1
|
Marjot T, Armstrong MJ, Stine JG. Skeletal muscle and MASLD: Mechanistic and clinical insights. Hepatol Commun 2025; 9:e0711. [PMID: 40408301 DOI: 10.1097/hc9.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/25/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is intrinsically linked with widespread metabolic perturbations, including within skeletal muscle. Indeed, MASLD is associated with a range of skeletal muscle abnormalities, including insulin resistance, myosteatosis, and sarcopenia, which all converge on the liver to drive disease progression and adverse patient outcomes. This review explores the mechanistic links between skeletal muscle and MASLD, including the role of abnormal glycemic control, systemic inflammation, and disordered myokine signaling. In turn, we discuss how intrinsic liver pathology can feed back to further exacerbate poor skeletal muscle health. Given the central importance of skeletal muscle in MASLD pathogenesis, it offers clinicians an opportunity to intervene for therapeutic benefit. We, therefore, summarize the role of nutrition and physical activity on skeletal muscle mass, quality, and metabolic function and discuss the knock-on effect this has on the liver. An awareness of these treatment strategies is particularly important in the era of effective pharmacological and surgical weight loss interventions, which can be associated with the development of sarcopenia. Finally, we highlight a number of promising drug agents in the clinical trial pipeline that specifically target skeletal muscle in an attempt to improve metabolic and physical functioning.
Collapse
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Matthew J Armstrong
- Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham, UK
- Birmingham NIHR Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Jonathan G Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health-Milton S. Hershey Medical Centre, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Apostolopoulou M, Lambadiari V, Roden M, Dimitriadis GD. Insulin Resistance in Type 1 Diabetes: Pathophysiological, Clinical, and Therapeutic Relevance. Endocr Rev 2025; 46:317-348. [PMID: 39998445 PMCID: PMC12063105 DOI: 10.1210/endrev/bnae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Indexed: 02/26/2025]
Abstract
People with type 1 diabetes (T1D) are usually considered to exclusively exhibit β-cell failure, but they frequently also feature insulin resistance. This review discusses the mechanisms, clinical features, and therapeutic relevance of insulin resistance by focusing mainly on human studies using gold-standard techniques (euglycemic-hyperinsulinemic clamp). In T1D, tissue-specific insulin resistance can develop early and sustain throughout disease progression. The underlying pathophysiology is complex, involving both metabolic- and autoimmune-related factors operating synergistically. Insulin treatment may play an important pathogenic role in predisposing individuals with T1D to insulin resistance. However, the established lifestyle-related risk factors and peripheral insulin administration inducing glucolipotoxicity, hyperinsulinemia, hyperglucagonemia, inflammation, mitochondrial abnormalities, and oxidative stress cannot always fully explain insulin resistance in T1D, suggesting a phenotype distinct from type 2 diabetes. The mutual interaction between insulin resistance and impaired endothelial function further contributes to diabetes-related complications. Insulin resistance should therefore be considered a treatment target in T1D. Aside from lifestyle modifications, continuous subcutaneous insulin infusion can ameliorate insulin resistance and hyperinsulinemia, thereby improving glucose toxicity compared with multiple injection insulin treatment. Among other concepts, metformin, pioglitazone, incretin-based drugs such as GLP-1 receptor agonists, sodium-glucose cotransporter inhibitors, and pramlintide can improve insulin resistance, either directly or indirectly. However, considering the current issues of high cost, side effects, limited efficacy, and their off-label status, these agents in people with T1D are not widely used in routine clinical care at present.
Collapse
Affiliation(s)
- Maria Apostolopoulou
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibnitz Center for Diabetes Research at Heinrich-Heine University, 40225 Düsseldorf, Germany
- German Center of Diabetes Research (DZD), Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibnitz Center for Diabetes Research at Heinrich-Heine University, 40225 Düsseldorf, Germany
- German Center of Diabetes Research (DZD), Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - George D Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece
| |
Collapse
|
3
|
Hansen M, Lange KK, Stausholm MB, Dela F. Are Individuals With Type 2 Diabetes Metabolically Inflexible? A Systematic Review and Meta-Analysis. Endocrinol Diabetes Metab 2025; 8:e70044. [PMID: 40318136 PMCID: PMC12048703 DOI: 10.1002/edm2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025] Open
Abstract
AIM Type 2 diabetes (T2D) is characterised by insulin resistance and possibly by impaired metabolic flexibility, the latter referring to the body's ability to switch between fuel sources. This review systematically examines metabolic flexibility, measured by changes in the respiratory exchange ratio (ΔRER) during hyperinsulinaemic clamps, across lean, overweight/obese, and T2D populations. METHODS A comprehensive search of PubMed identified 65 studies meeting the inclusion criteria, with 35 using a ~40 mU/m2/min insulin infusion rate for accurate comparisons. These studies included 985 participants: 256 lean, 497 overweight/obese, and 232 T2D individuals. The differences in ΔRER between the three groups were meta-analysed. RESULTS Basal RER values did not significantly differ across groups, but insulin-stimulated ΔRER was higher in lean individuals compared to overweight/obese and T2D groups (ΔRER values 0.10, 0.07 and 0.07, respectively; p = 0.037) indicating greater metabolic flexibility in the lean group. However, high statistical heterogeneity in the ΔRER within-group results (I2 values: 92.3%-94.5%) suggests considerable variability among studies. A meta-regression analysis accounting for age, sex, and BMI indicated that only BMI was significantly associated with ΔRER. Factors contributing to the remaining heterogeneity likely include differences in participant characteristics (e.g., glycaemic control) and study design. CONCLUSIONS The review highlights the need for standardised data presentation in metabolic studies. Overall, metabolic flexibility appears more influenced by overweight status than T2D per se, challenging the notion of a distinct metabolic inflexibility threshold for T2D.
Collapse
Affiliation(s)
- Maria Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kristine Kjær Lange
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Martin Bjørn Stausholm
- Department of Physical and Occupational TherapyCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | - Flemming Dela
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Laboratory of Sports and Nutrition ResearchRiga Stradins UniversityRigaLatvia
| |
Collapse
|
4
|
Liu Z, Li Q, Zhao F, Chen J. A decade review on phytochemistry and pharmacological activities of Cynomorium songaricum Rupr.: Insights into metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156602. [PMID: 40058318 DOI: 10.1016/j.phymed.2025.156602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Cynomorium songaricum Rupr. (CSR), a perennial herb with a rich history in traditional medicine, has demonstrated therapeutic potential against metabolic syndrome (MetS) through its active compounds, including proanthocyanidins, polysaccharides, and triterpenoids. MetS, a global health concern, encompasses interlinked conditions such as obesity, type 2 diabetes mellitus (T2DM), and inflammation. This review synthesizes recent findings on CSR's pharmacological and phytochemical properties, focusing on its role in ameliorating MetS. METHODS Following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, relevant studies were retrieved from PubMed, Web of Science, and CNKI databases up to December 2024. Keywords included "Cynomorium Songaricum Rupr.", "Cynomorii Herba", "Suoyang", "Suo Yang", "Metabolic syndrome", "Proanthocyanidins", "Polysaccharides" and "Triterpenoids" and their combinations. Inclusion criteria emphasized studies exploring CSR's impact on MetS, while duplicate, low-quality studies and studies not written in Chinese, English, or unrelated were excluded. RESULTS A total of 92 studies were analyzed, revealing that CSR's active components exhibit multi-target effects. Proanthocyanidins reduce glucose absorption and oxidative stress, polysaccharides enhance insulin sensitivity and gut microbiota composition, and triterpenoids mitigate obesity and mitochondria damage. These mechanisms collectively contribute to the beneficial effects of CSR against MetS. CONCLUSION CSR presents a promising natural therapy for MetS, utilizing its pharmacologically active compounds to address core metabolic dysfunctions. Future studies should focus on clinical validation and safety assessments to facilitate CSR's integration into modern therapeutic regimens.
Collapse
Affiliation(s)
- Zhihao Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China
| | - Qihao Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Fu Zhao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Jihang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China.
| |
Collapse
|
5
|
Panwar A, Malik SO, Adib M, Lopaschuk GD. Cardiac energy metabolism in diabetes: emerging therapeutic targets and clinical implications. Am J Physiol Heart Circ Physiol 2025; 328:H1089-H1112. [PMID: 40192025 DOI: 10.1152/ajpheart.00615.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Patients with diabetes are at an increased risk for developing diabetic cardiomyopathy and other cardiovascular complications. Alterations in cardiac energy metabolism in patients with diabetes, including an increase in mitochondrial fatty acid oxidation and a decrease in glucose oxidation, are important contributing factors to this increase in cardiovascular disease. A switch from glucose oxidation to fatty acid oxidation not only decreases cardiac efficiency due to increased oxygen consumption but it can also increase reactive oxygen species production, increase lipotoxicity, and redirect glucose into other metabolic pathways that, combined, can lead to heart dysfunction. Currently, there is a lack of therapeutics available to treat diabetes-induced heart failure that specifically target cardiac energy metabolism. However, it is becoming apparent that part of the benefit of existing agents such as GLP-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors may be related to their effects on cardiac energy metabolism. In addition, direct approaches aimed at inhibiting cardiac fatty acid oxidation or increasing glucose oxidation hold future promise as potential therapeutic approaches to treat diabetes-induced cardiovascular disease.
Collapse
Affiliation(s)
- Archee Panwar
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sufyan O Malik
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhtasim Adib
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
He P, Zhang L, Ma P, Xu T, Wang Z, Li L, Du G, Qiang G, Liu C. Targeted Lipidomics and Transcriptomics Unveil Aberrant Lipid Metabolic Remodeling in Visceral and Subcutaneous Adipose Tissue under ER Stress. J Proteome Res 2025; 24:1971-1982. [PMID: 40067327 DOI: 10.1021/acs.jproteome.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Endoplasmic reticulum (ER) stress is known to impair the function of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT), disrupting lipid metabolism. Despite the crucial role lipid plays in regulating adipose tissue function, the specific lipidomic alterations in VAT and SAT under ER stress remain unclear. In this study, ER stress was induced in VAT and SAT, and targeted lipidomic and transcriptomic approaches were used to analyze lipid metabolism and gene expression profiles. The results revealed that VAT exhibited a stronger ER stress response, characterized by a significant increase in binding immunoglobulin protein (BiP) expression and notable lipidomic disruptions, especially in glycerides and sterols. These disruptions were marked by a decrease in protective polyunsaturated fatty acyl species and the accumulation of lipotoxic molecules. In contrast, SAT displayed less severe lipidomic alterations. Transcriptomic analysis indicated that VAT was more susceptible to immune activation, inflammation, and metabolic dysfunction, while SAT primarily showed alterations in protein folding processes. These findings underscore the tissue-specific mechanisms of ER stress adaptation in VAT and SAT. In conclusion, VAT appears to be a critical target for addressing metabolic dysfunction in obesity and related disorders, with potential therapeutic implications for managing ER stress-induced metabolic diseases.
Collapse
Affiliation(s)
- Ping He
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Zhang
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peng Ma
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianshu Xu
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zijing Wang
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guifen Qiang
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cuiqing Liu
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Shastry A, Wilkinson MS, Miller DM, Kuriakose M, Veeneman JLMH, Smith MR, Hindmarch CCT, Dunham-Snary KJ. Multi-tissue metabolomics reveal mtDNA- and diet-specific metabolite profiles in a mouse model of cardiometabolic disease. Redox Biol 2025; 81:103541. [PMID: 39983345 PMCID: PMC11893332 DOI: 10.1016/j.redox.2025.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/08/2025] [Indexed: 02/23/2025] Open
Abstract
RATIONALE Excess consumption of sugar- and fat-rich foods has heightened the prevalence of cardiometabolic disease, which remains a driver of cardiovascular disease- and type II diabetes-related mortality globally. Skeletal muscle insulin resistance is an early feature of cardiometabolic disease and is a precursor to diabetes. Insulin resistance risk varies with self-reported race, whereby African-Americans have a greater risk of diabetes development relative to their White counterparts. Self-reported race is strongly associated with mitochondrial DNA (mtDNA) haplogroups, and previous reports have noted marked differences in bioenergetic and metabolic parameters in cells belonging to distinct mtDNA haplogroups, but the mechanism of these associations remains unknown. Additionally, distinguishing nuclear DNA (nDNA) and mtDNA contributions to cardiometabolic disease remains challenging in humans. The Mitochondrial-Nuclear eXchange (MNX) mouse model enables in vivo preclinical investigation of the role of mtDNA in cardiometabolic disease development, and has been implemented in studies of insulin resistance, fatty liver disease, and obesity in previous reports. METHODS Six-week-old male C57nDNA:C57mtDNA and C3HnDNA:C3HmtDNA wild-type mice, and C57nDNA:C3HmtDNA and C3HnDNA:C57mtDNA MNX mice, were fed sucrose-matched high-fat (45% kcal fat) or control diet (10% kcal fat) until 12 weeks of age (n = 5/group). Mice were weighed weekly and total body fat was collected at euthanasia. Gastrocnemius skeletal muscle and plasma metabolomes were characterized using untargeted dual-chromatography mass spectrometry; both hydrophilic interaction liquid chromatography (HILIC) and C18 columns were used, in positive- and negative-ion modes, respectively. RESULTS Comparative analyses between nDNA-matched wild-type and MNX strains demonstrated significantly increased body fat percentage in mice possessing C57mtDNA regardless of nDNA background. High-fat diet in mice possessing C57mtDNA was associated with differential abundance of phosphatidylcholines, lysophosphatidylcholines, phosphatidylethanolamines, and glucose. Conversely, high-fat diet in mice possessing C3HmtDNA was associated with differential abundance of phosphatidylcholines, cardiolipins, and alanine. Glycerophospholipid metabolism and beta-alanine signaling pathways were enriched in skeletal muscle and plasma, indicating mtDNA-directed priming of mitochondria towards oxidative stress and increased fatty acid oxidation in C57nDNA:C57mtDNA wild-type and C3HnDNA:C57mtDNA MNX mice, relative to their nDNA-matched counterparts. In mtDNA-matched mice, C57mtDNA was associated with metabolite co-expression related to the pentose phosphate pathway and sugar-related metabolism; C3HmtDNA was associated with branched chain amino acid metabolite co-expression. CONCLUSIONS These results reveal novel nDNA-mtDNA interactions that drive significant changes in metabolite levels. Alterations to key metabolites involved in mitochondrial bioenergetic dysfunction and electron transport chain activity are implicated in elevated beta-oxidation during high-fat diet feeding; abnormally elevated rates of beta-oxidation may be a key driver of insulin resistance. The results reported here support the hypothesis that mtDNA influences cardiometabolic disease-susceptibility by modulating mitochondrial function and metabolic pathways.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Mia S Wilkinson
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Dalia M Miller
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Michelle Kuriakose
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | - Matthew Ryan Smith
- Atlanta Veterans Affairs Health Care System, Decatur, GA, 30033, USA; Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Charles C T Hindmarch
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada; Queen's CardioPulmonary Unit, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
8
|
Ancona G. Clinical features of acquired lipodystrophy after total body irradiation: a case report and mini review. Curr Med Res Opin 2025; 41:627-637. [PMID: 40340619 DOI: 10.1080/03007995.2025.2475090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Acquired partial lipodystrophy is a late complication of total body irradiation (TBI) performed during hematopoietic stem cell transplantation. Diagnosing this condition remains challenging due to its rarity and limited clinical awareness. Long-term patient observation is essential since this type of lipodystrophy develops more than a decade post-TBI. CASE REPORT We present a unique case of a patient with acquired lipodystrophy who underwent TBI for leukemia treatment in 2003 and was diagnosed with diabetes in 2013, but standard diabetes therapies proved ineffective. By 2018, the patient exhibited distinctive features, i.e. hirsutism, reduced lean mass, cutaneous alterations (including an umbilical psoriatic plaque), barrel chest, hepatomegaly, lipoatrophy of upper and lower limbs, acanthosis nigricans in the axillae and Cushingoid facies. In 2020, she was diagnosed with breast cancer, followed by liver, ovarian and pancreatic metastases in 2021. RESULTS In addition to this case report, we reviewed the literature on acquired lipodystrophy cases following TBI to compare their clinical features and phenotypes with those of our patient. This comparison aims to aid clinical practice by facilitating earlier diagnosis and treatment of lipodystrophy. CONCLUSION TBI can lead to acquired lipodystrophy, which is associated with severe comorbidities. Due to its diagnostic complexity, expert clinicians and a multidisciplinary approach are essential for early identification and appropriate treatment according to etiologic aspects. We hypothesize that this condition may serve as a model for studying metabolic dysfunction in fat-related diseases.
Collapse
Affiliation(s)
- Giuseppe Ancona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
9
|
Tsilingiris D, Natsi A, Gavriilidis E, Antoniadou C, Eleftheriadou I, Anastasiou IA, Tentolouris A, Papadimitriou E, Eftalitsidis E, Kolovos P, Tsironidou V, Giatromanolaki A, Koffa M, Tentolouris N, Skendros P, Ritis K. Interleukin-8/Matrix Metalloproteinase-9 Axis Impairs Wound Healing in Type 2 Diabetes through Neutrophil Extracellular Traps-Fibroblast Crosstalk. Eur J Immunol 2025; 55:e202451664. [PMID: 40170410 PMCID: PMC11962236 DOI: 10.1002/eji.202451664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Neutrophils interact with and activate fibroblasts through the release of neutrophil extracellular traps (NETs). We investigated the role of NETs-fibroblast crosstalk in the cutaneous wound healing of type 2 diabetes (T2D). Neutrophils/NETs, serum, and primary human skin fibroblasts (HSFs) were obtained from individuals with T2D and age/sex-matched controls. NET-stimulation studies were performed on neutrophils/HSFs, with and without specific inhibitors, while HSF healing capacity was assessed using a scratch wound healing assay. T2D HSFs display a profibrotic phenotype, showing increased CCN2/CTGF, α-smooth muscle actin, and collagen release, albeit with impaired healing capacity, elevated type I collagen C-terminal telopeptide, and collagen degradation associated with increased (∼3.5-fold) matrix metalloproteinase-9 (MMP-9) in T2D neutrophils/NETs. IL-8 induced the expression of MMP-9 in neutrophils/NETs. Moreover, T2D neutrophils/NETs exhibited increased IL-8 content, which acted in an autocrine/paracrine fashion to further augment its production by neutrophils/HSFs. The findings were validated in normoglycemic individuals during a hyperglycemic clamp with concomitant lipid infusion and further corroborated immunohistochemically in diabetic plantar ulcer biopsies. This novel, vicious circle of NETs/interleukin-8/MMP-9/HSFs was hindered by IL-8 or MMP-9 blockade via specific inhibitors or by dismantling the NET-scaffold with DNase I, suggesting candidate therapeutic targets in wound healing impairment of T2D.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Anastasia‐Maria Natsi
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Efstratios Gavriilidis
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Christina Antoniadou
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Ioanna Eleftheriadou
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Ioanna A. Anastasiou
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Anastasios Tentolouris
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Evangelos Papadimitriou
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Evgenios Eftalitsidis
- Laboratory of Cell BiologyProteomics and Cell CycleDepartment of Molecular Biology and GeneticsDemocritus University of ThraceAlexandroupolisGreece
| | - Panagiotis Kolovos
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
| | - Victoria Tsironidou
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Alexandra Giatromanolaki
- Department of PathologyUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
| | - Maria Koffa
- Laboratory of Cell BiologyProteomics and Cell CycleDepartment of Molecular Biology and GeneticsDemocritus University of ThraceAlexandroupolisGreece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Panagiotis Skendros
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Konstantinos Ritis
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| |
Collapse
|
10
|
Tashkandi AJ, Gorman A, McGoldrick Mathers E, Carney G, Yacoub A, Setyaningsih WAW, Kuburas R, Margariti A. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. Int J Mol Sci 2025; 26:3016. [PMID: 40243689 PMCID: PMC11988959 DOI: 10.3390/ijms26073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The growing prevalence of diabetes highlights the urgent need to study diabetic cardiovascular complications, specifically diabetic cardiomyopathy, which is a diabetes-induced myocardial dysfunction independent of hypertension or coronary artery disease. This review examines the role of mitochondrial dysfunction in promoting diabetic cardiac dysfunction and highlights metabolic mechanisms such as hyperglycaemia-induced oxidative stress. Chronic hyperglycaemia and insulin resistance can activate harmful pathways, including advanced glycation end-products (AGEs), protein kinase C (PKC) and hexosamine signalling, uncontrolled reactive oxygen species (ROS) production and mishandling of Ca2+ transient. These processes lead to cardiomyocyte apoptosis, fibrosis and contractile dysfunction. Moreover, endoplasmic reticulum (ER) stress and dysregulated RNA-binding proteins (RBPs) and extracellular vesicles (EVs) contribute to tissue damage, which drives cardiac function towards heart failure (HF). Advanced patient-derived induced pluripotent stem cell (iPSC) cardiac organoids (iPS-COs) are transformative tools for modelling diabetic cardiomyopathy and capturing human disease's genetic, epigenetic and metabolic hallmarks. iPS-COs may facilitate the precise examination of molecular pathways and therapeutic interventions. Future research directions encourage the integration of advanced models with mechanistic techniques to promote novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Refik Kuburas
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| | - Andriana Margariti
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| |
Collapse
|
11
|
Horowitz JF, Goodpaster BH. Mechanistic Insights Into the Exercise-Induced Changes in Muscle Lipids and Insulin Sensitivity-Expanding on the "Athlete's Paradox": Revisiting a 2011 Diabetes Classic by Amati et al. Diabetes 2025; 74:134-137. [PMID: 39836884 PMCID: PMC11755679 DOI: 10.2337/dbi24-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 01/23/2025]
Abstract
Endurance exercise is widely recognized for its role in mitigating insulin resistance, yet the precise mechanisms remain unclear. In this Classics in Diabetes article, we revisit the article by Amati et al., "Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance: Another Paradox in Endurance-Trained Athletes?" Published in the October 2011 issue of Diabetes, this article was among the first to highlight the nuanced roles of exercise-induced changes in bioactive lipids such as ceramide and diacylglycerol (DAG) in insulin signaling. The authors' groundbreaking work challenged some existing paradigms, revealing a more complex relationship between DAGs and insulin resistance than previously thought. Their findings helped lay the foundation for further exploration to unravel the intricate biochemical pathways through which exercise influences insulin sensitivity and metabolic health.
Collapse
|
12
|
Pesta D, Anadol-Schmitz E, Sarabhai T, Op den Kamp Y, Gancheva S, Trinks N, Zaharia OP, Mastrototaro L, Lyu K, Habets I, Op den Kamp-Bruls YMH, Dewidar B, Weiss J, Schrauwen-Hinderling V, Zhang D, Gaspar RC, Strassburger K, Kupriyanova Y, Al-Hasani H, Szendroedi J, Schrauwen P, Phielix E, Shulman GI, Roden M. Determinants of increased muscle insulin sensitivity of exercise-trained versus sedentary normal weight and overweight individuals. SCIENCE ADVANCES 2025; 11:eadr8849. [PMID: 39742483 PMCID: PMC11691647 DOI: 10.1126/sciadv.adr8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals. This observational study found that ATHL show higher insulin sensitivity, muscle mitochondrial content, and capacity, but lower activation of novel protein kinase C (nPKC) isoforms, despite higher diacylglycerol concentrations. Notably, sedentary but insulin sensitive OVWE feature lower plasma membrane-to-mitochondria sn-1,2-diacylglycerol ratios. In ATHL, calpain-2, which cleaves nPKC, negatively associates with PKCε activation and positively with insulin sensitivity along with higher GLUT4 and hexokinase II content. These findings contribute to explaining the athletes' paradox by demonstrating lower nPKC activation, increased calpain, and mitochondrial partitioning of bioactive diacylglycerols, the latter further identifying an obesity subtype with increased insulin sensitivity (NCT03314714).
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Evrim Anadol-Schmitz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvo Op den Kamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne M. H. Op den Kamp-Bruls
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Klaus Strassburger
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Gamal M, Awad MA, Shadidizaji A, Ibrahim MA, Ghoneim MA, Warda M. In vivo and in silico insights into the antidiabetic efficacy of EVOO and hydroxytyrosol in a rat model. J Nutr Biochem 2025; 135:109775. [PMID: 39370013 DOI: 10.1016/j.jnutbio.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Extra virgin olive oil (EVOO) has a putative antidiabetic activity mostly attributed to its polyphenol Hydroxytyrosol. In this study, we explored the antidiabetic effects of EVOO and Hydroxytyrosol on an in vivo T2D-simulated rat model as well as in in silico study. Wistar rats were divided into four groups. The first group served as a normal control (NC), while type 2 diabetes (T2D) was induced in the remaining groups using a high-fat diet (HFD) for 12 weeks followed by a single dose of streptozotocin (STZ, 30 mg/kg). One diabetic group remained untreated (DC), while the other two groups received an 8-week treatment with either EVOO (90 g/kg of the diet) (DO) or Hydroxytyrosol (17.3 mg/kg of the diet) (DH). The DC group exhibited hallmark features of established T2D, including elevated fasting blood glucose levels, impaired glucose tolerance, increased HOMA-IR, widespread downregulation of insulin receptor expression, heightened oxidative stress, and impaired β-cell function. In contrast, treatments with EVOO and Hydroxytyrosol elicited an antidiabetic response, characterized by improved glucose tolerance, as indicated by accelerated blood glucose clearance. Systematic analysis revealed the underlying antidiabetic mechanisms: both treatments enhanced insulin receptor expression in the liver and skeletal muscles, increased adiponectin levels, and mitigated oxidative stress. Moreover, while EVOO reduced intramyocellular lipids, Hydroxytyrosol restored adipose tissue insulin sensitivity and enhanced β-cell survival. Molecular docking and dynamics confirm Hydroxytyrosol's high affinity binding to PGC-1α, IRE-1α, and PPAR-γ, particularly IRE-1α, highlighting its potential to modulate diabetic signaling pathways. Collectively, these mechanisms highlight the putative antidiabetic role of EVOO and Hydroxytyrosol. Moreover, the favorable docking scores of Hydroxytyrosol with PGC-1α, IRE-1α, and PPAR-γ support the antidiabetic potential and offer promising avenues for further research and the development of novel antidiabetic therapies.
Collapse
Affiliation(s)
- Mahmoud Gamal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Mohamed A Awad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Azizeh Shadidizaji
- Department of Plant Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Magdy A Ghoneim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
14
|
Petersen MC, Yoshino M, Smith GI, Gaspar RC, Kahn M, Samovski D, Shulman GI, Klein S. Effect of Weight Loss on Skeletal Muscle Bioactive Lipids in People With Obesity and Type 2 Diabetes. Diabetes 2024; 73:2055-2064. [PMID: 39264820 PMCID: PMC11579410 DOI: 10.2337/db24-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Muscle sn-1,2-diacylglycerol (DAG) and C18:0 ceramide accumulation in sarcolemmal and mitochondrial compartments have been proposed to regulate muscle insulin sensitivity. Here, we evaluated whether weight loss-induced improvements in insulin sensitivity were associated with changes in muscle sn-1,2-DAG and ceramide content in people with obesity and type 2 diabetes. We measured skeletal muscle insulin sensitivity, assessed by using the hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotopically labeled glucose tracer infusion, and skeletal muscle sn-1,2-DAG and ceramide contents by using liquid chromatography-tandem mass spectrometry after subcellular fractionation and DAG isomer separation in 14 adults with obesity and type 2 diabetes before and after marked (18.6 ± 2.1%) weight loss. Whole-body insulin sensitivity doubled after weight loss. Sarcolemmal sn-1,2-DAG and C18:0 ceramide contents after weight loss were not different from values before weight loss. In contrast, mitochondrial-endoplasmic reticulum (ER) C18:0 ceramide content decreased by ∼20% after weight loss (from 2.16 ± 0.08 to 1.71 ± 0.13 nmol/g, P < 0.005). These results suggest a decrease in muscle mitochondrial-ER C18:0 ceramide content could contribute to the beneficial effect of weight loss on skeletal muscle insulin sensitivity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Max C. Petersen
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO
- Division of Endocrinology, Metabolism, & Lipid Research, Washington University in St. Louis, St. Louis, MO
| | - Mihoko Yoshino
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO
| | - Gordon I. Smith
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO
| | - Rafael C. Gaspar
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT
| | - Mario Kahn
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT
| | - Dmitri Samovski
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO
| | - Gerald I. Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT
| | - Samuel Klein
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
15
|
Koska J, Hu Y, Furtado J, Billheimer D, Nedelkov D, Schwenke D, Budoff MJ, Bertoni AG, McClelland RL, Reaven PD. Relationship of Plasma Apolipoprotein C-I Truncation With Risk of Diabetes in the Multi-Ethnic Study of Atherosclerosis and the Actos Now for the Prevention of Diabetes Study. Diabetes Care 2024; 47:2214-2222. [PMID: 39453822 PMCID: PMC11655401 DOI: 10.2337/dc24-1462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/12/2024] [Indexed: 10/27/2024]
Abstract
OBJECTIVE Higher truncated-to-native apolipoprotein (apo) C-I proteoform ratios (C-I'/C-I) are associated with favorable cardiometabolic risk profiles, but their relationship with longitudinal changes in insulin resistance (IR) and incident diabetes is unknown. RESEARCH DESIGN AND METHODS Plasma apoC-I proteoforms were measured by mass spectrometry immunoassay at baseline in 4,742 nondiabetic participants in the Multi-Ethnic Study of Atherosclerosis (MESA) and 524 participants with prediabetes in the Actos Now for Prevention of Diabetes (ACT NOW) study. The primary outcome was incident diabetes (fasting glucose [FG] ≥7.0 mmol/L or hypoglycemic medication use in MESA; FG ≥7.0 mmol/L or 2-h glucose ≥11.1 mmol/L in an oral glucose tolerance test [OGTT] in ACT NOW). Secondary outcomes were changes in FG and HOMA-IR in MESA, and OGTT-glucose area under the curve (AUCglucose) and Matsuda insulin sensitivity index (ISI) in ACT NOW. RESULTS In MESA, a higher C-I'/C-I was associated with lower risk of diabetes (n = 564 events; HR 0.87 [95% CI 0.79, 0.95] per SD; P = 0.0036; median follow-up, 9 years), and smaller increases (follow-up adjusted for baseline) in FG (-0.5%; P < 0.0001) and HOMA-IR (-2.9%; P = 0.011) after adjusting for baseline clinical and demographic covariates, including plasma triglycerides and HDL cholesterol. Total apoC-I concentrations were not associated with changes in FG, HOMA-IR, or incident diabetes. In ACT NOW, higher C-I'/C-I was associated with smaller increases in AUCglucose (-1.8%; P = 0.0052), greater increases in ISI (7.2%; P = 0.0095), and lower risk of diabetes (n = 59 events; 0.66 [95% CI 0.48, 0.91]; P = 0.004; median follow-up, 2.5 years) after adjusting for treatment group and diabetes risk factors, including plasma lipids. CONCLUSIONS Our results indicate that apoC-I truncation may contribute to changes in glucose levels, IR, and risk of diabetes.
Collapse
Affiliation(s)
| | | | - Jeremy Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Epidemiology, Biogen, Cambridge, MA
| | - Dean Billheimer
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | | | | | - Matthew J. Budoff
- Lundquist Institute at Harbor-University of California, Los Angeles, Torrance, CA
| | | | | | | |
Collapse
|
16
|
Sammut MJ, Dotzert MS, Melling CWJ. Mechanisms of insulin resistance in type 1 diabetes mellitus: A case of glucolipotoxicity in skeletal muscle. J Cell Physiol 2024; 239:e31419. [PMID: 39192756 PMCID: PMC11649966 DOI: 10.1002/jcp.31419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Insulin resistance (IR), a hallmark of type 2 diabetes mellitus, develops in a significant number of patients with type 1 diabetes mellitus (T1DM) despite the use of insulin therapy to control glycemia. However, little is currently understood regarding the underlying mechanisms of IR in T1DM, especially within the context of chronic insulin treatment. Recent evidence suggests an important influence of glucolipotoxicity in skeletal muscle on insulin sensitivity in T1DM. Thus, this review summarizes our current knowledge regarding impairments in skeletal muscle lipid, glucose, and oxidative metabolism in the development of IR in insulin-treated T1DM.
Collapse
Affiliation(s)
- Mitchell J. Sammut
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - Michelle S. Dotzert
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - C. W. James Melling
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
- Department of Physiology & Pharmacology, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| |
Collapse
|
17
|
Fiorenza M, Onslev J, Henríquez-Olguín C, Persson KW, Hesselager SA, Jensen TE, Wojtaszewski JFP, Hostrup M, Bangsbo J. Reducing the mitochondrial oxidative burden alleviates lipid-induced muscle insulin resistance in humans. SCIENCE ADVANCES 2024; 10:eadq4461. [PMID: 39475607 PMCID: PMC11524190 DOI: 10.1126/sciadv.adq4461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Preclinical models suggest mitochondria-derived oxidative stress as an underlying cause of insulin resistance. However, it remains unknown whether this pathophysiological mechanism is conserved in humans. Here, we used an invasive in vivo mechanistic approach to interrogate muscle insulin action while selectively manipulating the mitochondrial redox state in humans. To this end, we conducted insulin clamp studies combining intravenous infusion of a lipid overload with intake of a mitochondria-targeted antioxidant (mitoquinone). Under lipid overload, selective modulation of mitochondrial redox state by mitoquinone enhanced insulin-stimulated glucose uptake in skeletal muscle. Mechanistically, mitoquinone did not affect canonical insulin signaling but augmented insulin-stimulated glucose transporter type 4 (GLUT4) translocation while reducing the mitochondrial oxidative burden under lipid oversupply. Complementary ex vivo studies in human muscle fibers exposed to high intracellular lipid levels revealed that mitoquinone improves features of mitochondrial bioenergetics, including diminished mitochondrial H2O2 emission. These findings provide translational and mechanistic evidence implicating mitochondrial oxidants in the development of lipid-induced muscle insulin resistance in humans.
Collapse
Affiliation(s)
- Matteo Fiorenza
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Johan Onslev
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carlos Henríquez-Olguín
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago 1509, Chile
| | - Kaspar W. Persson
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sofie A. Hesselager
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Thomas E. Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen F. P. Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Morten Hostrup
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jens Bangsbo
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
18
|
Zabielski P, Roszczyc-Owsiejczuk K, Imierska M, Pogodzińska K, Błachnio-Zabielska AU. Silencing the glycerol-3-phosphate acyltransferase-1 gene in the liver of mice fed a high-fat diet, enhances insulin sensitivity and glucose metabolism by promoting fatty acid beta-oxidation. Biomed Pharmacother 2024; 180:117531. [PMID: 39383732 DOI: 10.1016/j.biopha.2024.117531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Liver plays a central role in systemic glucose and lipid metabolism. High-fat diet (HFD) and obesity are related to hepatic lipid accumulation and insulin resistance (InsR). Diacylglycerols (DAG) play a key role in the induction of InsR, however their involvement in hepatic InsR remains debated. This study aimed to clarify and confirm the role of glycero-3-phosphate acyltransferase 1 (GPAT1), a rate-limiting enzyme in DAG synthesis, in the progression of hepatic InsR in the context of HFD-induced lipid accumulation and insulin resistance in the liver. METHODS Liver-targeted GPAT1 silencing was performed using shRNA-mediated hydrodynamic gene delivery. Lipid species including LCA-CoA, sphingolipids, DAG and acyl-carnitines were quantified using UHPLC/MS/MS while insulin signalling was assessed at protein level by Western Blot. Hepatic glucose metabolism, including glucose-6-pasphate content and gluconeogenesis rate was evaluated using GC/MS. RESULTS HFD-fed animals developed InsR, evidenced by increased HOMA-IR, enhanced gluconeogenesis and reduced glycogen content compared to controls. Hepatic GPAT1 silencing in HFD-fed animals resulted in a significant reduction of DAG and TAG levels, increased acyl-carnitines content and upregulated mitochondrial β-oxidation protein expression. These changes were accompanied by improved insulin signalling, enhanced glycogen storage, and reduced gluconeogenesis. CONCLUSIONS Silencing GPAT1, and thereby reducing glycerolipid synthesis, promotes β-oxidation and ameliorates HFD-induced hepatic insulin resistance, confirming the enzyme's pivotal role in liver metabolic dysfunction associated with increased lipid supply.
Collapse
Affiliation(s)
- Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
19
|
Hajri T, Gharib M, Fungwe T, M'Koma A. Very low-density lipoprotein receptor mediates triglyceride-rich lipoprotein-induced oxidative stress and insulin resistance. Am J Physiol Heart Circ Physiol 2024; 327:H733-H748. [PMID: 38787383 PMCID: PMC11901340 DOI: 10.1152/ajpheart.00425.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Obesity is associated with excess lipid deposition in nonadipose tissues, leading to increased oxidative stress and insulin resistance. Very low-density lipoprotein receptor (VLDLR), a member of the LDL receptor family, binds and increases the catabolism of triglyceride-rich lipoproteins. Although VLDLR is highly expressed in the heart, its role in obesity-associated oxidative stress and insulin resistance is unclear. Here, we used lean (wild type), genetically obese leptin-deficient (ob/ob), and leptin-VLDLR double-null (ob/ob-VLDLR-/-) mice to determine the impact of VLDLR deficiency on obesity-induced oxidative stress and insulin resistance in the heart. Although insulin sensitivity and glucose uptake were reduced in the hearts of ob/ob mice, VLDLR expression was upregulated and was associated with increased VLDL uptake and excess lipid deposition. This was accompanied by an upregulation of cardiac NADPH oxidase (Nox) expression and increased production of Nox-dependent superoxides. Silencing the VLDLR in ob/ob mice had reduced VLDL uptake and prevented excess lipid deposition in the heart, in addition to a reduction of superoxide overproduction and the normalization of insulin sensitivity and glucose uptake. In isolated cardiomyocytes, VLDLR deficiency had prevented VLDL-mediated induction of Nox activity and superoxide overproduction while improving insulin sensitivity and glucose uptake. Our findings indicate that VLDLR deficiency prevents excess lipid accumulation and moderates oxidative stress and insulin resistance in the hearts of obese mice. This effect is linked to the active role of VLDLR in VLDL uptake, which triggers a cascade of events leading to increased Nox activity, superoxide overproduction, and insulin resistance.NEW & NOTEWORTHY Obesity is associated with excess lipid deposition in muscles, which is considered as a leading cause of metabolic dysfunction and oxidative stress. Cellular uptake of lipids is regulated by several membrane receptors, among which is the very low-density lipoprotein receptor (VLDLR). This article provides information on the role of VLDLR in cardiac muscle and how its expression regulates insulin resistance and oxidative stress in the obese mouse model.
Collapse
Affiliation(s)
- Tahar Hajri
- Department of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, District of Columbia, United States
- AdventHealth Tampa, Tampa, Florida, United States
| | | | - Thomas Fungwe
- Department of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, District of Columbia, United States
| | - Amosy M'Koma
- AdventHealth Tampa, Tampa, Florida, United States
- Meharry Medical College School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
20
|
Jollet M, Tramontana F, Jiang LQ, Borg ML, Savikj M, Kuefner MS, Massart J, de Castro Barbosa T, Mannerås-Holm L, Checa A, Pillon NJ, Chibalin AV, Björnholm M, Zierath JR. Diacylglycerol kinase delta overexpression improves glucose clearance and protects against the development of obesity. Metabolism 2024; 158:155939. [PMID: 38843995 DOI: 10.1016/j.metabol.2024.155939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND AIM Diacylglycerol kinase (DGK) isoforms catalyze an enzymatic reaction that removes diacylglycerol (DAG) and thereby terminates protein kinase C signaling by converting DAG to phosphatidic acid. DGKδ (type II isozyme) downregulation causes insulin resistance, metabolic inflexibility, and obesity. Here we determined whether DGKδ overexpression prevents these metabolic impairments. METHODS We generated a transgenic mouse model overexpressing human DGKδ2 under the myosin light chain promoter (DGKδ TG). We performed deep metabolic phenotyping of DGKδ TG mice and wild-type littermates fed chow or high-fat diet (HFD). Mice were also provided free access to running wheels to examine the effects of DGKδ overexpression on exercise-induced metabolic outcomes. RESULTS DGKδ TG mice were leaner than wild-type littermates, with improved glucose tolerance and increased skeletal muscle glycogen content. DGKδ TG mice were protected against HFD-induced glucose intolerance and obesity. DGKδ TG mice had reduced epididymal fat and enhanced lipolysis. Strikingly, DGKδ overexpression recapitulated the beneficial effects of exercise on metabolic outcomes. DGKδ overexpression and exercise had a synergistic effect on body weight reduction. Microarray analysis of skeletal muscle revealed common gene ontology signatures of exercise and DGKδ overexpression that were related to lipid storage, extracellular matrix, and glycerophospholipids biosynthesis pathways. CONCLUSION Overexpression of DGKδ induces adaptive changes in both skeletal muscle and adipose tissue, resulting in protection against HFD-induced obesity. DGKδ overexpression recapitulates exercise-induced adaptations on energy homeostasis and skeletal muscle gene expression profiles.
Collapse
Affiliation(s)
- Maxence Jollet
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Tramontana
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Lake Q Jiang
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Melissa L Borg
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Michael S Kuefner
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Thais de Castro Barbosa
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Louise Mannerås-Holm
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Checa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
McKenna CF, Stierwalt HD, Zemski Berry KA, Ehrlicher SE, Robinson MM, Zarini S, Kahn DE, Snell-Bergeon JK, Perreault L, Bergman BC, Newsom SA. Intramuscular diacylglycerol accumulates with acute hyperinsulinemia in insulin-resistant phenotypes. Am J Physiol Endocrinol Metab 2024; 327:E183-E193. [PMID: 38895980 PMCID: PMC11427097 DOI: 10.1152/ajpendo.00368.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
Elevated skeletal muscle diacylglycerols (DAGs) and ceramides can impair insulin signaling, and acylcarnitines (acylCNs) reflect impaired mitochondrial fatty acid oxidation, thus, the intramuscular lipid profile is indicative of insulin resistance. Acute (i.e., postprandial) hyperinsulinemia has been shown to elevate lipid concentrations in healthy muscle and is an independent risk factor for type 2 diabetes (T2D). However, it is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts across metabolic phenotypes, thus contributing to or exacerbating insulin resistance. We therefore investigated the impact of acute hyperinsulinemia on the skeletal muscle lipid profile to help characterize the physiological basis in which hyperinsulinemia elevates T2D risk. In a cross-sectional comparison, endurance athletes (n = 12), sedentary lean adults (n = 12), and individuals with obesity (n = 13) and T2D (n = 7) underwent a hyperinsulinemic-euglycemic clamp with muscle biopsies. Although there were no significant differences in total 1,2-DAG fluctuations, there was a 2% decrease in athletes versus a 53% increase in T2D during acute hyperinsulinemia (P = 0.087). Moreover, C18 1,2-DAG species increased during the clamp with T2D only, which negatively correlated with insulin sensitivity (P < 0.050). Basal muscle C18:0 total ceramides were elevated with T2D (P = 0.029), but not altered by clamp. Acylcarnitines were universally lowered during hyperinsulinemia, with more robust reductions of 80% in athletes compared with only 46% with T2D (albeit not statistically significant, main effect of group, P = 0.624). Similar fluctuations with acute hyperinsulinemia increasing 1,2 DAGs in insulin-resistant phenotypes and universally lowering acylcarnitines were observed in male mice. In conclusion, acute hyperinsulinemia elevates muscle 1,2-DAG levels with insulin-resistant phenotypes. This suggests a possible dysregulation of intramuscular lipid metabolism in the fed state in individuals with low insulin sensitivity, which may exacerbate insulin resistance.NEW & NOTEWORTHY Postprandial hyperinsulinemia is a risk factor for type 2 diabetes and may increase muscle lipids. However, it is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts across metabolic phenotypes, thus contributing to insulin resistance. We observed that acute hyperinsulinemia elevates muscle 1,2-DAGs in insulin-resistant phenotypes, whereas ceramides were unaltered. Insulin-mediated acylcarnitine reductions are also hindered with high-fat feeding. The postprandial period may exacerbate insulin resistance in metabolically unhealthy phenotypes.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Harrison D Stierwalt
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Karin A Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sarah E Ehrlicher
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Matthew M Robinson
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Darcy E Kahn
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janet K Snell-Bergeon
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Leigh Perreault
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sean A Newsom
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| |
Collapse
|
22
|
Taheri R, Mokhtari Y, Yousefi AM, Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol Int 2024; 48:1049-1068. [PMID: 38812089 DOI: 10.1002/cbin.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/03/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.
Collapse
Affiliation(s)
- Rana Taheri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Mokhtari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Yu Z, Yang J, Jiang Y, Wei M, Lyu Y, Yang D, Shen S, Han Y, Li M. Metabolomic and lipidomic profiling of the spinal cord in type 2 diabetes mellitus rats with painful neuropathy. Metab Brain Dis 2024; 39:1117-1130. [PMID: 38980579 PMCID: PMC11349861 DOI: 10.1007/s11011-024-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
In this paper we investigated lipid and metabolite changes in diabetic neuropathy, using untargeted lipidomics and metabolomics analyses of the spinal cords from streptozotocin-treated diabetic rats.170 metabolites and 45 lipids were dysregulated in the painful diabetic neuropathy (PDN) phase. Pathway enrichment analysis revealed perturbations in starch and sucrose, tryptophan, pyrimidine, cysteine and methionine, thiamine, tyrosine, and nucleotides. The disturbance of tyrosine, tryptophan, methionine, triacylglycerol, and phosphatidylethanolamine metabolism indicated that pathological mechanisms in the PDN involved energy metabolism, oxidative stress, and neural reparative regeneration. These revelations offered potential biomarkers for PDN and enriched the comprehension of the complex molecular mechanisms characterizing PDN, establishing a solid foundation for subsequent inquiries into neural convalescence and recovery after PDN.
Collapse
Affiliation(s)
- Zhuoying Yu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Ye Jiang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Min Wei
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Yanhan Lyu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Dongsheng Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Shixiong Shen
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
24
|
Carrageta DF, Pereira SC, Ferreira R, Monteiro MP, Oliveira PF, Alves MG. Signatures of metabolic diseases on spermatogenesis and testicular metabolism. Nat Rev Urol 2024; 21:477-494. [PMID: 38528255 DOI: 10.1038/s41585-024-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Diets leading to caloric overload are linked to metabolic disorders and reproductive function impairment. Metabolic and hormonal abnormalities stand out as defining features of metabolic disorders, and substantially affect the functionality of the testis. Metabolic disorders induce testicular metabolic dysfunction, chronic inflammation and oxidative stress. The disruption of gastrointestinal, pancreatic, adipose tissue and testicular hormonal regulation induced by metabolic disorders can also contribute to a state of compromised fertility. In this Review, we will delve into the effects of high-fat diets and metabolic disorders on testicular metabolism and spermatogenesis, which are crucial elements for male reproductive function. Moreover, metabolic disorders have been shown to influence the epigenome of male gametes and might have a potential role in transmitting phenotype traits across generations. However, the existing evidence strongly underscores the unmet need to understand the mechanisms responsible for transgenerational paternal inheritance of male reproductive function impairment related to metabolic disorders. This knowledge could be useful for developing targeted interventions to prevent, counteract, and most of all break the perpetuation chain of male reproductive dysfunction associated with metabolic disorders across generations.
Collapse
Affiliation(s)
- David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Sara C Pereira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus de Santiago Agra do Crasto, Aveiro, Portugal.
| |
Collapse
|
25
|
Elkanawati RY, Sumiwi SA, Levita J. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Des Devel Ther 2024; 18:3337-3360. [PMID: 39100221 PMCID: PMC11298177 DOI: 10.2147/dddt.s468147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Insulin resistance (IR) is a complex pathological condition central to metabolic diseases such as type 2 diabetes mellitus (T2DM), cardiovascular disease, non-alcoholic fatty liver disease, and polycystic ovary syndrome (PCOS). This review evaluates the impact of lipids on insulin resistance (IR) by analyzing findings from human and animal studies. The articles were searched on the PubMed database using two keywords: (1) "Role of Lipids AND Insulin Resistance AND Humans" and (2) "Role of Lipids AND Insulin Resistance AND Animal Models". Studies in humans revealed that elevated levels of free fatty acids (FFAs) and triglycerides (TGs) are closely associated with reduced insulin sensitivity, and interventions like metformin and omega-3 fatty acids show potential benefits. In animal models, high-fat diets disrupt insulin signaling and increase inflammation, with lipid mediators such as diacylglycerol (DAG) and ceramides playing significant roles. DAG activates protein kinase C, which eventually impairs insulin signaling, while ceramides inhibit Akt/PKB, further contributing to IR. Understanding these mechanisms is crucial for developing effective prevention and treatment strategies for IR-related diseases.
Collapse
Affiliation(s)
- Rani Yulifah Elkanawati
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jawa Barat, West Java, 45363, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
26
|
Lin L, Chen M, Huang X, Song J, Ye X, Liu K, Han L, Yan Z, Zheng M, Liu X. Association between paravertebral muscle radiological parameter alterations and non-alcoholic fatty liver disease. Abdom Radiol (NY) 2024; 49:2250-2261. [PMID: 38801559 DOI: 10.1007/s00261-024-04352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE To assess changes in laboratory indices, paravertebral muscle (PVM) fat infiltration and multi b-value DWI parameters and their potential correlation with NAFLD. METHODS This retrospective analysis included 178 patients with histopathologically confirmed NAFLD, incluiding 76 with non-alcoholic steatohepatitis (NASH). Differences in PVM fat infiltration ratio (FIR), DWI parameters, and laboratory indices were compared between two groups. The correlation between FIR and NAFLD activity score (NAS) was also analysed. Binary logistic regression was used to identify the independent risk factors for NASH. The clinical utility of PVM fat infiltration, DWI parameters, and laboratory indices for diagnosing NASH in patients with NAFLD was evaluated using receiver operating characteristic (ROC) curves. RESULTS The FIRs at the L2 and L3 levels were significantly higher in the with NASH group than those in the without NASH group. The heterogeneity index (α) and perfusion fraction (f) values at the L3 level of PVM were lower in the with NASH group. Moreover, the FIR at the L3 level was positively correlated with NAS. FIR at the L3 level was an independent risk factor for NASH along with alanine aminotransferase level. The area under the ROC curve (AUC) using L3 level PVM radiological parameters and laboratory indices for diagnosing NASH in patients with NAFLD was significantly higher than that using the degree of PVM fat infiltration, DWI parameters, or laboratory indices alone. CONCLUSIONS Radiological parameters of the PVM were correlated with NAFLD. An integrated curve combining PVM radiological parameters may help distinguish NASH from NAFLD, thereby offering novel insights into the diagnosis of NASH.
Collapse
Affiliation(s)
- Lulu Lin
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengjiao Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiawen Song
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinjian Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Han
- Philips Healthcare, Shanghai, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minghua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
27
|
Eurén T, Gower B, Steneberg P, Wilson A, Edlund H, Chorell E. Myofiber-specific lipidomics unveil differential contributions to insulin sensitivity in individuals of African and European ancestry. Heliyon 2024; 10:e32456. [PMID: 38994058 PMCID: PMC11237840 DOI: 10.1016/j.heliyon.2024.e32456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Aims Individuals of African ancestry (AA) present with lower insulin sensitivity compared to their European counterparts (EA). Studies show ethnic differences in skeletal muscle fiber type (lower type I fibers in AA), muscle fat oxidation capacity (lower in AA), whilst no differences in total skeletal muscle lipids. However, skeletal muscle lipid subtypes have not been examined in this context. We hypothesize that lower insulin sensitivity in AA is due to a greater proportion of type II (non-oxidative) muscle fibers, and that this would result in an ancestry-specific association between muscle lipid subtypes and peripheral insulin sensitivity. To test this hypothesis, we examined the association between insulin sensitivity and muscle lipids in AA and EA adults, and in an animal model of insulin resistance with muscle-specific fiber types. Methods In this cross-sectional study, muscle biopsies were obtained from individuals with a BMI ranging from normal to overweight with AA (N = 24) and EA (N = 19). Ancestry was assigned via genetic admixture analysis; peripheral insulin sensitivity via hyperinsulinaemic-euglycemic clamp; and myofiber content via myosin heavy chain immunohistochemistry. Further, muscle types with high (soleus) and low (vastus lateralis) type I fiber content were obtained from high-fat diet-induced insulin resistant F1 mice and littermate controls. Insulin sensitivity in mice was assessed via intraperitoneal glucose tolerance test. Mass spectrometry (MS)-based lipidomics was used to measure skeletal muscle lipid. Results Compared to EA, AA had lower peripheral insulin sensitivity and lower oxidative type 1 myofiber content, with no differences in total skeletal muscle lipid content. Muscles with lower type I fiber content (AA and vastus from mice) showed lower levels of lipids associated with fat oxidation capacity, i.e., cardiolipins, triacylglycerols with low saturation degree and phospholipids, compared to muscles with a higher type 1 fiber content (EA and soleus from mice). Further, we found that muscle diacylglycerol content was inversely associated with insulin sensitivity in EA, who have more type I fiber, whereas no association was found in AA. Similarly, we found that insulin sensitivity in mice was associated with diacylglycerol content in the soleus (high in type I fiber), not in vastus (low in type I fiber).Conclusions; Our data suggest that the lipid contribution to altered insulin sensitivity differs by ethnicity due to myofiber composition, and that this needs to be considered to increase our understanding of underlying mechanisms of altered insulin sensitivity in different ethnic populations.
Collapse
Affiliation(s)
- Tova Eurén
- Public Health and Clinical Medicine, Umeå University, Sweden
| | - Barbara Gower
- Department of Nutrition Sciences, The University of Alabama at Birmingham, USA
| | - Pär Steneberg
- Department of Medical and Translational Biology, Umeå University, Sweden
| | - Andréa Wilson
- Public Health and Clinical Medicine, Umeå University, Sweden
| | - Helena Edlund
- Department of Medical and Translational Biology, Umeå University, Sweden
| | - Elin Chorell
- Public Health and Clinical Medicine, Umeå University, Sweden
| |
Collapse
|
28
|
Del Carmen Fernández-Fígares Jiménez M. Plant foods, healthy plant-based diets, and type 2 diabetes: a review of the evidence. Nutr Rev 2024; 82:929-948. [PMID: 37550262 DOI: 10.1093/nutrit/nuad099] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic chronic disease in which insulin resistance and insufficient insulin production lead to elevated blood glucose levels. The prevalence of T2D is growing worldwide, mainly due to obesity and the adoption of Western diets. Replacing animal foods with healthy plant foods is associated with a lower risk of T2D in prospective studies. In randomized controlled trials, the consumption of healthy plant foods in place of animal foods led to cardiometabolic improvements in patients with T2D or who were at high risk of the disease. Dietary patterns that limit or exclude animal foods and focus on healthy plant foods (eg, fruits, vegetables, whole grains, nuts, legumes), known as healthy, plant-based diets, are consistently associated with a lower risk of T2D in cohort studies. The aim of this review is to examine the differential effects of plant foods and animal foods on T2D risk and to describe the existing literature about the role of healthy, plant-based diets, particularly healthy vegan diets, in T2D prevention and management. The evidence from cohort studies and randomized controlled trials will be reported, in addition to the potential biological mechanisms that seem to be involved.
Collapse
|
29
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 224] [Impact Index Per Article: 224.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
30
|
Sandforth L, Brachs S, Reinke J, Willmes D, Sancar G, Seigner J, Juarez-Lopez D, Sandforth A, McBride JD, Ma JX, Haufe S, Jordan J, Birkenfeld AL. Role of human Kallistatin in glucose and energy homeostasis in mice. Mol Metab 2024; 82:101905. [PMID: 38431218 PMCID: PMC10937158 DOI: 10.1016/j.molmet.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Leontine Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Julia Reinke
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Diana Willmes
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Gencer Sancar
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Judith Seigner
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - David Juarez-Lopez
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Arvid Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeffrey D McBride
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sven Haufe
- Department of Rehabilitation and Sports Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany; Department of Diabetes, Life Sciences & Medicine, Cardiovascular Medicine & Life Sciences, King's College London, UK.
| |
Collapse
|
31
|
Yu Y, Yang J, Zheng L, Su H, Cao S, Jiang X, Liu X, Liu W, Wang Z, Meng F, Xu H, Wen D, Sun C, Song X, Vidal-Puig A, Cao L. Dysfunction of Akt/FoxO3a/Atg7 regulatory loop magnifies obesity-regulated muscular mass decline. Mol Metab 2024; 81:101892. [PMID: 38331318 PMCID: PMC10876605 DOI: 10.1016/j.molmet.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Myoprotein degradation accelerates in obese individuals, resulting in a decline in muscular mass. Atg7 plays a crucial role in regulating protein stability and function through both autophagy-dependent and independent pathways. As obesity progresses, the expression of Atg7 gradually rises in muscle tissue. Nonetheless, the precise impact and mechanism of Atg7 in promoting muscle mass decline in obesity remain uncertain. The study aimed to elucidate the role and underly mechanism of Atg7 action in the context of obesity-induced muscle mass decline. METHODS In this study, we established a murine model of high-fat diet-induced obesity (DIO) and introduced adeno-associated virus delivery of short hairpin RNA to knock down Atg7 (shAtg7) into the gastrocnemius muscle. We then examined the expressions of Atg7 and myoprotein degradation markers in the gastrocnemius tissues of obese patients and mice using immunofluorescence and western blotting techniques. To further investigate the effects of Atg7, we assessed skeletal muscle cell diameter and the myoprotein degradation pathway in C2C12 and HSkMC cells in the presence or absence of Atg7. Immunofluorescence staining for MyHC and western blotting were utilized for this purpose. To understand the transcriptional regulation of Atg7 in response to myoprotein degradation, we conducted luciferase reporter assays and chromatin immunoprecipitation experiments to examine whether FoxO3a enhances the transcription of Atg7. Moreover, we explored the role of Akt in Atg7-mediated regulation and its relevance to obesity-induced muscle mass decline. This was accomplished by Akt knockdown, treatment with MK2206, and GST pulldown assays to assess the interaction between Atg7 and Akt. RESULTS After 20 weeks of being on a high-fat diet, obesity was induced, leading to a significant decrease in the gastrocnemius muscle area and a decline in muscle performance. This was accompanied by a notable increase in Atg7 protein expression (p < 0.01). Similarly, in gastrocnemius tissues of obese patients when compared to nonobese individuals, there was a significant increase in both Atg7 (p < 0.01) and TRIM63 (p < 0.01) levels. When palmitic acid was administered to C2C12 cells, it resulted in increased Atg7 (p < 0.01), LC3Ⅱ/Ⅰ (p < 0.01), and p62 levels (p < 0.01). Additionally, it promoted FoxO3a-mediated transcription of Atg7. The knockdown of Atg7 in the gastrocnemius partially reversed DIO-induced muscle mass decline. Furthermore, when Atg7 was knocked down in C2C12 and HSkMC cells, it mitigated palmitic acid-induced insulin resistance, increased the p-Akt/Akt ratio (p < 0.01), and reduced TRIM63 (p < 0.01). Muscular atrophy mediated by Atg7 was reversed by genetic knockdown of Akt and treatment with the p-Akt inhibitor MK2206. Palmitic acid administration increased the binding between Atg7 and Akt (p < 0.01) while weakening the binding of PDK1 (p < 0.01) and PDK2 (p < 0.01) to Akt. GST pulldown assays demonstrated that Atg7 directly interacted with the C-terminal domain of Akt. CONCLUSION The consumption of a high-fat diet, along with lipid-induced effects, led to the inhibition of Akt signaling, which, in turn, promoted FoxO3a-mediated transcription, increasing Atg7 levels in muscle cells. The excess Atg7 inhibited the phosphorylation of Akt, leading to a cyclic activation of FoxO3a and exacerbating the decline in muscle mass regulated by obesity. Consequently, Atg7 serves as a regulatory point in determining the decline in muscle mass induced by obesity.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Jing Yang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Lixia Zheng
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Han Su
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Sunrun Cao
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Xuehan Jiang
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiyan Liu
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Weiwei Liu
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Zhuo Wang
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Fang Meng
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Hongde Xu
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Chen Sun
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Xiaoyu Song
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China.
| | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, CB2 1TN, Cambridge, UK; Centro de Investigacion Principe Felipe, Valencia, Spain; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| | - Liu Cao
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
32
|
Girona J, Soler O, Samino S, Junza A, Martínez-Micaelo N, García-Altares M, Ràfols P, Esteban Y, Yanes O, Correig X, Masana L, Rodríguez-Calvo R. Lipidomics Reveals Myocardial Lipid Composition in a Murine Model of Insulin Resistance Induced by a High-Fat Diet. Int J Mol Sci 2024; 25:2702. [PMID: 38473949 DOI: 10.3390/ijms25052702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Ectopic fat accumulation in non-adipose tissues is closely related to diabetes-related myocardial dysfunction. Nevertheless, the complete picture of the lipid metabolites involved in the metabolic-related myocardial alterations is not fully characterized. The aim of this study was to characterize the specific lipid profile in hearts in an animal model of obesity/insulin resistance induced by a high-fat diet (HFD). The cardiac lipidome profiles were assessed via liquid chromatography-mass spectrometry (LC-MS)/MS-MS and laser desorption/ionization-mass spectrometry (LDI-MS) tissue imaging in hearts from C57BL/6J mice fed with an HFD or standard-diet (STD) for 12 weeks. Targeted lipidome analysis identified a total of 63 lipids (i.e., 48 triacylglycerols (TG), 5 diacylglycerols (DG), 1 sphingomyelin (SM), 3 phosphatidylcholines (PC), 1 DihydroPC, and 5 carnitines) modified in hearts from HFD-fed mice compared to animals fed with STD. Whereas most of the TG were up-regulated in hearts from animals fed with an HFD, most of the carnitines were down-regulated, thereby suggesting a reduction in the mitochondrial β-oxidation. Roughly 30% of the identified metabolites were oxidated, pointing to an increase in lipid peroxidation. Cardiac lipidome was associated with a specific biochemical profile and a specific liver TG pattern. Overall, our study reveals a specific cardiac lipid fingerprint associated with metabolic alterations induced by HFD.
Collapse
Affiliation(s)
- Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Oria Soler
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Sara Samino
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Alexandra Junza
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Neus Martínez-Micaelo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - María García-Altares
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Pere Ràfols
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Yaiza Esteban
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Oscar Yanes
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Xavier Correig
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Lluís Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Ricardo Rodríguez-Calvo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
33
|
Szablewski L. Changes in Cells Associated with Insulin Resistance. Int J Mol Sci 2024; 25:2397. [PMID: 38397072 PMCID: PMC10889819 DOI: 10.3390/ijms25042397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Insulin is a polypeptide hormone synthesized and secreted by pancreatic β-cells. It plays an important role as a metabolic hormone. Insulin influences the metabolism of glucose, regulating plasma glucose levels and stimulating glucose storage in organs such as the liver, muscles and adipose tissue. It is involved in fat metabolism, increasing the storage of triglycerides and decreasing lipolysis. Ketone body metabolism also depends on insulin action, as insulin reduces ketone body concentrations and influences protein metabolism. It increases nitrogen retention, facilitates the transport of amino acids into cells and increases the synthesis of proteins. Insulin also inhibits protein breakdown and is involved in cellular growth and proliferation. On the other hand, defects in the intracellular signaling pathways of insulin may cause several disturbances in human metabolism, resulting in several chronic diseases. Insulin resistance, also known as impaired insulin sensitivity, is due to the decreased reaction of insulin signaling for glucose levels, seen when glucose use in response to an adequate concentration of insulin is impaired. Insulin resistance may cause, for example, increased plasma insulin levels. That state, called hyperinsulinemia, impairs metabolic processes and is observed in patients with type 2 diabetes mellitus and obesity. Hyperinsulinemia may increase the risk of initiation, progression and metastasis of several cancers and may cause poor cancer outcomes. Insulin resistance is a health problem worldwide; therefore, mechanisms of insulin resistance, causes and types of insulin resistance and strategies against insulin resistance are described in this review. Attention is also paid to factors that are associated with the development of insulin resistance, the main and characteristic symptoms of particular syndromes, plus other aspects of severe insulin resistance. This review mainly focuses on the description and analysis of changes in cells due to insulin resistance.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
34
|
Peifer-Weiß L, Al-Hasani H, Chadt A. AMPK and Beyond: The Signaling Network Controlling RabGAPs and Contraction-Mediated Glucose Uptake in Skeletal Muscle. Int J Mol Sci 2024; 25:1910. [PMID: 38339185 PMCID: PMC10855711 DOI: 10.3390/ijms25031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Impaired skeletal muscle glucose uptake is a key feature in the development of insulin resistance and type 2 diabetes. Skeletal muscle glucose uptake can be enhanced by a variety of different stimuli, including insulin and contraction as the most prominent. In contrast to the clearance of glucose from the bloodstream in response to insulin stimulation, exercise-induced glucose uptake into skeletal muscle is unaffected during the progression of insulin resistance, placing physical activity at the center of prevention and treatment of metabolic diseases. The two Rab GTPase-activating proteins (RabGAPs), TBC1D1 and TBC1D4, represent critical nodes at the convergence of insulin- and exercise-stimulated signaling pathways, as phosphorylation of the two closely related signaling factors leads to enhanced translocation of glucose transporter 4 (GLUT4) to the plasma membrane, resulting in increased cellular glucose uptake. However, the full network of intracellular signaling pathways that control exercise-induced glucose uptake and that overlap with the insulin-stimulated pathway upstream of the RabGAPs is not fully understood. In this review, we discuss the current state of knowledge on exercise- and insulin-regulated kinases as well as hypoxia as stimulus that may be involved in the regulation of skeletal muscle glucose uptake.
Collapse
Affiliation(s)
- Leon Peifer-Weiß
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| |
Collapse
|
35
|
Ouni M, Kovac L, Gancheva S, Jähnert M, Zuljan E, Gottmann P, Kahl S, de Angelis MH, Roden M, Schürmann A. Novel markers and networks related to restored skeletal muscle transcriptome after bariatric surgery. Obesity (Silver Spring) 2024; 32:363-375. [PMID: 38086776 DOI: 10.1002/oby.23954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE The aim of this study was to discover novel markers underlying the improvement of skeletal muscle metabolism after bariatric surgery. METHODS Skeletal muscle transcriptome data of lean people and people with obesity, before and 1 year after bariatric surgery, were subjected to weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression. Results of LASSO were confirmed in a replication cohort. RESULTS The expression levels of 440 genes differing between individuals with and without obesity were no longer different 1 year after surgery, indicating restoration. WGCNA clustered 116 genes with normalized expression in one major module, particularly correlating to weight loss and decreased plasma free fatty acids (FFA), 44 of which showed an obesity-related phenotype upon deletion in mice. Among the genes of the major module, 105 represented prominent markers for reduced FFA concentration, including 55 marker genes for decreased BMI in both the discovery and replication cohorts. CONCLUSIONS Previously unknown gene networks and marker genes underlined the important role of FFA in restoring muscle gene expression after bariatric surgery and further suggest novel therapeutic targets for obesity.
Collapse
Affiliation(s)
- Meriem Ouni
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Leona Kovac
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Markus Jähnert
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Erika Zuljan
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Pascal Gottmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Sabine Kahl
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Freising, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
36
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
37
|
Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:27-49. [PMID: 37845351 DOI: 10.1038/s41574-023-00898-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.
Collapse
Affiliation(s)
- Georgia Xourafa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Melis Korbmacher
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
38
|
Guariglia M, Saba F, Rosso C, Bugianesi E. Molecular Mechanisms of Curcumin in the Pathogenesis of Metabolic Dysfunction Associated Steatotic Liver Disease. Nutrients 2023; 15:5053. [PMID: 38140312 PMCID: PMC10745597 DOI: 10.3390/nu15245053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial condition characterized by insulin resistance, oxidative stress, chronic low-grade inflammation, and sometimes fibrosis. To date, no effective pharmacological therapy has been approved for the treatment of metabolic-associated steatohepatitis (MASH), the progressive form of MASLD. Recently, numerous in vitro and in vivo studies have described the efficacy of nutraceutical compounds in the diet has been tested. Among them, curcumin is the most widely used polyphenol in the diet showing potent anti-inflammatory and antifibrotic activities. This review aims to summarize the most important basic studies (in vitro and animal models studies), describing the molecular mechanisms by which curcumin acts in the context of MASLD, providing the rationale for its effective translational use in humans.
Collapse
Affiliation(s)
| | | | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.G.); (F.S.)
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.G.); (F.S.)
| |
Collapse
|
39
|
Greyslak KT, Hetrick B, Bergman BC, Dean TA, Wesolowski SR, Gannon M, Schenk S, Sullivan EL, Aagaard KM, Kievit P, Chicco AJ, Friedman JE, McCurdy CE. A Maternal Western-Style Diet Impairs Skeletal Muscle Lipid Metabolism in Adolescent Japanese Macaques. Diabetes 2023; 72:1766-1780. [PMID: 37725952 PMCID: PMC10658061 DOI: 10.2337/db23-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD). Although body weight was not different, retroperitoneal fat mass and subscapular skinfold thickness were significantly higher in pwWD offspring consistent with elevated fasting insulin and glucose. Maximal complex I (CI)-dependent respiration in muscle was lower in mWD offspring in the presence of fatty acids, suggesting that mWD impacts muscle integration of lipid with nonlipid oxidation. Abundance of all five oxidative phosphorylation complexes and VDAC, but not ETF/ETFDH, were reduced with mWD, partially explaining the lower respiratory capacity with lipids. Muscle triglycerides increased with pwWD; however, the fold increase in lipid saturation, 1,2-diacylglycerides, and C18 ceramide compared between pwCD and pwWD was greatest in mWD offspring. Reductions in CI abundance and VDAC correlated with reduced markers of oxidative stress, suggesting that these reductions may be an early-life adaptation to mWD to mitigate excess reactive oxygen species. Altogether, mWD, independent of maternal obesity or insulin resistance, results in sustained metabolic reprogramming in offspring muscle despite a healthy diet intervention. ARTICLE HIGHLIGHTS In lean, active adolescent offspring, a postweaning Western-style diet (pwWD) leads to shifts in body fat distribution that are associated with poorer insulin sensitivity. Fatty acid-linked oxidative metabolism was reduced in skeletal muscles from offspring exposed to maternal Western-style diet (mWD) even when weaned to a healthy control diet for years. Reduced oxidative phosphorylation complex I-V and VDAC1 abundance partially explain decreased skeletal muscle respiration in mWD offspring. Prior exposure to mWD results in greater fold increase with pwWD in saturated lipids and bioactive lipid molecules (i.e. ceramide and sphingomyelin) associated with insulin resistance.
Collapse
Affiliation(s)
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Bryan C. Bergman
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tyler A. Dean
- Division of Cardiometabolic Health, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
| | | | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
- Department of Psychiatry, Oregon Health & Science University, Portland, OR
- Department of Behavioral Sciences, Oregon Health & Science University, Portland, OR
| | - Kjersti M. Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | |
Collapse
|
40
|
Omar AK, Li Puma LC, Whitcomb LA, Risk BD, Witt AC, Bruemmer JE, Winger QA, Bouma GJ, Chicco AJ. High-fat diet during pregnancy promotes fetal skeletal muscle fatty acid oxidation and insulin resistance in an ovine model. Am J Physiol Regul Integr Comp Physiol 2023; 325:R523-R533. [PMID: 37642284 PMCID: PMC11178291 DOI: 10.1152/ajpregu.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. We examined the effects of a high-fat diet (HFD) during pregnancy on fetal skeletal muscle metabolism and metabolic risk parameters using an ovine model. White-faced ewes were fed a standardized diet containing 5% fat wt/wt (CON), or the same diet supplemented with 6% rumen-protected fats (11% total fat wt/wt; HFD) beginning 2 wk before mating until midgestation (GD75). Maternal HFD increased maternal weight gain, fetal body weight, and low-density lipoprotein levels in the uterine and umbilical circulation but had no significant effects on circulating glucose, triglycerides, or placental fatty acid transporters. Fatty acid (palmitoylcarnitine) oxidation capacity of permeabilized hindlimb muscle fibers was >50% higher in fetuses from HFD pregnancies, whereas pyruvate and maximal (mixed substrate) oxidation capacities were similar to CON. This corresponded to greater triacylglycerol content and protein expression of fatty acid transport and oxidation enzymes in fetal muscle but no significant effect on respiratory chain complexes or pyruvate dehydrogenase expression. However, serine-308 phosphorylation of insulin receptor substrate-1 was greater in fetal muscle from HFD pregnancies along with c-jun-NH2 terminal kinase activation, consistent with prenatal inhibition of skeletal muscle insulin signaling. These results indicate that maternal high-fat feeding shifts fetal skeletal muscle metabolism toward a greater capacity for fatty acid over glucose utilization and favors prenatal development of insulin resistance, which may predispose offspring to metabolic syndrome later in life.NEW & NOTEWORTHY Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. This study examined the effects of a high-fat diet during pregnancy on metabolic risk parameters using a new sheep model. Results align with findings previously reported in nonhuman primates, demonstrating changes in fetal skeletal muscle metabolism that may predispose offspring to metabolic syndrome later in life.
Collapse
Affiliation(s)
- Asma K Omar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Lance C Li Puma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Luke A Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Briana D Risk
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States
| | - Aria C Witt
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Jason E Bruemmer
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Quinton A Winger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Gerrit J Bouma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
41
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Yang R, Kuang M, Qiu J, Yu C, Sheng G, Zou Y. Assessing the usefulness of a newly proposed metabolic score for visceral fat in predicting future diabetes: results from the NAGALA cohort study. Front Endocrinol (Lausanne) 2023; 14:1172323. [PMID: 37538796 PMCID: PMC10395081 DOI: 10.3389/fendo.2023.1172323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Visceral adipose tissue assessment holds significant importance in diabetes prevention. This study aimed to explore the association between the newly proposed Metabolic Score for Visceral Fat (METS-VF) and diabetes risk and to further assess the predictive power of the baseline METS-VF for the occurrence of diabetes in different future periods. Methods This longitudinal cohort study included 15,464 subjects who underwent health screenings. The METS-VF, calculated using the formula developed by Bello-Chavolla et al., served as a surrogate marker for visceral fat obesity. The primary outcome of interest was the occurrence of diabetes during the follow-up period. Established multivariate Cox regression models and restricted cubic spline (RCS) regression models to assess the association between METS-VF and diabetes risk and its shape. Receiver operating characteristic (ROC) curves were used to compare the predictive power of METS-VF with body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR), and visceral adiposity index (VAI) for diabetes, and time-dependent ROC analysis was conducted to assess the predictive capability of METS-VF for the occurrence of diabetes in various future periods. Results During a maximum follow-up period of 13 years, with a mean of 6.13 years, we observed that the cumulative risk of developing diabetes increased with increasing METS-VF quintiles. Multivariable-adjusted Cox regression analysis showed that each unit increase in METS-VF would increase the risk of diabetes by 68% (HR 1.68, 95% CI 1.13, 2.50), and further RCS regression analysis revealed a possible non-linear association between METS-VF and diabetes risk (P for non-linearity=0.002). In addition, after comparison by ROC analysis, we found that METS-VF had significantly higher predictive power for diabetes than other general/visceral adiposity indicators, and in time-dependent ROC analysis, we further considered the time-dependence of diabetes status and METS-VF and found that METS-VF had the highest predictive value for predicting medium- and long-term (6-10 years) diabetes risk. Conclusion METS-VF, a novel indicator for assessing visceral adiposity, showed a significantly positive correlation with diabetes risk. It proved to be a superior risk marker in predicting the future onset of diabetes compared to other general/visceral adiposity indicators, particularly in forecasting medium- and long-term diabetes risk.
Collapse
Affiliation(s)
- Ruijuan Yang
- Department of Endocrinology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Maobin Kuang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Cardiology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jiajun Qiu
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Cardiology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Changhui Yu
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Cardiology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Guotai Sheng
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
43
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
44
|
Talarico CHZ, Alves ES, Dos Santos JDM, Sucupira FGS, Araujo LCC, Camporez JP. Progesterone Has No Impact on the Beneficial Effects of Estradiol Treatment in High-Fat-Fed Ovariectomized Mice. Curr Issues Mol Biol 2023; 45:3965-3976. [PMID: 37232722 DOI: 10.3390/cimb45050253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
In recent decades, clinical and experimental studies have revealed that estradiol contributes enormously to glycemic homeostasis. However, the same consensus does not exist in women during menopause who undergo replacement with progesterone or conjugated estradiol and progesterone. Since most hormone replacement treatments in menopausal women are performed with estradiol (E2) and progesterone (P4) combined, this work aimed to investigate the effects of progesterone on energy metabolism and insulin resistance in an experimental model of menopause (ovariectomized female mice-OVX mice) fed a high-fat diet (HFD). OVX mice were treated with E2 or P4 (or both combined). OVX mice treated with E2 alone or combined with P4 displayed reduced body weight after six weeks of HFD feeding compared to OVX mice and OVX mice treated with P4 alone. These data were associated with improved glucose tolerance and insulin sensitivity in OVX mice treated with E2 (alone or combined with P4) compared to OVX and P4-treated mice. Additionally, E2 treatment (alone or combined with P4) reduced both hepatic and muscle triglyceride content compared with OVX control mice and OVX + P4 mice. There were no differences between groups regarding hepatic enzymes in plasma and inflammatory markers. Therefore, our results revealed that progesterone replacement alone does not seem to influence glucose homeostasis and ectopic lipid accumulation in OVX mice. These results will help expand knowledge about hormone replacement in postmenopausal women associated with metabolic syndrome and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Carlos H Z Talarico
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Ester S Alves
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Jessica D M Dos Santos
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Felipe G S Sucupira
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Layanne C C Araujo
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
45
|
Grapentine S, Singh RK, Bakovic M. Skeletal Muscle Consequences of Phosphatidylethanolamine Synthesis Deficiency. FUNCTION 2023; 4:zqad020. [PMID: 37342414 PMCID: PMC10278983 DOI: 10.1093/function/zqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/22/2023] Open
Abstract
The maintenance of phospholipid homeostasis is increasingly being implicated in metabolic health. Phosphatidylethanolamine (PE) is the most abundant phospholipid on the inner leaflet of cellular membranes, and we have previously shown that mice with a heterozygous ablation of the PE synthesizing enzyme, Pcyt2 (Pcyt2+/-), develop obesity, insulin resistance, and NASH. Skeletal muscle is a major determinant of systemic energy metabolism, making it a key player in metabolic disease development. Both the total PE levels and the ratio of PE to other membrane lipids in skeletal muscle are implicated in insulin resistance; however, the underlying mechanisms and the role of Pcyt2 regulation in this association remain unclear. Here, we show how reduced phospholipid synthesis due to Pcyt2 deficiency causes Pcyt2+/- skeletal muscle dysfunction and metabolic abnormalities. Pcyt2+/- skeletal muscle exhibits damage and degeneration, with skeletal muscle cell vacuolization, disordered sarcomeres, mitochondria ultrastructure irregularities and paucity, inflammation, and fibrosis. There is intramuscular adipose tissue accumulation, and major disturbances in lipid metabolism with impaired FA mobilization and oxidation, elevated lipogenesis, and long-chain fatty acyl-CoA, diacylglycerol, and triacylglycerol accumulation. Pcyt2+/- skeletal muscle exhibits perturbed glucose metabolism with elevated glycogen content, impaired insulin signaling, and reduced glucose uptake. Together, this study lends insight into the critical role of PE homeostasis in skeletal muscle metabolism and health with broad implications on metabolic disease development.
Collapse
Affiliation(s)
- Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Rathnesh K Singh
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
46
|
Wang W, Yang W, Dai Y, Liu J, Chen ZY. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5917-5943. [PMID: 37027889 PMCID: PMC11966776 DOI: 10.1021/acs.jafc.2c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of diabetes mellitus and obesity is increasing worldwide. Bioactive peptides are naturally present in foods or in food-derived proteins. Recent research has shown that these bioactive peptides have an array of possible health benefits in the management of diabetes and obesity. First, this review will summarize the top-down and bottom-up production methods of the bioactive peptides from different protein sources. Second, the digestibility, bioavailability, and metabolic fate of the bioactive peptides are discussed. Last, the present review will discuss and explore the mechanisms by which these bioactive peptides help against obesity and diabetes based on in vitro and in vivo studies. Although several clinical studies have demonstrated that bioactive peptides are beneficial in alleviating diabetes and obesity, more double-blind randomized controlled trials are needed in the future. This review has provided novel insights into the potential of food-derived bioactive peptides as functional foods or nutraceuticals to manage obesity and diabetes.
Collapse
Affiliation(s)
- Weiwei Wang
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Yang
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yi Dai
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jianhui Liu
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhen-Yu Chen
- Food
& Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
47
|
Adelusi TI, Boyenle ID, Tolulope A, Adebisi J, Fatoki JO, Ukachi CD, Oyedele AQK, Ayoola AM, Timothy AA. GCMS fingerprints and phenolic extracts of Allium sativum inhibit key enzymes associated with type 2 diabetes. J Taibah Univ Med Sci 2023; 18:337-347. [PMID: 36817213 PMCID: PMC9926220 DOI: 10.1016/j.jtumed.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023] Open
Abstract
Objectives Inhibition of carbohydrate digestion enzymes (α-amylase and α-glucosidase) has been reported in studies as a therapeutic approach for the management or treatment of type 2 diabetes mellitus, owing to its potential to decrease postprandial hyperglycemia. The anti-diabetic potential of Allium sativum (also known as garlic) against diabetes mellitus has been established. Therefore, in this study, we assessed the antidiabetic potential of A. sativum using in vitro enzyme assays after which we explored computational modelling approach using the quantified GC-MS identities to unravel the key bioactive compounds responsible for the anti-diabetic potential. Methods We used in vitro enzyme inhibition assays (α-amylase and α-glucosidase) to evaluate antidiabetic potential and subsequently performed gas chromatography-mass spectroscopy (GC-MS) to identify and quantify the bioactive compounds of the plant extract. The identified bioactive compounds were subjected to in silico docking and pharmacokinetic assessment. Results A. sativum phenolic extract showed high dose-dependent inhibition of α-amylase and α-glucosidase (p < 0.05). Interestingly, the extract inhibited α-glucosidase with a half maximal inhibitory concentration of 53.75 μg/mL, a value higher than that obtained for the standard acarbose. Docking simulation revealed that morellinol and phentolamine were the best binders of α-glucosidase, with mean affinity values of -7.3 and -7.1 kcal/mol, respectively. These compounds had good affinity toward active site residues of the enzyme, and excellent drug-like and pharmacokinetic properties supporting clinical applications. Conclusions Our research reveals the potential of A. sativum as a functional food for the management of type 2 diabetes, and suggests that morellinol and phentolamine may be the most active compounds responsible for this anti-diabetic prowess. Therefore these compounds require further clinical asessment to demonstrate their potential for drug development.
Collapse
Affiliation(s)
- Temitope I. Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - Ibrahim D. Boyenle
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- College of Health Sciences, Crescent University, Abeokuta, Nigeria
| | - Ajao Tolulope
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Jonathan Adebisi
- Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - John O. Fatoki
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Osogbo, Osun State, Nigeria
| | - Chiamaka D. Ukachi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdul-Quddus K. Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Ashiru M. Ayoola
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Fountain University, Osogbo, Nigeria
| | - Akinniyi A. Timothy
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
48
|
Gaspar RC, Lyu K, Hubbard BT, Leitner BP, Luukkonen PK, Hirabara SM, Sakuma I, Nasiri A, Zhang D, Kahn M, Cline GW, Pauli JR, Perry RJ, Petersen KF, Shulman GI. Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice. Diabetologia 2023; 66:567-578. [PMID: 36456864 PMCID: PMC11194860 DOI: 10.1007/s00125-022-05838-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022]
Abstract
AIMS/HYPOTHESIS Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance. Here, we hypothesised that regular aerobic exercise would preserve muscle insulin sensitivity by preventing increases in plasma membrane sn-1,2-DAGs and activation of PKCε and PKCθ despite promoting increases in muscle triacylglycerol content. METHODS C57BL/6J mice were allocated to three groups (regular chow feeding [RC]; high-fat diet feeding [HFD]; RC feeding and running wheel exercise [RC-EXE]). We used a novel LC-MS/MS/cellular fractionation method to assess DAG stereoisomers in five subcellular compartments (plasma membrane [PM], endoplasmic reticulum, mitochondria, lipid droplets and cytosol) in the skeletal muscle. RESULTS We found that the HFD group had a greater content of sn-DAGs and ceramides in multiple subcellular compartments compared with the RC mice, which was associated with an increase in PKCε and PKCθ translocation. However, the RC-EXE mice showed, of particular note, a reduction in PM sn-1,2-DAG and ceramide content when compared with HFD mice. Consistent with the PM sn-1,2-DAG-novel PKC hypothesis, we observed an increase in phosphorylation of threonine1150 on the insulin receptor kinase (IRKT1150), and reductions in insulin-stimulated IRKY1162 phosphorylation and IRS-1-associated phosphoinositide 3-kinase activity in HFD compared with RC and RC-EXE mice, which are sites of PKCε and PKCθ action, respectively. CONCLUSIONS/INTERPRETATION These results demonstrate that lower PKCθ/PKCε activity and sn-1,2-DAG content, especially in the PM compartment, can explain the preserved muscle insulin sensitivity in RC-EXE mice.
Collapse
Affiliation(s)
- Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- School of Applied Science, University of Campinas, Limeira, SP, Brazil
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Brandon T Hubbard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Brooks P Leitner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Panu K Luukkonen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sandro M Hirabara
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Institute of Physical Activity Science and Sports, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Kitt F Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
49
|
Hou G, Gao Y, Poon LC, Ren Y, Zeng C, Wen B, Syngelaki A, Lin L, Zi J, Su F, Xie W, Chen F, Nicolaides KH. Maternal plasma diacylglycerols and triacylglycerols in the prediction of gestational diabetes mellitus. BJOG 2023; 130:247-256. [PMID: 36156361 DOI: 10.1111/1471-0528.17297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To define the lipidomic profile in plasma across pregnancy, and identify lipid biomarkers for gestational diabetes mellitus (GDM) prediction in early pregnancy. DESIGN Case-control study. SETTING Tertiary referral maternity unit. POPULATION OR SAMPLE Plasma samples from 100 GDM and 100 normal glucose tolerance (NGT) women, divided into a training set (GDM first trimester = 50, GDM second trimester = 40, NGT first trimester = 50, NGT second trimester = 50) and a validation set (GDM first trimester = 45, GDM second trimester = 34, NGT first trimester = 44, NGT second trimester = 40). METHODS Plasma samples were collected in the first (11+0 to 13+6 weeks), second (19+0 to 24+6 weeks), and third trimesters (30+0 to 34+6 weeks), and tested by ultra-high-performance liquid chromatography coupled with electrospray ionisation-quadrupole-time of flight-mass spectrometry; The GDM prediction model was established by the machine-learning method of random forest. MAIN OUTCOME MEASURES Gestational diabetes mellitus. RESULTS In both the GDM and NGT group, lyso-glycerophospholipids were down-regulated, whereas ceramides, sphingomyelins, cholesteryl ester, diacylglycerols (DGs) and triacylglycerols (TGs) and glucosylceramide were up-regulated across the three trimesters of pregnancy. In the training dataset, seven TGs and five DGs demonstrated good performance in the prediction of GDM in the first and second trimesters (area under the curve [AUC] = 0.96 with 95% confidence interval [CI] of 0.93-1 and AUC = 0.97 with 95% CI of 0.95-1, respectively), independent of maternal body mass index (BMI) and ethnicity. In the validation dataset, the predictive model achieved an AUC of 0.88 and 0.94 at the first and second trimesters, respectively. CONCLUSIONS Our results have proposed new lipid biomarkers for the first trimester prediction of GDM, independent of ethnicity and BMI.
Collapse
Affiliation(s)
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China
| | - Liona C Poon
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yan Ren
- BGI-Shenzhen, Shenzhen, China.,Experiment Centre for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Bo Wen
- BGI-Shenzhen, Shenzhen, China
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| | | | - Jin Zi
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| |
Collapse
|
50
|
Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J 2023; 290:620-648. [PMID: 34847289 DOI: 10.1111/febs.16306] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a complex and multifactorial disease that affects millions of people worldwide, reducing the quality of life significantly, and results in grave consequences for our health care system. In type 2 diabetes (T2D), the lack of β-cell compensatory mechanisms overcoming peripherally developed insulin resistance is a paramount factor leading to disturbed blood glucose levels and lipid metabolism. Impaired β-cell functions and insulin resistance have been studied extensively resulting in a good understanding of these pathways but much less is known about interorgan crosstalk, which we define as signaling between tissues by secreted factors. Besides hormones and organokines, dysregulated blood glucose and long-lasting hyperglycemia in T2D is associated with changes in metabolism with metabolites from different tissues contributing to the development of this disease. Recent data suggest that metabolites, such as lipids including free fatty acids and amino acids, play important roles in the interorgan crosstalk during the development of T2D. In general, metabolic remodeling affects physiological homeostasis and impacts the development of T2D. Hence, we highlight the importance of metabolic interorgan crosstalk in this review to gain enhanced knowledge of the pathophysiology of T2D, which may lead to new therapeutic approaches to treat this disease.
Collapse
Affiliation(s)
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|