1
|
Soma S, Hayatsu N, Nomura K, Sherwood MW, Murakami T, Sugiyama Y, Suematsu N, Aoki T, Yamada Y, Asayama M, Kaneko M, Ohbayashi K, Arizono M, Ohtsuka M, Hamada S, Matsumoto I, Iwasaki Y, Ohno N, Okazaki Y, Taruno A. Channel synapse mediates neurotransmission of airway protective chemoreflexes. Cell 2025:S0092-8674(25)00280-6. [PMID: 40187347 DOI: 10.1016/j.cell.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
Neural reflexes to chemicals in the throat protect the airway from aspiration and infection. Mechanistic understanding of these reflexes remains premature, exemplified by chronic cough-a sensitized cough reflex-being a prevalent unmet clinical need. Here, in mice, a whole-body search for channel synapses-featuring CALHM1/3 channel-mediated neurotransmitter release-and single-cell transcriptomics uncovered subclasses of the Pou2f3+ chemosensory cell family in the throat communicating with vagal neurons via this synapse. They express G protein-coupled receptors (GPCRs) for noxious chemicals, T2Rs, which upon stimulation trigger swallow and cough-like expulsive reflexes in the hypopharynx and larynx, respectively. These reflexes were abolished by Calhm3 and Pou2f3 knockout and could be triggered by targeted optogenetic stimulation. Furthermore, aeroallergen exposure augmented CALHM3-dependent expulsive reflex. This study identifies Pou2f3+ epithelial cells with channel synapses as chemosensory end organs of airway protective reflexes and sites of their hyperresponsiveness, advancing mechanistic understanding of airway defense programs with distinct therapeutic potential.
Collapse
Affiliation(s)
- Shogo Soma
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Norihito Hayatsu
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kengo Nomura
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mark W Sherwood
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Tatsuro Murakami
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan; Department of Otolaryngology-Head and Neck Surgery, Saga University, Saga 849-8501, Japan
| | - Naofumi Suematsu
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Takanori Aoki
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yu Yamada
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Moe Asayama
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Misa Arizono
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto 606-8501, Japan; The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Shun Hamada
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | | | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan.
| |
Collapse
|
2
|
Lei WT, Lin CY, Chu SH, Fang LC, Kao YH, Tsai PL, Lin YW, Sung FC, Wu SI. The Impact of Montelukast Duration on the Risk of Neuropsychiatric Disorders in Children with Asthma: A Population-Based Cohort Study. Pharmaceuticals (Basel) 2025; 18:379. [PMID: 40143155 PMCID: PMC11946223 DOI: 10.3390/ph18030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Asthma is one of the most common chronic diseases in children, and montelukast is widely prescribed to manage symptoms. However, concerns have emerged regarding its potential association with neuropsychiatric disorders. This study aims to investigate the impact of montelukast duration on neuropsychiatric risks in children with asthma. Methods: A cohort study was conducted using Taiwan's National Health Insurance Research Database (NHIRD), including children diagnosed with asthma between 2004 and 2007. A total of 14,606 children in the montelukast cohort and 8432 in the non-montelukast cohort were analyzed, with propensity score matching applied to reduce confounding bias. Neuropsychiatric outcomes, including Tics/Tourette's syndrome, were evaluated using Cox proportional hazard models. Results: Overall, montelukast use did not increase the risk of neuropsychiatric disorders. However, among children aged 6-15 years, prolonged use beyond 63 days was associated with a significantly elevated risk of Tics/Tourette's syndrome, with a 2.6-fold increase observed in girls and a 1.8-fold increase in boys. Conversely, shorter montelukast use in children aged 0-6 years was linked to a lower risk of neuropsychiatric disorders. Conclusions: Although montelukast generally does not elevate neuropsychiatric risks, extended use in older children may increase the likelihood of developing Tics/Tourette's syndrome. These findings highlight the importance of cautious prescribing in pediatric asthma management. Further research is necessary to validate these associations and inform clinical decision making.
Collapse
Affiliation(s)
- Wei-Te Lei
- Division of Immunology, Rheumatology, and Allergy, Department of Pediatrics, Hsinchu Municipal MacKay Children’s Hospital, Hsinchu 30070, Taiwan; (W.-T.L.); (S.-H.C.)
| | - Chien-Yu Lin
- Division of Infectious Disease, Department of Pediatrics, Hsinchu Municipal MacKay Children’s Hospital, Hsinchu 30070, Taiwan;
| | - Szu-Hung Chu
- Division of Immunology, Rheumatology, and Allergy, Department of Pediatrics, Hsinchu Municipal MacKay Children’s Hospital, Hsinchu 30070, Taiwan; (W.-T.L.); (S.-H.C.)
| | - Li-Ching Fang
- Division of Immunology, Rheumatology, and Allergy, Department of Pediatrics, MacKay Children’s Hospital, Taipei 10449, Taiwan; (L.-C.F.); (Y.-H.K.)
| | - Yu-Hsuan Kao
- Division of Immunology, Rheumatology, and Allergy, Department of Pediatrics, MacKay Children’s Hospital, Taipei 10449, Taiwan; (L.-C.F.); (Y.-H.K.)
| | - Po-Li Tsai
- Division of Colorectal Surgery, Department of Surgery, MacKey Memorial Hospital, Taipei 10449, Taiwan;
| | - Yu-Wen Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan;
| | - Fung-Chang Sung
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404333, Taiwan;
- Management Office for Health Data, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Health Services Administration, China Medical University, Taichung 404333, Taiwan
| | - Shu-I Wu
- Department of Medicine, MacKay Medical College, New Taipei City 25200, Taiwan
- Section of Psychiatry and Suicide Prevention Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
3
|
Xian M, Maskey AR, Kopulos D, Li XM. The roles of bitter and sweet taste receptors in food allergy: Where are we now? Allergol Int 2025:S1323-8930(25)00010-3. [PMID: 40037957 DOI: 10.1016/j.alit.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Food allergy (FA) is a growing global concern, which contributes significantly to anaphylaxis and severe allergic reactions. Despite advancements in treatments like allergen immunotherapy and biologics, current approaches have notable limitations and there is a pressing need for new therapeutic strategies. Recent research into taste receptors has unveiled their potential role in FA, offering fresh perspectives for understanding and managing this condition. Taste receptors, particularly type 1 taste receptors (TAS1Rs/T1Rs, sweet taste receptors) and type 2 taste receptors (TAS2Rs/T2Rs, bitter taste receptors), are distributed not only in the oral cavity but also in various extra-oral tissues, and their interactions with immune responses are increasingly recognized. This review highlights the connections between taste receptors and FA, exploring how taste receptor mechanisms might contribute to FA pathogenesis and treatment. Taste receptors, especially TAS2Rs, which include multiple subtypes with varying ligand specificities, have been implicated in modulating allergic responses and could serve as targets for novel FA therapies. Additionally, compounds such as bitter agents and sweeteners that interact with taste receptors show promise in influencing FA outcomes. This review emphasizes the need for further research into the mechanisms of taste receptor involvement in FA and suggests that targeting these receptors could provide new avenues for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Mo Xian
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Anish R Maskey
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Daniel Kopulos
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; Department of Otolaryngology, New York Medical College, Valhalla, NY, USA; Department of Dermatology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
4
|
Abdel Wadood N, Hollenhorst MI, Elhawy MI, Zhao N, Englisch C, Evers SB, Sabachvili M, Maxeiner S, Wyatt A, Herr C, Burkhart AK, Krause E, Yildiz D, Beckmann A, Kusumakshi S, Riethmacher D, Bischoff M, Iden S, Becker SL, Canning BJ, Flockerzi V, Gudermann T, Chubanov V, Bals R, Meier C, Boehm U, Krasteva-Christ G. Tracheal tuft cells release ATP and link innate to adaptive immunity in pneumonia. Nat Commun 2025; 16:584. [PMID: 39794305 PMCID: PMC11724094 DOI: 10.1038/s41467-025-55936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025] Open
Abstract
Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels. Taste signaling through the Trpm5 channel is essential for bacterial tuft cell activation and ATP release. We demonstrate that activated tuft cells recruit dendritic cells to the trachea and lung. ATP released by tuft cells initiates dendritic cell activation, phagocytosis and migration. Tuft cell stimulation also involves an adaptive immune response through recruitment of IL-17A secreting T helper cells. Collectively, the results provide a molecular framework defining tuft cell dependent regulation of both innate and adaptive immune responses in the airways to combat bacterial infection.
Collapse
Affiliation(s)
- Noran Abdel Wadood
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Monika I Hollenhorst
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
| | | | - Na Zhao
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Clara Englisch
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Saskia B Evers
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Mahana Sabachvili
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Ann-Kathrin Burkhart
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg, Germany
| | - Elmar Krause
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Daniela Yildiz
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Anja Beckmann
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Soumya Kusumakshi
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Sandra Iden
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg, Germany
| | - Sören L Becker
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | | | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, a member of the German Center for Lung Research (DZL), Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Robert Bals
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Department of Internal Medicine V-Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany.
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany.
| |
Collapse
|
5
|
Harris JC, Lee RJ, Carey RM. Extragustatory bitter taste receptors in head and neck health and disease. J Mol Med (Berl) 2024; 102:1413-1424. [PMID: 39317733 PMCID: PMC11579162 DOI: 10.1007/s00109-024-02490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Taste receptors, first described for their gustatory functions within the oral cavity and oropharynx, are now known to be expressed in many organ systems. Even intraoral taste receptors regulate non-sensory pathways, and recent literature has connected bitter taste receptors to various states of health and disease. These extragustatory pathways involve previously unexplored, clinically relevant roles for taste signaling in areas including susceptibility to infection, antibiotic efficacy, and cancer outcomes. Among other physicians, otolaryngologists who manage head and neck diseases should be aware of this growing body of evidence and its relevance to their fields. In this review, we describe the role of extragustatory taste receptors in head and neck health and disease, highlighting recent advances, clinical implications, and directions for future investigation. Additionally, this review will discuss known TAS2R polymorphisms and the associated implications for clinical prognosis.
Collapse
Affiliation(s)
- Jacob C Harris
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Itoigawa A, Nakagita T, Toda Y. The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies. Int J Mol Sci 2024; 25:12654. [PMID: 39684366 PMCID: PMC11641376 DOI: 10.3390/ijms252312654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter taste perception is crucial for animal survival. By detecting potentially harmful substances, such as plant secondary metabolites, as bitter, animals can avoid ingesting toxic compounds. In vertebrates, this function is mediated by taste receptors type 2 (T2Rs), a family of G protein-coupled receptors (GPCRs) expressed on taste buds. Given their vital roles, T2Rs have undergone significant selective pressures throughout vertebrate evolution, leading to frequent gene duplications and deletions, functional changes, and intrapopulation differentiation across various lineages. Recent advancements in genomic and functional research have uncovered the repertoires and functions of bitter taste receptors in a wide range of vertebrate species, shedding light on their evolution in relation to dietary habits and other ecological factors. This review summarizes recent research on bitter taste receptors and explores the mechanisms driving the diversity of these receptors from the perspective of vertebrate ecology and evolution.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku 102-0083, Tokyo, Japan
| | - Tomoya Nakagita
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
7
|
Roe K. The epithelial cell types and their multi-phased defenses against fungi and other pathogens. Clin Chim Acta 2024; 563:119889. [PMID: 39117034 DOI: 10.1016/j.cca.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Mucus and its movements are essential to epithelial tissue immune defenses against pathogens, including fungal pathogens, which can infect respiratory, gastrointestinal or the genito-urinary tracts. Several epithelial cell types contribute to their immune defense. This review focuses on the respiratory tract because of its paramount importance, but the observations will apply to epithelial cell defenses of other mucosal tissue, including the gastrointestinal and genito-urinary tracts. Mucus and its movements can enhance or degrade the immune defenses of the respiratory tract, particularly the lungs. The enhancements include inhaled pathogen entrapments, including fungal pathogens, pollutants and particulates, for their removal. The detriments include smaller lung airway obstructions by mucus, impairing the physical removal of pathogens and impairing vital transfers of oxygen and carbon dioxide between the alveolar circulatory system and the pulmonary air. Inflammation, edema and/or alveolar cellular damage can also reduce vital transfers of oxygen and carbon dioxide between the lung alveolar circulatory system and the pulmonary air. Furthermore, respiratory tract defenses are affected by several fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, dendritic cells, various innate lymphoid cells including the natural killer cells, T cells, γδ T cells, mucosal-associated invariant T cells, NKT cells and mast cells. These mediators include the inflammatory and frequently immunosuppressive prostaglandins and leukotrienes, and the special pro-resolving mediators, which normally resolve inflammation and immunosuppression. The total effects on the various epithelial cell and immune cell types, after exposures to pathogens, pollutants or particulates, will determine respiratory tract health or disease.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, United States.
| |
Collapse
|
8
|
Xu H, Guo L, Hao T, Guo X, Huang M, Cen H, Chen M, Weng J, Huang M, Wu Z, Qin Z, Yang J, Wu B. Nasal solitary chemosensory cells govern daily rhythm in mouse model of allergic rhinitis. J Allergy Clin Immunol 2024; 154:707-718. [PMID: 38734385 DOI: 10.1016/j.jaci.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND While the daily rhythm of allergic rhinitis (AR) has long been recognized, the molecular mechanism underlying this phenomenon remains enigmatic. OBJECTIVE We aimed to investigate the role of circadian clock in AR development and to clarify the mechanism by which the daily rhythm of AR is generated. METHODS AR was induced in mice with ovalbumin. Toluidine blue staining, liquid chromatography-tandem mass spectrometry analysis, real-time quantitative PCR, and immunoblotting were performed with AR and control mice. RESULTS Ovalbumin-induced AR is diurnally rhythmic and associated with clock gene disruption in nasal mucosa. In particular, Rev-erbα is generally downregulated and its rhythm retained, but with a near-12-hour phase shift. Furthermore, global knockout of core clock gene Bmal1 or Rev-erbα increases the susceptibility of mice to AR and blunts AR rhythmicity. Importantly, nasal solitary chemosensory cells (SCCs) are rhythmically activated, and inhibition of the SCC pathway leads to attenuated AR and a loss of its rhythm. Moreover, rhythmic activation of SCCs is accounted for by diurnal expression of ChAT (an enzyme responsible for the synthesis of acetylcholine) and temporal generation of the neurotransmitter acetylcholine. Mechanistically, Rev-erbα trans-represses Chat through direct binding to a specific response element, generating a diurnal oscillation in this target gene. CONCLUSION SCCs, under the control of Rev-erbα, are a driver of AR rhythmicity; targeting SCCs should be considered as a new avenue for AR management.
Collapse
Affiliation(s)
- Haiman Xu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingying Hao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaocao Guo
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Meiping Huang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haobin Cen
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxian Weng
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meixia Huang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zicong Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Perniss A, Bankova LG. Weep and sweep and the broom: tuft cell acetylcholine limits the worm. Trends Parasitol 2024; 40:664-666. [PMID: 38955655 PMCID: PMC11309886 DOI: 10.1016/j.pt.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Two studies defined how tuft cell acetylcholine promotes parasite expulsion. Billip et al. demonstrated that acetylcholine increases water secretion, to promote the 'weep' response. Ndjim et al. found that tuft cell acetylcholine has a direct effect on worm fecundity. Both processes are only effective in the remodeled epithelium when the rare tuft cells have become abundant.
Collapse
Affiliation(s)
- Alexander Perniss
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lora G Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Yoshida R, Ninomiya Y. Mechanisms and Functions of Sweet Reception in Oral and Extraoral Organs. Int J Mol Sci 2024; 25:7398. [PMID: 39000505 PMCID: PMC11242429 DOI: 10.3390/ijms25137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yuzo Ninomiya
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Ndjim M, Gasmi I, Herbert F, Joséphine C, Bas J, Lamrani A, Coutry N, Henry S, Zimmermann VS, Dardalhon V, Campillo Poveda M, Turtoi E, Thirard S, Forichon L, Giordano A, Ciancia C, Homayed Z, Pannequin J, Britton C, Devaney E, McNeilly TN, Berrard S, Turtoi A, Maizels RM, Gerbe F, Jay P. Tuft cell acetylcholine is released into the gut lumen to promote anti-helminth immunity. Immunity 2024; 57:1260-1273.e7. [PMID: 38744292 DOI: 10.1016/j.immuni.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/26/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.
Collapse
Affiliation(s)
- Marième Ndjim
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Imène Gasmi
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Fabien Herbert
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Charlène Joséphine
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Julie Bas
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Ali Lamrani
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Nathalie Coutry
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Sylvain Henry
- Montpellier Alliance for Metabolomics and Metabolism Analysis, Platform for Translational Oncometabolomics (PLATON), Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Marta Campillo Poveda
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Evgenia Turtoi
- Montpellier Alliance for Metabolomics and Metabolism Analysis, Platform for Translational Oncometabolomics (PLATON), Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Steeve Thirard
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Luc Forichon
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Alicia Giordano
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Claire Ciancia
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Zeinab Homayed
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Julie Pannequin
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Collette Britton
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Eileen Devaney
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Penicuik, UK
| | - Sylvie Berrard
- University Paris Cité, Inserm, NeuroDiderot, Paris, France
| | - Andrei Turtoi
- Montpellier Alliance for Metabolomics and Metabolism Analysis, Platform for Translational Oncometabolomics (PLATON), Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France; Cancer Research Institute of Montpellier (IRCM), University of Montpellier, Inserm, Montpellier, France
| | - Rick M Maizels
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - François Gerbe
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France.
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France.
| |
Collapse
|
12
|
Billipp TE, Fung C, Webeck LM, Sargent DB, Gologorsky MB, Chen Z, McDaniel MM, Kasal DN, McGinty JW, Barrow KA, Rich LM, Barilli A, Sabat M, Debley JS, Wu C, Myers R, Howitt MR, von Moltke J. Tuft cell-derived acetylcholine promotes epithelial chloride secretion and intestinal helminth clearance. Immunity 2024; 57:1243-1259.e8. [PMID: 38744291 PMCID: PMC11168877 DOI: 10.1016/j.immuni.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.
Collapse
Affiliation(s)
- Tyler E Billipp
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Connie Fung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lily M Webeck
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Derek B Sargent
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew B Gologorsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Margaret M McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Darshan N Kasal
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - John W McGinty
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kaitlyn A Barrow
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Lucille M Rich
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Mark Sabat
- Takeda Pharmaceuticals, San Diego, CA, USA
| | - Jason S Debley
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Michael R Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
13
|
Kikuta S, Nagayama S, Hasegawa-Ishii S. Structures and functions of the normal and injured human olfactory epithelium. Front Neural Circuits 2024; 18:1406218. [PMID: 38903957 PMCID: PMC11188711 DOI: 10.3389/fncir.2024.1406218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The olfactory epithelium (OE) is directly exposed to environmental agents entering the nasal cavity, leaving OSNs prone to injury and degeneration. The causes of olfactory dysfunction are diverse and include head trauma, neurodegenerative diseases, and aging, but the main causes are chronic rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced airflow due to local inflammation, inflammatory cytokine production, release of degranulated proteins from eosinophils, and cell injury lead to decreased olfactory function. It is well known that injury-induced loss of mature OSNs in the adult OE causes massive regeneration of new OSNs within a few months through the proliferation and differentiation of progenitor basal cells that are subsequently incorporated into olfactory neural circuits. Although normal olfactory function returns after injury in most cases, prolonged olfactory impairment and lack of improvement in olfactory function in some cases poses a major clinical problem. Persistent inflammation or severe injury in the OE results in morphological changes in the OE and respiratory epithelium and decreases the number of mature OSNs, resulting in irreversible loss of olfactory function. In this review, we discuss the histological structure and distribution of the human OE, and the pathogenesis of olfactory dysfunction associated with CRS and viral infection.
Collapse
Affiliation(s)
- Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Nihon University, Tokyo, Japan
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | |
Collapse
|
14
|
Li YH, Yang YS, Xue YB, Lei H, Zhang SS, Qian J, Yao Y, Zhou R, Huang L. G protein subunit G γ13-mediated signaling pathway is critical to the inflammation resolution and functional recovery of severely injured lungs. eLife 2024; 12:RP92956. [PMID: 38836551 DOI: 10.7554/elife.92956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Tuft cells are a group of rare epithelial cells that can detect pathogenic microbes and parasites. Many of these cells express signaling proteins initially found in taste buds. It is, however, not well understood how these taste signaling proteins contribute to the response to the invading pathogens or to the recovery of injured tissues. In this study, we conditionally nullified the signaling G protein subunit Gγ13 and found that the number of ectopic tuft cells in the injured lung was reduced following the infection of the influenza virus H1N1. Furthermore, the infected mutant mice exhibited significantly larger areas of lung injury, increased macrophage infiltration, severer pulmonary epithelial leakage, augmented pyroptosis and cell death, greater bodyweight loss, slower recovery, worsened fibrosis and increased fatality. Our data demonstrate that the Gγ13-mediated signal transduction pathway is critical to tuft cells-mediated inflammation resolution and functional repair of the damaged lungs.To our best knowledge, it is the first report indicating subtype-specific contributions of tuft cells to the resolution and recovery.
Collapse
Affiliation(s)
- Yi-Hong Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Sen Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan-Bo Xue
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Lei
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sai-Sai Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junbin Qian
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yushi Yao
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruhong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang University Shanghai Institute for Advanced Study, Shanghai, Shanghai, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang University Shanghai Institute for Advanced Study, Shanghai, Shanghai, China
- Monell Chemical Senses Center, Philadelphia, United States
| |
Collapse
|
15
|
Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol 2024; 153:1169-1180. [PMID: 38369030 PMCID: PMC11070312 DOI: 10.1016/j.jaci.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.
Collapse
Affiliation(s)
- Elizabeth Emanuel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Allen Discovery Center for Neuroimmune Interactions, New York, NY; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
16
|
Bao C, Abraham SN. Mast cell-sensory neuron crosstalk in allergic diseases. J Allergy Clin Immunol 2024; 153:939-953. [PMID: 38373476 PMCID: PMC10999357 DOI: 10.1016/j.jaci.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mast cells (MCs) are tissue-resident immune cells, well-positioned at the host-environment interface for detecting external antigens and playing a critical role in mobilizing innate and adaptive immune responses. Sensory neurons are afferent neurons innervating most areas of the body but especially in the periphery, where they sense external and internal signals and relay information to the brain. The significance of MC-sensory neuron communication is now increasingly becoming recognized, especially because both cell types are in close physical proximity at the host-environment interface and around major organs of the body and produce specific mediators that can activate each other. In this review, we explore the roles of MC-sensory neuron crosstalk in allergic diseases, shedding light on how activated MCs trigger sensory neurons to initiate signaling in pruritus, shock, and potentially abdominal pain in allergy, and how activated sensory neurons regulate MCs in homeostasis and atopic dermatitis associated with contact hypersensitivity and type 2 inflammation. Throughout the review, we also discuss how these 2 sentinel cell types signal each other, potentially resulting in a positive feedback loop that can sustain inflammation. Unraveling the mysteries of MC-sensory neuron crosstalk is likely to unveil their critical roles in various disease conditions and enable the development of new therapeutic approaches to combat these maladies.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC; Department of Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Hayashi R, Srisomboon Y, Iijima K, Maniak PJ, Tei R, Kobayashi T, Matsunaga M, Luo H, Masuda MY, O'Grady SM, Kita H. Cholinergic sensing of allergen exposure by airway epithelium promotes type 2 immunity in the lungs. J Allergy Clin Immunol 2024; 153:793-808.e2. [PMID: 38000698 PMCID: PMC10939907 DOI: 10.1016/j.jaci.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Nonneuronal cells, including epithelial cells, can produce acetylcholine (ACh). Muscarinic ACh receptor antagonists are used clinically to treat asthma and other medical conditions; however, knowledge regarding the roles of ACh in type 2 immunity is limited. OBJECTIVE Our aim was to investigate the roles of epithelial ACh in allergic immune responses. METHODS Human bronchial epithelial (HBE) cells were cultured with allergen extracts, and their ACh production and IL-33 secretion were studied in vitro. To investigate immune responses in vivo, naive BALB/c mice were treated intranasally with different muscarinic ACh receptor antagonists and then exposed intranasally to allergens. RESULTS At steady state, HBE cells expressed cellular components necessary for ACh production, including choline acetyltransferase and organic cation transporters. Exposure to allergens caused HBE cells to rapidly release ACh into the extracellular medium. Pharmacologic or small-interfering RNA-based blocking of ACh production or autocrine action through the M3 muscarinic ACh receptors in HBE cells suppressed allergen-induced ATP release, calcium mobilization, and extracellular secretion of IL-33. When naive mice were exposed to allergens, ACh was quickly released into the airway lumen. A series of clinical M3 muscarinic ACh receptor antagonists inhibited allergen-induced IL-33 secretion and innate type 2 immune response in the mouse airways. In a preclinical murine model of asthma, an ACh receptor antagonist suppressed allergen-induced airway inflammation and airway hyperreactivity. CONCLUSIONS ACh is released quickly by airway epithelial cells on allergen exposure, and it plays an important role in type 2 immunity. The epithelial ACh system can be considered a therapeutic target in allergic airway diseases.
Collapse
Affiliation(s)
- Ryusuke Hayashi
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Yotesawee Srisomboon
- Department of Animal Science, University of Minnesota, St Paul, Minn; Department of Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Koji Iijima
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Peter J Maniak
- Department of Animal Science, University of Minnesota, St Paul, Minn; Department of Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Rinna Tei
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Takao Kobayashi
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Mayumi Matsunaga
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Huijun Luo
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Mia Y Masuda
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minn; Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, Ariz
| | - Scott M O'Grady
- Department of Animal Science, University of Minnesota, St Paul, Minn; Department of Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Hirohito Kita
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Rochester, Rochester, Minn; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz.
| |
Collapse
|
18
|
Silverman JB, Vega PN, Tyska MJ, Lau KS. Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health. Annu Rev Physiol 2024; 86:479-504. [PMID: 37863104 PMCID: PMC11193883 DOI: 10.1146/annurev-physiol-042022-030310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.
Collapse
Affiliation(s)
- Jennifer B Silverman
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Paige N Vega
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Matthew J Tyska
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| |
Collapse
|
19
|
Ualiyeva S, Lemire E, Wong C, Perniss A, Boyd A, Avilés EC, Minichetti DG, Maxfield A, Roditi R, Matsumoto I, Wang X, Deng W, Barrett NA, Buchheit KM, Laidlaw TM, Boyce JA, Bankova LG, Haber AL. A nasal cell atlas reveals heterogeneity of tuft cells and their role in directing olfactory stem cell proliferation. Sci Immunol 2024; 9:eabq4341. [PMID: 38306414 PMCID: PMC11127180 DOI: 10.1126/sciimmunol.abq4341] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/08/2023] [Indexed: 02/04/2024]
Abstract
The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Evan Lemire
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Caitlin Wong
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Alexander Perniss
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Amelia Boyd
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Evelyn C. Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA; currently at Faculty of Biological Sciences, Pontificia Universidad Católica de Chile
| | - Dante G. Minichetti
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Alice Maxfield
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women’s Hospital and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA
| | - Rachel Roditi
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women’s Hospital and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA
| | | | - Xin Wang
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Wenjiang Deng
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Nora A. Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Kathleen M. Buchheit
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Tanya M. Laidlaw
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Lora G. Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
20
|
Ren W, Hua M, Cao F, Zeng W. The Sympathetic-Immune Milieu in Metabolic Health and Diseases: Insights from Pancreas, Liver, Intestine, and Adipose Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306128. [PMID: 38039489 PMCID: PMC10885671 DOI: 10.1002/advs.202306128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/28/2023] [Indexed: 12/03/2023]
Abstract
Sympathetic innervation plays a crucial role in maintaining energy balance and contributes to metabolic pathophysiology. Recent evidence has begun to uncover the innervation landscape of sympathetic projections and sheds light on their important functions in metabolic activities. Additionally, the immune system has long been studied for its essential roles in metabolic health and diseases. In this review, the aim is to provide an overview of the current research progress on the sympathetic regulation of key metabolic organs, including the pancreas, liver, intestine, and adipose tissues. In particular, efforts are made to highlight the critical roles of the peripheral nervous system and its potential interplay with immune components. Overall, it is hoped to underscore the importance of studying metabolic organs from a comprehensive and interconnected perspective, which will provide valuable insights into the complex mechanisms underlying metabolic regulation and may lead to novel therapeutic strategies for metabolic diseases.
Collapse
Affiliation(s)
- Wenran Ren
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
| | - Meng Hua
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
| | - Fang Cao
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhou563000China
| | - Wenwen Zeng
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijing100084China
| |
Collapse
|
21
|
Hollenhorst MI, Husnik T, Zylka M, Duda N, Flockerzi V, Tschernig T, Maxeiner S, Krasteva-Christ G. Human airway tuft cells influence the mucociliary clearance through cholinergic signalling. Respir Res 2023; 24:267. [PMID: 37925434 PMCID: PMC10625704 DOI: 10.1186/s12931-023-02570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Airway tuft cells, formerly called brush cells have long been described only morphologically in human airways. More recent RNAseq studies described a chemosensory cell population, which includes tuft cells, by a distinct gene transcription signature. Yet, until which level in the tracheobronchial tree in native human airway epithelium tuft cells occur and if they function as regulators of innate immunity, e.g., by regulating mucociliary clearance, remained largely elusive. METHODS We performed immunohistochemistry, RT-PCR and immunoblotting analyses for various tuft cell markers to confirm the presence of this cell type in human tracheal samples. Immunohistochemistry was conducted to study the distribution of tuft cells along the intrapulmonary airways in humans. We assessed the influence of bitter substances and the taste transduction pathway on mucociliary clearance in mouse and human tracheal samples by measuring particle transport speed. RESULTS Tuft cells identified by the expression of their well-established marker POU class 2 homeobox 3 (POU2F3) were present from the trachea to the bronchioles. We identified choline acetyltransferase in POU2F3 expressing cells as well as the transient receptor potential melastatin 5 (TRPM5) channel in a small population of tracheal epithelial cells with morphological appearance of tuft cells. Application of bitter substances, such as denatonium, led to an increase in mucociliary clearance in human tracheal preparations. This was dependent on activation of the TRPM5 channel and involved cholinergic and nitric oxide signalling, indicating a functional role for human tuft cells in the regulation of mucociliary clearance. CONCLUSIONS We were able to detect tuft cells in the tracheobronchial tree down to the level of the bronchioles. Moreover, taste transduction and cholinergic signalling occur in the same cells and regulate mucociliary clearance. Thus, tuft cells are potentially involved in the regulation of innate immunity in human airways.
Collapse
Affiliation(s)
| | - Thomas Husnik
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Malin Zylka
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Nele Duda
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling, Saarland University, Homburg, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | | |
Collapse
|
22
|
Ortiz-Carpena JF, Inclan-Rico JM, Pastore CF, Hung LY, Wilkerson WB, Weiner MB, Lin C, Gentile ME, Cohen NA, Saboor IA, Vaughan AE, Rossi HL, Herbert DR. [WITHDRAWN] Neuron-dependent tuft cell expansion initiates sinonasal allergic Type 2 inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547596. [PMID: 37461610 PMCID: PMC10349937 DOI: 10.1101/2023.07.04.547596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The authors have withdrawn this manuscript owing to inaccuracies in the calculation of tuft cell numbers and errors in the selection of immunofluorescence images used to support our claims. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
23
|
Perniss A, Boonen B, Tonack S, Thiel M, Poharkar K, Alnouri MW, Keshavarz M, Papadakis T, Wiegand S, Pfeil U, Richter K, Althaus M, Oberwinkler J, Schütz B, Boehm U, Offermanns S, Leinders-Zufall T, Zufall F, Kummer W. A succinate/SUCNR1-brush cell defense program in the tracheal epithelium. SCIENCE ADVANCES 2023; 9:eadg8842. [PMID: 37531421 PMCID: PMC10396310 DOI: 10.1126/sciadv.adg8842] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Host-derived succinate accumulates in the airways during bacterial infection. Here, we show that luminal succinate activates murine tracheal brush (tuft) cells through a signaling cascade involving the succinate receptor 1 (SUCNR1), phospholipase Cβ2, and the cation channel transient receptor potential channel subfamily M member 5 (TRPM5). Stimulated brush cells then trigger a long-range Ca2+ wave spreading radially over the tracheal epithelium through a sequential signaling process. First, brush cells release acetylcholine, which excites nearby cells via muscarinic acetylcholine receptors. From there, the Ca2+ wave propagates through gap junction signaling, reaching also distant ciliated and secretory cells. These effector cells translate activation into enhanced ciliary activity and Cl- secretion, which are synergistic in boosting mucociliary clearance, the major innate defense mechanism of the airways. Our data establish tracheal brush cells as a central hub in triggering a global epithelial defense program in response to a danger-associated metabolite.
Collapse
Affiliation(s)
- Alexander Perniss
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Brett Boonen
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sarah Tonack
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Moritz Thiel
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Krupali Poharkar
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Maryam Keshavarz
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Tamara Papadakis
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Silke Wiegand
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Uwe Pfeil
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University, Giessen, Germany
| | - Mike Althaus
- Physiology Group, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Johannes Oberwinkler
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Stefan Offermanns
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
24
|
Shusterman D. Trigeminal Function in Sino-Nasal Health and Disease. Biomedicines 2023; 11:1778. [PMID: 37509418 PMCID: PMC10376906 DOI: 10.3390/biomedicines11071778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The upper airway (nasal passages, paranasal sinuses, pharynx, and glottis) provides the sentinel portion of the human respiratory tract, with the combined senses of olfaction (cranial nerve I) and trigeminal sensation (cranial nerve V) signaling the quality of inspired air. Trigeminal function also complements the sense of taste (in turn mediated by cranial nerves VII, IX and X), and participates in the genesis of taste aversions. The ability of trigeminal stimulation in the upper aero-digestive tract to trigger a variety of respiratory and behavioral reflexes has long been recognized. In this context, the last three decades has seen a proliferation of observations at a molecular level regarding the mechanisms of olfaction, irritation, and gustation. Concurrently, an ever-widening network of physiological interactions between olfaction, taste, and trigeminal function has been uncovered. The objective of this review is to summarize the relatively recent expansion of research in this sub-field of sensory science, and to explore the clinical and therapeutic implications thereof.
Collapse
Affiliation(s)
- Dennis Shusterman
- Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco, CA 94143-0843, USA
| |
Collapse
|
25
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Iqbal S, Rezaul Karim M, Yang DC, Mathiyalagan R, Chan Kang S. Tuft cells - the immunological interface and role in disease regulation. Int Immunopharmacol 2023; 118:110018. [PMID: 36989894 DOI: 10.1016/j.intimp.2023.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Tuft cells, also known as taste chemosensory cells, accumulate during parasite colonization or infection and have powerful immunomodulatory effects on substances that could be detrimental, as well as possible anti-inflammatory or antibacterial effects. Tuft cells are the primary source of interleukin (IL)-25. They trigger extra Innate lymphoid type-2 cells (ILC2) in the intestinal lamina propria to create cytokines (type 2); for instance, IL-13, which leads to an increase in IL-25. As tuft cells can produce biological effector molecules, such as IL-25 and eicosanoids involved in allergy (for example, cysteinyl leukotrienes and prostaglandin D2) and the neurotransmitter acetylcholine. Following parasite infection, tuft cells require transient receptor potential cation channel subfamily M member 5 (TRPM5)-dependent chemosensation to produce responses. Secretory tuft cells provide a physical mucus barrier against the external environment and therefore have vital defensive roles against diseases by supporting tissue maintenance and repair. In addition to recent research on tuft cells, more studies are required to understand the distribution, cell turnover, molecular characteristics, responses in various species, involvement in immunological function across tissues, and most importantly, the mechanism involved in the control of various diseases.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; Department of Microbiology, Varendra Institute of Biosciences, Affiliated by Rajshahi University, Natore, Rajshahi, Bangladesh.
| | - Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh.
| | - Deok-Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Se Chan Kang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea.
| |
Collapse
|
27
|
Pirzgalska RM, Veiga-Fernandes H. Type 2 neuroimmune circuits in the shaping of physiology. Immunity 2023; 56:695-703. [PMID: 37044060 DOI: 10.1016/j.immuni.2023.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Type 2 immune responses drive a broad range of biological processes including defense from large parasites, immunity to allergens, and non-immunity-related functions, such as metabolism and tissue homeostasis. The symptoms provoked by type 2 immunity, such as vomiting, coughing or itching, encompass nervous system triggering. Here, we review recent findings that place type 2 neuroimmune circuits at the center stage of immunity at barrier surfaces. We emphasize the homeostatic functions of these circuitries and how deregulation may drive pathology and impact disease outcomes, including in the context of cancer. We discuss a paradigm wherein type 2 neuroimmune circuits are central regulators of organismal physiology.
Collapse
Affiliation(s)
- Roksana M Pirzgalska
- Champalimaud Foundation, Champalimaud Centre for the Unknown, Champalimaud Research, Lisbon, Portugal.
| | - Henrique Veiga-Fernandes
- Champalimaud Foundation, Champalimaud Centre for the Unknown, Champalimaud Research, Lisbon, Portugal.
| |
Collapse
|
28
|
Billipp TE, Fung C, Webeck LM, Sargent DB, Gologorsky MB, McDaniel MM, Kasal DN, McGinty JW, Barrow KA, Rich LM, Barilli A, Sabat M, Debley JS, Myers R, Howitt MR, von Moltke J. Tuft cell-derived acetylcholine regulates epithelial fluid secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533208. [PMID: 36993541 PMCID: PMC10055254 DOI: 10.1101/2023.03.17.533208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Tuft cells are solitary chemosensory epithelial cells that can sense lumenal stimuli at mucosal barriers and secrete effector molecules to regulate the physiology and immune state of their surrounding tissue. In the small intestine, tuft cells detect parasitic worms (helminths) and microbe-derived succinate, and signal to immune cells to trigger a Type 2 immune response that leads to extensive epithelial remodeling spanning several days. Acetylcholine (ACh) from airway tuft cells has been shown to stimulate acute changes in breathing and mucocilliary clearance, but its function in the intestine is unknown. Here we show that tuft cell chemosensing in the intestine leads to release of ACh, but that this does not contribute to immune cell activation or associated tissue remodeling. Instead, tuft cell-derived ACh triggers immediate fluid secretion from neighboring epithelial cells into the intestinal lumen. This tuft cell-regulated fluid secretion is amplified during Type 2 inflammation, and helminth clearance is delayed in mice lacking tuft cell ACh. The coupling of the chemosensory function of tuft cells with fluid secretion creates an epithelium-intrinsic response unit that effects a physiological change within seconds of activation. This response mechanism is shared by tuft cells across tissues, and serves to regulate the epithelial secretion that is both a hallmark of Type 2 immunity and an essential component of homeostatic maintenance at mucosal barriers.
Collapse
Affiliation(s)
- Tyler E. Billipp
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Connie Fung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lily M. Webeck
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Derek B. Sargent
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthew B. Gologorsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret M. McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Darshan N. Kasal
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - John W. McGinty
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kaitlyn A. Barrow
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lucille M. Rich
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Mark Sabat
- Takeda Pharmaceuticals, San Diego, California, USA
| | - Jason S. Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
| | | | - Michael R. Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
29
|
Prendergast AE, Jim KK, Marnas H, Desban L, Quan FB, Djenoune L, Laghi V, Hocquemiller A, Lunsford ET, Roussel J, Keiser L, Lejeune FX, Dhanasekar M, Bardet PL, Levraud JP, van de Beek D, Vandenbroucke-Grauls CMJE, Wyart C. CSF-contacting neurons respond to Streptococcus pneumoniae and promote host survival during central nervous system infection. Curr Biol 2023; 33:940-956.e10. [PMID: 36791723 DOI: 10.1016/j.cub.2023.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The pathogenic bacterium Streptococcus pneumoniae (S. pneumoniae) can invade the cerebrospinal fluid (CSF) and cause meningitis with devastating consequences. Whether and how sensory cells in the central nervous system (CNS) become activated during bacterial infection, as recently reported for the peripheral nervous system, is not known. We find that CSF infection by S. pneumoniae in larval zebrafish leads to changes in posture and behavior that are reminiscent of pneumococcal meningitis, including dorsal arching and epileptic-like seizures. We show that during infection, invasion of the CSF by S. pneumoniae massively activates in vivo sensory neurons contacting the CSF, referred to as "CSF-cNs" and previously shown to detect spinal curvature and to control posture, locomotion, and spine morphogenesis. We find that CSF-cNs express orphan bitter taste receptors and respond in vitro to bacterial supernatant and metabolites via massive calcium transients, similar to the ones observed in vivo during infection. Upon infection, CSF-cNs also upregulate the expression of numerous cytokines and complement components involved in innate immunity. Accordingly, we demonstrate, using cell-specific ablation and blockade of neurotransmission, that CSF-cN neurosecretion enhances survival of the host during S. pneumoniae infection. Finally, we show that CSF-cNs respond to various pathogenic bacteria causing meningitis in humans, as well as to the supernatant of cells infected by a neurotropic virus. Altogether, our work uncovers that central sensory neurons in the spinal cord, previously involved in postural control and morphogenesis, contribute as well to host survival by responding to the invasion of the CSF by pathogenic bacteria during meningitis.
Collapse
Affiliation(s)
- Andrew E Prendergast
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Kin Ki Jim
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Neuroscience, 1081 HV Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Prevention, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, the Netherlands
| | - Hugo Marnas
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Laura Desban
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Feng B Quan
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Lydia Djenoune
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Valerio Laghi
- Institut Pasteur, Unité Macrophages et Développement, Centre National de la Recherche Scientifique (CNRS), Université Paris-Cité, 75015 Paris, France
| | - Agnès Hocquemiller
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Elias T Lunsford
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Julian Roussel
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Ludovic Keiser
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 18, 1015 Lausanne, Switzerland
| | - Francois-Xavier Lejeune
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Mahalakshmi Dhanasekar
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Pierre-Luc Bardet
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Jean-Pierre Levraud
- Institut Pasteur, Unité Macrophages et Développement, Centre National de la Recherche Scientifique (CNRS), Université Paris-Cité, 75015 Paris, France; Université Paris-Saclay, CNRS, Institut Pasteur, Université Paris-Cité, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Diederik van de Beek
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Neuroscience, 1081 HV Amsterdam, the Netherlands
| | - Christina M J E Vandenbroucke-Grauls
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Prevention, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, the Netherlands.
| | - Claire Wyart
- Institut du Cerveau (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
30
|
McDaniel MM, Lara HI, von Moltke J. Initiation of type 2 immunity at barrier surfaces. Mucosal Immunol 2023; 16:86-97. [PMID: 36642383 DOI: 10.1016/j.mucimm.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
Although seemingly unrelated, parasitic worms, venoms, and allergens all induce a type 2 immune response. The effector functions and clinical features of type 2 immunity are well-defined, but fundamental questions about the initiation of type 2 immunity remain unresolved. How are these enormously diverse type 2 stimuli first detected? How are type 2 helper T cells primed and regulated? And how do mechanisms of type 2 initiation vary across tissues? Here, we review the common themes governing type 2 immune sensing and explore aspects of T cell priming and effector reactivation that make type 2 helper T cells a unique T helper lineage. Throughout the review, we emphasize the importance of non-hematopoietic cells and highlight how the unique anatomy and physiology of each barrier tissue shape mechanisms of type 2 immune initiation.
Collapse
Affiliation(s)
- Margaret M McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, USA.
| | - Heber I Lara
- Department of Immunology, University of Washington School of Medicine, Seattle, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, USA
| |
Collapse
|
31
|
Kotas ME, O'Leary CE, Locksley RM. Tuft Cells: Context- and Tissue-Specific Programming for a Conserved Cell Lineage. ANNUAL REVIEW OF PATHOLOGY 2023; 18:311-335. [PMID: 36351364 PMCID: PMC10443898 DOI: 10.1146/annurev-pathol-042320-112212] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tuft cells are found in tissues with distinct stem cell compartments, tissue architecture, and luminal exposures but converge on a shared transcriptional program, including expression of taste transduction signaling pathways. Here, we summarize seminal and recent findings on tuft cells, focusing on major categories of function-instigation of type 2 cytokine responses, orchestration of antimicrobial responses, and emerging roles in tissue repair-and describe tuft cell-derived molecules used to affect these functional programs. We review what is known about the development of tuft cells from epithelial progenitors under homeostatic conditions and during disease. Finally, we discuss evidence that immature, or nascent, tuft cells with potential for diverse functions are driven toward dominant effector programs by tissue- or perturbation-specific contextual cues, which may result in heterogeneous mature tuft cell phenotypes both within and between tissues.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Claire E O'Leary
- Department of Medicine, University of California, San Francisco, California, USA
- Current affiliation: Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| |
Collapse
|
32
|
Chang Y, Zhang Y, Bai Y, Lin R, Qi Y, Li M. The correlation between tic disorders and allergic conditions in children: A systematic review and meta-analysis of observational studies. Front Pediatr 2023; 11:1064001. [PMID: 37020645 PMCID: PMC10067604 DOI: 10.3389/fped.2023.1064001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Aim To evaluate the correlation between tic disorders and allergies and to inform strategies for the treatment and prevention of tic disorders. Methods We conducted online searches of the MEDLINE, Embase, Cochrane, CNKI, CBM, WanFang, and VIP Information databases. Case-control studies and cohort studies related to tic disorders and allergic conditions were searched. Two researchers screened the literature, extracted data, and evaluated quality in strict accordance with the predetermined retrieval strategy and inclusion criteria. Finally, RevMan 5.4 software was used to conduct a meta-analysis. We used the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach to rating the certainty of evidence about each allergy outcome as high, moderate, low, or very low. Results We obtained seven eligible studies involving eight allergic conditions. The following allergic conditions were significantly associated with the presence of a tic disorder: asthma (OR = 1.90, 95% CI = 1.57-2.30, P < 0.001), allergic rhinitis (OR = 2.61, 95% CI = 1.90-3.57, P < 0.001), allergic conjunctivitis (OR = 3.65, 95% CI = 1.53-8,67, P = 0.003), eczema (OR = 3.87, 95% CI = 2.24-6.67, P < 0.001) and food allergy (OR = 2.79, 95% CI = 1.56-4.99, P < 0.001). There was no significant correlation between atopic dermatitis, urticaria, drug allergy, and tic disorder. Conclusion The occurrence of tic disorders may be associated with the presence of certain allergic disorders. However, whether allergy is one of the causes of tic disorders remains unclear. Systematic review registration The registration number for this systematic review is PROSPERO: CRD42021231658.
Collapse
Affiliation(s)
- Ying Chang
- Department of Traditional Chinese Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Ying Zhang
- Evidence Based Medicine Center, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Bai
- Department of Pediatrics, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Run Lin
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yaping Qi
- TCM Pediatrics Department, Beijing Changping District Maternity and Child Care Hospital, Beijing, China
| | - Min Li
- Department of Traditional Chinese Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
- Department of Pediatrics, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Correspondence: Li Min
| |
Collapse
|
33
|
Huang X, Oshima T, Akiba Y, Yoshimoto T, Chen J, Taki M, Tomita T, Fukui H, Kaunitz JD, Miwa H. Duodenal cholinergic tuft cell number is increased in functional dyspepsia. Neurogastroenterol Motil 2022; 34:e14378. [PMID: 35388579 DOI: 10.1111/nmo.14378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Low-grade duodenal inflammation has recently been identified in patients with functional dyspepsia (FD). Chemosensory tuft cells were reported to be associated with gastrointestinal diseases. We therefore assessed duodenal tuft cell density and microinflammation in patients with FD to determine whether these measures could serve as useful biomarkers, and also correlated tuft cell density and microinflammation in FD patients. METHODS Duodenal biopsy specimens were obtained from patients with FD and from controls. Tuft cells, eosinophils, and mast cells were immunochemically stained with specific antibodies. Tuft cells were identified by immunostaining for doublecortin-like kinase 1 (DCLK1); cholinergic tuft cells were assessed by double staining for choline acetyltransferase (ChAT) and DCLK1. Immune-type tuft cells were assessed by IL-25 mRNA expression using real-time PCR. KEY RESULTS The density of intramucosal eosinophils and mast cells was significantly higher in the duodenum of FD patients than in controls. The density of tuft cells was significantly higher in the duodenum of FD patients compared with controls, and significantly correlated with eosinophil density in the duodenum of FD patients and controls. Moreover, a fraction of ChAT-positive cells was DCLK1 positive; all duodenal DCLK1+ tuft cells were ChAT-immunoreactive in FD and in control subjects. CONCLUSIONS AND INFERENCES Cholinergic tuft cell density was higher in the duodenum of patients with FD and significantly correlated with eosinophil density. Further studies are needed to investigate the pathophysiological significance of tuft cells in FD and may provide valuable clues to the pathophysiology of FD.
Collapse
Affiliation(s)
- Xinyi Huang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasutada Akiba
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Department of Medicine, The David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Takanori Yoshimoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Junji Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masato Taki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jonathan D Kaunitz
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Department of Medicine, The David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.,Department of Surgery, The David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
34
|
Czerwaty K, Piszczatowska K, Brzost J, Ludwig N, Szczepański MJ, Dżaman K. Immunological Aspects of Chronic Rhinosinusitis. Diagnostics (Basel) 2022; 12:diagnostics12102361. [PMID: 36292050 PMCID: PMC9600442 DOI: 10.3390/diagnostics12102361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is related to persistent inflammation with a dysfunctional relationship between environmental agents and the host immune system. Disturbances in the functioning of the sinus mucosa lead to common clinical symptoms. The major processes involved in the pathogenesis of CRS include airway epithelial dysfunctions that are influenced by external and host-derived factors which activate multiple immunological mechanisms. The molecular bases for CRS remain unclear, although some factors commonly correspond to the disease: bacterial, fungal and viral infections, comorbidity diseases, genetic dysfunctions, and immunodeficiency. Additionally, air pollution leads increased severity of symptoms. CRS is a heterogeneous group of sinus diseases with different clinical courses and response to treatment. Immunological pathways vary depending on the endotype or genotype of the patient. The recent knowledge expansion into mechanisms underlying the pathogenesis of CRS is leading to a steadily increasing significance of precision medicine in the treatment of CRS. The purpose of this review is to summarize the current state of knowledge regarding the immunological aspects of CRS, which are essential for ensuring more effective treatment strategies.
Collapse
Affiliation(s)
- Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | | | - Jacek Brzost
- The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mirosław J. Szczepański
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| |
Collapse
|
35
|
Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells 2022; 11:2907. [PMID: 36139480 PMCID: PMC9497104 DOI: 10.3390/cells11182907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Our respiratory system is exposed to toxicants and pathogens from both sides: the airways and the vasculature. While tracheal, bronchial and alveolar epithelial cells form a natural barrier in the airways, endothelial cells protect the lung from perfused toxic compounds, particulate matter and invading microorganism in the vascular system. Damages induce inflammation by our immune response and wound healing by (myo)fibroblast proliferation. Members of the transient receptor potential (TRP) superfamily of ion channel are expressed in many cells of the respiratory tract and serve multiple functions in physiology and pathophysiology. TRP expression patterns in non-neuronal cells with a focus on TRPA1, TRPC6, TRPM2, TRPM5, TRPM7, TRPV2, TRPV4 and TRPV6 channels are presented, and their roles in barrier function, immune regulation and phagocytosis are summarized. Moreover, TRP channels as future pharmacological targets in chronic obstructive pulmonary disease (COPD), asthma, cystic and pulmonary fibrosis as well as lung edema are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Nussbaumstr. 26, 80336 Munich, Germany
| |
Collapse
|
36
|
Ki SY, Jeong YT. Taste Receptors beyond Taste Buds. Int J Mol Sci 2022; 23:ijms23179677. [PMID: 36077074 PMCID: PMC9455917 DOI: 10.3390/ijms23179677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Taste receptors are responsible for detecting their ligands not only in taste receptor cells (TRCs) but also in non-gustatory organs. For several decades, many research groups have accumulated evidence for such “ectopic” expression of taste receptors. More recently, some of the physiologic functions (apart from taste) of these ectopic taste receptors have been identified. Here, we summarize our current understanding of these ectopic taste receptors across multiple organs. With a particular focus on the specialized epithelial cells called tuft cells, which are now considered siblings of type II TRCs, we divide the ectopic expression of taste receptors into two categories: taste receptors in TRC-like cells outside taste buds and taste receptors with surprising ectopic expression in completely different cell types.
Collapse
Affiliation(s)
- Su Young Ki
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Yong Taek Jeong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-2286-1295
| |
Collapse
|
37
|
Hollenhorst MI, Kumar P, Zimmer M, Salah A, Maxeiner S, Elhawy MI, Evers SB, Flockerzi V, Gudermann T, Chubanov V, Boehm U, Krasteva-Christ G. Taste Receptor Activation in Tracheal Brush Cells by Denatonium Modulates ENaC Channels via Ca2+, cAMP and ACh. Cells 2022; 11:cells11152411. [PMID: 35954259 PMCID: PMC9367940 DOI: 10.3390/cells11152411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
Mucociliary clearance is a primary defence mechanism of the airways consisting of two components, ciliary beating and transepithelial ion transport (ISC). Specialised chemosensory cholinergic epithelial cells, named brush cells (BC), are involved in regulating various physiological and immunological processes. However, it remains unclear if BC influence ISC. In murine tracheae, denatonium, a taste receptor agonist, reduced basal ISC in a concentration-dependent manner (EC50 397 µM). The inhibition of bitter taste signalling components with gallein (Gβγ subunits), U73122 (phospholipase C), 2-APB (IP3-receptors) or with TPPO (Trpm5, transient receptor potential-melastatin 5 channel) reduced the denatonium effect. Supportively, the ISC was also diminished in Trpm5−/− mice. Mecamylamine (nicotinic acetylcholine receptor, nAChR, inhibitor) and amiloride (epithelial sodium channel, ENaC, antagonist) decreased the denatonium effect. Additionally, the inhibition of Gα subunits (pertussis toxin) reduced the denatonium effect, while an inhibition of phosphodiesterase (IBMX) increased and of adenylate cyclase (forskolin) reversed the denatonium effect. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh172 and the KCNQ1 potassium channel antagonist chromanol 293B both reduced the denatonium effect. Thus, denatonium reduces ISC via the canonical bitter taste signalling cascade leading to the Trpm5-dependent nAChR-mediated inhibition of ENaC as well as Gα signalling leading to a reduction in cAMP-dependent ISC. Therefore, BC activation contributes to the regulation of fluid homeostasis.
Collapse
Affiliation(s)
| | - Praveen Kumar
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Maxim Zimmer
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Alaa Salah
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | | | - Saskia B. Evers
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Centre for Molecular Signalling, Saarland University, 66421 Homburg, Germany
| | - Thomas Gudermann
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University and German Centre for Lung Research (DZL), 80366 Munich, Germany
| | - Vladimir Chubanov
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University and German Centre for Lung Research (DZL), 80366 Munich, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Centre for Molecular Signalling, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-16-26101
| |
Collapse
|
38
|
Abstract
Taste receptors are receptor proteins that detect ligands belonging to the 5 taste modalities: sweet, bitter, sour, salty, and umami. Taste receptors are not restricted to taste cells in taste buds; rather, they are distributed throughout the entire body. For example, solitary chemosensory cells (SCCs) and tuft cells express taste signal proteins and are present in several mucosae. In the airways, SCCs sense bacteria, allergens, viruses, and noxious stimuli and drive evasive behavior, neuroinflammation, and antibacterial responses. In the gut, tuft cells detect helminth infection and bacterial dysbiosis and initiate type II immune responses characterized by tissue remodeling. In the gingiva, SCCs detect oral pathogenic bacteria, evoke innate immune responses and release antimicrobial compounds in the epithelium, and regulate the microbiome composition. This review summarizes the most recent research on extragustatory taste receptors and their function in antibacterial defense. We also discuss how these findings have provided insights into the development of potential therapeutic strategies for mucosal bacterial infection and dental diseases.
Collapse
Affiliation(s)
- R. Xi
- Department of Cariology and Endodontics, Sichuan University, West China Hospital of Stomatology, Chengdu, China
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X. Zheng
- Department of Cariology and Endodontics, Sichuan University, West China Hospital of Stomatology, Chengdu, China
| | - M. Tizzano
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Ye Q, Bankova LG. Brush cells fine-tune neurogenic inflammation in the airways. J Clin Invest 2022; 132:161439. [PMID: 35775485 PMCID: PMC9246375 DOI: 10.1172/jci161439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Airway epithelial cells, once considered a simple barrier layer, are now recognized as providing an active site for antigen sensing and immune response initiation. Most mucosal sites contain chemosensory epithelial cells, rare and specialized cells gaining recognition for their unique functions in sensing and directing the immune response symphony. In this issue of the JCI, Hollenhorst, Nandigama, et al. demonstrated that tracheal chemosensory brush cells detected bitter-tasting substances, including quorum-sensing molecules (QSMs) generated by pathogenic Pseudomonas aeruginosa. The authors used various techniques, including genetic deletion of brush cells, genetic manipulation of brush cell signaling, deletion of sensory neurons, in vivo imaging, and infection models with P. aeruginosa, to show that QSMs increased vascular permeability and innate immune cell influx into the trachea. These findings link the recognition of bacterial QSMs to the innate immune response in the airways, with translational implications for airway inflammation and infectious pathology.
Collapse
|
40
|
Tas2R activation relaxes airway smooth muscle by release of Gα t targeting on AChR signaling. Proc Natl Acad Sci U S A 2022; 119:e2121513119. [PMID: 35737832 PMCID: PMC9245679 DOI: 10.1073/pnas.2121513119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both chronic obstructive pulmonary disease (COPD) and asthma are severe respiratory diseases. Bitter receptor-mediated bronchodilation is a potential therapy for asthma, but the mechanism underlying the agonistic relaxation of airway smooth muscle (ASM) is not well defined. By exploring the ASM relaxation mechanism of bitter substances, we observed that pretreatment with the bitter substances nearly abolished the methacholine (MCh)-induced increase in the ASM cell (ASMC) calcium concentration, thereby suppressing the calcium-induced contraction release. The ASM relaxation was significantly inhibited by simultaneous deletion of three Gαt proteins, suggesting an interaction between Tas2R and AChR signaling cascades in the relaxation process. Biochemically, the Gαt released by Tas2R activation complexes with AChR and blocks the Gαq cycling of AChR signal transduction. More importantly, a bitter substance, kudinoside A, not only attenuates airway constriction but also significantly inhibits pulmonary inflammation and tissue remodeling in COPD rats, indicating its modulation of additional Gαq-associated pathological processes. Thus, our results suggest that Tas2R activation may be an ideal strategy for halting multiple pathological processes of COPD.
Collapse
|
41
|
Klimov V, Cherevko N, Klimov A, Novikov P. Neuronal-Immune Cell Units in Allergic Inflammation in the Nose. Int J Mol Sci 2022; 23:6938. [PMID: 35805946 PMCID: PMC9266453 DOI: 10.3390/ijms23136938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Immune cells and immune-derived molecules, endocrine glands and hormones, the nervous system and neuro molecules form the combined tridirectional neuroimmune network, which plays a significant role in the communication pathways and regulation at the level of the whole organism and local levels, in both healthy persons and patients with allergic rhinitis based on an allergic inflammatory process. This review focuses on a new research paradigm devoted to neuronal-immune cell units, which are involved in allergic inflammation in the nose and neuroimmune control of the nasal mucociliary immunologically active epithelial barrier. The categorization, cellular sources of neurotransmitters and neuropeptides, and their prevalent profiles in constituting allergen tolerance maintenance or its breakdown are discussed. Novel data on the functional structure of the nasal epithelium based on a transcriptomic technology, single-cell RNA-sequencing results, are considered in terms of neuroimmune regulation. Notably, the research of pathogenesis and therapy for atopic allergic diseases, including recently identified local forms, from the viewpoint of the tridirectional interaction of the neuroimmune network and discrete neuronal-immune cell units is at the cutting-edge.
Collapse
Affiliation(s)
- Vladimir Klimov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Natalia Cherevko
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Andrew Klimov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Pavel Novikov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
- Medical Association “Center for Family Medicine”, 634050 Tomsk, Russia
| |
Collapse
|
42
|
Inclan-Rico JM, Rossi HL, Herbert DR. "Every cell is an immune cell; contributions of non-hematopoietic cells to anti-helminth immunity". Mucosal Immunol 2022; 15:1199-1211. [PMID: 35538230 PMCID: PMC9646929 DOI: 10.1038/s41385-022-00518-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
Helminths are remarkably successful parasites that can invade various mammalian hosts and establish chronic infections that can go unnoticed for years despite causing severe tissue damage. To complete their life cycles, helminths migrate through multiple barrier sites that are densely populated by a complex array of hematopoietic and non-hematopoietic cells. While it is clear that type 2 cytokine responses elicited by immune cells promote worm clearance and tissue healing, the actions of non-hematopoietic cells are increasingly recognized as initiators, effectors and regulators of anti-helminth immunity. This review will highlight the collective actions of specialized epithelial cells, stromal niches, stem, muscle and neuroendocrine cells as well as peripheral neurons in the detection and elimination of helminths at mucosal sites. Studies dissecting the interactions between immune and non-hematopoietic cells will truly provide a better understanding of the mechanisms that ensure homeostasis in the context of helminth infections.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather L Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
43
|
New insights into tuft cell formation: Implications for structure–function relationships. Curr Opin Cell Biol 2022; 76:102082. [DOI: 10.1016/j.ceb.2022.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
|
44
|
Pflugfelder SC, Cao A, Galor A, Nichols KK, Cohen NA, Dalton M. Nicotinic acetylcholine receptor stimulation: A new approach for stimulating tear secretion in dry eye disease. Ocul Surf 2022; 25:58-64. [PMID: 35550851 DOI: 10.1016/j.jtos.2022.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Tear secretion is regulated by the lacrimal functional unit consisting of afferent and efferent nerve innervation. The afferent arm consists of trigeminal nociceptors on the ocular surface and nasal mucosa. When stimulated by agonists, nicotinic acetylcholine receptors on nerve endings in the nose initiate a reflex arc resulting in instantaneous tear secretion. Pharmacologic nasal neural stimulation to increase endogenous tear production is a novel approach to treating dry eye disease.
Collapse
Affiliation(s)
| | - Austin Cao
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, Miami, FL, USA
| | - Kelly K Nichols
- University of Alabama at Birmingham School of Optometry, Birmingham, AL, USA
| | - Noam A Cohen
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Monell Chemical Senses Center, Philadelphia, PA, USA
| | | |
Collapse
|
45
|
Hollenhorst MI, Nandigama R, Evers SB, Gamayun I, Abdel Wadood N, Salah A, Pieper M, Wyatt A, Stukalov A, Gebhardt A, Nadolni W, Burow W, Herr C, Beisswenger C, Kusumakshi S, Ectors F, Kichko TI, Hübner L, Reeh P, Munder A, Wienhold SM, Witzenrath M, Bals R, Flockerzi V, Gudermann T, Bischoff M, Lipp P, Zierler S, Chubanov V, Pichlmair A, König P, Boehm U, Krasteva-Christ G. Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection. J Clin Invest 2022; 132:150951. [PMID: 35503420 PMCID: PMC9246383 DOI: 10.1172/jci150951] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung.
Collapse
Affiliation(s)
| | - Rajender Nandigama
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Saskia B Evers
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Igor Gamayun
- Institute for Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Noran Abdel Wadood
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Alaa Salah
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Mario Pieper
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Amanda Wyatt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Alexey Stukalov
- Immunopathology of Virus Infection Laboratory, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Anna Gebhardt
- Immunopathology of Virus Infection Laboratory, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Wiebke Nadolni
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Wera Burow
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Christian Herr
- Department of Internal Medicine V, Saarland University Hospital, Homburg, Germany
| | | | - Soumya Kusumakshi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Fabien Ectors
- FARAH Mammalian Transgenics Platform, Liège University, Liège, Belgium
| | - Tatjana I Kichko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Hübner
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Peter Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antje Munder
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Bals
- Department of Internal Medicine V, Saarland University Hospital, Homburg, Germany
| | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | - Susanna Zierler
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Pichlmair
- Immunopathology of Virus Infection Laboratory, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Peter König
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Ulrich Boehm
- Institute for Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | | |
Collapse
|
46
|
Caretta A, Mucignat-Caretta C. Not Only COVID-19: Involvement of Multiple Chemosensory Systems in Human Diseases. Front Neural Circuits 2022; 16:862005. [PMID: 35547642 PMCID: PMC9081982 DOI: 10.3389/fncir.2022.862005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chemosensory systems are deemed marginal in human pathology. In appraising their role, we aim at suggesting a paradigm shift based on the available clinical and experimental data that will be discussed. Taste and olfaction are polymodal sensory systems, providing inputs to many brain structures that regulate crucial visceral functions, including metabolism but also endocrine, cardiovascular, respiratory, and immune systems. Moreover, other visceral chemosensory systems monitor different essential chemical parameters of “milieu intérieur,” transmitting their data to the brain areas receiving taste and olfactory inputs; hence, they participate in regulating the same vital functions. These chemosensory cells share many molecular features with olfactory or taste receptor cells, thus they may be affected by the same pathological events. In most COVID-19 patients, taste and olfaction are disturbed. This may represent only a small portion of a broadly diffuse chemosensory incapacitation. Indeed, many COVID-19 peculiar symptoms may be explained by the impairment of visceral chemosensory systems, for example, silent hypoxia, diarrhea, and the “cytokine storm”. Dysregulation of chemosensory systems may underlie the much higher mortality rate of COVID-19 Acute Respiratory Distress Syndrome (ARDS) compared to ARDSs of different origins. In chronic non-infectious diseases like hypertension, diabetes, or cancer, the impairment of taste and/or olfaction has been consistently reported. This may signal diffuse chemosensory failure, possibly worsening the prognosis of these patients. Incapacitation of one or few chemosensory systems has negligible effects on survival under ordinary life conditions but, under stress, like metabolic imbalance or COVID-19 pneumonia, the impairment of multiple chemosensory systems may lead to dire consequences during the course of the disease.
Collapse
Affiliation(s)
- Antonio Caretta
- National Institute for Biostructures and Biosystems (NIBB), Rome, Italy
- Department of Food and Drug Science, University of Parma, Parma, Italy
| | - Carla Mucignat-Caretta
- National Institute for Biostructures and Biosystems (NIBB), Rome, Italy
- Department of Molecular Medicine, University of Padova, Padua, Italy
- *Correspondence: Carla Mucignat-Caretta,
| |
Collapse
|
47
|
Sponchiado M, Liao YS, Reznikov LR. Identification of cholinergic cells with chemosensory traits in the porcine uterus. Cell Tissue Res 2022; 388:33-47. [PMID: 35084573 PMCID: PMC11441723 DOI: 10.1007/s00441-022-03585-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
Chemosensory cells are specialized epithelial cells that act as sentinels near body entry sites. The majority of these cells express a cholinergic phenotype and utilize the taste signaling system to monitor the mucosal environment for potentially harmful substances, triggering protective reflexes. We report the identification of cells with a putative chemosensory role in the uterus. Presumptive chemosensory cells were immunoreactive to key components of the taste transduction, including the transient receptor potential channel M5 (TRPM5) and the phospholipase Cβ2 (PLCB2). These cells localized to endometrial glandular and luminal epithelia, while absent from myometrium and perimetrium. Double immunofluorescence revealed co-expression of chemosensory cell markers with the acetylcholine (ACh) synthesizing enzyme, choline acetyltransferase (ChAT). Further, we investigated the regional distribution and expression of chemosensory cells at different stages of the estrous cycle. Uteri were collected postmortem from gilts and stages of the ovarian cycle were determined macroscopically. The uteri were classified into three groups: prepubertal (PB), follicular (FOL), or luteal (LUT). The number of ChAT-immunoreactive cells was increased in the luminal epithelium in the caudal compartment compared to the cranial region of the uterine horn, and at the LUT compared to PB and FOL stages. An increase in ChAT protein abundance in LUT uterine homogenates was noted, although not followed by an increase in ACh content. In summary, our study has identified a hitherto unrecognized cholinergic cell in the uterus that has chemosensory traits and may be involved in a multitude of biological processes.
Collapse
Affiliation(s)
- Mariana Sponchiado
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Yan-Shin Liao
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
48
|
Keshavarz M, Faraj Tabrizi S, Ruppert AL, Pfeil U, Schreiber Y, Klein J, Brandenburger I, Lochnit G, Bhushan S, Perniss A, Deckmann K, Hartmann P, Meiners M, Mermer P, Rafiq A, Winterberg S, Papadakis T, Thomas D, Angioni C, Oberwinkler J, Chubanov V, Gudermann T, Gärtner U, Offermanns S, Schütz B, Kummer W. Cysteinyl leukotrienes and acetylcholine are biliary tuft cell cotransmitters. Sci Immunol 2022; 7:eabf6734. [PMID: 35245090 DOI: 10.1126/sciimmunol.abf6734] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gallbladder stores bile between meals and empties into the duodenum upon demand and is thereby exposed to the intestinal microbiome. This exposure raises the need for antimicrobial factors, among them, mucins produced by cholangiocytes, the dominant epithelial cell type in the gallbladder. The role of the much less frequent biliary tuft cells is still unknown. We here show that propionate, a major metabolite of intestinal bacteria, activates tuft cells via the short-chain free fatty acid receptor 2 and downstream signaling involving the cation channel transient receptor potential cation channel subfamily M member 5. This results in corelease of acetylcholine and cysteinyl leukotrienes from tuft cells and evokes synergistic paracrine effects upon the epithelium and the gallbladder smooth muscle, respectively. Acetylcholine triggers mucin release from cholangiocytes, an epithelial defense mechanism, through the muscarinic acetylcholine receptor M3. Cysteinyl leukotrienes cause gallbladder contraction through their cognate receptor CysLTR1, prompting emptying and closing. Our results establish gallbladder tuft cells as sensors of the microbial metabolite propionate, initiating dichotomous innate defense mechanisms through simultaneous release of acetylcholine and cysteinyl leukotrienes.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Schayan Faraj Tabrizi
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Anna-Lena Ruppert
- Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Uwe Pfeil
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group TMP, Frankfurt, Germany
| | - Jochen Klein
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Isabell Brandenburger
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Alexander Perniss
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Deckmann
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Petra Hartmann
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Mirjam Meiners
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Petra Mermer
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Amir Rafiq
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah Winterberg
- Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Tamara Papadakis
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Dominique Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Carlo Angioni
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Johannes Oberwinkler
- Philipps-Universität Marburg, Institut für Physiologie und Pathophysiologie, Marburg, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, German Center for Lung Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, German Center for Lung Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany
| | - Stefan Offermanns
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
49
|
Abstract
Although tuft cells were discovered over 60 years ago, their functions have long been enigmatic, especially in human health. Nonetheless, tuft cells have recently emerged as key orchestrators of the host response to diverse microbial infections in the gut and airway. While tuft cells are epithelial in origin, they exhibit functions akin to immune cells and mediate important interkingdom interactions between the host and helminths, protists, viruses, and bacteria. With broad intra- and intertissue heterogeneity, tuft cells sense and respond to microbes with exquisite specificity. Tuft cells can recognize helminth and protist infection, driving a type 2 immune response to promote parasite expulsion. Tuft cells also serve as the primary physiologic target of persistent murine norovirus (MNV) and promote immune evasion. Recently, tuft cells were also shown to be infected by rotavirus. Other viral infections, such as influenza A virus, can induce tuft cell–dependent tissue repair. In the context of coinfection, tuft cells promote neurotropic flavivirus replication by dampening antiviral adaptive immune responses. Commensal and pathogenic bacteria can regulate tuft cell abundance and function and, in turn, tuft cells are implicated in modulating bacterial infiltration and mucosal barrier integrity. However, the contribution of tuft cells to microbial sensing in humans and their resulting effector responses are poorly characterized. Herein, we aim to provide a comprehensive overview of microbial activation of tuft cells with an emphasis on tuft cell heterogeneity and differences between mouse and human tuft cell biology as it pertains to human health and disease.
Collapse
Affiliation(s)
- Madison S. Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: ,
| |
Collapse
|
50
|
Hendel SK, Kellermann L, Hausmann A, Bindslev N, Jensen KB, Nielsen OH. Tuft Cells and Their Role in Intestinal Diseases. Front Immunol 2022; 13:822867. [PMID: 35237268 PMCID: PMC8884241 DOI: 10.3389/fimmu.2022.822867] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
The interests in intestinal epithelial tuft cells, their basic physiology, involvement in immune responses and relevance for gut diseases, have increased dramatically over the last fifteen years. A key discovery in 2016 of their close connection to helminthic and protozoan infection has further spurred the exploration of these rare chemosensory epithelial cells. Although very sparse in number, tuft cells are now known as important sentinels in the gastrointestinal tract as they monitor intestinal content using succinate as well as sweet and bitter taste receptors. Upon stimulation, tuft cells secrete a broad palette of effector molecules, including interleukin-25, prostaglandin E2 and D2, cysteinyl leukotriene C4, acetylcholine, thymic stromal lymphopoietin, and β-endorphins, some of which with immunomodulatory functions. Tuft cells have proven indispensable in anti-helminthic and anti-protozoan immunity. Most studies on tuft cells are based on murine experiments using double cortin-like kinase 1 (DCLK1) as a marker, while human intestinal tuft cells can be identified by their expression of the cyclooxygenase-1 enzyme. So far, only few studies have examined tuft cells in humans and their relation to gut disease. Here, we present an updated view on intestinal epithelial tuft cells, their physiology, immunological hub function, and their involvement in human disease. We close with a discussion on how tuft cells may have potential therapeutic value in a clinical context.
Collapse
Affiliation(s)
- Sebastian Kjærgaard Hendel
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
- *Correspondence: Sebastian Kjærgaard Hendel,
| | - Lauge Kellermann
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Annika Hausmann
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences , University of Copenhagen, Copenhagen, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|