Ilatovskaya
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
- Research Department, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| |
Collapse
|
23
|
Ham SD, Abraham MN, Deutschman CS, Taylor MD. Single-cell RNA sequencing reveals Immune Education promotes T cell survival in mice subjected to the cecal ligation and puncture sepsis model. Front Immunol 2024; 15:1366955. [PMID: 38562928 PMCID: PMC10982361 DOI: 10.3389/fimmu.2024.1366955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Individual T cell responses vary significantly based on the microenvironment present at the time of immune response and on prior induced T cell memory. While the cecal ligation and puncture (CLP) model is the most commonly used murine sepsis model, the contribution of diverse T cell responses has not been explored. We defined T cell subset responses to CLP using single-cell RNA sequencing and examined the effects of prior induced T cell memory (Immune Education) on these responses. We hypothesized that Immune Education prior to CLP would alter T cell responses at the single cell level at a single, early post-CLP time point. Methods Splenic T cells were isolated from C57BL/6 mice. Four cohorts were studied: Control, Immune-Educated, CLP, and Immune-Educated CLP. At age 8 weeks, Immune-Educated and Immune-Educated CLP mice received anti-CD3ϵ antibody; Control and CLP mice were administered an isotype control. CLP (two punctures with a 22-gauge needle) was performed at 12-13 weeks of life. Mice were sacrificed at baseline or 24-hours post-CLP. Unsupervised clustering of the transcriptome library identified six distinct T cell subsets: quiescent naïve CD4+, primed naïve CD4+, memory CD4+, naïve CD8+, activated CD8+, and CD8+ cytotoxic T cell subsets. T cell subset specific gene set enrichment analysis and Hurdle analysis for differentially expressed genes (DEGs) were performed. Results T cell responses to CLP were not uniform - subsets of activated and suppressed T cells were identified. Immune Education augmented specific T cell subsets and led to genomic signatures favoring T cell survival in unoperated and CLP mice. Additionally, the combination of Immune Education and CLP effected the expression of genes related to T cell activity in ways that differed from CLP alone. Validating our finding that IL7R pathway markers were upregulated in Immune-Educated CLP mice, we found that Immune Education increased T cell surface IL7R expression in post-CLP mice. Conclusion Immune Education enhanced the expression of genes associated with T cell survival in unoperated and CLP mice. Induction of memory T cell compartments via Immune Education combined with CLP may increase the model's concordance to human sepsis.
Collapse
Affiliation(s)
- Steven D. Ham
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Mabel N. Abraham
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Clifford S. Deutschman
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew D. Taylor
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
24
|
Kalliolias GD, Basdra EK, Papavassiliou AG. How to improve translatability and clinical relevance of preclinical studies in rheumatoid arthritis. Immunology 2024; 171:440-443. [PMID: 38148686 DOI: 10.1111/imm.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- George D Kalliolias
- Arthritis & Tissue Degeneration, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Martínez-Ramos S, García S. An update of murine models and their methodologies in immune-mediated joint damage and pain research. Int Immunopharmacol 2024; 128:111440. [PMID: 38176343 DOI: 10.1016/j.intimp.2023.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Murine models have played an indispensable role in the understanding of rheumatic and musculoskeletal disorders (RMD), elucidating the genetic, endocrine and biomechanical pathways involved in joint pathology and associated pain. To date, the available models in RMD can be classified as induced or spontaneous, both incorporating transgenic alternatives that improve specific insights. It is worth noting that the selection of the most appropriate model together with the evaluation of their specific characteristics and technical capabilities are crucial when designing the experiments. Furthermore, it is also imperative to consistently adhere to the ethical standards concerning animal experimentation. Recognizing the inherent limitation that any model can entirely encapsulates the complexity of the pathophysiology of these conditions, the aim of this review is to provide an updated overview on the methodology of current murine models in major arthropathies and their immune-mediated pathways, addressing to basic, translational and pharmacological research in joint damage and pain.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain.
| | - Samuel García
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| |
Collapse
|
27
|
Hu H, Yan Q, Tang X, Lai S, Qin Z, Xu T, Zhang H, Hu H. A novel model of urosepsis in mice developed by ureteral ligation and injection of Escherichia coli into the renal pelvis. Heliyon 2024; 10:e25522. [PMID: 38327418 PMCID: PMC10847998 DOI: 10.1016/j.heliyon.2024.e25522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Despite extensive investigations, urosepsis remains a life-threatening and high-mortality illness. The absence of widely acknowledged animal models for urosepsis prompted this investigation with the objective of formulating a replicable murine model. Eighty-four adult male C57BL/6J mice were arbitrarily distributed into three cohorts based on the concentration of the Escherichia coli (E. coli) solution administered into the renal pelvis: Sham, Low-grade sepsis (1.0 × 108 cfu/mL), and High-grade sepsis (1.0 × 109 cfu/mL). By fabricating a glass needle with a 100 μm outer diameter, bacterial leakage during renal pelvic injection was minimized. After the ureteral ligation, the mice were injected with this needle into the right renal pelvis (normal saline or E. coli solution, 1 ml/kg). Ten days post after E. coli injection, the mortality rates for the Low-grade sepsis and High-grade sepsis groups stood at 30 % and 100 %, respectively. Post-successful modeling, mice in the urosepsis cohort exhibited a noteworthy reduction in activity, body temperature, and white blood cell count within a 2-h timeframe. At the 24-h mark post-modeling, mice afflicted with urosepsis displayed compromised coagulation functionality. Concurrently, multiple organ dysfunction was confirmed as evidenced by markedly elevated levels of inflammatory factors (IL-6 and TNF-α) in four distinct organs (heart, lung, liver, and kidney). This study confirmed the feasibility of establishing a standardized mouse model of urosepsis by ureteral ligation and E. coli injection into the renal pelvis. A primary drawback of this model resides in the mice's diminished blood volume, rendering continuous blood extraction at multiple intervals challenging.
Collapse
Affiliation(s)
- Haopu Hu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Qiuxia Yan
- Department of Urology, Huizhou First People's Hospital, Huizhou, Guangdong, China
| | - Xinwei Tang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Shicong Lai
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Ziyu Qin
- State Key Laboratory of Vascular Homeostasis and Remodeling, The lnstitute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, The lnstitute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Hu
- Department of Urology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
28
|
Alpdogan S, Sander T, Zhang R, Khan D, Li X, Zhou H, Li K, Nickel AC, Zheng B, Skryabin A, Schieferdecker S, Hofmann BB, Donaldson DM, Cornelius JF, Hänggi D, Muhammad S. Meta-review on Perforation Model of Subarachnoid Hemorrhage in Mice: Filament Material as a Possible Moderator of Mortality. Transl Stroke Res 2024; 15:16-29. [PMID: 36422813 PMCID: PMC10796476 DOI: 10.1007/s12975-022-01106-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022]
Abstract
Robust preclinical models are inevitable for researchers to unravel pathomechanisms of subarachnoidal hemorrhage (SAH). For the mouse perforation model of SAH, the goal of this meta-review was the determination of variances in mortality, SAH severity grade, and vasospasm, and their experimental moderators, as many researchers are facing with incomparable results. We searched on the databases PubMed, Embase, and Web of Science for articles describing in vivo experiments using the SAH perforation mouse model and measuring mortality, SAH grade, and/or vasospasm. After screening, 42 articles (total of 1964 mice) were included into systematic review and meta-analysis. Certain model characteristics were insufficiently reported, e.g., perforation location (not reported in six articles), filament (material (n = 15) and tip texture (n = 25)), mouse age (n = 14), and weight (n = 10). Used injective anesthetics and location of perforation showed large variation. In a random-effects meta-analysis, the overall animal mortality following SAH was 21.3% [95% CI: 17.5%, 25.7%] and increased with longer observational periods. Filament material significantly correlated with animal mortality (p = 0.024) after exclusion of hyperacute studies (time after SAH induction < 24 h). Reported mean SAH grade was 10.7 [9.6, 11.7] on the scale of Sugawara (J Neurosci Methods 167:327-34, 2008). Furthermore, mean diameter of large cerebral arteries after SAH was reduced by 27.6% compared to sham-operated non-SAH mice. Uniforming standards of experimental procedures and their reporting are indispensable to increase overall comparability.
Collapse
Affiliation(s)
- Serdar Alpdogan
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany.
| | - Timo Sander
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Rui Zhang
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Xuanchen Li
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Huakang Zhou
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Ke Li
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Ann-Christin Nickel
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Baolong Zheng
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Anastasiya Skryabin
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Simon Schieferdecker
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Björn B Hofmann
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Daniel Maximilian Donaldson
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| |
Collapse
|
29
|
Rowe G, Allahham A, Edgar DW, Rurak BK, Fear MW, Wood FM, Vallence AM. Functional Brain Changes Following Burn Injury: A Narrative Review. Neurorehabil Neural Repair 2024; 38:62-72. [PMID: 38044625 PMCID: PMC10798013 DOI: 10.1177/15459683231215331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
BACKGROUND Burn injuries cause significant motor and sensory dysfunctions that can negatively impact burn survivors' quality of life. The underlying mechanisms of these burn-induced dysfunctions have primarily been associated with damage to the peripheral neural architecture, however, evidence points to a systemic influence of burn injury. Central nervous system (CNS) reorganizations due to inflammation, afferent dysfunction, and pain could contribute to persistent motor and sensory dysfunction in burn survivors. Recent evidence shows that the capacity for neuroplasticity is associated with self-reported functional recovery in burn survivors. OBJECTIVE This review first outlines motor and sensory dysfunctions following burn injury and critically examines recent literature investigating the mechanisms mediating CNS reorganization following burn injury. The review then provides recommendations for future research and interventions targeting the CNS such as non-invasive brain stimulation to improve functional recovery. CONCLUSIONS Directing focus to the CNS following burn injury, alongside the development of non-invasive methods to induce functionally beneficial neuroplasticity in the CNS, could advance treatments and transform clinical practice to improve quality of life in burn survivors.
Collapse
Affiliation(s)
- Grant Rowe
- School of Psychology, College of Health and Education, Murdoch University, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Dale W. Edgar
- Fiona Wood Foundation, Murdoch, WA, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, MNH (B) Main Hospital, Level 4, Burns Unit, Murdoch, WA, Australia
- Institute for Health Research, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Brittany K. Rurak
- School of Psychology, College of Health and Education, Murdoch University, Murdoch, WA, Australia
| | - Mark W. Fear
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Fiona Wood Foundation, Murdoch, WA, Australia
| | - Fiona M. Wood
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Fiona Wood Foundation, Murdoch, WA, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, MNH (B) Main Hospital, Level 4, Burns Unit, Murdoch, WA, Australia
| | - Ann-Maree Vallence
- School of Psychology, College of Health and Education, Murdoch University, Murdoch, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
30
|
Mosqueda J, Hernández-Silva DJ, Vega-López MA, Vega-Rojas LJ, Beltrán R, Velasco-Elizondo A, Ramírez-Estudillo MDC, Fragoso-Saavedra M, Pérez-Almeida C, Hernández J, Melgoza-González EA, Hinojosa-Trujillo D, Mercado-Uriostegui MÁ, Mejía-López AS, Rivera-Ballesteros C, García-Gasca T. Evaluation of the humoral and mucosal immune response of a multiepitope vaccine against COVID-19 in pigs. Front Immunol 2023; 14:1276950. [PMID: 38179057 PMCID: PMC10765521 DOI: 10.3389/fimmu.2023.1276950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction This study evaluated the immune response to a multiepitope recombinant chimeric protein (CHIVAX) containing B- and T-cell epitopes of the SARS-CoV-2 spike's receptor binding domain (RBD) in a translational porcine model for pre-clinical studies. Methods We generated a multiepitope recombinant protein engineered to include six coding conserved epitopes from the RBD domain of the SARS-CoV-2 S protein. Pigs were divided into groups and immunized with different doses of the protein, with serum samples collected over time to determine antibody responses by indirect ELISA and antibody titration. Peptide recognition was also analyzed by Western blotting. A surrogate neutralization assay with recombinant ACE2 and RBDs was performed. Intranasal doses of the immunogen were also prepared and tested on Vietnamese minipigs. Results When the immunogen was administered subcutaneously, it induced specific IgG antibodies in pigs, and higher doses correlated with higher antibody levels. Antibodies from immunized pigs recognized individual peptides in the multiepitope vaccine and inhibited RBD-ACE2 binding for five variants of concern (VOC). Comparative antigen delivery methods showed that both, subcutaneous and combined subcutaneous/intranasal approaches, induced specific IgG and IgA antibodies, with the subcutaneous approach having superior neutralizing activity. CHIVAX elicited systemic immunity, evidenced by specific IgG antibodies in the serum, and local mucosal immunity, indicated by IgA antibodies in saliva, nasal, and bronchoalveolar lavage secretions. Importantly, these antibodies demonstrated neutralizing activity against SARS-CoV-2 in vitro. Discussion The elicited antibodies recognized individual epitopes on the chimeric protein and demonstrated the capacity to block RBD-ACE2 binding of the ancestral SARS-CoV-2 strain and four VOCs. The findings provide proof of concept for using multiepitope recombinant antigens and a combined immunization protocol to induce a neutralizing immune response against SARS-CoV-2 in the pig translational model for preclinical studies.
Collapse
Affiliation(s)
- Juan Mosqueda
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Diego Josimar Hernández-Silva
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Marco Antonio Vega-López
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Lineth J. Vega-Rojas
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Rolando Beltrán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrés Velasco-Elizondo
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - María del Carmen Ramírez-Estudillo
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Mario Fragoso-Saavedra
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Chyntia Pérez-Almeida
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Edgar A. Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Miguel Ángel Mercado-Uriostegui
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Alma Susana Mejía-López
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Carlos Rivera-Ballesteros
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
31
|
Hackert NS, Radtke FA, Exner T, Lorenz HM, Müller-Tidow C, Nigrovic PA, Wabnitz G, Grieshaber-Bouyer R. Human and mouse neutrophils share core transcriptional programs in both homeostatic and inflamed contexts. Nat Commun 2023; 14:8133. [PMID: 38065997 PMCID: PMC10709367 DOI: 10.1038/s41467-023-43573-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophils are frequently studied in mouse models, but the extent to which findings translate to humans remains poorly defined. In an integrative analysis of 11 mouse and 13 human datasets, we find a strong correlation of neutrophil gene expression across species. In inflammation, neutrophils display substantial transcriptional diversity but share a core inflammation program. This program includes genes encoding IL-1 family members, CD14, IL-4R, CD69, and PD-L1. Chromatin accessibility of core inflammation genes increases in blood compared to bone marrow and further in tissue. Transcription factor enrichment analysis implicates members of the NF-κB family and AP-1 complex as important drivers, and HoxB8 neutrophils with JunB knockout show a reduced expression of core inflammation genes in resting and activated cells. In independent single-cell validation data, neutrophil activation by type I or type II interferon, G-CSF, and E. coli leads to upregulation in core inflammation genes. In COVID-19 patients, higher expression of core inflammation genes in neutrophils is associated with more severe disease. In vitro treatment with GM-CSF, LPS, and type II interferon induces surface protein upregulation of core inflammation members. Together, we demonstrate transcriptional conservation in neutrophils in homeostasis and identify a core inflammation program shared across heterogeneous inflammatory conditions.
Collapse
Affiliation(s)
- Nicolaj S Hackert
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felix A Radtke
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tarik Exner
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Guido Wabnitz
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
32
|
Cleuren A, Molema G. Organotypic heterogeneity in microvascular endothelial cell responses in sepsis-a molecular treasure trove and pharmacological Gordian knot. Front Med (Lausanne) 2023; 10:1252021. [PMID: 38020105 PMCID: PMC10665520 DOI: 10.3389/fmed.2023.1252021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
In the last decades, it has become evident that endothelial cells (ECs) in the microvasculature play an important role in the pathophysiology of sepsis-associated multiple organ dysfunction syndrome (MODS). Studies on how ECs orchestrate leukocyte recruitment, control microvascular integrity and permeability, and regulate the haemostatic balance have provided a wealth of knowledge and potential molecular targets that could be considered for pharmacological intervention in sepsis. Yet, this information has not been translated into effective treatments. As MODS affects specific vascular beds, (organotypic) endothelial heterogeneity may be an important contributing factor to this lack of success. On the other hand, given the involvement of ECs in sepsis, this heterogeneity could also be leveraged for therapeutic gain to target specific sites of the vasculature given its full accessibility to drugs. In this review, we describe current knowledge that defines heterogeneity of organ-specific microvascular ECs at the molecular level and elaborate on studies that have reported EC responses across organ systems in sepsis patients and animal models of sepsis. We discuss hypothesis-driven, single-molecule studies that have formed the basis of our understanding of endothelial cell engagement in sepsis pathophysiology, and include recent studies employing high-throughput technologies. The latter deliver comprehensive data sets to describe molecular signatures for organotypic ECs that could lead to new hypotheses and form the foundation for rational pharmacological intervention and biomarker panel development. Particularly results from single cell RNA sequencing and spatial transcriptomics studies are eagerly awaited as they are expected to unveil the full spatiotemporal signature of EC responses to sepsis. With increasing awareness of the existence of distinct sepsis subphenotypes, and the need to develop new drug regimen and companion diagnostics, a better understanding of the molecular pathways exploited by ECs in sepsis pathophysiology will be a cornerstone to halt the detrimental processes that lead to MODS.
Collapse
Affiliation(s)
- Audrey Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Grietje Molema
- Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
Abdesselem M, Pétri N, Kuhner R, Mousseau F, Rouffiac V, Gacoin T, Laplace-Builhé C, Alexandrou A, Bouzigues CI. Real-time in vivo ROS monitoring with luminescent nanoparticles reveals skin inflammation dynamics. BIOMEDICAL OPTICS EXPRESS 2023; 14:5392-5404. [PMID: 37854553 PMCID: PMC10581786 DOI: 10.1364/boe.501914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/20/2023]
Abstract
Reactive oxygen species (ROS) are key regulators in numerous pathological contexts, including cancer or inflammation. Their role is complex, which justifies the need for methods enabling their quantitative and time-resolved monitoring in vivo, in the perspective to profile tissues of individual patients. However, current ROS detection methods do not provide these features. Here, we propose a new method based on the imaging of lanthanide-ion nanoparticles (GdVO4:Eu), whose photoluminescence is modulated by the surrounding ROS concentration. We monitored their luminescence after intradermic injection in a mouse ear submitted to an inflammation-inducing topical stimulus. Based on this approach, we quantified the ROS concentration after inflammation induction and identified a two-step kinetics of ROS production, which may be attributed to the response of resident immune cells and their further recruitment at the inflammation locus.
Collapse
Affiliation(s)
- M Abdesselem
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| | - N Pétri
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| | - R Kuhner
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| | - F Mousseau
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| | - V Rouffiac
- Photon Imaging and Flow Cytometry, CNRS, INSERM, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - T Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, 91128 Palaiseau cedex, France
| | - C Laplace-Builhé
- Photon Imaging and Flow Cytometry, CNRS, INSERM, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - A Alexandrou
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| | - C I Bouzigues
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| |
Collapse
|
34
|
Zhang R, Qu J. The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Comprehensive Review. Int J Mol Sci 2023; 24:14293. [PMID: 37762594 PMCID: PMC10531845 DOI: 10.3390/ijms241814293] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) have a significant impact on the quality of life of patients around the world, causing significant pain and disability. Furthermore, the drugs used to treat these conditions frequently have side effects that add to the patient's burden. Photobiomodulation (PBM) has emerged as a promising treatment approach in recent years. PBM effectively reduces inflammation by utilizing near-infrared light emitted by lasers or LEDs. In contrast to photothermal effects, PBM causes a photobiological response in cells, which regulates their functional response to light and reduces inflammation. PBM's anti-inflammatory properties and beneficial effects in arthritis treatment have been reported in numerous studies, including animal experiments and clinical trials. PBM's effectiveness in arthritis treatment has been extensively researched in arthritis-specific cells. Despite the positive results of PBM treatment, questions about specific parameters such as wavelength, dose, power density, irradiation time, and treatment site remain. The goal of this comprehensive review is to systematically summarize the mechanisms of PBM in arthritis treatment, the development of animal arthritis models, and the anti-inflammatory and joint function recovery effects seen in these models. The review also goes over the evaluation methods used in clinical trials. Overall, this review provides valuable insights for researchers investigating PBM treatment for arthritis, providing important references for parameters, model techniques, and evaluation methods in future studies.
Collapse
Affiliation(s)
| | - Junle Qu
- Center for Biomedical Optics and Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
35
|
McGill MP, Threadgill DW. Adding robustness to rigor and reproducibility for the three Rs of improving translational medical research. J Clin Invest 2023; 133:e173750. [PMID: 37712424 PMCID: PMC10503792 DOI: 10.1172/jci173750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Affiliation(s)
- Michael P. McGill
- Interdisciplinary Graduate Program in Genetics and Genomics
- Department of Cell Biology and Genetics
| | - David W. Threadgill
- Interdisciplinary Graduate Program in Genetics and Genomics
- Department of Cell Biology and Genetics
- Department of Nutrition, and
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
36
|
Schröder SK, Gasterich N, Weiskirchen S, Weiskirchen R. Lipocalin 2 receptors: facts, fictions, and myths. Front Immunol 2023; 14:1229885. [PMID: 37638032 PMCID: PMC10451079 DOI: 10.3389/fimmu.2023.1229885] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The human 25-kDa Lipocalin 2 (LCN2) was first identified and purified as a protein that in part is associated with gelatinase from neutrophils. This protein shows a high degree of sequence similarity with the deduced sequences of rat α2-microglobulin-related protein and the mouse protein 24p3. Based on its typical lipocalin fold, which consists of an eight-stranded, anti-parallel, symmetrical β-barrel fold structure it was initially thought that LCN2 is a circulating protein functioning as a transporter of small lipophilic molecules. However, studies in Lcn2 null mice have shown that LCN2 has bacteriostatic properties and plays a key role in innate immunity by sequestering bacterial iron siderophores. Numerous reports have further shown that LCN2 is involved in the control of cell differentiation, energy expenditure, cell death, chemotaxis, cell migration, and many other biological processes. In addition, important roles for LCN2 in health and disease have been identified in Lcn2 null mice and multiple molecular pathways required for regulation of Lcn2 expression have been identified. Nevertheless, although six putative receptors for LCN2 have been proposed, there is a fundamental lack in understanding of how these cell-surface receptors transmit and amplify LCN2 to the cell. In the present review we summarize the current knowledge on LCN2 receptors and discuss inconsistencies, misinterpretations and false assumptions in the understanding of these potential LCN2 receptors.
Collapse
Affiliation(s)
- Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
37
|
Lanzer KG, Cookenham T, Lehrmann E, Zhang Y, Duso D, Xie Q, Reiley WW, Becker KG, Blackman MA. Sequential Early-Life Infections Alter Peripheral Blood Transcriptomics in Aging Female Mice but Not the Response to De Novo Infection with Influenza Virus or M. tuberculosis. Immunohorizons 2023; 7:562-576. [PMID: 37555847 PMCID: PMC10587504 DOI: 10.4049/immunohorizons.2200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
To determine the impact of accumulating Ag exposure on immunity in the aging mouse, and to develop a model more relevant to humans who are exposed to multiple pathogens during life, we sequentially infected young female mice with four distinct pathogens at 8-wk intervals: murine γ-herpesvirus 68, Sendai virus, murine CMV, and Heligmosomoides polygyrus. Mock-infected mice received PBS. After aging the sequentially infected and mock-infected mice to 18-25 mo under specific pathogen-free conditions, we analyzed multiple immune parameters. We assessed transcriptional activity in peripheral blood, T cell phenotype, the diversity of influenza epitopes recognized by CD8 T cells, and the response of the animals to infection with influenza virus and Mycobacterium tuberculosis. Our data show enhanced transcriptional activation in sequentially infected aged mice, with changes in some CD8 T cell subsets. However, there was no measurable difference in the response of mock-infected and sequentially infected aged mice to de novo infection with either influenza virus or M. tuberculosis at 18-21 mo. Unexpectedly, a single experiment in which 25-mo-old female mice were challenged with influenza virus revealed a significantly higher survival rate for sequentially infected (80%) versus mock-infected (20%) mice. These data suggest that although exposure to a variety of pathogen challenges in the mouse model does not overtly impact cellular markers of immunity in aged female mice following de novo respiratory infection, subtle changes may emerge in other compartments or with increasing age.
Collapse
Affiliation(s)
| | | | - Elin Lehrmann
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Yongqing Zhang
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD
| | | | | | | | - Kevin G. Becker
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD
| | | |
Collapse
|
38
|
Barrett L, Curry N, Abu-Hanna J. Experimental Models of Traumatic Injuries: Do They Capture the Coagulopathy and Underlying Endotheliopathy Induced by Human Trauma? Int J Mol Sci 2023; 24:11174. [PMID: 37446351 PMCID: PMC10343021 DOI: 10.3390/ijms241311174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Trauma-induced coagulopathy (TIC) is a major cause of morbidity and mortality in patients with traumatic injury. It describes the spectrum of coagulation abnormalities that occur because of the trauma itself and the body's response to the trauma. These coagulation abnormalities range from hypocoagulability and hyperfibrinolysis, resulting in potentially fatal bleeding, in the early stages of trauma to hypercoagulability, leading to widespread clot formation, in the later stages. Pathological changes in the vascular endothelium and its regulation of haemostasis, a phenomenon known as the endotheliopathy of trauma (EoT), are thought to underlie TIC. Our understanding of EoT and its contribution to TIC remains in its infancy largely due to the scarcity of experimental research. This review discusses the mechanisms employed by the vascular endothelium to regulate haemostasis and their dysregulation following traumatic injury before providing an overview of the available experimental in vitro and in vivo models of trauma and their applicability for the study of the EoT and its contribution to TIC.
Collapse
Affiliation(s)
- Liam Barrett
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK;
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Nicola Curry
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LD, UK
| | - Jeries Abu-Hanna
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
| |
Collapse
|
39
|
Osuru HP, Ikeda K, Atluri N, Thiele RH. Moderate exercise-induced dynamics on key sepsis-associated signaling pathways in the liver. Crit Care 2023; 27:266. [PMID: 37407986 DOI: 10.1186/s13054-023-04551-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND There is a clear relationship between quantitative measures of fitness (e.g., VO2 max) and outcomes after surgical procedures. Whether or not fitness is a modifiable risk factor and what underlying biological processes drive these changes are not known. The purpose of this study was to evaluate the moderate exercise training effect on sepsis outcomes (survival) as well as the hepatic biological response. We chose to study the liver because it plays a central role in the regulation of immune defense during systemic infection and receives blood flow directly from the origin of infection (gut) in the cecal ligation and puncture (CLP) model. METHODS We randomized 50 male (♂) and female (♀) Sprague-Dawley rats (10 weeks, 340 g) to 3 weeks of treadmill exercise training, performed CLP to induce polymicrobial "sepsis," and monitored survival for five days (Part I). In parallel (Part II), we randomized 60 rats to control/sedentary (G1), exercise (G2), exercise + sham surgery (G3), CLP/sepsis (G4), exercise + CLP [12 h (G5) and 24 h (G6)], euthanized at 12 or 24 h, and explored molecular pathways related to exercise and sepsis survival in hepatic tissue and serum. RESULTS Three weeks of exercise training significantly increased rat survival following CLP (polymicrobial sepsis). CLP increased inflammatory markers (e.g., TNF-a, IL-6), which were attenuated by exercise. Sepsis suppressed the SOD and Nrf2 expression, and exercise before sepsis restored SOD and Nrf2 levels near the baseline. CLP led to increased HIF1a expression and oxidative and nitrosative stress, the latter of which were attenuated by exercise. Haptoglobin expression levels were increased in CLP animals, which was significantly amplified in exercise + CLP (24 h) rats. CONCLUSIONS Moderate exercise training (3 weeks) increased the survival in rats exposed to CLP, which was associated with less inflammation, less oxidative and nitrosative stress, and activation of antioxidant defense pathways.
Collapse
Affiliation(s)
- Hari Prasad Osuru
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA.
| | - Keita Ikeda
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA
| | - Navya Atluri
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA
| | - Robert H Thiele
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA.
| |
Collapse
|
40
|
Nascimento C, Kyunghee Kim H, Villela Nunes P, Paraiso Leite RE, Katia Cristina DO, Barbosa A, Bernardi Bertonha F, Moreira-Filho CA, Jacob-Filho W, Nitrini R, Pasqualucci CA, Tenenholz Grinberg L, Kimie Suemoto C, Brentani HP, Lafer B. Gene expression alterations in the postmortem hippocampus from older patients with bipolar disorder - A hypothesis generating study. J Psychiatr Res 2023; 164:329-334. [PMID: 37393798 DOI: 10.1016/j.jpsychires.2023.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Bipolar disorder (BD) presents with a progressive course in a subset of patients. However, our knowledge of molecular changes in older BD is limited. In this study, we examined gene expression changes in the hippocampus of BD from the Biobank of Aging Studies to identify genes of interest that warrant further exploration. RNA was extracted from the hippocampus from 11 subjects with BD and 11 age and sex-matched controls. Gene expression data was generated using the SurePrint G3 Human Gene Expression v3 microarray. Rank feature selection was performed to identify a subset of features that can optimally differentiate BD and controls. Genes ranked in the top 0.1% with log2 fold change >1.2 were identified as genes of interest. Average age of the subjects was 64 years old; duration of disease was 21 years and 82% were female. Twenty-five genes were identified, of which all but one was downregulated in BD. Of these, CNTNAP4, MAP4, SLC4A1, COBL, and NEURL4 had been associated with BD and other psychiatric conditions in previous studies. We believe our findings have identified promising targets to inform future studies aiming to understand the pathophysiology of BD in later life.
Collapse
Affiliation(s)
- Camila Nascimento
- Bipolar Disorder Program, Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil; Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| | | | - Paula Villela Nunes
- Bipolar Disorder Program, Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil; Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| | | | | | - André Barbosa
- Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| | | | | | - Wilson Jacob-Filho
- Division of Geriatrics, University of Sao Paulo Medical School, SP, Brazil.
| | - Ricardo Nitrini
- Department of Neurology, University of Sao Paulo Medical School, SP, Brazil.
| | | | - Lea Tenenholz Grinberg
- Department of Pathology, University of Sao Paulo Medical School, SP, Brazil; Memory and Aging Center University of California, San Francisco, USA.
| | | | | | - Beny Lafer
- Bipolar Disorder Program, Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil; Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| |
Collapse
|
41
|
Hajishengallis G. Illuminating the oral microbiome and its host interactions: animal models of disease. FEMS Microbiol Rev 2023; 47:fuad018. [PMID: 37113021 PMCID: PMC10198557 DOI: 10.1093/femsre/fuad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis and caries are driven by complex interactions between the oral microbiome and host factors, i.e. inflammation and dietary sugars, respectively. Animal models have been instrumental in our mechanistic understanding of these oral diseases, although no single model can faithfully reproduce all aspects of a given human disease. This review discusses evidence that the utility of an animal model lies in its capacity to address a specific hypothesis and, therefore, different aspects of a disease can be investigated using distinct and complementary models. As in vitro systems cannot replicate the complexity of in vivo host-microbe interactions and human research is typically correlative, model organisms-their limitations notwithstanding-remain essential in proving causality, identifying therapeutic targets, and evaluating the safety and efficacy of novel treatments. To achieve broader and deeper insights into oral disease pathogenesis, animal model-derived findings can be synthesized with data from in vitro and clinical research. In the absence of better mechanistic alternatives, dismissal of animal models on fidelity issues would impede further progress to understand and treat oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104-6030, USA
| |
Collapse
|
42
|
Bourque M, Morissette M, Soulet D, Di Paolo T. Impact of Sex on Neuroimmune contributions to Parkinson's disease. Brain Res Bull 2023:110668. [PMID: 37196734 DOI: 10.1016/j.brainresbull.2023.110668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Inflammation has been observed in both the idiopathic and familial forms of PD. Importantly, PD is reported more often in men than in women, men having at least 1.5- fold higher risk to develop PD than women. This review summarizes the impact of biological sex and sex hormones on the neuroimmune contributions to PD and its investigation in animal models of PD. Innate and peripheral immune systems participate in the brain neuroinflammation of PD patients and is reproduced in neurotoxin, genetic and alpha-synuclein based models of PD. Microglia and astrocytes are the main cells of the innate immune system in the central nervous system and are the first to react to restore homeostasis in the brain. Analysis of serum immunoprofiles in female and male control and PD patients show that a great proportion of these markers differ between male and female. The relationship between CSF inflammatory markers and PD clinical characteristics or PD biomarkers shows sex differences. Conversely, in animal models of PD, sex differences in inflammation are well documented and the beneficial effects of endogenous and exogenous estrogenic modulation in inflammation have been reported. Targeting neuroinflammation in PD is an emerging therapeutic option but gonadal drugs have not yet been investigated in this respect, thus offering new opportunities for sex specific treatments.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| |
Collapse
|
43
|
Flynn K, Mahmoud NN, Sharifi S, Gould LJ, Mahmoudi M. Chronic Wound Healing Models. ACS Pharmacol Transl Sci 2023; 6:783-801. [PMID: 37200810 PMCID: PMC10186367 DOI: 10.1021/acsptsci.3c00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 05/20/2023]
Abstract
In this paper, we review and analyze the commonly available wound healing models reported in the literature and discuss their advantages and issues, considering their relevance and translational potential to humans. Our analysis includes different in vitro and in silico as well as in vivo models and experimental techniques. We further explore the new technologies in the study of wound healing to provide an all encompassing review of the most efficient ways to proceed with wound healing experiments. We revealed that there is not one model of wound healing that is superior and can give translatable results to human research. Rather, there are many different models that have specific uses for studying certain processes or stages of wound healing. Our analysis suggests that when performing an experiment to assess stages of wound healing or different therapies to enhance healing, one must consider not only the species that will be used but also the type of model and how this can best replicate the physiology or pathophysiology in humans.
Collapse
Affiliation(s)
- Kiley Flynn
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Lisa J. Gould
- Department
of Surgery, South Shore Hospital, South Weymouth, Massachusetts 02190, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| |
Collapse
|
44
|
Wang L, Wei X, Wang Y. Promoting Angiogenesis Using Immune Cells for Tissue-Engineered Vascular Grafts. Ann Biomed Eng 2023; 51:660-678. [PMID: 36774426 DOI: 10.1007/s10439-023-03158-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/29/2023] [Indexed: 02/13/2023]
Abstract
Implantable tissue-engineered vascular grafts (TEVGs) usually trigger the host reaction which is inextricably linked with the immune system, including blood-material interaction, protein absorption, inflammation, foreign body reaction, and so on. With remarkable progress, the immune response is no longer considered to be entirely harmful to TEVGs, but its therapeutic and impaired effects on angiogenesis and tissue regeneration are parallel. Although the implicated immune mechanisms remain elusive, it is certainly worthwhile to gain detailed knowledge about the function of the individual immune components during angiogenesis and vascular remodeling. This review provides a general overview of immune cells with an emphasis on macrophages in light of the current literature. To the extent possible, we summarize state-of-the-art approaches to immune cell regulation of the vasculature and suggest that future studies are needed to better define the timing of the activity of each cell subpopulation and to further reveal key regulatory switches.
Collapse
Affiliation(s)
- Li Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuqing Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
45
|
Boerman O, Abedin Z, DiMaria-Ghalili RA, Weingarten MS, Neidrauer M, Lewin PA, Spiller KL. Gene expression changes in therapeutic ultrasound-treated venous leg ulcers. Front Med (Lausanne) 2023; 10:1144182. [PMID: 37064037 PMCID: PMC10098114 DOI: 10.3389/fmed.2023.1144182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Low-frequency, low-intensity ultrasound has been previously shown to promote healing of chronic wounds in humans, but mechanisms behind these effects are poorly understood. The purpose of this study was to evaluate gene expression differences in debrided human venous ulcer tissue from patients treated with low-frequency (20 kHz), low-intensity (100 mW/cm2) ultrasound compared to a sham treatment in an effort to better understand the potential biological mechanisms. Methods Debrided venous ulcer tissue was collected from 32 subjects one week after sham treatment or low-frequency, low-intensity ultrasound treatment. Of these samples, 7 samples (3 ultrasound treated and 4 sham treated) yielded sufficient quality total RNA for analysis by ultra-high multiplexed PCR (Ampliseq) and expression of more than 24,000 genes was analyzed. 477 genes were found to be significantly differentially expressed between the ultrasound and sham groups using cut-off values of p < 0.05 and fold change of 2. Results and Discussion The top differentially expressed genes included those involved in regulation of cell metabolism, proliferation, and immune cell signaling. Gene set enrichment analysis identified 20 significantly enriched gene sets from upregulated genes and 4 significantly enriched gene sets from downregulated genes. Most of the enriched gene sets from upregulated genes were related to cell-cell signaling pathways. The most significantly enriched gene set from downregulated genes was the inflammatory response gene set. These findings show that therapeutic ultrasound influences cellular behavior in chronic wounds as early as 1 week after application. Considering the well-known role of chronic inflammation in impairing wound healing in chronic wounds, these results suggest that a downregulation of inflammatory genes is a possible biological mechanism of ultrasound-mediated venous chronic wound healing. Such increased understanding may ultimately lead to the enhancement of ultrasound devices to accelerate chronic wound healing and increase patient quality of life.
Collapse
Affiliation(s)
- Olivia Boerman
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
- Biomedical Engineering, Bucknell University, Lewisburg, PA, United States
| | - Zahidur Abedin
- Division of Molecular Biology - Research Services, PrimBio Research Institute, Exton, PA, United States
| | - Rose Ann DiMaria-Ghalili
- Department of Nursing, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, United States
| | - Michael S. Weingarten
- Department of Surgery, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Michael Neidrauer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Peter A. Lewin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Kara L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
46
|
Torow N, Hand TW, Hornef MW. Programmed and environmental determinants driving neonatal mucosal immune development. Immunity 2023; 56:485-499. [PMID: 36921575 PMCID: PMC10079302 DOI: 10.1016/j.immuni.2023.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023]
Abstract
The mucosal immune system of neonates goes through successive, non-redundant phases that support the developmental needs of the infant and ultimately establish immune homeostasis. These phases are informed by environmental cues, including dietary and microbial stimuli, but also evolutionary developmental programming that functions independently of external stimuli. The immune response to exogenous stimuli is tightly regulated during early life; thresholds are set within this neonatal "window of opportunity" that govern how the immune system will respond to diet, the microbiota, and pathogenic microorganisms in the future. Thus, changes in early-life exposure, such as breastfeeding or environmental and microbial stimuli, influence immunological and metabolic homeostasis and the risk of developing diseases such as asthma/allergy and obesity.
Collapse
Affiliation(s)
- Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Timothy W Hand
- Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
47
|
Randall CA, Sun D, Randall PA. Differential Effects of Nicotine, Alcohol, and Coexposure on Neuroimmune-Related Protein and Gene Expression in Corticolimbic Brain Regions of Rats. ACS Chem Neurosci 2023; 14:628-644. [PMID: 36705334 DOI: 10.1021/acschemneuro.2c00413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nicotine and alcohol co-use is extremely common and their use constitutes two of the most common causes of preventable death, yet the underlying biological mechanisms are largely understudied. Activation of neuroimmune toll-like receptors (TLRs) promotes the induction of proinflammatory cascades and increases alcohol intake in rodents, which further promotes TLRs in the brain; nicotine may decrease central proinflammatory signaling. The current studies sought to determine the effects of nicotine ± alcohol (alone or in combination) on circulating blood plasma and TLR protein/gene expression in addiction-associated corticolimbic brain regions, including the prefrontal cortex-prelimbic (mPFC-PL) and nucleus accumbens core (AcbC). Adult rats were treated with alcohol (0 or 2 g/kg, IG) and exposed to nicotine vapor (0 or 30 mg/mL solution) daily for 2, 14, or 28 days. Plasma studies indicated no effects of independent exposure or coexposure in males. Coexposure decreased plasma nicotine levels versus nicotine-only treated females, yet alcohol and cotinine concentrations were unchanged. By 28 days, the anti-inflammatory cytokine IL-13 was decreased in alcohol-only females. Divergent changes in TLR3 (but not TLR4) protein occurred for independent-drug exposed males (but not coexposure), with reductions in the mPFC-PL after 14 days and increases in the AcbC by 28 days. Gene expression following chronic coexposure suggests nicotine may regionally counteract alcohol-induced inflammation, including increased AcbC-TLR3/4/7 and several downstream markers in females and increased mPFC-PL-TLR3 and -STAT3 (but not IRF3) evident in males with exposure to either drug alone. These findings give further insight into the role of sex and the neuroimmune system in independent exposure and coexposure to nicotine ± alcohol.
Collapse
Affiliation(s)
- Christie A Randall
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Dongxiao Sun
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033 United States
| | - Patrick A Randall
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033, United States.,Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033 United States
| |
Collapse
|
48
|
Kummerfeld E, Jones GL. One data set, many analysts: Implications for practicing scientists. Front Psychol 2023; 14:1094150. [PMID: 36865366 PMCID: PMC9971968 DOI: 10.3389/fpsyg.2023.1094150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Researchers routinely face choices throughout the data analysis process. It is often opaque to readers how these choices are made, how they affect the findings, and whether or not data analysis results are unduly influenced by subjective decisions. This concern is spurring numerous investigations into the variability of data analysis results. The findings demonstrate that different teams analyzing the same data may reach different conclusions. This is the "many-analysts" problem. Previous research on the many-analysts problem focused on demonstrating its existence, without identifying specific practices for solving it. We address this gap by identifying three pitfalls that have contributed to the variability observed in many-analysts publications and providing suggestions on how to avoid them.
Collapse
Affiliation(s)
- Erich Kummerfeld
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Erich Kummerfeld ✉
| | - Galin L. Jones
- School of Statistics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
49
|
Zong W, Rahman T, Zhu L, Zeng X, Zhang Y, Zou J, Liu S, Ren Z, Li JJ, Sibille E, Lee AV, Oesterreich S, Ma T, Tseng GC. Transcriptomic congruence analysis for evaluating model organisms. Proc Natl Acad Sci U S A 2023; 120:e2202584120. [PMID: 36730203 PMCID: PMC9963430 DOI: 10.1073/pnas.2202584120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 11/17/2022] [Indexed: 02/03/2023] Open
Abstract
Model organisms are instrumental substitutes for human studies to expedite basic, translational, and clinical research. Despite their indispensable role in mechanistic investigation and drug development, molecular congruence of animal models to humans has long been questioned and debated. Little effort has been made for an objective quantification and mechanistic exploration of a model organism's resemblance to humans in terms of molecular response under disease or drug treatment. We hereby propose a framework, namely Congruence Analysis for Model Organisms (CAMO), for transcriptomic response analysis by developing threshold-free differential expression analysis, quantitative concordance/discordance scores incorporating data variabilities, pathway-centric downstream investigation, knowledge retrieval by text mining, and topological gene module detection for hypothesis generation. Instead of a genome-wide vague and dichotomous answer of "poorly" or "greatly" mimicking humans, CAMO assists researchers to numerically quantify congruence, to dissect true cross-species differences from unwanted biological or cohort variabilities, and to visually identify molecular mechanisms and pathway subnetworks that are best or least mimicked by model organisms, which altogether provides foundations for hypothesis generation and subsequent translational decisions.
Collapse
Affiliation(s)
- Wei Zong
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA15261
| | - Tanbin Rahman
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Li Zhu
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA15261
| | - Xiangrui Zeng
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA02129
| | - Yingjin Zhang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA15261
| | - Jian Zou
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA15261
| | - Song Liu
- Department of Computer Science and Technology, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zhao Ren
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA15261
| | - Jingyi Jessica Li
- Department of Statistics, University of California, Los Angeles, CA90095
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute at the Centre for Addiction and Mental Health, Toronto, ONM5S 2S1, Canada
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center University of Pittsburgh, Pittsburgh, PA15261
- Magee-Womens Research Institute, University of Pittsburgh Medical Center, Pittsburgh, PA15123
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center University of Pittsburgh, Pittsburgh, PA15261
- Magee-Womens Research Institute, University of Pittsburgh Medical Center, Pittsburgh, PA15123
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD20742
| | - George C. Tseng
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA15261
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA15261
- Department of Computational and System, Biology, University of Pittsburgh, Pittsburgh, PA15261
| |
Collapse
|
50
|
Kidwell A, Yadav SPS, Maier B, Zollman A, Ni K, Halim A, Janosevic D, Myslinski J, Syed F, Zeng L, Waffo AB, Banno K, Xuei X, Doud EH, Dagher PC, Hato T. Translation Rescue by Targeting Ppp1r15a through Its Upstream Open Reading Frame in Sepsis-Induced Acute Kidney Injury in a Murine Model. J Am Soc Nephrol 2023; 34:220-240. [PMID: 36283811 PMCID: PMC10103092 DOI: 10.1681/asn.2022060644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/23/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Translation shutdown is a hallmark of late-phase, sepsis-induced kidney injury. Methods for controlling protein synthesis in the kidney are limited. Reversing translation shutdown requires dephosphorylation of the eukaryotic initiation factor 2 (eIF2) subunit eIF2 α ; this is mediated by a key regulatory molecule, protein phosphatase 1 regulatory subunit 15A (Ppp1r15a), also known as GADD34. METHODS To study protein synthesis in the kidney in a murine endotoxemia model and investigate the feasibility of translation control in vivo by boosting the protein expression of Ppp1r15a, we combined multiple tools, including ribosome profiling (Ribo-seq), proteomics, polyribosome profiling, and antisense oligonucleotides, and a newly generated Ppp1r15a knock-in mouse model and multiple mutant cell lines. RESULTS We report that translation shutdown in established sepsis-induced kidney injury is brought about by excessive eIF2 α phosphorylation and sustained by blunted expression of the counter-regulatory phosphatase Ppp1r15a. We determined the blunted Ppp1r15a expression persists because of the presence of an upstream open reading frame (uORF). Overcoming this barrier with genetic and antisense oligonucleotide approaches enabled the overexpression of Ppp1r15a, which salvaged translation and improved kidney function in an endotoxemia model. Loss of this uORF also had broad effects on the composition and phosphorylation status of the immunopeptidome-peptides associated with the MHC-that extended beyond the eIF2 α axis. CONCLUSIONS We found Ppp1r15a is translationally repressed during late-phase sepsis because of the existence of an uORF, which is a prime therapeutic candidate for this strategic rescue of translation in late-phase sepsis. The ability to accurately control translation dynamics during sepsis may offer new paths for the development of therapies at codon-level precision. PODCAST This article contains a podcast at.
Collapse
Affiliation(s)
- Ashley Kidwell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Bernhard Maier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amy Zollman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kevin Ni
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Arvin Halim
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Danielle Janosevic
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jered Myslinski
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Farooq Syed
- Department of Pediatrics and the Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lifan Zeng
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alain Bopda Waffo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kimihiko Banno
- Department of Physiology, Nara Medical University, Kashihara, Japan
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pierre C. Dagher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|