1
|
Aguilera-Lizarraga J, Lim TK, Pattison LA, Paine LW, Bulmer DC, Smith ESJ. Pro-inflammatory mediators sensitise transient receptor potential melastatin 3 cation channel (TRPM3) function in mouse sensory neurons. Neuropharmacology 2025; 271:110391. [PMID: 40024472 DOI: 10.1016/j.neuropharm.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Pro-inflammatory mediators can directly activate pain-sensing neurons, known as nociceptors. Additionally, these mediators can sensitise ion channels and receptors expressed by these cells through transcriptional and post-translational modulation, leading to nociceptor hypersensitivity. A well-characterised group of ion channels that subserve nociceptor sensitisation is the transient receptor potential (TRP) superfamily of cation channels. For example, the roles of TRP channels vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) in nociceptor sensitisation and inflammatory pain have been extensively documented. In the case of TRP melastatin 3 (TRPM3), however, despite the increasing recognition of this channel's role in inflammatory pain, the mediators driving its sensitisation during inflammation remain poorly characterised. Here, using Ca2+ imaging, we found that an inflammatory soup of bradykinin, interleukin 1β (IL-1β) and tumour necrosis factor α (TNFα) sensitised TRPM3 function in isolated mouse sensory neurons; IL-1β and TNFα, but not bradykinin, independently potentiated TRPM3 function. TRPM3 expression and translocation to the membrane remained unchanged upon individual or combined exposure to these inflammatory mediators, which suggests that post-translational modification might occur. Finally, using the complete Freund's adjuvant-induced model of knee inflammation, we found that systemic pharmacological blockade of TRPM3 does not alleviate inflammatory pain (as assessed through evaluation of digging behaviour and dynamic weight bearing), which contrasts with previous reports using different pain models. We propose that the nuances of the immune response may determine the relative contribution of TRPM3 to nociceptive signalling in different neuro-immune contexts. Collectively, our findings improve insight into the role of TRPM3 sensitisation in inflammatory pain.
Collapse
Affiliation(s)
| | - Tony K Lim
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luke W Paine
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
2
|
Huerta MÁ, Molina-Álvarez M, García MM, Tejada MA, Goicoechea C, Ghasemlou N, Ruiz-Cantero MC, Cobos EJ. The role of neutrophils in pain: systematic review and meta-analysis of animal studies. Pain 2025; 166:1230-1249. [PMID: 39450928 DOI: 10.1097/j.pain.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT The peripheral inflammatory response is an attractive therapeutic target for pain treatment. Neutrophils are the first circulating inflammatory cells recruited to sites of injury, but their contribution to pain outcomes is unclear. We performed a systematic review and meta-analysis of original preclinical studies, which evaluated the effect of preemptive neutrophil depletion on pain outcomes (PROSPERO registration number: CRD42022364004). Literature search (PubMed, January 19, 2023) identified 49 articles, which were meta-analyzed using a random-effects model. The risk of bias was evaluated using SYRCLE's tool. The pooled effect considering all studies showed that neutrophil depletion induced a consistent pain reduction. Inflammatory, joint, neuropathic, and visceral pain showed significant pain alleviation by neutrophil depletion with medium-large effect sizes. However, muscle and postoperative pain were not significantly alleviated by neutrophil depletion. Further analysis showed a differential contribution of neutrophils to pain outcomes. Neutrophils had a higher impact on mechanical hyperalgesia, followed by nociceptive behaviors and mechanical allodynia, with a smaller contribution to thermal hyperalgesia. Interspecies (mice or rats) differences were not appreciated. Analyses regarding intervention unveiled a lower pain reduction for some commonly used methods for neutrophil depletion, such as injection of antineutrophil serum or an anti-Gr-1 antibody, than for other agents such as administration of an anti-Ly6G antibody, fucoidan, vinblastine, CXCR1/2 inhibitors, and etanercept. In conclusion, the contribution of neutrophils to pain depends on pain etiology (experimental model), pain outcome, and the neutrophil depletion strategy. Further research is needed to improve our understanding on the mechanisms of these differences.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel M García
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel A Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Nader Ghasemlou
- Pain Chronobiology & Neuroimmunology Laboratory, Departments of Anesthesiology and Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - M Carmen Ruiz-Cantero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
- Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
3
|
Wan T, Wei A, Ding Z, Gonzalez SC, Wang J, Hou X, Luo X, He L, Song Z. Inflammation and macrophage infiltration exacerbate adult incision response by early life injury. BMC Anesthesiol 2025; 25:165. [PMID: 40211125 PMCID: PMC11983940 DOI: 10.1186/s12871-025-03029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Neonatal hindpaw incision can evoke long-lasting changes in nociceptive processing following repeat injury in adulthood. Studies have focused on the effects and mechanisms in the spinal cord and brain, however changes in inflammation and macrophages in the periphery, especially at the site of early life injury, remain poorly defined. In this paper, we investigated the role of macrophages in the injured tissue in pain hypersensitivity caused by repeat hindpaw incisions and primed by neonatal injury. METHODS Hindpaw incision was performed in anesthetized adult rats. Among them, some had neonatal hindpaw incisions on postnatal day 3. To assess the role of inflammatory response in the priming of adult incision pain, the rats were treated with clodronate liposome, a macrophage depletion agent, and ketorolac tromethamine, the commonly used anti-inflammatory drug following surgery. Their mechanical pain sensitivity was measured via von Frey filaments. Inflammation induced by hindpaw incision was evaluated via Enzyme-linked Immunosorbent Assay, H&E, and immunofluorescence staining. The phenotypes of macrophages were examined by analyzing their surface markers by flow cytometry. RESULTS Mechanical pain hypersensitivity caused by the hindpaw incision in the adult rats was enhanced by previous neonatal injury, which also significantly increased microglial activation in the spinal dorsal horn, aggravation of inflammation, and infiltration of both M1 and M2 macrophages in damaged hindpaw tissue after the repeat incision in the adult rats on POD 5. Intraperitoneal injection of clodronate liposome alleviates nociceptive and inflammatory responses in neonatal injured rats. Intramuscular injection of ketorolac tromethamine decreased mechanical hyperalgesia and inflammatory responses primed by prior neonatal injury. CONCLUSIONS Neonatal tissue injury exacerbated mechanical hypersensitivity, infiltration, and activation of macrophages evoked by repeat hindpaw incision in adulthood.
Collapse
Affiliation(s)
- Tong Wan
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Anqi Wei
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
- Department of Anesthesiology, Guiqian International General Hospital, Guiyang, 550024, China
| | - Zhuofeng Ding
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China.
| | - Sarel Chavarria Gonzalez
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Jian Wang
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xinran Hou
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xiao Luo
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Liqiong He
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zongbin Song
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China.
- Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Fatima SA, Akhtar B, Sharif A, Khan MI, Shahid M, Anjum F, Hussain F, Mobashar A, Ashraf M. Implications of nociceptor receptors and immune modulation: emerging therapeutic targets for autoimmune diseases. Inflammopharmacology 2025; 33:959-977. [PMID: 39955696 DOI: 10.1007/s10787-025-01653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Chronic painful autoimmune disorders such as multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatoid arthritis (RA) induce significant discomfort. They are defined by persistent inflammation and immune-mediated tissue injury. The activation and sensitisation of nociceptors, mutated in various disorders, are fundamental components contributing to the pain experienced in these conditions. Recent discoveries indicate that immunological mediators and nociceptive receptors interact functionally within peripheral and central sensitisation pathways, amplifying chronic pain. This research examines the involvement of nociceptors in rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. It explores how immune cells and pro-inflammatory cytokines induce, sensitise and regulate various nociceptive receptors (P2X, TRPA1 and TRPV1). Finally, we address possible future directions with respect to the treatment of long-lasting effects on immunity, and what new drug targets could be pursued as well, in order to counteract such either neuro-immune interactions in conditions involving the immunological system. By studying nociceptive mechanisms across autoimmune illnesses, we want to identify shared pathways and activation of nociceptors specific to individual diseases. This will shed insight on potential therapies for managing pain associated with autoimmune diseases.
Collapse
Affiliation(s)
- Syeda Asloob Fatima
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, Faculty of Health and Pharmaceutical Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Fatma Hussain
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Maham Ashraf
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
5
|
周 蕊, 何 柳, 侯 帅, 杨 莎, 尹 海, 余 曙. [Optimal Timing of Moxibustion Intervention for Anti-inflammatory and Analgesic Effects Based on a Chronic Inflammatory Pain Model]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2025; 56:137-142. [PMID: 40109452 PMCID: PMC11914027 DOI: 10.12182/20250160605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 03/22/2025]
Abstract
Objective Based on a complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model, we compared and analyzed the differences in anti-inflammatory and analgesic effects of moxibustion intervention initiated at different timepoints, aiming to identify the optimal timing for moxibustion intervention. The goal is to establish standardized intervention protocols for basic research on the anti-inflammatory and analgesic effects of moxibustion. Methods Male C57BL/6 mice were randomly divided into 3 groups based on the moxibustion initiation timepoints of 4, 7, and 10 d after modeling. Then, the mice in each group were randomly assigned to 3 subgroups, including a control group, a model group, and a moxibustion group, with 8 mice in each subgroup. Chronic inflammatory pain was induced by injecting 20 μL of CFA into the sole of the right hind paw. Moxibustion applied at the "Zusanli" acupoint for 30 minutes started on the 4th, 7th, and 10th days after modeling, and the intervention continued for 7 days. The latency of paw withdrawal to thermal radiation was measured to evaluate the pain threshold before modeling, after modeling, and on the 1st, 4th, and 7th days of treatment. Foot volume was measured to assess toe swelling before modeling, after modeling, and on the 1st and 7th days of treatment. Results Compared with the control group, the model group exhibited a reduced pain threshold (P < 0.0001) and increased paw volume (P < 0.0001). Compared with the model group, the subgroups receiving moxibustion intervention initiated on the 4th, 7th, and 10th days post-modeling exhibited an increased pain threshold (P < 0.05, P < 0.0001). However, the paw volume of the subgroups receiving moxibustion intervention initiated on the 4th day post-modeling increased (P < 0.0001), while those of the subgroups receiving moxibustion intervention initiated on the 7th and 10th days post-modeling decreased (P < 0.0001). Among the intervention subgroups receiving moxibustion initiated on days 4, 7, and 10, the day 7 intervention-initiating subgroup showed significant increase in pain threshold (P < 0.05, P < 0.0001), and the day 7 and day 10 intervention-initiating subgroups showed significantly reduced paw volume (P < 0.0001). Conclusion Considering both the analgesic and anti-inflammatory effects of moxibustion, day 7 post-modeling may be the optimal time for moxibustion to achieve effective anti-inflammatory and analgesic outcomes.
Collapse
Affiliation(s)
- 蕊竹 周
- 成都中医药大学针灸推拿学院 (成都 610075)Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 针灸防治老年疾病教育部重点实验室 (成都 610075)Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 610075, China
- 针灸与时间生物学四川省重点实验室 (成都 610075)Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| | - 柳萱 何
- 成都中医药大学针灸推拿学院 (成都 610075)Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 针灸防治老年疾病教育部重点实验室 (成都 610075)Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 610075, China
- 针灸与时间生物学四川省重点实验室 (成都 610075)Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| | - 帅 侯
- 成都中医药大学针灸推拿学院 (成都 610075)Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 针灸防治老年疾病教育部重点实验室 (成都 610075)Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 610075, China
- 针灸与时间生物学四川省重点实验室 (成都 610075)Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| | - 莎 杨
- 成都中医药大学针灸推拿学院 (成都 610075)Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 针灸防治老年疾病教育部重点实验室 (成都 610075)Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 610075, China
- 针灸与时间生物学四川省重点实验室 (成都 610075)Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| | - 海燕 尹
- 成都中医药大学针灸推拿学院 (成都 610075)Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 针灸防治老年疾病教育部重点实验室 (成都 610075)Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 610075, China
- 针灸与时间生物学四川省重点实验室 (成都 610075)Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| | - 曙光 余
- 成都中医药大学针灸推拿学院 (成都 610075)Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 针灸防治老年疾病教育部重点实验室 (成都 610075)Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 610075, China
- 针灸与时间生物学四川省重点实验室 (成都 610075)Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| |
Collapse
|
6
|
XIAO H, JI H, ZHOU N, XIAO Y, SHI D. Autophagy inhibits nuclear factor kappa B and mitogen-activated protein kinase (MAPK) inflammatory signaling pathways and modulates cytokine release in murine microglia following Streptococcus suis serotype 2 infection. J Vet Med Sci 2025; 87:68-74. [PMID: 39603605 PMCID: PMC11735217 DOI: 10.1292/jvms.24-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Autophagy within macrophages serves as a vital mechanism for modulating inflammatory responses to central nervous system infections caused by Streptococcus suis in both humans and swine. However, the mechanism by which autophagy regulates inflammation during S. suis infection is unclear. This study investigated the mechanism by which autophagy serves as a defense against S. suis infection in mouse microglial cells (BV2). Initially, we examined how S. suis infection triggers the adenosine monophosphate-activated protein kinase (AMPK)/ mammalian target of rapamycin (mTOR) autophagic cascade and the nuclear factor kappa B (NF-κB) and, mitogen-activated protein kinase (MAPK) inflammatory signaling pathways using western blot within BV2 cells. We then demonstrated that treatment with autophagy inhibitors, inducers, and siRNA of autophagy genes changed the levels of C-C motif ligand 2 (CCL2), CCL3, CCL5, and tumor necrosis factor α (TNF-α), and p-p65, p-p38, p- c-Jun N-terminal kinase (JNK) and p-Extracellular signal-regulated kinase (ERK) activity within BV2 cells. We found that S. suis infection induced AMPK/mTOR autophagy pathway, NF-κB and MAPK pathway in BV2 cells. Further, Autophagy inhibits S. suis infection-induced NF-κB and MAPK signaling and subsequent inflammatory factors CCL2, CCL3, CCL5, and TNF-α. Collectively, these findings suggest that AMPK/mTOR-regulated autophagy has an inhibitory effect on pro-inflammatory cytokines and chemokines by regulating the NF-κB and MAPK pathways during S. suis infection.
Collapse
Affiliation(s)
- Hongde XIAO
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hui JI
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Naiji ZHOU
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuncai XIAO
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Deshi SHI
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Lin Z, Luo X, Wickman JR, Reddy D, DaCunza JT, Pande R, Tian Y, Kasimoglu EE, Triana V, Lee J, Furdui CM, Pink D, Sacan A, Ajit SK. Inflammatory pain resolution by mouse serum-derived small extracellular vesicles. Brain Behav Immun 2025; 123:422-441. [PMID: 39349284 PMCID: PMC12004123 DOI: 10.1016/j.bbi.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Current treatments for chronic pain have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs), or exosomes, to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can be beneficial or harmful depending on their source and cargo composition. We report a comprehensive multi-modal analysis of different aspects of sEV characterization, miRNAs, and protein markers across sEV sources. To investigate the short- and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model male donor mice were injected intrathecally into naïve male recipient mice. These sEVs transiently increased basal mechanical thresholds, an effect mediated by opioid signaling as this outcome was blocked by naltrexone. Mass spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. sEVs from naïve female mice have higher levels of leu-enkephalin compared to male, matching the analgesic onset of leu-enkephalin in male recipient mice. In investigating the long-term effect of sEVs, we observed that a single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. Our exploratory studies examining immune cell populations in spinal cord and dorsal root ganglion using ChipCytometry suggested alterations in immune cell populations 14 days post-CFA. Flow cytometry confirmed increases in CD206+ macrophages in the spinal cord in sEV-treated mice. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.
Collapse
Affiliation(s)
- Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Jason R Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Jason T DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Ezgi E Kasimoglu
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | | | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Desmond Pink
- Nanostics Inc., Edmonton, Alberta T5J 4P6, Canada
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA.
| |
Collapse
|
8
|
He J, Chen X. Assessing the Causal Relationship Between Immune Cells and Temporomandibular Related Pain by Bi‑Directional Mendelian Randomization Analysis. J Pain Res 2024; 17:3791-3800. [PMID: 39574830 PMCID: PMC11579143 DOI: 10.2147/jpr.s486817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Even with significant progress has been made in elucidating the pathogenesis of temporomandibular disorders (TMD), the pathophysiology of temporomandibular joint (TMJ) pain is still obscure. Our study aimed to explore whether there is a causal link between immune cells and TMD-related pain. Materials and Methods Based on the TMD-related pain data obtained from the FinnGen Research Consortium and the 731 immune traits extracted from the GWAS Catalog and utilized a two sample Mendelian Randomization (MR) method, with immune cell as the exposure and TMD-related pain as the outcome. MR analyses were conducted employing the inverse-variance weighting method (IVW) as the primary analytical method to evaluate the causal association. Sensitivity analyses were conducted to enhance the robustness, heterogeneity and horizontal pleiotropy of the results. A reverse MR analysis was also conducted for immune cell traits identified in the initial MR analysis. Results After false discovery rate (FDR) correction, two immune traits were observed and found to be significantly associated with TMD-related pain: Hematopoietic Stem Cell absolute count (OR=0.954, 95% CI= 0.933~0.976), and HLA DR+ CD4+ T cell (OR=1.040, 95% CI=1.019~1.061). On the reverse MR analysis, no significantly associated results were found in causal effects of TMD-related pain on immune traits. Conclusion Our study showed a potential causal relationship between immune cells and TMD-related pain, eliminating reverse causality. These discoveries significantly enhance our knowledge of the interaction between immune traits and TMD-related pain, opening new possibilities for designing treatment from an immunological perspective.
Collapse
Affiliation(s)
- Jianquan He
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiayun Chen
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
9
|
Santos-Caballero M, Hasoun MA, Huerta MÁ, Ruiz-Cantero MC, Tejada MÁ, Robles-Funes M, Fernández-Segura E, Cañizares FJ, González-Cano R, Cobos EJ. Pharmacological differences in postoperative cutaneous sensitivity, pain at rest, and movement-induced pain in laparotomized mice. Biomed Pharmacother 2024; 180:117459. [PMID: 39305815 DOI: 10.1016/j.biopha.2024.117459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Postoperative pain management is challenging. We used mice with a transverse laparotomy to study tactile allodynia measured by the von Frey test, pain at rest measured by facial pain expressions detected by an artificial intelligence algorithm, and movement-induced pain measured by reductions in exploratory activity. The standard analgesics morphine and ibuprofen induced distinct patterns of outcome-dependent effects. Whereas morphine was more effective in reversing pain at rest compared to tactile allodynia, it was unable to alter movement-induced pain. Ibuprofen showed comparable effects across the three outcomes. Administered together, the compounds induced synergistic effects in the three aspects of postoperative pain, mirroring the known advantages of multimodal analgesia used in clinical practice. We explored the impact of neuroimmune interactions using a neutrophil depletion strategy. This reversed pain at rest and movement-induced pain, but did not alter cutaneous sensitivity. Non-peptidergic (IB4+) and peptidergic (CGRP+) nociceptors are segregated neuronal populations in the mouse. We tested the effects of gefapixant, an antitussive drug targeting non-peptidergic nociceptors through P2X3 antagonism, and olcegepant, an antimigraine drug acting as a CGRP antagonist. Both compounds reversed tactile allodynia, while only gefapixant reversed pain at rest, and none of them reversed movement-induced pain. In conclusion, tactile allodynia, pain at rest, and movement-induced pain after surgery have different pharmacological profiles, and none of the three aspects of postoperative pain can predict the effects of a given intervention on the other two. Combining these measures provides a more realistic view of postoperative pain and has the potential to benefit analgesic development.
Collapse
Affiliation(s)
- Miriam Santos-Caballero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada 18100, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain.
| | - Makeya A Hasoun
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada 18100, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain.
| | - Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada 18100, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain.
| | - M Carmen Ruiz-Cantero
- Laboratori de Química Farmacèutica, Facultat de Farmàcia i Ciències de lÁlimentació Universitat de Barcelona, Barcelona 08028, Spain.
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada 18100, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain.
| | - María Robles-Funes
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada 18100, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain.
| | - Eduardo Fernández-Segura
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada 18100, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain; Department of Histology, Faculty of Medicine, University of Granada, Granada 18071, Spain.
| | - Francisco J Cañizares
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada 18100, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain; Department of Histology, Faculty of Medicine, University of Granada, Granada 18071, Spain.
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada 18100, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada 18100, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid 28029, Spain.
| |
Collapse
|
10
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 Channels in the Skin Regulate Prolonged Heat Hypersensitivity during Neuroinflammation. eNeuro 2024; 11:ENEURO.0311-24.2024. [PMID: 39433408 PMCID: PMC11599794 DOI: 10.1523/eneuro.0311-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuroimmune cell signaling, but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal (i.d.) capsaicin via IL-1ɑ cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the i.d. capsaicin animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by i.d. complete Freund adjuvant (CFA). i.d. CFA, a model of chronic neuroinflammation, involves ongoing cytokine signaling for days leading to pronounced edema and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in the skin was required for the full development and week-long time course of heat hypersensitivity induced by i.d. CFA, but paw edema and mechanical hypersensitivity were independent of CaV2.2 channel activity. CFA induced increases in several cytokines in hindpaw fluid including IL-6 which was also dependent on CaV2.2 channel activity. Using IL-6-specific neutralizing antibodies in vivo, we show that IL-6 contributes to heat hypersensitivity and that neutralizing both IL-1ɑ and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in the skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in the skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Meredith J Crane
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Amanda M Jamieson
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Diane Lipscombe
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
11
|
Qi JY, Jin YC, Wang XS, Yang LK, Lu L, Yue J, Yang F, Liu YS, Jiang YL, Song DK, Lv T, Li XB, Zhang K, Liu SB. Ruscogenin Exerts Anxiolytic-Like Effect via Microglial NF-κB/MAPKs/NLRP3 Signaling Pathways in Mouse Model of Chronic Inflammatory Pain. Phytother Res 2024; 38:5417-5440. [PMID: 39267167 DOI: 10.1002/ptr.8325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/22/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024]
Abstract
Long-term inflammation can cause chronic pain and trigger patients' anxiety by sensitizing the central nervous system. However, effective drugs with few side effects for treating chronic pain-induced anxiety are still lacking. The anxiolytic and anti-inflammatory effects of ruscogenin (RUS), an important active compound in Ophiopogon japonicus, were evaluated in a mouse model of chronic inflammatory pain and N9 cells. RUS (5, 10, or 20 mg/kg/day, i.g.) was administered once daily for 7 days after CFA injection; pain- and anxiety-like behaviors were assessed in mice. Anti-inflammatory effect of RUS (0.1, 1, 10 μM) on N9 microglia after LPS treatment was evaluated. Inflammatory markers (TNF-α, IL-1β, IL-6, CD86, IL-4, ARG-1, and CD206) were measured using qPCR. The levels of IBA1, ROS, NF-κB, TLR4, P-IKK, P-IκBα, and P65, MAPKs (ERK, JNK, and P38), NLRP3 (caspase-1, ASC, and NLRP3) were detected by Western blotting or immunofluorescence staining. The potential target of RUS was validated by molecular docking and adeno-associated virus injection. Mice in CFA group exhibited allodynia and anxiety-like behaviors. LPS induced neuroinflammation in N9 cells. Both CFA and LPS increased the levels of IBA1, ROS, and inflammatory markers. RUS (10 mg/kg in vivo and 1 μM in vitro) alleviated these alterations through NF-κB/MAPKs/NLRP3 signaling pathways but had no effect on pain hypersensitivity. TLR4 strongly interacted with RUS, and TLR4 overexpression abolished the effects of RUS on anxiety and neuroinflammation. RUS exerts anti-inflammatory and anxiolytic effects via TLR4-mediated NF-κB/MAPKs/NLRP3 signaling pathways, which provides a basis for the treatment of chronic pain-induced anxiety.
Collapse
Affiliation(s)
- Jing-Yu Qi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, China
| | - Yu-Chen Jin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xin-Shang Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jiao Yue
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Fan Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong-Sheng Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Da-Ke Song
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tao Lv
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shui-Bing Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Aguilar D, Zhu F, Millet A, Millet N, Germano P, Pisegna J, Akbari O, Doherty TA, Swidergall M, Jendzjowsky N. Sensory neurons regulate stimulus-dependent humoral immunity in mouse models of bacterial infection and asthma. Nat Commun 2024; 15:8914. [PMID: 39414787 PMCID: PMC11484968 DOI: 10.1038/s41467-024-53269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Sensory neurons sense pathogenic infiltration to drive innate immune responses, but their role in humoral immunity is unclear. Here, using mouse models of Streptococcus pneumoniae infection and Alternaria alternata asthma, we show that sensory neurons are required for B cell recruitment and antibody production. In response to S. pneumoniae, sensory neuron depletion increases bacterial burden and reduces B cell numbers, IgG release, and neutrophil stimulation. Meanwhile, during A. alternata-induced airway inflammation, sensory neuron depletion decreases B cell population sizes, IgE levels, and asthmatic characteristics. Mechanistically, during bacterial infection, sensory neurons preferentially release vasoactive intestinal polypeptide (VIP). In response to asthma, sensory neurons release substance P. Administration of VIP into sensory neuron-depleted mice suppresses bacterial burden, while VIPR1 deficiency increases infection. Similarly, exogenous substance P delivery aggravates asthma in sensory neuron-depleted mice, while substance P deficiency ameliorates asthma. Our data, thus demonstrate that sensory neurons release select neuropeptides which target B cells dependent on the immunogen.
Collapse
Affiliation(s)
- Diane Aguilar
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Fengli Zhu
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nicolas Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph Pisegna
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine, Los Angeles, CA, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Taylor A Doherty
- Division of Allergy and Immunology, Department of Medicine, University of California San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Marc Swidergall
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, Los Angeles, CA, USA
| | - Nicholas Jendzjowsky
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA.
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Israni DK, Raghani NR, Soni J, Shah M, Prajapati BG, Chorawala MR, Mangmool S, Singh S, Chittasupho C. Harnessing Cannabis sativa Oil for Enhanced Skin Wound Healing: The Role of Reactive Oxygen Species Regulation. Pharmaceutics 2024; 16:1277. [PMID: 39458608 PMCID: PMC11510192 DOI: 10.3390/pharmaceutics16101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa emerges as a noteworthy candidate for its medicinal potential, particularly in wound healing. This review article explores the efficacy of cannabis oil in reducing reactive oxygen species (ROS) during the healing of acute and chronic wounds, comparing it to the standard treatments. ROS, produced from various internal and external sources, play a crucial role in wound development by causing cell and tissue damage. Understanding the role of ROS on skin wounds is essential, as they act both as signaling molecules and contributors to oxidative damage. Cannabis oil, recognized for its antioxidant properties, may help mitigate oxidative damage by scavenging ROS and upregulating antioxidative mechanisms, potentially enhancing wound healing. This review emphasizes ongoing research and the future potential of cannabis oil in dermatological treatments, highlighted through clinical studies and patent updates. Despite its promising benefits, optimizing cannabis oil formulations for therapeutic applications remains a challenge, underscoring the need for further research to realize its medicinal capabilities in wounds.
Collapse
Affiliation(s)
- Dipa K. Israni
- Department of Pharmacology, L J Institute of Pharmacy, L J University, Ahmedabad 382210, Gujarat, India; (D.K.I.); (M.S.)
| | - Neha R. Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India;
| | - Jhanvi Soni
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University, Waghodia, Vadodara 391760, Gujarat, India;
| | - Mansi Shah
- Department of Pharmacology, L J Institute of Pharmacy, L J University, Ahmedabad 382210, Gujarat, India; (D.K.I.); (M.S.)
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Mehul R. Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India;
| | | | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
14
|
Starkl P, Jonsson G, Artner T, Turnes BL, Gail LM, Oliveira T, Jain A, Serhan N, Stejskal K, Lakovits K, Hladik A, An M, Channon KM, Kim H, Köcher T, Weninger W, Stary G, Knapp S, Klang V, Gaudenzio N, Woolf CJ, Tikoo S, Jain R, Penninger JM, Cronin SJF. Mast cell-derived BH4 and serotonin are critical mediators of postoperative pain. Sci Immunol 2024; 9:eadh0545. [PMID: 39178277 DOI: 10.1126/sciimmunol.adh0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/01/2024] [Indexed: 08/25/2024]
Abstract
Postoperative pain affects most patients after major surgery and can transition to chronic pain. The considerable side effects and limited efficacy of current treatments underline the need for new therapeutic options. We observed increased amounts of the metabolites BH4 and serotonin after skin injury. Mast cells were primary postoperative sources of Gch1, the rate-limiting enzyme in BH4 synthesis, itself an obligate cofactor in serotonin production by tryptophan hydroxylase (Tph1). Mice deficient in mast cells or in mast cell-specific Gch1 or Tph1 showed drastically decreased postoperative pain. We found that injury induced the nociceptive neuropeptide substance P, mast cell degranulation, and granule nerve colocalization. Substance P triggered serotonin release in mouse and human mast cells, and substance P receptor blockade substantially ameliorated pain hypersensitivity. Our findings highlight the importance of mast cells at the neuroimmune interface and substance P-driven mast cell BH4 and serotonin production as a therapeutic target for postoperative pain treatment.
Collapse
Affiliation(s)
- Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Laura-Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tiago Oliveira
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Aakanksha Jain
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
| | - Karel Stejskal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Karin Lakovits
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Keith M Channon
- Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hail Kim
- Korea Advanced Institute of Science and Technology, Daejoen, Republic of Korea
| | - Thomas Köcher
- Vienna BioCenter Core Facilities (VBCF), 1030 Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Shweta Tikoo
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rohit Jain
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Josef M Penninger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shane J F Cronin
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
15
|
Zamora ME, Essien EO, Bhamidipati K, Murthy A, Liu J, Kim H, Patel MN, Nong J, Wang Z, Espy C, Chaudhry FN, Ferguson LT, Tiwari S, Hood ED, Marcos-Contreras OA, Omo-Lamai S, Shuvaeva T, Arguiri E, Wu J, Rauova L, Poncz M, Basil MC, Cantu E, Planer JD, Spiller K, Zepp J, Muzykantov VR, Myerson JW, Brenner JS. Marginated Neutrophils in the Lungs Effectively Compete for Nanoparticles Targeted to the Endothelium, Serving as a Part of the Reticuloendothelial System. ACS NANO 2024; 18:22275-22297. [PMID: 39105696 PMCID: PMC11935960 DOI: 10.1021/acsnano.4c06286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Nanomedicine has long pursued the goal of targeted delivery to specific organs and cell types but has yet to achieve this goal with the vast majority of targets. One rare example of success in this pursuit has been the 25+ years of studies targeting the lung endothelium using nanoparticles conjugated to antibodies against endothelial surface molecules. However, here we show that such "endothelial-targeted" nanocarriers also effectively target the lungs' numerous marginated neutrophils, which reside in the pulmonary capillaries and patrol for pathogens. We show that marginated neutrophils' uptake of many of these "endothelial-targeted" nanocarriers is on par with endothelial uptake. This generalizes across diverse nanomaterials and targeting moieties and was even found with physicochemical lung tropism (i.e., without targeting moieties). Further, we observed this in ex vivo human lungs and in vivo healthy mice, with an increase in marginated neutrophil uptake of nanoparticles caused by local or distant inflammation. These findings have implications for nanomedicine development for lung diseases. These data also suggest that marginated neutrophils, especially in the lungs, should be considered a major part of the reticuloendothelial system (RES), with a special role in clearing nanoparticles that adhere to the lumenal surfaces of blood vessels.
Collapse
Affiliation(s)
- Marco E Zamora
- Drexel University School of Biomedical Engineering, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Eno-Obong Essien
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Kartik Bhamidipati
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Aditi Murthy
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Jing Liu
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Hyunjun Kim
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Manthan N Patel
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jia Nong
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Zhicheng Wang
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Carolann Espy
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Fatima N Chaudhry
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Laura T Ferguson
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Sachchidanand Tiwari
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth D Hood
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A Marcos-Contreras
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Serena Omo-Lamai
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Tea Shuvaeva
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Evguenia Arguiri
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jichuan Wu
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Lubica Rauova
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Mortimer Poncz
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Maria C Basil
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Edward Cantu
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Joseph D Planer
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Kara Spiller
- Drexel University School of Biomedical Engineering, Philadelphia, Pennsylvania 19104, United States
| | - Jarod Zepp
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R Muzykantov
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jacob W Myerson
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jacob S Brenner
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Xu R, Pan Y, Zheng K, Chen M, Yin C, Hu Q, Wang J, Yu Q, Li P, Tai Y, Fang J, Liu B, Fang J, Tian G, Liu B. IL-33/ST2 induces macrophage-dependent ROS production and TRPA1 activation that mediate pain-like responses by skin incision in mice. Theranostics 2024; 14:5281-5302. [PMID: 39267790 PMCID: PMC11388077 DOI: 10.7150/thno.97856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background: Insufficiently managed incisional (INC) pain severely affects patients' life quality and rehabilitation after a major operation. However, mechanisms underlying INC pain still remain poorly understood. Methods: A mouse model of INC pain was established by skin plus deep muscle incision. Biochemistry assay, in vivo reactive oxygen species (ROS) imaging, Ca2+ imaging combined with retrograde labelling, neuron tracing and nocifensive behavior test, etc. were utilized for mechanism investigation. Results: We found pro-nociceptive cytokine interleukin -33 (IL-33) ranked among top up-regulated cytokines in incised tissues of INC pain model mice. IL-33 was predominantly expressed in keratinocytes around the incisional area. Neutralization of IL-33 or its receptor suppression of tumorigenicity 2 protein (ST2) or genetic deletion of St2 gene (St2 -/-) remarkably ameliorated mechanical allodynia and improved gait impairments of model mice. IL-33 contributes to INC pain by recruiting macrophages, which subsequently release ROS in incised tissues via ST2-dependent mechanism. Transfer of excessive macrophages enhanced oxidative injury and reproduced mechanical allodynia in St2 -/- mice upon tissue incision. Overproduced ROS subsequently activated functionally up-regulated transient receptor potential ankyrin subtype-1 (TRPA1) channel innervating the incisional site to produce mechanical allodynia. Neither deleting St2 nor attenuating ROS affected wound healing of model mice. Conclusions: Our work uncovered a previously unrecognized contribution of IL-33/ST2 signaling in mediating mechanical allodynia and gait impairment of a mouse model of INC pain. Targeting IL-33/ST2 signaling could be a novel therapeutic approach for INC pain management.
Collapse
Affiliation(s)
- Ruoyao Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushuang Pan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaige Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Muyan Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Wang
- Department of Rehabilitation in Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peiyi Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guihua Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
17
|
Aguilar D, Zhu F, Millet A, Millet N, Germano P, Pisegna J, Akbari O, Doherty TA, Swidergall M, Jendzjowsky N. Sensory neurons regulate stimulus-dependent humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574231. [PMID: 38260709 PMCID: PMC10802321 DOI: 10.1101/2024.01.04.574231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sensory neurons sense pathogenic infiltration, serving to inform immune coordination of host defense. However, sensory neuron-immune interactions have been predominantly shown to drive innate immune responses. Humoral memory, whether protective or destructive, is acquired early in life - as demonstrated by both early exposure to streptococci and allergic disease onset. Our study further defines the role of sensory neuron influence on humoral immunity in the lung. Using a murine model of Streptococcus pneumonia pre-exposure and infection and a model of allergic asthma, we show that sensory neurons are required for B-cell and plasma cell recruitment and antibody production. In response to S. pneumoniae, sensory neuron depletion resulted in a larger bacterial burden, reduced B-cell populations, IgG release and neutrophil stimulation. Conversely, sensory neuron depletion reduced B-cell populations, IgE and asthmatic characteristics during allergen-induced airway inflammation. The sensory neuron neuropeptide released within each model differed. With bacterial infection, vasoactive intestinal polypeptide (VIP) was preferentially released, whereas substance P was released in response to asthma. Administration of VIP into sensory neuron-depleted mice suppressed bacterial burden and increased IgG levels, while VIP1R deficiency increased susceptibility to bacterial infection. Sensory neuron-depleted mice treated with substance P increased IgE and asthma, while substance P genetic ablation resulted in blunted IgE, similar to sensory neuron-depleted asthmatic mice. These data demonstrate that the immunogen differentially stimulates sensory neurons to release specific neuropeptides which specifically target B-cells. Targeting sensory neurons may provide an alternate treatment pathway for diseases involved with insufficient and/or aggravated humoral immunity.
Collapse
|
18
|
Wang C, Yang X, Gao T, Zhao Y, Yang Y, Li X, Yang Y, Yi T, Wang Y, Mi W. Astroglial morphological changes in periaqueductal grey in different pain and itch mice models. Behav Brain Res 2024; 471:115075. [PMID: 38815698 DOI: 10.1016/j.bbr.2024.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The periaqueductal gray (PAG) plays a well-established pivotal role in the descending pain modulatory circuit. The objective of this study was to investigate morphological changes in the astroglia in models that are commonly used in pain and itch studies. METHODS Five different mouse models of pain, as well as two models of chronic itch, were established using complete Freund's adjuvant (CFA), spared nerve injury (SNI), bone cancer pain (BCP), cisplatin (CIS), and paclitaxel (PTX) for pain, and diphenylcyclopropenone (DCP) and acetone and diethyl ether followed by water (AEW) for chronic itch. von Frey tests and video recordings were employed to assess pain and itching behaviors. The immunofluorescence of S100β, pSTAT3, and glial fibrillary acidic protein (GFAP) was examined. Two- and three-dimensional studies were used to evaluate changes in astrocyte morphology. RESULTS Significant scratching was caused by DCP and AEW, whereas the administration of CFA, SNI, BCP, CIS, and PTX produced clear mechanical allodynia. The expression of GFAP in the lPAG/vlPAG was upregulated in CFA, SNI, BCP, CIS, PTX, and DCP mice but decreased in AEW mice. According to Sholl analysis, CFA, SNI, PTX, and BCP mice showed substantially higher astrocyte intersections in the vlPAG, whereas CFA, SNI, BCP, CIS, and DCP mice presented longer peak lengths. In three-dimensional analysis, CFA, SNI, PTX, and DCP mice showed increased astrocyte surface areas, while CIS and AEW mice showed both reduced surface areas and/or volumes of astrocytes. CONCLUSION The findings showed that different pain and itching conditions have different astrocyte morphologies, and these variations in morphological changes help to explain the pathophysiology of these conditions.
Collapse
Affiliation(s)
- Chenghao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Xiaotong Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tianchi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuyu Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yayue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaochen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ting Yi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Parisien M, van Reij RRI, Khoury S, Koseli E, Karaky M, Silva JR, Taheri G, van den Hoogen NJ, Peng G, Allegri M, De Gregori M, Chelly JE, Rakel BA, Aasvang EK, Kehlet H, Buhre WFFA, Bryant CD, Damaj MI, King IL, Ghasemlou N, Mogil JS, Joosten EAJ, Diatchenko L. Genome-wide association studies with experimental validation identify a protective role for B lymphocytes against chronic post-surgical pain. Br J Anaesth 2024; 133:360-370. [PMID: 38862382 PMCID: PMC11282472 DOI: 10.1016/j.bja.2024.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Chronic post-surgical pain (CPSP) significantly impacts patients' recovery and quality of life. Although environmental risk factors are well-established, genetic risk remains less understood. METHODS A meta-analysis of genome-wide association studies followed by partitioned heritability was performed on 1350 individuals across five surgery types: hysterectomy, mastectomy, abdominal, hernia, and knee. In subsequent animal studies, withdrawal thresholds to evoked mechanical stimulation were measured in Rag1 null mutant and wild-type mice after plantar incision and laparotomy. Cell sorting by flow cytometry tracked recruitment of immune cell types. RESULTS We discovered 77 genome-wide significant single-nucleotide polymorphism (SNP) hits, distributed among 24 loci and 244 genes. Meta-analysis of all cohorts estimated a SNP-based narrow-sense heritability for CPSP at ∼39%, indicating a substantial genetic contribution. Partitioned heritability analysis across a wide variety of tissues revealed enrichment of heritability in immune system-related genes, particularly those associated with B and T cells. Rag1 null mutant mice lacking both T and B cells exhibited exacerbated and prolonged allodynia up to 42 days after surgery, which was rescued by B-cell transfer. Recruitment patterns of B cells but not T cells differed significantly during the first 7 days after injury in the footpad, lymph nodes, and dorsal root ganglia. CONCLUSIONS These findings suggest a key protective role for the adaptive immune system in the development of chronic post-surgical pain.
Collapse
Affiliation(s)
- Marc Parisien
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Roel R I van Reij
- Department of Anesthesiology and Pain Management, Maastricht University Medical Center+, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, The Netherlands
| | - Samar Khoury
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Eda Koseli
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohamad Karaky
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Jaqueline R Silva
- Department of Anesthesiology, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Golnar Taheri
- Department of Biomedical & Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Nynke J van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Center+, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, The Netherlands
| | - Garrie Peng
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Massimo Allegri
- Department of Pain Therapy, Ensemble Hospitalier de la Côte, Morges, Switzerland
| | - Manuela De Gregori
- Pain Therapy Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jacques E Chelly
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Eske K Aasvang
- Department of Anesthesiology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henrik Kehlet
- Section of Surgical Pathophysiology 7621, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Wolfgang F F A Buhre
- Department of Anesthesiology, Division of Anesthesiology, Emergency and Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Camron D Bryant
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA
| | - Irah L King
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; McGill Interdisciplinary Initiative in Infection and Immunity, McGill Centre for Microbiome Research, Montreal, QC, Canada
| | - Nader Ghasemlou
- Department of Anesthesiology, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Jeffrey S Mogil
- Department of Psychology, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Center+, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, The Netherlands
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 channels in skin regulate prolonged heat hypersensitivity during neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603149. [PMID: 39071304 PMCID: PMC11275762 DOI: 10.1101/2024.07.13.603149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuro-immune cell signaling but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal capsaicin via IL-1α cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the same animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by the intradermal (id) Complete Freund's Adjuvant (CFA) model of chronic neuroinflammation that involves ongoing cytokine signaling for days. Ongoing CFA-induced cytokine signaling cascades in skin lead to pronounced edema, and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in skin is required for the full development and week-long time course of heat hypersensitivity induced by id CFA. CaV2.2 channels, by contrast, are not involved in paw edema and mechanical hypersensitivity. CFA induced increases in cytokines in hind paws including IL-6 which was dependent on CaV2.2 channel activity. Using IL-6 specific neutralizing antibodies, we show that IL-6 contributes to heat hypersensitivity and, neutralizing both IL-1α and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| |
Collapse
|
21
|
Masson JD, Badran G, Gherardi RK, Authier FJ, Crépeaux G. Widespread Myalgia and Chronic Fatigue: Phagocytes from Macrophagic Myofasciitis Patients Exposed to Aluminum Oxyhydroxide-Adjuvanted Vaccine Exhibit Specific Inflammatory, Autophagic, and Mitochondrial Responses. TOXICS 2024; 12:491. [PMID: 39058143 PMCID: PMC11281175 DOI: 10.3390/toxics12070491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Macrophagic myofasciitis (MMF) is an inflammatory histopathological lesion demonstrating long-term biopersistence of vaccine-derived aluminum adjuvants within muscular phagocytic cells. Affected patients suffer from widespread myalgia and severe fatigue consistent with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a poorly understood disorder suspected to result from chronic immune stimulation by infectious and inorganic particles. (2) Methods: In this study we determined the immuno-metabolic properties of MMF phagocytic cells compared to controls, at rest and upon exposure to aluminum oxyhydroxide adjuvant, with or without adsorbed antigens, using protein quantification and an oxygen consumption assay. (3) Results: MMF and control cells similarly internalized the adjuvant and vaccine but MMF cells specifically expressed Rubicon and Nox2, two molecules unique to the LC3-associated phagocytosis (LAP) machinery, a non-canonical autophagic pathway able to downregulate canonical autophagy. MMF cells exhibited an altered inflammatory secretome, producing more pain-inducing CXC chemokines and less TNF-α than controls, consistent with chronic myalgia and exhaustion of the immune system previously documented in ME/CFS. MMF cells exhibited mitochondrial metabolism dysfunction, with exacerbated reaction to adjuvanted vaccine, contrasting with limited spare respiratory capacity and marked proton leak weakening energy production. (4) Conclusions: MMF phagocytes seemingly use LAP to handle aluminum oxyhydroxide vaccine particles, secrete pain-inducing molecules, and exhibit exacerbated metabolic reaction to the vaccine with limited capacity to respond to ongoing energetic requests.
Collapse
Affiliation(s)
- Jean-Daniel Masson
- Institut National de la Santé Et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, F-94010 Creteil, France
| | - Ghidaa Badran
- Institut National de la Santé Et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, F-94010 Creteil, France
| | - Romain K. Gherardi
- Institut National de la Santé Et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, F-94010 Creteil, France
- Hôpitaux Universitaires Henri Mondor, Service d’Histologie/Centre Expert de Pathologie Neuromusculaire, Assistance Publique-Hôpitaux de Paris, F-94010 Creteil, France
| | - François-Jérôme Authier
- Institut National de la Santé Et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, F-94010 Creteil, France
- Hôpitaux Universitaires Henri Mondor, Service d’Histologie/Centre Expert de Pathologie Neuromusculaire, Assistance Publique-Hôpitaux de Paris, F-94010 Creteil, France
| | - Guillemette Crépeaux
- Institut National de la Santé Et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, F-94010 Creteil, France
- Ecole Nationale Vétérinaire d’Alfort, Institut Mondor de Recherche Biomédicale, F-94700 Maisons Alfort, France
| |
Collapse
|
22
|
La Porta C, Plum T, Palme R, Mack M, Tappe-Theodor A. Repeated social defeat stress differently affects arthritis-associated hypersensitivity in male and female mice. Brain Behav Immun 2024; 119:572-596. [PMID: 38663771 DOI: 10.1016/j.bbi.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Chronic stress enhances the risk of neuropsychiatric disorders and contributes to the aggravation and chronicity of pain. The development of stress-associated diseases, including pain, is affected by individual vulnerability or resilience to stress, although the mechanisms remain elusive. We used the repeated social defeat stress model promoting susceptible and resilient phenotypes in male and female mice and induced knee mono-arthritis to investigate the impact of stress vulnerability on pain and immune system regulation. We analyzed different pain-related behaviors, measured blood cytokine and immune cell levels, and performed histological analyses at the knee joints and pain/stress-related brain areas. Stress susceptible male and female mice showed prolonged arthritis-associated hypersensitivity. Interestingly, hypersensitivity was exacerbated in male but not female mice. In males, stress promoted transiently increased neutrophils and Ly6Chigh monocytes, lasting longer in susceptible than resilient mice. While resilient male mice displayed persistently increased levels of the anti-inflammatory interleukin (IL)-10, susceptible mice showed increased levels of the pro-inflammatory IL-6 at the early- and IL-12 at the late arthritis stage. Although joint inflammation levels were comparable among groups, macrophage and neutrophil infiltration was higher in the synovium of susceptible mice. Notably, only susceptible male mice, but not females, presented microgliosis and monocyte infiltration in the prefrontal cortex at the late arthritis stage. Blood Ly6Chigh monocyte depletion during the early inflammatory phase abrogated late-stage hypersensitivity and the associated histological alterations in susceptible male mice. Thus, recruitment of blood Ly6Chigh monocytes during the early arthritis phase might be a key factor mediating the persistence of arthritis pain in susceptible male mice. Alternative neuro-immune pathways that remain to be explored might be involved in females.
Collapse
Affiliation(s)
- Carmen La Porta
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | - Thomas Plum
- Division for Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Matthias Mack
- Department of Nephrology, Regensburg University Hospital, Regensburg, Germany
| | - Anke Tappe-Theodor
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Jain A, Gyori BM, Hakim S, Jain A, Sun L, Petrova V, Bhuiyan SA, Zhen S, Wang Q, Kawaguchi R, Bunga S, Taub DG, Ruiz-Cantero MC, Tong-Li C, Andrews N, Kotoda M, Renthal W, Sorger PK, Woolf CJ. Nociceptor-immune interactomes reveal insult-specific immune signatures of pain. Nat Immunol 2024; 25:1296-1305. [PMID: 38806708 PMCID: PMC11224023 DOI: 10.1038/s41590-024-01857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Inflammatory pain results from the heightened sensitivity and reduced threshold of nociceptor sensory neurons due to exposure to inflammatory mediators. However, the cellular and transcriptional diversity of immune cell and sensory neuron types makes it challenging to decipher the immune mechanisms underlying pain. Here we used single-cell transcriptomics to determine the immune gene signatures associated with pain development in three skin inflammatory pain models in mice: zymosan injection, skin incision and ultraviolet burn. We found that macrophage and neutrophil recruitment closely mirrored the kinetics of pain development and identified cell-type-specific transcriptional programs associated with pain and its resolution. Using a comprehensive list of potential interactions mediated by receptors, ligands, ion channels and metabolites to generate injury-specific neuroimmune interactomes, we also uncovered that thrombospondin-1 upregulated by immune cells upon injury inhibited nociceptor sensitization. This study lays the groundwork for identifying the neuroimmune axes that modulate pain in diverse disease contexts.
Collapse
Affiliation(s)
- Aakanksha Jain
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Benjamin M Gyori
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, USA
| | - Sara Hakim
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ashish Jain
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Veselina Petrova
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shannon Zhen
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Qing Wang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Samuel Bunga
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel G Taub
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology and Neurosciences Institute (Biomedical Research Center) and Biosanitary Research Institute ibs.GRANADA, University of Granada, Granada, Spain
| | - Candace Tong-Li
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | | | - Masakazu Kotoda
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Wilcox NC, Taheri G, Halievski K, Talbot S, Silva JR, Ghasemlou N. Interactions between skin-resident dendritic and Langerhans cells and pain-sensing neurons. J Allergy Clin Immunol 2024; 154:11-19. [PMID: 38492673 DOI: 10.1016/j.jaci.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Various immune cells in the skin contribute to its function as a first line of defense against infection and disease, and the skin's dense innervation by pain-sensing sensory neurons protects the host against injury or damage signals. Dendritic cells (DCs) are a heterogeneous population of cells that link the innate immune response to the adaptive response by capturing, processing, and presenting antigens to promote T-cell differentiation and activation. DCs are abundant across peripheral tissues, including the skin, where they are found in the dermis and epidermis. Langerhans cells (LCs) are a DC subset located only in the epidermis; both populations of cells can migrate to lymph nodes to contribute to broad immune responses. Dermal DCs and LCs are found in close apposition with sensory nerve fibers in the skin and express neurotransmitter receptors, allowing them to communicate directly with the peripheral nervous system. Thus, neuroimmune signaling between DCs and/or LCs and sensory neurons can modulate physiologic and pathophysiologic pathways, including immune cell regulation, host defense, allergic response, homeostasis, and wound repair. Here, we summarize the latest discoveries on DC- and LC-neuron interaction with neurons while providing an overview of gaps and areas not previously explored. Understanding the interactions between these 2 defence systems may provide key insight into developing therapeutic targets for treating diseases such as psoriasis, neuropathic pain, and lupus.
Collapse
Affiliation(s)
- Natalie C Wilcox
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Golnar Taheri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katherine Halievski
- Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sebastien Talbot
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R Silva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
25
|
Jain A, Hakim S, Woolf CJ. Immune drivers of physiological and pathological pain. J Exp Med 2024; 221:e20221687. [PMID: 38607420 PMCID: PMC11010323 DOI: 10.1084/jem.20221687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Physiological pain serves as a warning of exposure to danger and prompts us to withdraw from noxious stimuli to prevent tissue damage. Pain can also alert us of an infection or organ dysfunction and aids in locating such malfunction. However, there are instances where pain is purely pathological, such as unresolved pain following an inflammation or injury to the nervous system, and this can be debilitating and persistent. We now appreciate that immune cells are integral to both physiological and pathological pain, and that pain, in consequence, is not strictly a neuronal phenomenon. Here, we discuss recent findings on how immune cells in the skin, nerve, dorsal root ganglia, and spinal cord interact with somatosensory neurons to mediate pain. We also discuss how both innate and adaptive immune cells, by releasing various ligands and mediators, contribute to the initiation, modulation, persistence, or resolution of various modalities of pain. Finally, we propose that the neuroimmune axis is an attractive target for pain treatment, but the challenges in objectively quantifying pain preclinically, variable sex differences in pain presentation, as well as adverse outcomes associated with immune system modulation, all need to be considered in the development of immunotherapies against pain.
Collapse
Affiliation(s)
- Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Cui X, Wei W, Zhang Z, Liu K, Zhao T, Zhang J, Zheng A, Xi H, He X, Wang S, Zhu B, Gao X. Caffeine Impaired Acupuncture Analgesia in Inflammatory Pain by Blocking Adenosine A1 Receptor. THE JOURNAL OF PAIN 2024; 25:1024-1038. [PMID: 37918469 DOI: 10.1016/j.jpain.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Caffeine consumption inhibits acupuncture analgesic effects by blocking adenosine signaling. However, existing evidence remains controversial. Hence, this study aimed to examine the adenosine A1 receptor (A1R) role in moderate-dose caffeine-induced abolishing effect on acupuncture analgesia using A1R knockout mice (A1R-/-). We assessed the role of A1R in physiological sensory perception and its interaction with caffeine by measuring mechanical and thermal pain thresholds and administering A1R and adenosine 2A receptor antagonists in wild-type (WT) and A1R-/- mice. Formalin- and complete Freund's adjuvant (CFA)-induced inflammatory pain models were recruited to explore moderate-dose caffeine effect on pain perception and acupuncture analgesia in WT and A1R-/- mice. Moreover, a C-fiber reflex electromyogram in the biceps femoris was conducted to validate the role of A1R in the caffeine-induced blockade of acupuncture analgesia. We found that A1R was dispensable for physiological sensory perception and formalin- and CFA-induced hypersensitivity. However, genetic deletion of A1R impaired the antinociceptive effect of acupuncture in A1R-/- mice under physiological or inflammatory pain conditions. Acute moderate-dose caffeine administration induced mechanical and thermal hyperalgesia under physiological conditions but not in formalin- and CFA-induced inflammatory pain. Moreover, caffeine significantly inhibited electroacupuncture (EA) analgesia in physiological and inflammatory pain in WT mice, comparable to that of A1R antagonists. Conversely, A1R deletion impaired the EA analgesic effect and decreased the caffeine-induced inhibitory effect on EA analgesia in physiological conditions and inflammatory pain. Moderate-dose caffeine administration diminished the EA-induced antinociceptive effect by blocking A1R. Overall, our study suggested that caffeine consumption should be avoided during acupuncture treatment. PERSPECTIVE: Moderate-dose caffeine injection attenuated EA-induced antinociceptive effect in formalin- and CFA-induced inflammatory pain mice models by blocking A1R. This highlights the importance of monitoring caffeine intake during acupuncture treatment.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wan Wei
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Zhao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; Department of Acupuncture, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Jialin Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; Department of Acupuncture, Yuncheng Hospital of Traditional Chinese Medicine, Yuncheng, Shanxi Province, China
| | - Ani Zheng
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; Department of Acupuncture, Rehabilitation, Massage and Pain, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Hanqing Xi
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xun He
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuya Wang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
O'Brien JA, Karrasch JF, Huang Y, Vine EE, Cunningham AL, Harman AN, Austin PJ. Nerve-myeloid cell interactions in persistent human pain: a reappraisal using updated cell subset classifications. Pain 2024; 165:753-771. [PMID: 37975868 DOI: 10.1097/j.pain.0000000000003106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023]
Abstract
ABSTRACT The past 20 years have seen a dramatic shift in our understanding of the role of the immune system in initiating and maintaining pain. Myeloid cells, including macrophages, dendritic cells, Langerhans cells, and mast cells, are increasingly implicated in bidirectional interactions with nerve fibres in rodent pain models. However, our understanding of the human setting is still poor. High-dimensional functional analyses have substantially changed myeloid cell classifications, with recently described subsets such as epidermal dendritic cells and DC3s unveiling new insight into how myeloid cells interact with nerve fibres. However, it is unclear whether this new understanding has informed the study of human chronic pain. In this article, we perform a scoping review investigating neuroimmune interactions between myeloid cells and peripheral nerve fibres in human chronic pain conditions. We found 37 papers from multiple pain states addressing this aim in skin, cornea, peripheral nerve, endometrium, and tumour, with macrophages, Langerhans cells, and mast cells the most investigated. The directionality of results between studies was inconsistent, although the clearest pattern was an increase in macrophage frequency across conditions, phases, and tissues. Myeloid cell definitions were often outdated and lacked correspondence with the stated cell types of interest; overreliance on morphology and traditional structural markers gave limited insight into the functional characteristics of investigated cells. We therefore critically reappraise the existing literature considering contemporary myeloid cell biology and advocate for the application of established and emerging high-dimensional proteomic and transcriptomic single-cell technologies to clarify the role of specific neuroimmune interactions in chronic pain.
Collapse
Affiliation(s)
- Jayden A O'Brien
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jackson F Karrasch
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Yun Huang
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erica E Vine
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Anthony L Cunningham
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Andrew N Harman
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Paul J Austin
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| |
Collapse
|
28
|
Lin Z, Luo X, Wickman JR, Reddy D, Pande R, Tian Y, Triana V, Lee J, Furdui CM, Pink D, Sacan A, Ajit SK. Inflammatory pain resolution by mouse serum-derived small extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.578759. [PMID: 38405813 PMCID: PMC10888877 DOI: 10.1101/2024.02.16.578759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Chronic pain is a significant public health issue. Current treatments have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs) to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can carry RNAs, proteins, and lipid mediators to recipient cells via circulation. Exosomes can be beneficial or harmful depending on their source and contents. To investigate the short and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model donor mice were injected intrathecally into naïve recipient mice. Basal mechanical thresholds transiently increased in recipient mice. This effect was mediated by opioid signaling as this outcome was blocked by naltrexone. Mass Spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. A single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice delayed mechanical allodynia in SNI model mice and accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. ChipCytometry of spinal cord and dorsal root ganglion (DRG) from sEV treated mice showed that prophylactic sEV treatment reduced the number of natural killer (NK) and NKT cells in spinal cord and increased CD206+ anti-inflammatory macrophages in (DRG) after CFA injection. Further characterization of sEVs showed the presence of immune markers suggesting that sEVs can exert immunomodulatory effects in recipient mice to promote the resolution of inflammatory pain. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.
Collapse
Affiliation(s)
- Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Desmond Pink
- Nanostics Inc., Edmonton, Alberta, T5J 4P6, Canada
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
29
|
Erdogan O, Michot B, Xia J, Alabdulaaly L, Yesares Rubi P, Ha V, Chiu IM, Gibbs JL. Neuronal-immune axis alters pain and sensory afferent damage during dental pulp injury. Pain 2024; 165:392-403. [PMID: 37903298 DOI: 10.1097/j.pain.0000000000003029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 11/01/2023]
Abstract
ABSTRACT Dental pulp tissue is densely innervated by afferent fibers of the trigeminal ganglion. When bacteria cause dental decay near the pulpal tissue, a strong neuronal and immune response occurs, creating pulpitis, which is associated with severe pain and pulp tissue damage. Neuroimmune interactions have the potential to modulate both the pain and pathological outcome of pulpitis. We first investigated the role of the neuropeptide calcitonin gene-related peptide (CGRP), released from peptidergic sensory afferents, in dental pain and immune responses by using Calca knockout (Calca -/- ) and wild-type (Calca +/+ ) mice, in a model of pulpitis by creating a mechanical exposure of the dental pulp horn. We found that the neuropeptide CGRP, facilitated the recruitment of myeloid cells into the pulp while also increasing spontaneous pain-like behavior 20% to 25% at an early time point. Moreover, when we depleted neutrophils and monocytes, we found that there was 20% to 30% more sensory afferent loss and increased presence of bacteria in deeper parts of the tissue, whereas there was a significant reduction in mechanical pain response scores compared with the control group at a later time point. Overall, we showed that there is a crosstalk between peptidergic neurons and neutrophils in the pulp, modulating the pain and inflammatory outcomes of the disease.
Collapse
Affiliation(s)
- Ozge Erdogan
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, United States
| | - Benoit Michot
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, United States
| | - Jinya Xia
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Lama Alabdulaaly
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
- Division of Oral Medicine and Dentistry, Brigham and Women's Hospital, Boston, MA, United States
| | - Pilar Yesares Rubi
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, United States
| | - Vivian Ha
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, United States
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Jennifer L Gibbs
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
30
|
Liang S, Hess J. Tumor Neurobiology in the Pathogenesis and Therapy of Head and Neck Cancer. Cells 2024; 13:256. [PMID: 38334648 PMCID: PMC10854684 DOI: 10.3390/cells13030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
The neurobiology of tumors has attracted considerable interest from clinicians and scientists and has become a multidisciplinary area of research. Neural components not only interact with tumor cells but also influence other elements within the TME, such as immune cells and vascular components, forming a polygonal relationship to synergistically facilitate tumor growth and progression. This review comprehensively summarizes the current state of the knowledge on nerve-tumor crosstalk in head and neck cancer and discusses the potential underlying mechanisms. Several mechanisms facilitating nerve-tumor crosstalk are covered, such as perineural invasion, axonogenesis, neurogenesis, neural reprogramming, and transdifferentiation, and the reciprocal interactions between the nervous and immune systems in the TME are also discussed in this review. Further understanding of the nerve-tumor crosstalk in the TME of head and neck cancer may provide new nerve-targeted treatment options and help improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Siyuan Liang
- Department of Otorhinolaryngology, Head and Neck Tumors, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Tumors, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Rivera-García LG, Francis-Malavé AM, Castillo ZW, Uong CD, Wilson TD, Ferchmin PA, Eterovic V, Burton MD, Carrasquillo Y. Anti-hyperalgesic and anti-inflammatory effects of 4R-tobacco cembranoid in a mouse model of inflammatory pain. J Inflamm (Lond) 2024; 21:2. [PMID: 38267952 PMCID: PMC10809744 DOI: 10.1186/s12950-023-00373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
4R is a tobacco cembranoid that binds to and modulates cholinergic receptors and exhibits neuroprotective and anti-inflammatory activity. Given the established function of the cholinergic system in pain and inflammation, we propose that 4R is also analgesic. Here, we tested the hypothesis that systemic 4R treatment decreases pain-related behaviors and peripheral inflammation via modulation of the alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) in a mouse model of inflammatory pain. We elicited inflammation by injecting Complete Freund's Adjuvant (CFA) into the hind paw of male and female mice. We then assessed inflammation-induced hypersensitivity to cold, heat, and tactile stimulation using the Acetone, Hargreaves, and von Frey tests, respectively, before and at different time points (2.5 h - 8d) after a single systemic 4R (or vehicle) administration. We evaluated the contribution of α7 nAChRs 4R-mediated analgesia by pre-treating mice with a selective antagonist of α7 nAChRs followed by 4R (or vehicle) administration prior to behavioral tests. We assessed CFA-induced paw edema and inflammation by measuring paw thickness and quantifying immune cell infiltration in the injected hind paw using hematoxylin and eosin staining. Lastly, we performed immunohistochemical and flow cytometric analyses of paw skin in α7 nAChR-cre::Ai9 mice to measure the expression of α7 nAChRs on immune subsets. Our experiments show that systemic administration of 4R decreases inflammation-induced peripheral hypersensitivity in male and female mice and inflammation-induced paw edema in male but not female mice. Notably, 4R-mediated analgesia and anti-inflammatory effects lasted up to 8d after a single systemic administration on day 1. Pretreatment with an α7 nAChR-selective antagonist prevented 4R-mediated analgesia and anti-inflammatory effects, demonstrating that 4R effects are via modulation of α7 nAChRs. We further show that a subset of immune cells in the hind paw expresses α7 nAChRs. However, the number of α7 nAChR-expressing immune cells is unaltered by CFA or 4R treatment, suggesting that 4R effects are independent of α7 nAChR-expressing immune cells. Together, our findings identify a novel function of the 4R tobacco cembranoid as an analgesic agent in both male and female mice that reduces peripheral inflammation in a sex-dependent manner, further supporting the pharmacological targeting of the cholinergic system for pain treatment.
Collapse
Affiliation(s)
- Luis G Rivera-García
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Adela M Francis-Malavé
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
| | - Zachary W Castillo
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Calvin D Uong
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Torri D Wilson
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
| | - P A Ferchmin
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Vesna Eterovic
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Yarimar Carrasquillo
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA.
- National Institute On Drug Abuse, National Institutes of Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA.
| |
Collapse
|
32
|
Brewer CL, Kauer JA. Low-Frequency Stimulation of Trpv1-Lineage Peripheral Afferents Potentiates the Excitability of Spino-Periaqueductal Gray Projection Neurons. J Neurosci 2024; 44:e1184232023. [PMID: 38050062 PMCID: PMC10860615 DOI: 10.1523/jneurosci.1184-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
High-threshold dorsal root ganglion (HT DRG) neurons fire at low frequencies during inflammatory injury, and low-frequency stimulation (LFS) of HT DRG neurons selectively potentiates excitatory synapses onto spinal neurons projecting to the periaqueductal gray (spino-PAG). Here, in male and female mice, we have identified an underlying peripheral sensory population driving this plasticity and its effects on the output of spino-PAG neurons. We provide the first evidence that Trpv1-lineage sensory neurons predominantly induce burst firing, a unique mode of neuronal activity, in lamina I spino-PAG projection neurons. We modeled inflammatory injury by optogenetically stimulating Trpv1+ primary afferents at 2 Hz for 2 min (LFS), as peripheral inflammation induces 1-2 Hz firing in high-threshold C fibers. LFS of Trpv1+ afferents enhanced the synaptically evoked and intrinsic excitability of spino-PAG projection neurons, eliciting a stable increase in the number of action potentials (APs) within a Trpv1+ fiber-induced burst, while decreasing the intrinsic AP threshold and increasing the membrane resistance. Further experiments revealed that this plasticity required Trpv1+ afferent input, postsynaptic G protein-coupled signaling, and NMDA receptor activation. Intriguingly, an inflammatory injury and heat exposure in vivo also increased APs per burst, in vitro These results suggest that inflammatory injury-mediated plasticity is driven though Trpv1+ DRG neurons and amplifies the spino-PAG pathway. Spinal inputs to the PAG could play an integral role in its modulation of heat sensation during peripheral inflammation, warranting further exploration of the organization and function of these neural pathways.
Collapse
Affiliation(s)
- Chelsie L Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
33
|
Lindquist KA, Shein SA, Hovhannisyan AH, Mecklenburg J, Zou Y, Lai Z, Tumanov AV, Akopian AN. Associations of tissue damage induced inflammatory plasticity in masseter muscle with the resolution of chronic myalgia. Sci Rep 2023; 13:22057. [PMID: 38086903 PMCID: PMC10716154 DOI: 10.1038/s41598-023-49280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Gene plasticity during myogenous temporomandibular disorder (TMDM) development is largely unknown. TMDM could be modeled by intramuscular inflammation or tissue damage. To model inflammation induced TMDM we injected complete Freund's adjuvant (CFA) into masseter muscle (MM). To model tissue damage induced TMDM we injected extracellular matrix degrading collagenase type 2 (Col). CFA and Col produced distinct myalgia development trajectories. We performed bulk RNA-seq of MM to generate gene plasticity time course. CFA initiated TMDM (1d post-injection) was mainly linked to chemo-tacticity of monocytes and neutrophils. At CFA-induced hypersensitivity post-resolution (5d post-injection), tissue repair processes were pronounced, while inflammation was absent. Col (0.2U) produced acute hypersensitivity linked to tissue repair without inflammatory processes. Col (10U) generated prolonged hypersensitivity with inflammatory processes dominating initiation phase (1d). Pre-resolution phase (6d) was accompanied with acceleration of expressions for tissue repair and pro-inflammatory genes. Flow cytometry showed that immune processes in MM was associated with accumulations of macrophages, natural killer, dendritic and T-cells, further confirming our RNA-seq findings. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, TMDM resolution was preceded with muscle cell and extracellular matrix repairs, an elevation in immune system gene expressions and distinct immune cell accumulations in MM.
Collapse
Affiliation(s)
- Karen A Lindquist
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Sergey A Shein
- Departments of Microbiology, Immunology & Molecular Genetics, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yi Zou
- Departments of Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX, USA
| | - Zhao Lai
- Departments of Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Departments of Microbiology, Immunology & Molecular Genetics, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| | - Armen N Akopian
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
34
|
Healy CR, Gethin G, Pandit A, Finn DP. Chronic wound-related pain, wound healing and the therapeutic potential of cannabinoids and endocannabinoid system modulation. Biomed Pharmacother 2023; 168:115714. [PMID: 37865988 DOI: 10.1016/j.biopha.2023.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic wounds represent a significant burden on the individual, and the healthcare system. Individuals with chronic wounds report pain to be the most challenging aspect of living with a chronic wound, with current therapeutic options deemed insufficient. The cutaneous endocannabinoid system is an important regulator of skin homeostasis, with evidence of system dysregulation in several cutaneous disorders. Herein, we describe the cutaneous endocannabinoid system, chronic wound-related pain, and comorbidities, and review preclinical and clinical evidence investigating endocannabinoid system modulation for wound-related pain and wound healing. Based on the current literature, there is some evidence to suggest efficacy of endocannabinoid system modulation for promotion of wound healing, attenuation of cutaneous disorder-related inflammation, and for the management of chronic wound-related pain. However, there is 1) a paucity of preclinical studies using validated models, specific for the study of chronic wound-related pain and 2) a lack of randomised control trials and strong clinical evidence relating to endocannabinoid system modulation for wound-related pain. In conclusion, while there is some limited evidence of benefit of endocannabinoid system modulation in wound healing and wound-related pain management, further research is required to better realise the potential of targeting the endocannabinoid system for these therapeutic applications.
Collapse
Affiliation(s)
- Catherine R Healy
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway City, Ireland; Galway Neuroscience Centre, University of Galway, Galway City, Ireland; Centre for Pain Research, University of Galway, Galway City, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland
| | - Georgina Gethin
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland; School of Nursing and Midwifery, University of Galway, Galway City, Ireland; Alliance for Research and Innovation in Wounds, University of Galway, Galway City, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway City, Ireland; Galway Neuroscience Centre, University of Galway, Galway City, Ireland; Centre for Pain Research, University of Galway, Galway City, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland.
| |
Collapse
|
35
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
36
|
Zhu C, Yang Y, Song Y, Guo J, Yu G, Tang J, Tang Z. Mechanisms involved in the antinociceptive and anti-inflammatory effects of xanthotoxin. Eur J Neurosci 2023; 58:3605-3617. [PMID: 37671643 DOI: 10.1111/ejn.16119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
Xanthotoxin (XAT) is a natural furanocoumarin clinically used in the treatment of skin diseases such as vitiligo and psoriasis. Recent studies have also investigated its effects on anti-inflammatory, anti-cognitive dysfunction, and anti-amnesia as a guideline for clinic application. However, little is known about its effects on pain relief. Here, we tested the analgesic effects of XAT in serious acute pain and chronic pain models. For acute pain, we used hot-, capsaicin- and formalin-induced paw licking. Nociceptive threshold was measured by mechanical stimuli with von Frey filaments. For chronic pain, we injected complete Freund's adjuvant (CFA) into the mice's plantar surface of the hind paw to induce inflammatory pain. Heat and mechanical hyperalgesia were evaluated by radiant heat and von Frey filament tests, respectively. To investigate the mechanisms underlying the analgesic effect of XAT, we used calcium imaging and western blot to assess transient receptor potential vanilloid 1 (TRPV1) activity and expression in isolated L4-L6 dorsal root ganglion (DRG) neurons. Haematoxylin and eosin (HE) staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to examine immune cell recruitment and proinflammatory factor release from skin tissue from paw injection sites. Our results demonstrated that XAT not only reduced acute pain behaviors generated by hot, capsaicin, and formalin but also attenuated CFA-induced heat and mechanical hyperalgesia. The analgesic activity of XAT may be achieved by controlling peripheral inflammation, lowering immune cell infiltration at the site of inflammatory tissue, reducing inflammatory factor production, and therefore inhibiting TRPV1 channel sensitization and expression.
Collapse
Affiliation(s)
- Chan Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yizhi Song
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guang Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Juanjuan Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zongxiang Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Dourson AJ, Jankowski MP. Developmental impact of peripheral injury on neuroimmune signaling. Brain Behav Immun 2023; 113:156-165. [PMID: 37442302 PMCID: PMC10530254 DOI: 10.1016/j.bbi.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
A peripheral injury drives neuroimmune interactions at the level of the injury and throughout the neuraxis. Understanding these systems will be beneficial in the pursuit to target persistent pain that involves both neural and immune components. In this review, we discuss the impact of injury on the development of neuroimmune signaling, along with data that suggest a possible cellular immune memory. We also discuss the parallel effects of injury in the nervous system and immune related areas including bone marrow, lymph node and central nervous system-related cells. Finally, we relate these findings to patient populations and current research that evaluates human tissue.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
38
|
Kraev K, Geneva-Popova M, Hristov B, Uchikov P, Popova S, Kraeva M, Basheva-Kraeva Y, Sheytanov I, Petranova T, Stoyanova N, Atanassov M. Exploring the Novel Dimension of Immune Interactions in Pain: JAK Inhibitors' Pleiotropic Potential. Life (Basel) 2023; 13:1994. [PMID: 37895376 PMCID: PMC10608014 DOI: 10.3390/life13101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
This review explores the link between immune interactions and chronic pain, offering new perspectives on treatment. It focuses on Janus kinase (JAK) inhibitors' potential in pain management. Immune cells' communication with neurons shapes neuroinflammatory responses, and JAK inhibitors' effects on pain pathways are discussed, including cytokine suppression and microglial modulation. This review integrates studies from rheumatoid arthritis (RA) pain and central sensitization to highlight connections between immune interactions and pain. Studies on RA joint pain reveal the shift from cytokines to sensitization. Neurobiological investigations into central sensitization uncover shared pathways in chronic pain. Clinical evidence supports JAK inhibitors' efficacy on pain-related outcomes and their effects on neurons and immune cells. Challenges and future directions are outlined, including interdisciplinary collaboration and dosing optimization. Overall, this review highlights JAK inhibitors' potential to target immune-mediated pain pathways, underscoring the need for more research on immune-pain connections.
Collapse
Affiliation(s)
- Krasimir Kraev
- Department of Propaedeutics of Internal Diseases “Prof. Dr. Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Mariela Geneva-Popova
- Department of Propaedeutics of Internal Diseases “Prof. Dr. Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Bozhidar Hristov
- Second Department of Internal Diseases, Section “Gastroenterology”, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Gastroenterology, University Hospital “Kaspela”, 4001 Plovdiv, Bulgaria
| | - Petar Uchikov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Second Surgery Clinic, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Stanislava Popova
- Department of Propaedeutics of Internal Diseases “Prof. Dr. Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Maria Kraeva
- Department of Otorhinolaryngology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yordanka Basheva-Kraeva
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria (M.A.)
| | - Ivan Sheytanov
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Medical Faculty, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Tzvetanka Petranova
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Medical Faculty, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Nina Stoyanova
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria (M.A.)
| | - Marin Atanassov
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria (M.A.)
| |
Collapse
|
39
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
40
|
Liu X, Tang SJ. Pathogenic mechanisms of human immunodeficiency virus (HIV)-associated pain. Mol Psychiatry 2023; 28:3613-3624. [PMID: 37857809 DOI: 10.1038/s41380-023-02294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Chronic pain is a prevalent neurological complication among individuals living with human immunodeficiency virus (PLHIV) in the post-combination antiretroviral therapy (cART) era. These individuals experience malfunction in various cellular and molecular pathways involved in pain transmission and modulation, including the neuropathology of the peripheral sensory neurons and neurodegeneration and neuroinflammation in the spinal dorsal horn. However, the underlying etiologies and mechanisms leading to pain pathogenesis are complex and not fully understood. In this review, we aim to summarize recent progress in this field. Specifically, we will begin by examining neuropathology in the pain pathways identified in PLHIV and discussing potential causes, including those directly related to HIV-1 infection and comorbidities, such as antiretroviral drug use. We will also explore findings from animal models that may provide insights into the molecular and cellular processes contributing to neuropathology and chronic pain associated with HIV infection. Emerging evidence suggests that viral proteins and/or antiretroviral drugs trigger a complex pathological cascade involving neurons, glia, and potentially non-neural cells, and that interactions between these cells play a critical role in the pathogenesis of HIV-associated pain.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA.
| |
Collapse
|
41
|
Cronin SJF, Andrews NA, Latremoliere A. Peripheralized sepiapterin reductase inhibition as a safe analgesic therapy. Front Pharmacol 2023; 14:1173599. [PMID: 37251335 PMCID: PMC10213231 DOI: 10.3389/fphar.2023.1173599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The development of novel analgesics for chronic pain in the last 2 decades has proven virtually intractable, typically failing due to lack of efficacy and dose-limiting side effects. Identified through unbiased gene expression profiling experiments in rats and confirmed by human genome-wide association studies, the role of excessive tetrahydrobiopterin (BH4) in chronic pain has been validated by numerous clinical and preclinical studies. BH4 is an essential cofactor for aromatic amino acid hydroxylases, nitric oxide synthases, and alkylglycerol monooxygenase so a lack of BH4 leads to a range of symptoms in the periphery and central nervous system (CNS). An ideal therapeutic goal therefore would be to block excessive BH4 production, while preventing potential BH4 rundown. In this review, we make the case that sepiapterin reductase (SPR) inhibition restricted to the periphery (i.e., excluded from the spinal cord and brain), is an efficacious and safe target to alleviate chronic pain. First, we describe how different cell types that engage in BH4 overproduction and contribute to pain hypersensitivity, are themselves restricted to peripheral tissues and show their blockade is sufficient to alleviate pain. We discuss the likely safety profile of peripherally restricted SPR inhibition based on human genetic data, the biochemical alternate routes of BH4 production in various tissues and species, and the potential pitfalls to predictive translation when using rodents. Finally, we propose and discuss possible formulation and molecular strategies to achieve peripherally restricted, potent SPR inhibition to treat not only chronic pain but other conditions where excessive BH4 has been demonstrated to be pathological.
Collapse
Affiliation(s)
| | - Nick A. Andrews
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Alban Latremoliere
- Departments of Neurosurgery and Neuroscience, Johns Hopkins School of Medicine, Neurosurgery Pain Research Institute, Baltimore, MD, United States
| |
Collapse
|
42
|
Mitsui K, Hishiyama S, Jain A, Kotoda Y, Abe M, Matsukawa T, Kotoda M. Role of macrophage autophagy in postoperative pain and inflammation in mice. J Neuroinflammation 2023; 20:102. [PMID: 37131209 PMCID: PMC10152627 DOI: 10.1186/s12974-023-02795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Postoperative pain and inflammation are significant complications following surgery. Strategies that aim to prevent excessive inflammation without hampering natural wound-healing are required for the management of postoperative pain and inflammation. However, the knowledge of the mechanisms and target pathways involved in these processes is lacking. Recent studies have revealed that autophagy in macrophages sequesters pro-inflammatory mediators, and it is therefore being recognized as a crucial process involved in regulating inflammation. In this study, we tested the hypothesis that autophagy in macrophages plays protective roles against postoperative pain and inflammation and investigated the underlying mechanisms. METHODS Postoperative pain was induced by plantar incision under isoflurane anesthesia in mice lacking macrophage autophagy (Atg5flox/flox LysMCre +) and their control littermates (Atg5flox/flox). Mechanical and thermal pain sensitivity, changes in weight distribution, spontaneous locomotor activity, tissue inflammation, and body weight were assessed at baseline and 1, 3, and 7 days after surgery. Monocyte/macrophage infiltration at the surgical site and inflammatory mediator expression levels were evaluated. RESULTS Atg5flox/flox LysMCre + mice compared with the control mice exhibited lower mechanical and thermal pain thresholds and surgical/non-surgical hindlimb weight-bearing ratios. The augmented neurobehavioral symptoms observed in the Atg5flox/flox LysMCre + mice were associated with more severe paw inflammation, higher pro-inflammatory mediator mRNA expression, and more monocytes/macrophages at the surgical site. CONCLUSION The lack of macrophage autophagy augmented postoperative pain and inflammation, which were accompanied by enhanced pro-inflammatory cytokine secretion and surgical-site monocyte/macrophage infiltration. Macrophage autophagy plays a protective role in postoperative pain and inflammation and can be a novel therapeutic target.
Collapse
Affiliation(s)
- Kazuha Mitsui
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Sohei Hishiyama
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurobiology, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Yumi Kotoda
- Department of Ophthalmology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masako Abe
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Takashi Matsukawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masakazu Kotoda
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
43
|
Deng D, Xu F, Ma L, Zhang T, Wang Y, Huang S, Zhao W, Chen X. Electroacupuncture Alleviates CFA-Induced Inflammatory Pain via PD-L1/PD-1-SHP-1 Pathway. Mol Neurobiol 2023; 60:2922-2936. [PMID: 36753045 DOI: 10.1007/s12035-023-03233-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/14/2023] [Indexed: 02/09/2023]
Abstract
Inflammatory pain is difficult to treat clinically, but electroacupuncture (EA) has been demonstrated to be effective in alleviating inflammatory pain. Programmed cell death ligand-1 (PD-L1) and its downstream signal, Src homology region two domain-containing phosphatase-1 (SHP-1) have a critical role in relieving inflammatory pain. However, whether the PD-L1/PD-1-SHP-1 pathway mediates the analgesic and anti-inflammatory effects of EA in inflammatory pain remains unclear. Here, we observed that EA reversed the complete Freund's adjuvant (CFA)-induced hyperalgesia. EA reduced the expression of IL-6, iNOS, and NF-κB pathway in dorsal root ganglia (DRG) on day 7 after CFA injection but had no effect on the expression of IL-6, iNOS, and NF-κB PP65 on day 21 after CFA injection. Moreover, EA upregulated the protein levels of the PD-L1/PD-1-SHP-1 pathway on day 7 and day 21 after CFA injection. Furthermore, EA upregulated PD-L1 expression in calcitonin gene-related peptide (CGRP)+ but not in isohaemagglutinin B4 (IB4)+ and NF200+ neurons on day 7 and day 21 after CFA injection. Intrathecal injection of the PD-L1/PD-1 inhibitor BMS-1 (50 or 100 µg) blocked the EA-induced analgesic effect, significantly increased IL-6 and iNOS levels, and reduced the levels of PD-L1/PD-1-SHP-1. BMS-1 (50 or 100 µg) significantly reduced the expression of PD-L1 in IB4+, CGRP+, and NF200+ neurons. Our results show that EA's anti-inflammatory and analgesic effects are associated with activating the PD-L1/PD-1-SHP-1 pathway and suppressing its regulated neuroinflammation. This study provides a new potential therapeutic target for treating inflammatory pain.
Collapse
Affiliation(s)
- Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
44
|
Lindquist KA, Shein SA, Hovhannisyan AH, Mecklenburg J, Zou Y, Lai Z, Tumanov AV, Akopian AN. Association of inflammation and tissue damage induced biological processes in masseter muscle with the resolution of chronic myalgia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537828. [PMID: 37131723 PMCID: PMC10153356 DOI: 10.1101/2023.04.21.537828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biological processes linked to intramuscular inflammation during myogenous temporomandibular disorder (TMDM) are largely unknown. We mimicked this inflammation by intra-masseteric muscle (MM) injections of complete Freund’s adjuvant (CFA) or collagenase type 2 (Col), which emulates tissue damage. CFA triggered mechanical hypersensitivity at 1d post-injection was mainly linked to processes controlling chemotactic activity of monocytes and neutrophils. At 5d post-CFA, when hypersensitivity was resolved, there was minimal inflammation whereas tissue repair processes were pronounced. Low dose Col (0.2U) also produced acute orofacial hypersensitivity that was linked to tissue repair, but not inflammatory processes. High dose Col (10U) triggered prolonged orofacial hypersensitivity with inflammatory processes dominating at 1d post-injection. At pre-resolution time point (6d), tissue repair processes were underway and a significant increase in pro-inflammatory gene expressions compared to 1d post-injection were detected. RNA-seq and flow cytometry showed that immune processes in MM were linked to accumulation of macrophages, natural killer and natural killer T cells, dendritic cells and T-cells. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, orofacial hypersensitivity resolution was preceded with repairs of muscle cell and extracellular matrix, an elevation in immune system gene expression and accumulation of distinct immune cells in MM.
Collapse
|
45
|
Ono T, Yamashita T, Kano R, Inoue M, Okada S, Kano K, Koizumi S, Iwabuchi K, Hirabayashi Y, Matsuo I, Nakashima Y, Kamiguchi H, Kohro Y, Tsuda M. GPR55 contributes to neutrophil recruitment and mechanical pain induction after spinal cord compression in mice. Brain Behav Immun 2023; 110:276-287. [PMID: 36898418 DOI: 10.1016/j.bbi.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Pain transmission and processing in the nervous system are modulated by various biologically active substances, including lysophospholipids, through direct and indirect actions on the somatosensory pathway. Lysophosphatidylglucoside (LysoPtdGlc) was recently identified as a structurally unique lysophospholipid that exerts biological actions via the G protein-coupled receptor GPR55. Here, we demonstrated that GPR55-knockout (KO) mice show impaired induction of mechanical pain hypersensitivity in a model of spinal cord compression (SCC) without the same change in the models of peripheral tissue inflammation and peripheral nerve injury. Among these models, only SCC recruited peripheral inflammatory cells (neutrophils, monocytes/macrophages, and CD3+ T-cells) in the spinal dorsal horn (SDH), and GPR55-KO blunted these recruitments. Neutrophils were the first cells recruited to the SDH, and their depletion suppressed the induction of SCC-induced mechanical hypersensitivity and inflammatory responses in compressed SDH. Furthermore, we found that PtdGlc was present in the SDH and that intrathecal administration of an inhibitor of secretory phospholipase A2 (an enzyme required for producing LysoPtdGlc from PtdGlc) reduced neutrophil recruitment to compressed SDH and suppressed pain induction. Finally, by screening compounds from a chemical library, we identified auranofin as a clinically used drug with an inhibitory effect on mouse and human GPR55. Systemically administered auranofin to mice with SCC effectively suppressed spinal neutrophil infiltration and pain hypersensitivity. These results suggest that GPR55 signaling contributes to the induction of inflammatory responses and chronic pain after SCC via the recruitment of neutrophils and may provide a new target for reducing pain induction after spinal cord compression, such as spinal canal stenosis.
Collapse
Affiliation(s)
- Teruaki Ono
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Drug Discovery Structural Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryota Kano
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mariko Inoue
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shota Okada
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koki Kano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Yoshio Hirabayashi
- Cellular Informatics Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Kamiguchi
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuta Kohro
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
46
|
Dos Santos NL, Lenert ME, Castillo ZW, Mody PH, Thompson LT, Burton MD. Age and sex drive differential behavioral and neuroimmune phenotypes during postoperative pain. Neurobiol Aging 2023; 123:129-144. [PMID: 36577640 PMCID: PMC9892227 DOI: 10.1016/j.neurobiolaging.2022.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Surgical procedures in the geriatric population are steadily increasing, driven by improved healthcare technologies and longer lifespans. However, effective postoperative pain treatments are lacking, and this diminishes quality of life and recovery. Here we present one of the first preclinical studies to pursue sex- and age-specific differences in postoperative neuroimmune phenotypes and pain. We found that aged males, but not females, had a delayed onset of mechanical hypersensitivity post-surgery and faster resolution than young counterparts. This sex-specific age effect was accompanied by decreased paw innervation and increased local inflammation. Additionally, we find evidence of an age-dependent decrease in hyperalgesic priming and perioperative changes in nociceptor populations and spinal microglia in the aged. These findings suggest that impaired neuronal function and maladaptive inflammatory mechanisms influence postoperative pain development in advanced age. Elucidation of these neuroimmune phenotypes across age and sex enables the development of novel therapies that can be tailored for improved pain relief.
Collapse
Affiliation(s)
- Natalia L Dos Santos
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Zachary W Castillo
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Lucien T Thompson
- Aging and Memory Research Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA.
| |
Collapse
|
47
|
Liu M, Cao W, Qin X, Tong J, Wu X, Cheng Y. Caspase-11 contributes to pain hypersensitivity in the later phase of CFA-induced pain of mice. Brain Res 2023; 1801:148172. [PMID: 36410426 DOI: 10.1016/j.brainres.2022.148172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Chronic pain is a common disease that severely disrupts the quality of life. Persistent neuroinflammation and central sensitization play important roles in its pathogenesis. Caspase-11 is a critical modulator of inflammation of central nervous system. However, its role in chronic pain remains elusive. In this study, chronic pain and acute pain were induced via injecting complete Freund's adjuvant (CFA) and 5 % formalin into the plantar of the right hind paw of wild-type (WT) and Caspase-11 deficient (Caspase-11-/-) mice, respectively. In WT mice, CFA injection significantly decreased the hind paw mechanical pain threshold in Von Frey test on 1-7 days after injection and increased the caspase-11 level of ipsilateral dorsal horn of spinal cord on day 2 and day 5 after injection. Compared to the WT mice, Caspase-11-/- mice showed significantly higher mechanical pain threshold in the later phase of CFA-induced pain, but not in the early phase, and had no significant difference in 5 % formalin induced licking and flinching behavior. In addition, the microglial activation, and the mRNA levels of caspase-1 and IL-18 in the spinal cord of Caspase-11-/- mice restored to baseline on the day 5 after CFA injection, but not in WT mice. Our data indicated that Caspase-11 contributed to persistent inflammation in ipsilateral dorsal horn of spinal cord, and consequently pain hypersensitivity in the later phase of CFA-induced pain.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Chan-gsha, 410013 Hunan, PR China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, PR China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xian Qin
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, PR China
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Chan-gsha, 410013 Hunan, PR China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, PR China
| | - Xiaoxia Wu
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, PR China.
| | - Yong Cheng
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, PR China; Department of Plastic and Burns Surgery, Huazhong University of Science and Tec-hnology Union Shenzhen Hospital, Shenzhen, Guangdong, PR China.
| |
Collapse
|
48
|
Di Maio G, Villano I, Ilardi CR, Messina A, Monda V, Iodice AC, Porro C, Panaro MA, Chieffi S, Messina G, Monda M, La Marra M. Mechanisms of Transmission and Processing of Pain: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3064. [PMID: 36833753 PMCID: PMC9964506 DOI: 10.3390/ijerph20043064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Knowledge about the mechanisms of transmission and the processing of nociceptive information, both in healthy and pathological states, has greatly expanded in recent years. This rapid progress is due to a multidisciplinary approach involving the simultaneous use of different branches of study, such as systems neurobiology, behavioral analysis, genetics, and cell and molecular techniques. This narrative review aims to clarify the mechanisms of transmission and the processing of pain while also taking into account the characteristics and properties of nociceptors and how the immune system influences pain perception. Moreover, several important aspects of this crucial theme of human life will be discussed. Nociceptor neurons and the immune system play a key role in pain and inflammation. The interactions between the immune system and nociceptors occur within peripheral sites of injury and the central nervous system. The modulation of nociceptor activity or chemical mediators may provide promising novel approaches to the treatment of pain and chronic inflammatory disease. The sensory nervous system is fundamental in the modulation of the host's protective response, and understanding its interactions is pivotal in the process of revealing new strategies for the treatment of pain.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ciro Rosario Ilardi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Psychology, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Ashlei Clara Iodice
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 71100 Foggia, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 71100 Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
49
|
Starkl P, Jonsson G, Artner T, Turnes BL, Serhan N, Oliveira T, Gail LM, Stejskal K, Channon KM, Köcher T, Stary G, Klang V, Gaudenzio N, Knapp S, Woolf CJ, Penninger JM, Cronin SJ. Mast cell-derived BH4 is a critical mediator of postoperative pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525378. [PMID: 37293068 PMCID: PMC10245978 DOI: 10.1101/2023.01.24.525378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Postoperative pain affects most patients after major surgery and can transition to chronic pain. Here, we discovered that postoperative pain hypersensitivity correlated with markedly increased local levels of the metabolite BH4. Gene transcription and reporter mouse analyses after skin injury identified neutrophils, macrophages and mast cells as primary postoperative sources of GTP cyclohydrolase-1 (Gch1) expression, the rate-limiting enzyme in BH4 production. While specific Gch1 deficiency in neutrophils or macrophages had no effect, mice deficient in mast cells or mast cell-specific Gch1 showed drastically decreased postoperative pain after surgery. Skin injury induced the nociceptive neuropeptide substance P, which directly triggers the release of BH4-dependent serotonin in mouse and human mast cells. Substance P receptor blockade substantially ameliorated postoperative pain. Our findings underline the unique position of mast cells at the neuro-immune interface and highlight substance P-driven mast cell BH4 production as promising therapeutic targets for the treatment of postoperative pain.
Collapse
Affiliation(s)
- Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, United States
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, United States, Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
| | - Tiago Oliveira
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura-Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- LBI-RUD – Ludwig-Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Karel Stejskal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Keith M. Channon
- Radcliffe Department of, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Thomas Köcher
- Vienna BioCenter Core Facilities (VBCF), 1030 Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- LBI-RUD – Ludwig-Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Clifford J. Woolf
- Department of Neurobiology, Harvard Medical School, Boston, United States
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, United States, Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shane J.F. Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
50
|
Komatsu DE, Uddin SMZ, Gordon C, Kanjiya MP, Bogdan D, Achonu J, DiBua A, Iftikhar H, Ackermann A, Shah RJ, Shieh J, Bialkowska AB, Kaczocha M. Acute postoperative pain and dorsal root ganglia transcriptomic signatures following total knee arthroplasty (TKA) in rats: An experimental study. PLoS One 2022; 17:e0278632. [PMID: 36473007 PMCID: PMC9725137 DOI: 10.1371/journal.pone.0278632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Total knee arthroplasty (TKA) is the final treatment option for patients with advanced knee osteoarthritis (OA). Unfortunately, TKA surgery is accompanied by acute postoperative pain that is more severe than arthroplasty performed in other joints. Elucidating the molecular mechanisms specific to post-TKA pain necessitates an animal model that replicates clinical TKA procedures, induces acute postoperative pain, and leads to complete functional recovery. Here, we present a new preclinical TKA model in rats and report on functional and behavioral outcomes indicative of pain, analgesic efficacy, serum cytokine levels, and dorsal root ganglia (DRG) transcriptomes during the acute postoperative period. Following TKA, rats exhibited marked deficits in weight bearing that persisted for 28 days. Home cage locomotion, rearing, and gait were similarly impacted and recovered by day 14. Cytokine levels were elevated on postoperative days one and/or two. Treatment with morphine, ketorolac, or their combination improved weight bearing while gabapentin lacked efficacy. When TKA was performed in rats with OA, similar functional deficits and comparable recovery time courses were observed. Analysis of DRG transcriptomes revealed upregulation of transcripts linked to multiple molecular pathways including inflammation, MAPK signaling, and cytokine signaling and production. In summary, we developed a clinically relevant rat TKA model characterized by resolution of pain and functional recovery within five weeks and with pain-associated behavioral deficits that are partially alleviated by clinically administered analgesics, mirroring the postoperative experience of TKA patients.
Collapse
Affiliation(s)
- David E. Komatsu
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail: (DEK); (MK)
| | - Sardar M. Z. Uddin
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Martha P. Kanjiya
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Diane Bogdan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Justice Achonu
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Adriana DiBua
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Hira Iftikhar
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Amanda Ackermann
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Rohan J. Shah
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Stony Brook University Pain and Analgesia Research Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail: (DEK); (MK)
| |
Collapse
|