1
|
Zhang B, Chen S, Yin X, McBride CD, Gertie JA, Yurieva M, Bielecka AA, Hoffmann B, Travis Hinson J, Grassmann J, Xu L, Siniscalco ER, Soldatenko A, Hoyt L, Joseph J, Norton EB, Uthaman G, Palm NW, Liu E, Eisenbarth SC, Williams A. Metabolic fitness of IgA + plasma cells in the gut requires DOCK8. Mucosal Immunol 2024; 17:431-449. [PMID: 38159726 PMCID: PMC11571232 DOI: 10.1016/j.mucimm.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) mutations lead to a primary immunodeficiency associated with recurrent gastrointestinal infections and poor antibody responses but, paradoxically, heightened IgE to food antigens, suggesting that DOCK8 is central to immune homeostasis in the gut. Using Dock8-deficient mice, we found that DOCK8 was necessary for mucosal IgA production to multiple T cell-dependent antigens, including peanut and cholera toxin. Yet DOCK8 was not necessary in T cells for this phenotype. Instead, B cell-intrinsic DOCK8 was required for maintenance of antigen-specific IgA-secreting plasma cells (PCs) in the gut lamina propria. Unexpectedly, DOCK8 was not required for early B cell activation, migration, or IgA class switching. An unbiased interactome screen revealed novel protein partners involved in metabolism and apoptosis. Dock8-deficient IgA+ B cells had impaired cellular respiration and failed to engage glycolysis appropriately. These results demonstrate that maintenance of the IgA+ PC compartment requires DOCK8 and suggest that gut IgA+ PCs have unique metabolic requirements for long-term survival in the lamina propria.
Collapse
Affiliation(s)
- Biyan Zhang
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caleb D McBride
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jake A Gertie
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Agata A Bielecka
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Microbial Immunoregulation, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Brian Hoffmann
- Mass Spectrometry and Protein Chemistry, The Jackson Laboratory for Genomic Medicine, Bar Harbor, ME 04609, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Cardiology center, Department of Medicine, UConn Health, Farmington, CT, USA
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Lan Xu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily R Siniscalco
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arielle Soldatenko
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura Hoyt
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie Joseph
- Department of Laboratory Medicine, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gowthaman Uthaman
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elise Liu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Adam Williams
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
2
|
Tsankov BK, Luchak A, Carr C, Philpott DJ. The effects of NOD-like receptors on adaptive immune responses. Biomed J 2024; 47:100637. [PMID: 37541620 PMCID: PMC10796267 DOI: 10.1016/j.bj.2023.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
It has long been appreciated that cues from the innate immune system orchestrate downstream adaptive immune responses. Although previous work has focused on the roles of Toll-like receptors in this regard, relatively little is known about how Nod-like receptors instruct adaptive immunity. Here we review the functions of different members of the Nod-like receptor family in orchestrating effector and anamnestic adaptive immune responses. In particular, we address the ways in which inflammasome and non-inflammasome members of this family affect adaptive immunity under various infectious and environmental contexts. Furthermore, we identify several key mechanistic questions that studies in this field have left unaddressed. Our aim is to provide a framework through which immunologists in the adaptive immune field may view their questions through an innate-immune lens and vice-versa.
Collapse
Affiliation(s)
- Boyan K Tsankov
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Alexander Luchak
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Charles Carr
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Gutierrez-Ruiz OL, Johnson KM, Krueger EW, Nooren RE, Cruz-Reyes N, Heppelmann CJ, Hogenson TL, Fernandez-Zapico ME, McNiven MA, Razidlo GL. Ectopic expression of DOCK8 regulates lysosome-mediated pancreatic tumor cell invasion. Cell Rep 2023; 42:113042. [PMID: 37651233 PMCID: PMC10591794 DOI: 10.1016/j.celrep.2023.113042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Amplified lysosome activity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) orchestrated by oncogenic KRAS that mediates tumor growth and metastasis, though the mechanisms underlying this phenomenon remain unclear. Using comparative proteomics, we found that oncogenic KRAS significantly enriches levels of the guanine nucleotide exchange factor (GEF) dedicator of cytokinesis 8 (DOCK8) on lysosomes. Surprisingly, DOCK8 is aberrantly expressed in a subset of PDAC, where it promotes cell invasion in vitro and in vivo. DOCK8 associates with lysosomes and regulates lysosomal morphology and motility, with loss of DOCK8 leading to increased lysosome size. DOCK8 promotes actin polymerization at the surface of lysosomes while also increasing the proteolytic activity of the lysosomal protease cathepsin B. Critically, depletion of DOCK8 significantly reduces cathepsin-dependent extracellular matrix degradation and impairs the invasive capacity of PDAC cells. These findings implicate ectopic expression of DOCK8 as a key driver of KRAS-driven lysosomal regulation and invasion in pancreatic cancer cells.
Collapse
Affiliation(s)
- Omar L Gutierrez-Ruiz
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Katherine M Johnson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eugene W Krueger
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Roseanne E Nooren
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicole Cruz-Reyes
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Tara L Hogenson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A McNiven
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Gina L Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Angel-Velez D, Meese T, Hedia M, Fernandez-Montoro A, De Coster T, Pascottini OB, Van Nieuwerburgh F, Govaere J, Van Soom A, Pavani K, Smits K. Transcriptomics Reveal Molecular Differences in Equine Oocytes Vitrified before and after In Vitro Maturation. Int J Mol Sci 2023; 24:ijms24086915. [PMID: 37108081 PMCID: PMC10138936 DOI: 10.3390/ijms24086915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
In the last decade, in vitro embryo production in horses has become an established clinical practice, but blastocyst rates from vitrified equine oocytes remain low. Cryopreservation impairs the oocyte developmental potential, which may be reflected in the messenger RNA (mRNA) profile. Therefore, this study aimed to compare the transcriptome profiles of metaphase II equine oocytes vitrified before and after in vitro maturation. To do so, three groups were analyzed with RNA sequencing: (1) fresh in vitro matured oocytes as a control (FR), (2) oocytes vitrified after in vitro maturation (VMAT), and (3) oocytes vitrified immature, warmed, and in vitro matured (VIM). In comparison with fresh oocytes, VIM resulted in 46 differentially expressed (DE) genes (14 upregulated and 32 downregulated), while VMAT showed 36 DE genes (18 in each category). A comparison of VIM vs. VMAT resulted in 44 DE genes (20 upregulated and 24 downregulated). Pathway analyses highlighted cytoskeleton, spindle formation, and calcium and cation ion transport and homeostasis as the main affected pathways in vitrified oocytes. The vitrification of in vitro matured oocytes presented subtle advantages in terms of the mRNA profile over the vitrification of immature oocytes. Therefore, this study provides a new perspective for understanding the impact of vitrification on equine oocytes and can be the basis for further improvements in the efficiency of equine oocyte vitrification.
Collapse
Affiliation(s)
- Daniel Angel-Velez
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Research Group in Animal Sciences-INCA-CES, Universidad CES, Medellin 050021, Colombia
| | - Tim Meese
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Science, Ghent University, 9000 Ghent, Belgium
| | - Mohamed Hedia
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Andrea Fernandez-Montoro
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Tine De Coster
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Science, Ghent University, 9000 Ghent, Belgium
| | - Jan Govaere
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Krishna Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
6
|
Affiliation(s)
- Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| |
Collapse
|
7
|
Deng AY, Menard A, Deng DW. Shifting Paradigm from Gene Expressions to Pathways Reveals Physiological Mechanisms in Blood Pressure Control in Causation. Int J Mol Sci 2023; 24:1262. [PMID: 36674778 PMCID: PMC9863686 DOI: 10.3390/ijms24021262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Genetics for blood pressure (BP) in human and animals has been partitioned into two separate specialties. However, this divide is mechanistically-misleading. BP physiology is mechanistically participated by products of quantitative trait loci (QTLs). The key to unlocking its mechanistic mystery lies in the past with mammalian ancestors before humans existed. By pivoting from effects to causes, physiological mechanisms determining BP by six QTLs have been implicated. Our work relies on congenic knock-in genetics in vivo using rat models, and has reproduced the physiological outcome based on a QTL being molecularly equal to one gene. A gene dose for a QTL is irrelevant to physiological BP controls in causation. Together, QTLs join one another as a group in modularized Mendelian fashion to achieve polygenicity. Mechanistically, QTLs in the same module appear to function in a common pathway. Each is involved in a different step in the pathway toward polygenic hypertension. This work has implicated previously-concealed components of these pathways. This emerging concept is a departure from the human-centric precept that the level of QTL expressions, not physiology, would ultimately determine BP. The modularity/pathway paradigm breaks a unique conceptual ground for unravelling the physiological mechanisms of polygenic and quantitative traits like BP.
Collapse
Affiliation(s)
- Alan Y. Deng
- Research Centre, CRCHUM (Centre Hospitalier de l’Université de Montréal), Department of Medicine, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | |
Collapse
|
8
|
Akalu YT, Mercau ME, Ansems M, Hughes LD, Nevin J, Alberto EJ, Liu XN, He LZ, Alvarado D, Keler T, Kong Y, Philbrick WM, Bosenberg M, Finnemann SC, Iavarone A, Lasorella A, Rothlin CV, Ghosh S. Tissue-specific modifier alleles determine Mertk loss-of-function traits. eLife 2022; 11:80530. [PMID: 35969037 PMCID: PMC9433089 DOI: 10.7554/elife.80530] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
Knockout (KO) mouse models play critical roles in elucidating biological processes behind disease-associated or disease-resistant traits. As a presumed consequence of gene KO, mice display certain phenotypes. Based on insight into the molecular role of said gene in a biological process, it is inferred that the particular biological process causally underlies the trait. This approach has been crucial towards understanding the basis of pathological and/or advantageous traits associated with Mertk KO mice. Mertk KO mice suffer from severe, early-onset retinal degeneration. MERTK, expressed in retinal pigment epithelia, is a receptor tyrosine kinase with a critical role in phagocytosis of apoptotic cells or cellular debris. Therefore, early-onset, severe retinal degeneration was described to be a direct consequence of failed MERTK-mediated phagocytosis of photoreceptor outer segments by retinal pigment epithelia. Here, we report that the loss of Mertk alone is not sufficient for retinal degeneration. The widely used Mertk KO mouse carries multiple coincidental changes in its genome that affect the expression of a number of genes, including the Mertk paralog Tyro3. Retinal degeneration manifests only when the function of Tyro3 is concomitantly lost. Furthermore, Mertk KO mice display improved anti-tumor immunity. MERTK is expressed in macrophages. Therefore, enhanced anti-tumor immunity was inferred to result from the failure of macrophages to dispose of cancer cell corpses, resulting in a pro-inflammatory tumor microenvironment. The resistance against two syngeneic mouse tumor models observed in Mertk KO mice is not, however, phenocopied by the loss of Mertk alone. Neither Tyro3 nor macrophage phagocytosis by alternate genetic redundancy accounts for the absence of anti-tumor immunity. Collectively, our results indicate that context-dependent epistasis of independent modifier alleles determines Mertk KO traits.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Maria E Mercau
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Marleen Ansems
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Lindsey D Hughes
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - James Nevin
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Emily J Alberto
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Xinran N Liu
- Department of Cell Biology, Center for Cellular and Molecular Imaging, Yale School of MedicineNew HavenUnited States
| | - Li-Zhen He
- Celldex TherapeuticsNew HavenUnited States
| | | | | | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, School of Medicine, Yale UniversityNew HavenUnited States
| | - William M Philbrick
- Center on Endocrinology and Metabolism, Yale Genome Editing Center, School of Medicine, Yale UniversityNew HavenUnited States
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology and Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Silvia C Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham UniversityBronxUnited States
| | - Antonio Iavarone
- Departments of Neurology and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia Medical CenterNew YorkUnited States
| | - Anna Lasorella
- Departments of Pediatrics and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia UniversityNew YorkUnited States
| | - Carla V Rothlin
- Departments of Immunobiology and Pharmacology, Yale School of MedicineNew HavenUnited States
| | - Sourav Ghosh
- Departments of Neurology and Pharmacology, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
9
|
Ravendran S, Hernández SS, König S, Bak RO. CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Front Genome Ed 2022; 4:793010. [PMID: 35373187 PMCID: PMC8969908 DOI: 10.3389/fgeed.2022.793010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Defects in the DOCK8 gene causes combined immunodeficiency termed DOCK8 immunodeficiency syndrome (DIDS). DIDS previously belonged to the disease category of autosomal recessive hyper IgE syndrome (AR-HIES) but is now classified as a combined immunodeficiency (CID). This genetic disorder induces early onset of susceptibility to severe recurrent viral and bacterial infections, atopic diseases and malignancy resulting in high morbidity and mortality. This pathological state arises from impairment of actin polymerization and cytoskeletal rearrangement, which induces improper immune cell migration-, survival-, and effector functions. Owing to the severity of the disease, early allogenic hematopoietic stem cell transplantation is recommended even though it is associated with risk of unintended adverse effects, the need for compatible donors, and high expenses. So far, no alternative therapies have been developed, but the monogenic recessive nature of the disease suggests that gene therapy may be applied. The advent of the CRISPR/Cas gene editing system heralds a new era of possibilities in precision gene therapy, and positive results from clinical trials have already suggested that the tool may provide definitive cures for several genetic disorders. Here, we discuss the potential application of different CRISPR/Cas-mediated genetic therapies to correct the DOCK8 gene. Our findings encourage the pursuit of CRISPR/Cas-based gene editing approaches, which may constitute more precise, affordable, and low-risk definitive treatment options for DOCK8 deficiency.
Collapse
Affiliation(s)
| | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Hong W, Yang B, He Q, Wang J, Weng Q. New Insights of CCR7 Signaling in Dendritic Cell Migration and Inflammatory Diseases. Front Pharmacol 2022; 13:841687. [PMID: 35281921 PMCID: PMC8914285 DOI: 10.3389/fphar.2022.841687] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
CCR7, collaborated with its ligands CCL19 and CCL21, controls extensive migratory events in the immune system. CCR7-bearing dendritic cells can swarm into T-cell zones in lymph nodes, initiating the antigen presentation and T-cell response. Abnormal expression of CCR7 in dendritic cells will cause a series of inflammatory diseases due to the chaotic dendritic cell trafficking. In this review, we take an in-depth look at the structural–functional domains of CCR7 and CCR7-bearing dendritic cell trajectory to lymph nodes. Then, we summarize the regulatory network of CCR7, including transcriptional regulation, translational and posttranslational regulation, internalization, desensitization, and recycling. Furthermore, the potential strategies of targeting the CCR7 network to regulate dendritic cell migration and to deal with inflammatory diseases are integrated, which not only emphasizes the possibility of CCR7 to be a potential target of immunotherapy but also has an implication on the homing of dendritic cells to benefit inflammatory diseases.
Collapse
Affiliation(s)
- Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Qinjie Weng, ; Jiajia Wang,
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Qinjie Weng, ; Jiajia Wang,
| |
Collapse
|
11
|
Gertie JA, Zhang B, Liu EG, Hoyt LR, Yin X, Xu L, Long LL, Soldatenko A, Gowthaman U, Williams A, Eisenbarth SC. Oral anaphylaxis to peanut in a mouse model is associated with gut permeability but not with Tlr4 or Dock8 mutations. J Allergy Clin Immunol 2022; 149:262-274. [PMID: 34051223 PMCID: PMC8626534 DOI: 10.1016/j.jaci.2021.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The etiology of food allergy is poorly understood; mouse models are powerful systems to discover immunologic pathways driving allergic disease. C3H/HeJ mice are a widely used model for the study of peanut allergy because, unlike C57BL/6 or BALB/c mice, they are highly susceptible to oral anaphylaxis. However, the immunologic mechanism of this strain's susceptibility is not known. OBJECTIVE We aimed to determine the mechanism underlying the unique susceptibility to anaphylaxis in C3H/HeJ mice. We tested the role of deleterious Toll-like receptor 4 (Tlr4) or dedicator of cytokinesis 8 (Dock8) mutations in this strain because both genes have been associated with food allergy. METHODS We generated C3H/HeJ mice with corrected Dock8 or Tlr4 alleles and sensitized and challenged them with peanut. We then characterized the antibody response to sensitization, anaphylaxis response to both oral and systemic peanut challenge, gut microbiome, and biomarkers of gut permeability. RESULTS In contrast to C3H/HeJ mice, C57BL/6 mice were resistant to anaphylaxis after oral peanut challenge; however, both strains undergo anaphylaxis with intraperitoneal challenge. Restoring Tlr4 or Dock8 function in C3H/HeJ mice did not protect from anaphylaxis. Instead, we discovered enhanced gut permeability resulting in ingested allergens in the bloodstream in C3H/HeJ mice compared to C57BL/6 mice, which correlated with an increased number of goblet cells in the small intestine. CONCLUSIONS Our work highlights the potential importance of gut permeability in driving anaphylaxis to ingested food allergens; it also indicates that genetic loci outside of Tlr4 and Dock8 are responsible for the oral anaphylactic susceptibility of C3H/HeJ mice.
Collapse
Affiliation(s)
- Jake A Gertie
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Biyan Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Singapore Immunology Network (SIgN), Singapore
| | - Elise G Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, Conn
| | - Laura R Hoyt
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Xiangyun Yin
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Lauren L Long
- The Jackson Laboratory for Genomic Medicine, Farmington, Conn
| | - Arielle Soldatenko
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Department of Pathology, University of Massachusetts Medical School, Worcester, Mass
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, Conn; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Conn.
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, Conn.
| |
Collapse
|
12
|
Luciani C, Hager FT, Cerovic V, Lelouard H. Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunol 2022; 15:40-50. [PMID: 34465895 DOI: 10.1038/s41385-021-00448-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 02/04/2023]
Abstract
The intestine is constantly exposed to foreign antigens, which are mostly innocuous but can sometimes be harmful. Therefore, the intestinal immune system has the delicate task of maintaining immune tolerance to harmless food antigens while inducing tailored immune responses to pathogens and regulating but tolerating the microbiota. Intestinal dendritic cells (DCs) play a central role in these functions as sentinel cells able to prime and polarize the T cell responses. DCs are deployed throughout the intestinal mucosa but with local specializations along the gut length and between the diffuse effector sites of the gut lamina propria (LP) and the well-organized immune inductive sites comprising isolated lymphoid follicles (ILFs), Peyer's patches (PPs), and other species-specific gut-associated lymphoid tissues (GALTs). Understanding the specificities of each intestinal DC subset, how environmental factors influence DC functions, and how these can be modulated is key to harnessing the therapeutic potential of mucosal adaptive immune responses, whether by enhancing the efficacy of mucosal vaccines or by increasing tolerogenic responses in inflammatory disorders. In this review, we summarize recent findings related to intestinal DCs in steady state and upon inflammation, with a special focus on their functional specializations, highly dependent on their microenvironment.
Collapse
Affiliation(s)
| | | | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
13
|
Dendritic cell migration in inflammation and immunity. Cell Mol Immunol 2021; 18:2461-2471. [PMID: 34302064 PMCID: PMC8298985 DOI: 10.1038/s41423-021-00726-4] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic cells (DCs) are the key link between innate immunity and adaptive immunity and play crucial roles in both the promotion of immune defense and the maintenance of immune tolerance. The trafficking of distinct DC subsets across lymphoid and nonlymphoid tissues is essential for DC-dependent activation and regulation of inflammation and immunity. DC chemotaxis and migration are triggered by interactions between chemokines and their receptors and regulated by multiple intracellular mechanisms, such as protein modification, epigenetic reprogramming, metabolic remodeling, and cytoskeletal rearrangement, in a tissue-specific manner. Dysregulation of DC migration may lead to abnormal positioning or activation of DCs, resulting in an imbalance of immune responses and even immune pathologies, including autoimmune responses, infectious diseases, allergic diseases and tumors. New strategies targeting the migration of distinct DC subsets are being explored for the treatment of inflammatory and infectious diseases and the development of novel DC-based vaccines. In this review, we will discuss the migratory routes and immunological consequences of distinct DC subsets, the molecular basis and regulatory mechanisms of migratory signaling in DCs, and the association of DC migration with the pathogenesis of autoimmune and infectious diseases.
Collapse
|
14
|
Sakurai T, Kukimoto-Niino M, Kunimura K, Yamane N, Sakata D, Aihara R, Yasuda T, Yokoyama S, Shirouzu M, Fukui Y, Uruno T. A conserved PI(4,5)P2-binding domain is critical for immune regulatory function of DOCK8. Life Sci Alliance 2021; 4:4/4/e202000873. [PMID: 33574036 PMCID: PMC7893821 DOI: 10.26508/lsa.202000873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
This study uncovers a critical role of DOCK8 in coupling PI(4,5)P2 signaling with Cdc42 activation through its DHR-1 domain during interstitial leukocyte migration. DOCK8 is a Cdc42-specific guanine-nucleotide exchange factor that is essential for development and functions of various subsets of leukocytes in innate and acquired immune responses. Although DOCK8 plays a critical role in spatial control of Cdc42 activity during interstitial leukocyte migration, the mechanism remains unclear. We show that the DOCK homology region (DHR)-1 domain of DOCK8 binds specifically to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and is required for its recruitment to the plasma membrane. Structural and biochemical analyses reveal that DOCK8 DHR-1 domain consists of a C2 domain-like core with loops creating the upper surface pocket, where three basic residues are located for stereospecific recognition of phosphoinositides. Substitution of the two basic residues, K576 and R581, with alanine abolished PI(4,5)P2 binding in vitro, ablated the ability of DOCK8 to activate Cdc42 and support leukocyte migration in three-dimensional collagen gels. Dendritic cells carrying the mutation exhibited defective interstitial migration in vivo. Thus, our study uncovers a critical role of DOCK8 in coupling PI(4,5)P2 signaling with Cdc42 activation for immune regulation.
Collapse
Affiliation(s)
- Tetsuya Sakurai
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Nana Yamane
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daiji Sakata
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryosuke Aihara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yasuda
- Division of Immunology and Genome Biology, Department of Molecular and Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Benson CE, Southgate L. The DOCK protein family in vascular development and disease. Angiogenesis 2021; 24:417-433. [PMID: 33548004 PMCID: PMC8292242 DOI: 10.1007/s10456-021-09768-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The vascular network is established and maintained through the processes of vasculogenesis and angiogenesis, which are tightly regulated during embryonic and postnatal life. The formation of a functional vasculature requires critical cellular mechanisms, such as cell migration, proliferation and adhesion, which are dependent on the activity of small Rho GTPases, controlled in part by the dedicator of cytokinesis (DOCK) protein family. Whilst the majority of DOCK proteins are associated with neuronal development, a growing body of evidence has indicated that members of the DOCK family may have key functions in the control of vasculogenic and angiogenic processes. This is supported by the involvement of several angiogenic signalling pathways, including chemokine receptor type 4 (CXCR4), vascular endothelial growth factor (VEGF) and phosphatidylinositol 3-kinase (PI3K), in the regulation of specific DOCK proteins. This review summarises recent progress in understanding the respective roles of DOCK family proteins during vascular development. We focus on existing in vivo and in vitro models and known human disease phenotypes and highlight potential mechanisms of DOCK protein dysfunction in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Clare E Benson
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Laura Southgate
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK. .,Department of Medical & Molecular Genetics, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
16
|
Benedé S, Berin MC. Applications of Mouse Models to the Study of Food Allergy. Methods Mol Biol 2021; 2223:1-17. [PMID: 33226583 DOI: 10.1007/978-1-0716-1001-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mouse models of allergic disease offer numerous advantages when compared to the models of other animals. However, selection of appropriate mouse models is critical to advance the field of food allergy by revealing mechanisms of allergy and for testing novel therapeutic approaches. All current mouse models for food allergy have weaknesses that may limit their applicability to human disease. Aspects such as the genetic predisposition to allergy or tolerance from the strain of mouse used, allergen dose, route of exposure (oral, intranasal, intraperitoneal, or epicutaneous), damage of the epithelial barrier, use of adjuvants, food matrix effects, or composition of the microbiota should be considered prior to the selection of a specific murine model and contemplated according to the intended purpose of the study. This chapter reviews our current knowledge on the application of mouse models to food allergy research and the variables that may influence the successful development of each type of model.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Schneider C, Shen C, Gopal AA, Douglas T, Forestell B, Kauffman KD, Rogers D, Artusa P, Zhang Q, Jing H, Freeman AF, Barber DL, King IL, Saleh M, Wiseman PW, Su HC, Mandl JN. Migration-induced cell shattering due to DOCK8 deficiency causes a type 2-biased helper T cell response. Nat Immunol 2020; 21:1528-1539. [PMID: 33020661 PMCID: PMC10478007 DOI: 10.1038/s41590-020-0795-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/25/2020] [Indexed: 12/30/2022]
Abstract
Mutations that impact immune cell migration and result in immune deficiency illustrate the importance of cell movement in host defense. In humans, loss-of-function mutations in DOCK8, a guanine exchange factor involved in hematopoietic cell migration, lead to immunodeficiency and, paradoxically, allergic disease. Here, we demonstrate that, like humans, Dock8-/- mice have a profound type 2 CD4+ helper T (TH2) cell bias upon pulmonary infection with Cryptococcus neoformans and other non-TH2 stimuli. We found that recruited Dock8-/-CX3CR1+ mononuclear phagocytes are exquisitely sensitive to migration-induced cell shattering, releasing interleukin (IL)-1β that drives granulocyte-macrophage colony-stimulating factor (GM-CSF) production by CD4+ T cells. Blocking IL-1β, GM-CSF or caspase activation eliminated the type-2 skew in mice lacking Dock8. Notably, treatment of infected wild-type mice with apoptotic cells significantly increased GM-CSF production and TH2 cell differentiation. This reveals an important role for cell death in driving type 2 signals during infection, which may have implications for understanding the etiology of type 2 CD4+ T cell responses in allergic disease.
Collapse
Affiliation(s)
- Caitlin Schneider
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Connie Shen
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Angelica A Gopal
- McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Massachusetts General Hospital, Boston, MA, USA
| | - Todd Douglas
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Benjamin Forestell
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Keith D Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dakota Rogers
- McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Patricio Artusa
- McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Qian Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, USA
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra F Freeman
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Irah L King
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Maya Saleh
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- University of Bordeaux, Bordeaux, France
| | - Paul W Wiseman
- Department of Chemistry and Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith N Mandl
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
- McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec, Canada.
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Kunimura K, Sakata D, Tun X, Uruno T, Ushijima M, Katakai T, Shiraishi A, Aihara R, Kamikaseda Y, Matsubara K, Kanegane H, Sawa S, Eberl G, Ohga S, Yoshikai Y, Fukui Y. S100A4 Protein Is Essential for the Development of Mature Microfold Cells in Peyer's Patches. Cell Rep 2020; 29:2823-2834.e7. [PMID: 31775048 DOI: 10.1016/j.celrep.2019.10.091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 01/22/2023] Open
Abstract
Intestinal microfold cells (M cells) in Peyer's patches are a special subset of epithelial cells that initiate mucosal immune responses through uptake of luminal antigens. Although the cytokine receptor activator of nuclear factor-κB ligand (RANKL) expressed on mesenchymal cells triggers differentiation into M cells, other environmental cues remain unknown. Here, we show that the metastasis-promoting protein S100A4 is required for development of mature M cells. S100A4-producing cells are a heterogenous cell population including lysozyme-expressing dendritic cells and group 3 innate lymphoid cells. We found that in the absence of DOCK8, a Cdc42 activator critical for interstitial leukocyte migration, S100A4-producing cells are reduced in the subepithelial dome, resulting in a maturation defect of M cells. While S100A4 promotes differentiation into mature M cells in organoid culture, genetic inactivation of S100a4 prevents the development of mature M cells in mice. Thus, S100A4 is a key environmental cue that regulates M cell differentiation in collaboration with RANKL.
Collapse
Affiliation(s)
- Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Daiji Sakata
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan
| | - Xin Tun
- Division of Host Defence, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan
| | - Miho Ushijima
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Akira Shiraishi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryosuke Aihara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuhisa Kamikaseda
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Keisuke Matsubara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shinichiro Sawa
- Division of Mucosal Immunology, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Gérard Eberl
- Microenvironment & Immunity Unit, INSERM U1224, Institut Pasteur, Paris 75724, France
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunobu Yoshikai
- Division of Host Defence, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
19
|
Fan M, Wang J, Wang S, Li T, Pan H, Liu H, Xu H, Zhernakova DV, O'Brien SJ, Feng Z, Chang L, Dai E, Lu J, Xi H, Yu Y, Zhang J, Wang B, Zeng Z. New Gene Variants Associated with the Risk of Chronic HBV Infection. Virol Sin 2020; 35:378-387. [PMID: 32297155 PMCID: PMC7462954 DOI: 10.1007/s12250-020-00200-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Some patients with chronic hepatitis B virus (HBV) infection failed to clear HBV, even persistently continue to produce antibodies to HBV. Here we performed a two stage genome wide association study in a cohort of Chinese patients designed to discover single nucleotide variants that associate with HBV infection and clearance of HBV. The first stage involved genome wide exome sequencing of 101 cases (HBsAg plus anti-HBs positive) compared with 102 control patients (anti-HBs positive, HBsAg negative). Over 80% of individual sequences displayed 20 × sequence coverage. Adapters, uncertain bases > 10% or low-quality base calls (> 50%) were filtered and compared to the human reference genome hg19. In the second stage, 579 chronic HBV infected cases and 439 HBV clearance controls were sequenced with selected genes from the first stage. Although there were no significant associated gene variants in the first stage, two significant gene associations were discovered when the two stages were assessed in a combined analysis. One association showed rs506121-"T" allele [within the dedicator of cytokinesis 8 (DOCK8) gene] was higher in chronic HBV infection group than that in clearance group (P = 0.002, OR = 0.77, 95% CI [0.65, 0.91]). The second association involved rs2071676-A allele within the Carbonic anhydrase (CA9) gene that was significantly elevated in chronic HBV infection group compared to the clearance group (P = 0.0003, OR = 1.35, 95% CI [1.15, 1.58]). Upon replication these gene associations would suggest the influence of DOCK8 and CA9 as potential risk genetic factors in the persistence of HBV infection.
Collapse
Affiliation(s)
- Mengjie Fan
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Jing Wang
- Department of Medical Genetics and Development Biology, School of Medical Basic, Capital Medical University, Beijing, 100069, China
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Sa Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Hong Pan
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Hankui Liu
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huifang Xu
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Daria V Zhernakova
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia, 197101
| | - Stephen J O'Brien
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia, 197101
- Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Ft Lauderdale, FL, 33004, USA
| | - Zhenru Feng
- Department of Laboratory Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Le Chang
- Department of Laboratory Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Erhei Dai
- The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050024, China
| | - Jianhua Lu
- The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050024, China
| | - Hongli Xi
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Jianguo Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China.
| | - Zheng Zeng
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
20
|
Kunimura K, Uruno T, Fukui Y. DOCK family proteins: key players in immune surveillance mechanisms. Int Immunol 2020; 32:5-15. [PMID: 31630188 PMCID: PMC6949370 DOI: 10.1093/intimm/dxz067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Dedicator of cytokinesis (DOCK) proteins constitute a family of evolutionarily conserved guanine nucleotide exchange factors (GEFs) for the Rho family of GTPases. Although DOCK family proteins do not contain the Dbl homology domain typically found in other GEFs, they mediate the GTP–GDP exchange reaction through the DOCK homology region-2 (DHR-2) domain. In mammals, this family consists of 11 members, each of which has unique functions depending on the expression pattern and the substrate specificity. For example, DOCK2 is a Rac activator critical for migration and activation of leukocytes, whereas DOCK8 is a Cdc42-specific GEF that regulates interstitial migration of dendritic cells. Identification of DOCK2 and DOCK8 as causative genes for severe combined immunodeficiency syndromes in humans has highlighted their roles in immune surveillance. In addition, the recent discovery of a naturally occurring DOCK2-inhibitory metabolite has uncovered an unexpected mechanism of tissue-specific immune evasion. On the other hand, GEF-independent functions have been shown for DOCK8 in antigen-induced IL-31 production in helper T cells. This review summarizes multifaced functions of DOCK family proteins in the immune system.
Collapse
Affiliation(s)
- Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
21
|
Olivier JF, Fodil N, Al Habyan S, Gopal A, Artusa P, Mandl JN, McCaffrey L, Gros P. CCDC88B is required for mobility and inflammatory functions of dendritic cells. J Leukoc Biol 2020; 108:1787-1802. [PMID: 32480428 DOI: 10.1002/jlb.3a0420-386r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
The Coiled Coil Domain Containing Protein 88B (CCDC88B) gene is associated with susceptibility to several inflammatory diseases in humans and its inactivation in mice protects against acute neuroinflammation and models of intestinal colitis. We report that mice lacking functional CCDC88B (Ccdc88bMut ) are defective in several dendritic cells (DCs)-dependent inflammatory and immune reactions in vivo. In these mice, an inflammatory stimulus (LPS) fails to induce the recruitment of DCs into the draining lymph nodes (LNs). In addition, OVA-pulsed Ccdc88bMut DCs injected in the footpad do not induce recruitment and activation of antigen-specific CD4+ and CD8+ T cells in their draining LN. Experiments in vitro indicate that this defect is independent of the ability of mutant DCs to capture and present peptide antigen to T cells. Rather, kinetic analyses in vivo of wild-type and Ccdc88bMut DCs indicate a reduced migration capacity in the absence of the CCDC88B protein expression. Moreover, using time-lapse light microscopy imaging, we show that Ccdc88bMut DCs have an intrinsic motility defect. Furthermore, in vivo studies reveal that these reduced migratory properties lead to dampened contact hypersensitivity reactions in Ccdc88b mutant mice. These findings establish a critical role of CCDC88B in regulating movement and migration of DCs. Thus, regulatory variants impacting Ccdc88b expression in myeloid cells may cause variable degrees of DC-dependent inflammatory response in situ, providing a rationale for the genetic association of CCDC88B with several inflammatory and autoimmune diseases in humans.
Collapse
Affiliation(s)
- Jean-Frederic Olivier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Sara Al Habyan
- Department of Oncology, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Angelica Gopal
- McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada.,Department of Chemistry, McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Patricio Artusa
- McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Judith N Mandl
- McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Luke McCaffrey
- Department of Oncology, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Cheong M, Gartlan KH, Lee JS, Tey SK, Zhang P, Kuns RD, Andoniou CE, Martins JP, Chang K, Sutton VR, Kelly G, Varelias A, Vuckovic S, Markey KA, Boyle GM, Smyth MJ, Engwerda CR, MacDonald KPA, Trapani JA, Degli-Esposti MA, Koyama M, Hill GR. ASC Modulates CTL Cytotoxicity and Transplant Outcome Independent of the Inflammasome. Cancer Immunol Res 2020; 8:1085-1098. [PMID: 32444423 DOI: 10.1158/2326-6066.cir-19-0653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/10/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
The adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) is known to facilitate caspase-1 activation, which is essential for innate host immunity via the formation of the inflammasome complex, a multiprotein structure responsible for processing IL1β and IL18 into their active moieties. Here, we demonstrated that ASC-deficient CD8+ T cells failed to induce severe graft-versus-host disease (GVHD) and had impaired capacity for graft rejection and graft-versus-leukemia (GVL) activity. These effects were inflammasome independent because GVHD lethality was not altered in recipients of caspase-1/11-deficient T cells. We also demonstrated that ASC deficiency resulted in a decrease in cytolytic function, with a reduction in granzyme B secretion and CD107a expression by CD8+ T cells. Altogether, our findings highlight that ASC represents an attractive therapeutic target for improving outcomes of clinical transplantation.
Collapse
Affiliation(s)
- Melody Cheong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Natural Sciences, Griffith University, Nathan, Queensland, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Christopher E Andoniou
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia.,Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jose Paulo Martins
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karshing Chang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vivien R Sutton
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Greg Kelly
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Slavica Vuckovic
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Kate A Markey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | | | - Joseph A Trapani
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Mariapia A Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia.,Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Motoko Koyama
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
23
|
Namekata K, Guo X, Kimura A, Arai N, Harada C, Harada T. DOCK8 is expressed in microglia, and it regulates microglial activity during neurodegeneration in murine disease models. J Biol Chem 2019; 294:13421-13433. [PMID: 31337702 DOI: 10.1074/jbc.ra119.007645] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Dedicator of cytokinesis 8 (DOCK8) is a guanine nucleotide exchange factor whose loss of function results in immunodeficiency, but its role in the central nervous system (CNS) has been unclear. Microglia are the resident immune cells of the CNS and are implicated in the pathogenesis of various neurodegenerative diseases, including multiple sclerosis (MS) and glaucoma, which affects the visual system. However, the exact roles of microglia in these diseases remain unknown. Herein, we report that DOCK8 is expressed in microglia but not in neurons or astrocytes and that its expression is increased during neuroinflammation. To define the role of DOCK8 in microglial activity, we focused on the retina, a tissue devoid of infiltrating T cells. The retina is divided into distinct layers, and in a disease model of MS/optic neuritis, DOCK8-deficient mice exhibited a clear reduction in microglial migration through these layers. Moreover, neuroinflammation severity, indicated by clinical scores, visual function, and retinal ganglion cell (RGC) death, was reduced in the DOCK8-deficient mice. Furthermore, using a glaucoma disease model, we observed impaired microglial phagocytosis of RGCs in DOCK8-deficient mice. Our data demonstrate that DOCK8 is expressed in microglia and regulates microglial activity in disease states. These findings contribute to a better understanding of the molecular pathways involved in microglial activation and implicate a role of DOCK8 in several neurological diseases.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Nobutaka Arai
- Brain Pathology Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| |
Collapse
|
24
|
Fu Y, Zhan X, Wang Y, Jiang X, Liu M, Yang Y, Huang Y, Du X, Zhong XP, Li L, Ma L, Hu S. NLRC3 expression in dendritic cells attenuates CD4 + T cell response and autoimmunity. EMBO J 2019; 38:e101397. [PMID: 31290162 DOI: 10.15252/embj.2018101397] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
NOD-like receptor (NLR) family CARD domain containing 3 (NLRC3), an intracellular member of NLR family, is a negative regulator of inflammatory signaling pathways in innate and adaptive immune cells. Previous reports have shown that NLRC3 is expressed in dendritic cells (DCs). However, the role of NLRC3 in DC activation and immunogenicity is unclear. In the present study, we find that NLRC3 attenuates the antigen-presenting function of DCs and their ability to activate and polarize CD4+ T cells into Th1 and Th17 subsets. Loss of NLRC3 promotes pathogenic Th1 and Th17 responses and enhanced experimental autoimmune encephalomyelitis (EAE) development. NLRC3 negatively regulates the antigen-presenting function of DCs via p38 signaling pathway. Vaccination with NLRC3-overexpressed DCs reduces EAE progression. Our findings support that NLRC3 serves as a potential target for treating adaptive immune responses driving multiple sclerosis and other autoimmune disorders.
Collapse
Affiliation(s)
- Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoxia Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yichong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yalong Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiao-Ping Zhong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laisheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Arndt T, Jörns A, Wedekind D. Changes in immune cell frequencies in primary and secondary lymphatic organs of LEW.1AR1-iddm rats, a model of human type 1 diabetes compared to other MHC congenic LEW inbred strains. Immunol Res 2019; 66:462-470. [PMID: 30143971 DOI: 10.1007/s12026-018-9015-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The LEW.1AR1-iddm rat is an animal model of human type 1 diabetes, which arose through a spontaneous mutation in the Dock8 gene within the MHC congenic background strain LEW.1AR1. This mutation not only mediates diabetes development but also leads to a variable T cell frequency in peripheral blood. In this study, the immune cell frequencies of primary and secondary lymphatic organs of LEW.1AR1-iddm rats were analysed at days 40 and 60 and compared to other MHC congenic LEW rat strains. In LEW.1AR1-iddm rats, the secondary lymphatic organs such as lymph nodes and spleen showed a reduced, around 15% in comparison to all other strains, but very variable T cell frequency, mirroring the fluctuating T cell content in blood. On the other hand, the frequency of B cells was increased by 10% in the lymph nodes and by 5% in the spleen. Thus, the decreasing number of T cells in blood could not be caused by an increase of T cells in secondary lymphatic organs. The frequency of single- or double-positive T cells in the thymus was unaffected. The T cell frequencies in the other analysed strains were more stable and mostly higher in all secondary lymphatic organs. Obviously, the Dock8 mutation leads to variabilities of T cell frequencies in blood as well as in secondary lymphatic organs. In conclusion, the Dock8 mutation was responsible for changed immune cell frequencies in different compartments and together with the RT1B/Du haplotype causing immune imbalances and development of autoimmune diabetes.
Collapse
Affiliation(s)
- Tanja Arndt
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
26
|
IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α + Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity 2019; 51:64-76.e7. [PMID: 31231033 DOI: 10.1016/j.immuni.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
Type 1 CD8α+ conventional dendritic cells (cDC1s) are required for CD8+ T cell priming but, paradoxically, promote splenic Listeria monocytogenes infection. Using mice with impaired cDC2 function, we ruled out a role for cDC2s in this process and instead discovered an interleukin-10 (IL-10)-dependent cellular crosstalk in the marginal zone (MZ) that promoted bacterial infection. Mice lacking the guanine nucleotide exchange factor DOCK8 or CD19 lost IL-10-producing MZ B cells and were resistant to Listeria. IL-10 increased intracellular Listeria in cDC1s indirectly by reducing inducible nitric oxide synthase expression early after infection and increasing intracellular Listeria in MZ metallophilic macrophages (MMMs). These MMMs trans-infected cDC1s, which, in turn, transported Listeria into the white pulp to prime CD8+ T cells. However, this also facilitated bacterial expansion. Therefore, IL-10-mediated crosstalk between B cells, macrophages, and cDC1s in the MZ promotes both Listeria infection and CD8+ T cell activation.
Collapse
|
27
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
28
|
Su HC, Jing H, Angelus P, Freeman AF. Insights into immunity from clinical and basic science studies of DOCK8 immunodeficiency syndrome. Immunol Rev 2019; 287:9-19. [PMID: 30565250 PMCID: PMC6350515 DOI: 10.1111/imr.12723] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
DOCK8 immunodeficiency syndrome (DIDS) is a progressive combined immunodeficiency that can be distinguished from other combined immunodeficiencies or hyperimmunoglobulinemia E syndromes in featuring (a) profound susceptibility to virus infections of the skin, with associated skin cancers, and (b) severe food allergies. The DOCK8 locus has many repetitive sequence elements that predispose to the generation of large germline deletions as well as recombination-mediated somatic DNA repair. Residual DOCK8 protein contributes to the variable disease phenotype. The severe virus infections of the skin, and probably also VZV-associated vasculopathy, reflect an important function of DOCK8, which is normally required to maintain lymphocyte shape integrity as the cells migrate through dense tissues. Loss of DOCK8 also causes immune deficits through other mechanisms including a milder generalized cell survival defect and skewing of T helper cell subsets. Recent work has uncovered the roles for DOCK8 in dendritic cell responses that can also help explain the virus susceptibility, as well as in regulatory T cells that might help explain autoimmunity in a minority of patients. Fortunately, hematopoietic stem cell transplantation cures the eczema and infection susceptibility of DIDS, but not necessarily the other disease manifestations including food allergies.
Collapse
Affiliation(s)
- Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Pam Angelus
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| |
Collapse
|
29
|
Mirza N, Sowa AS, Lautz K, Kufer TA. NLRP10 Affects the Stability of Abin-1 To Control Inflammatory Responses. THE JOURNAL OF IMMUNOLOGY 2018; 202:218-227. [PMID: 30510071 DOI: 10.4049/jimmunol.1800334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
NOD-like receptors (NLR) are critical regulators of innate immune signaling. The NLR family consists of 22 human proteins with a conserved structure containing a central oligomerization NACHT domain, an N-terminal interaction domain, and a variable number of C-terminal leucine-rich repeats. Most NLR proteins function as cytosolic pattern recognition receptors with activation of downstream inflammasome signaling, NF-κB, or MAPK activation. Although NLRP10 is the only NLR protein lacking the leucine rich repeats, it has been implicated in multiple immune pathways, including the regulation of inflammatory responses toward Leishmania major and Shigella flexneri infection. In this study, we identify Abin-1, a negative regulator of NF-κB, as an interaction partner of NLRP10 that binds to the NACHT domain of NLRP10. Using S. flexneri as an infection model in human epithelial cells, our work reveals a novel function of NLRP10 in destabilizing Abin-1, resulting in enhanced proinflammatory signaling. Our data give insight into the molecular mechanism underlying the function of NLRP10 in innate immune responses.
Collapse
Affiliation(s)
- Nora Mirza
- Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany; and
| | - Anna S Sowa
- Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany; and
| | - Katja Lautz
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, 50931 Cologne, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany; and
| |
Collapse
|
30
|
Poyntz HC, Jones A, Jauregui R, Young W, Gestin A, Mooney A, Lamiable O, Altermann E, Schmidt A, Gasser O, Weyrich L, Jolly CJ, Linterman MA, Gros GL, Hawkins ED, Forbes-Blom E. Genetic regulation of antibody responsiveness to immunization in substrains of BALB/c mice. Immunol Cell Biol 2018; 97:39-53. [PMID: 30152893 PMCID: PMC6378622 DOI: 10.1111/imcb.12199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022]
Abstract
Antibody‐mediated immunity is highly protective against disease. The majority of current vaccines confer protection through humoral immunity, but there is high variability in responsiveness across populations. Identifying immune mechanisms that mediate low antibody responsiveness may provide potential strategies to boost vaccine efficacy. Here, we report diverse antibody responsiveness to unadjuvanted as well as adjuvanted immunization in substrains of BALB/c mice, resulting in high and low antibody response phenotypes. Furthermore, these antibody phenotypes were not affected by changes in environmental factors such as the gut microbiota composition. Antigen‐specific B cells following immunization had a marked difference in capability to class switch, resulting in perturbed IgG isotype antibody production. In vitro, a B‐cell intrinsic defect in the regulation of class‐switch recombination was identified in mice with low IgG antibody production. Whole genome sequencing identified polymorphisms associated with the magnitude of antibody produced, and we propose candidate genes that may regulate isotype class‐switching capability. This study highlights that mice sourced from different vendors can have significantly altered humoral immune response profiles, and provides a resource to interrogate genetic regulators of antibody responsiveness. Together these results further our understanding of immune heterogeneity and suggest additional research on the genetic influences of adjuvanted vaccine strategies is warranted for enhancing vaccine efficacy.
Collapse
Affiliation(s)
- Hazel C Poyntz
- Malaghan Institute of Medical Research, Victoria University of Wellington, Gate 7, Kelburn Parade, Wellington, 6012, New Zealand.,High-Value Nutrition National Science Challenge, New Zealand
| | - Angela Jones
- Malaghan Institute of Medical Research, Victoria University of Wellington, Gate 7, Kelburn Parade, Wellington, 6012, New Zealand
| | - Ruy Jauregui
- Grasslands Research Centre, AgResearch, Tennent Drive, Palmerston North, New Zealand
| | - Wayne Young
- Grasslands Research Centre, AgResearch, Tennent Drive, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4474, New Zealand
| | - Aurélie Gestin
- Malaghan Institute of Medical Research, Victoria University of Wellington, Gate 7, Kelburn Parade, Wellington, 6012, New Zealand
| | - Anna Mooney
- Malaghan Institute of Medical Research, Victoria University of Wellington, Gate 7, Kelburn Parade, Wellington, 6012, New Zealand
| | - Olivier Lamiable
- Malaghan Institute of Medical Research, Victoria University of Wellington, Gate 7, Kelburn Parade, Wellington, 6012, New Zealand
| | - Eric Altermann
- Grasslands Research Centre, AgResearch, Tennent Drive, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4474, New Zealand
| | - Alfonso Schmidt
- Malaghan Institute of Medical Research, Victoria University of Wellington, Gate 7, Kelburn Parade, Wellington, 6012, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Victoria University of Wellington, Gate 7, Kelburn Parade, Wellington, 6012, New Zealand
| | - Laura Weyrich
- Australian Centre for Ancient DNA, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Christopher J Jolly
- Centenary Institute and Sydney Medical School, University of Sydney, Missenden Road, Sydney, NSW, 2050, Australia
| | - Michelle A Linterman
- Lymphocyte Signaling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Victoria University of Wellington, Gate 7, Kelburn Parade, Wellington, 6012, New Zealand
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elizabeth Forbes-Blom
- Malaghan Institute of Medical Research, Victoria University of Wellington, Gate 7, Kelburn Parade, Wellington, 6012, New Zealand.,High-Value Nutrition National Science Challenge, New Zealand
| |
Collapse
|
31
|
Krishnaswamy JK, Alsén S, Yrlid U, Eisenbarth SC, Williams A. Determination of T Follicular Helper Cell Fate by Dendritic Cells. Front Immunol 2018; 9:2169. [PMID: 30319629 PMCID: PMC6170619 DOI: 10.3389/fimmu.2018.02169] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/03/2018] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells are a specialized subset of CD4+ T cells that collaborate with B cells to promote and regulate humoral responses. Unlike other CD4+ effector lineages, Tfh cells require interactions with both dendritic cells (DCs) and B cells to complete their differentiation. While numerous studies have assessed the potential of different DC subsets to support Tfh priming, the conclusions of these studies depend heavily on the model and method of immunization used. We propose that the location of different DC subsets within the lymph node (LN) and their access to antigen determine their potency in Tfh priming. Finally, we provide a three-step model that accounts for the ability of multiple DC subsets and related lineages to support the Tfh differentiation program.
Collapse
Affiliation(s)
| | - Samuel Alsén
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
32
|
Ermann J. Editorial: Of Mice and Mice: Understanding Conflicting Murine Experimental Data. Arthritis Rheumatol 2018; 68:1801-4. [PMID: 27059525 DOI: 10.1002/art.39709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Joerg Ermann
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Zhang Q, Boisson B, Béziat V, Puel A, Casanova JL. Human hyper-IgE syndrome: singular or plural? Mamm Genome 2018; 29:603-617. [PMID: 30094507 PMCID: PMC6317873 DOI: 10.1007/s00335-018-9767-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
Abstract
Spectacular progress has been made in the characterization of human hyper-IgE syndrome (HIES) over the last 50 years. HIES is a primary immunodeficiency defined as an association of atopy in a context of very high serum IgE levels, characteristic bacterial and fungal diseases, low-level clinical and biological inflammation, and various non-hematopoietic developmental manifestations. Somewhat arbitrarily, three disorders were successively put forward as the underlying cause of HIES: autosomal dominant (AD) STAT3 deficiency, the only disorder corresponding to the original definition of HIES, and autosomal recessive (AR) DOCK8 and PGM3 deficiencies, in which atopy and high serum IgE levels occur in a context of manifestations not seen in patients with typical HIES. Indeed, these three disorders disrupt different molecular pathways, affect different cell types, and underlie different clinical phenotypes. Surprisingly, several other inherited inborn errors of immunity in which serum IgE levels are high, sometimes almost as high as those in HIES patients, are not considered to belong to the HIES group of diseases. Studies of HIES have been further complicated by the lack of a high serum IgE phenotype in all mouse models of the disease other than two Stat3 mutant strains. The study of infections in mutant mice has helped elucidate only some forms of HIES and infection. Mouse models of these conditions have also been used to study non-hematopoietic phenotypes for STAT3 deficiency, tissue-specific immunity for DOCK8 deficiency, and cell lineage maturation for PGM3 deficiency. We review here the history of the field of HIES since the first clinical description of this condition in 1966, together with the three disorders commonly referred to as HIES, focusing, in particular, on their mouse models. We propose the restriction of the term "HIES" to patients with an AD STAT3-deficiency phenotype, including the most recently described AR ZNF341 deficiency, thus excluding AR DOCK8 and PGM3 deficiencies from the definition of this disease.
Collapse
Affiliation(s)
- Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
34
|
Krishnaswamy JK, Gowthaman U, Zhang B, Mattsson J, Szeponik L, Liu D, Wu R, White T, Calabro S, Xu L, Collet MA, Yurieva M, Alsén S, Fogelstrand P, Walter A, Heath WR, Mueller SN, Yrlid U, Williams A, Eisenbarth SC. Migratory CD11b + conventional dendritic cells induce T follicular helper cell-dependent antibody responses. Sci Immunol 2018; 2:2/18/eaam9169. [PMID: 29196450 DOI: 10.1126/sciimmunol.aam9169] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/11/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
T follicular helper (Tfh) cells are a subset of CD4+ T cells that promote antibody production during vaccination. Conventional dendritic cells (cDCs) efficiently prime Tfh cells; however, conclusions regarding which cDC instructs Tfh cell differentiation have differed between recent studies. We found that these discrepancies might exist because of the unusual sites used for immunization in murine models, which differentially bias which DC subsets access antigen. We used intranasal immunization as a physiologically relevant route of exposure that delivers antigen to all tissue DC subsets. Using a combination of mice in which the function of individual DC subsets is impaired and different antigen formulations, we determined that CD11b+ migratory type 2 cDCs (cDC2s) are necessary and sufficient for Tfh induction. DC-specific deletion of the guanine nucleotide exchange factor DOCK8 resulted in an isolated loss of CD11b+ cDC2, but not CD103+ cDC1, migration to lung-draining lymph nodes. Impaired cDC2 migration or development in DC-specific Dock8 or Irf4 knockout mice, respectively, led to reduced Tfh cell priming, whereas loss of CD103+ cDC1s in Batf3-/- mice did not. Loss of cDC2-dependent Tfh cell priming impaired antibody-mediated protection from live influenza virus challenge. We show that migratory cDC2s uniquely carry antigen into the subanatomic regions of the lymph node where Tfh cell priming occurs-the T-B border. This work identifies the DC subset responsible for Tfh cell-dependent antibody responses, particularly when antigen dose is limiting or is encountered at a mucosal site, which could ultimately inform the formulation and delivery of vaccines.
Collapse
Affiliation(s)
- Jayendra Kumar Krishnaswamy
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, 431 50 Mölndal, Sweden
| | - Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Biyan Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Johan Mattsson
- Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, 431 50 Mölndal, Sweden
| | - Louis Szeponik
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Renee Wu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Theresa White
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Samuele Calabro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Magalie A Collet
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Marina Yurieva
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Samuel Alsén
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Anne Walter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - William R Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Adam Williams
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA. .,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
35
|
Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, Zoumpourlis V. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Int J Oncol 2018; 53:443-468. [PMID: 29901119 PMCID: PMC6017271 DOI: 10.3892/ijo.2018.4434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
One of the fundamental discoveries in the field of biology is the ability to modulate the genome and to monitor the functional outputs derived from genomic alterations. In order to unravel new therapeutic options, scientists had initially focused on inducing genetic alterations in primary cells, in established cancer cell lines and mouse models using either RNA interference or cDNA overexpression or various programmable nucleases [zinc finger nucleases (ZNF), transcription activator-like effector nucleases (TALEN)]. Even though a huge volume of data was produced, its use was neither cheap nor accurate. Therefore, the clustered regularly interspaced short palindromic repeats (CRISPR) system was evidenced to be the next step in genome engineering tools. CRISPR-associated protein 9 (Cas9)-mediated genetic perturbation is simple, precise and highly efficient, empowering researchers to apply this method to immortalized cancerous cell lines, primary cells derived from mouse and human origins, xenografts, induced pluripotent stem cells, organoid cultures, as well as the generation of genetically engineered animal models. In this review, we assess the development of the CRISPR system and its therapeutic applications to a wide range of complex diseases (particularly distinct tumors), aiming at personalized therapy. Special emphasis is given to organoids and CRISPR screens in the design of innovative therapeutic approaches. Overall, the CRISPR system is regarded as an eminent genome engineering tool in therapeutics. We envision a new era in cancer biology during which the CRISPR-based genome engineering toolbox will serve as the fundamental conduit between the bench and the bedside; nonetheless, certain obstacles need to be addressed, such as the eradication of side-effects, maximization of efficiency, the assurance of delivery and the elimination of immunogenicity.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Mihalis Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | | | | |
Collapse
|
36
|
Thomas SY, Whitehead GS, Takaku M, Ward JM, Xu X, Nakano K, Lyons-Cohen MR, Nakano H, Gowdy KM, Wade PA, Cook DN. MyD88-dependent dendritic and epithelial cell crosstalk orchestrates immune responses to allergens. Mucosal Immunol 2018; 11:796-810. [PMID: 29067999 PMCID: PMC5918466 DOI: 10.1038/mi.2017.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/22/2017] [Indexed: 02/04/2023]
Abstract
Sensitization to inhaled allergens is dependent on activation of conventional dendritic cells (cDCs) and on the adaptor molecule, MyD88. However, many cell types in the lung express Myd88, and it is unclear how signaling in these different cell types reprograms cDCs and leads to allergic inflammation of the airway. By combining ATAC-seq with RNA profiling, we found that MyD88 signaling in cDCs maintained open chromatin at select loci even at steady state, allowing genes to be rapidly induced during allergic sensitization. A distinct set of genes related to metabolism was indirectly controlled in cDCs through MyD88 signaling in airway epithelial cells (ECs). In mouse models of asthma, Myd88 expression in ECs was critical for eosinophilic inflammation, whereas Myd88 expression in cDCs was required for Th17 cell differentiation and consequent airway neutrophilia. Thus, both cell-intrinsic and cell-extrinsic MyD88 signaling controls gene expression in cDCs and orchestrates immune responses to inhaled allergens.
Collapse
Affiliation(s)
- Seddon Y. Thomas
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Gregory S. Whitehead
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Motoki Takaku
- Embryonic Stem Cell and Chromatin Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - James M. Ward
- Integrated Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Xiaojiang Xu
- Integrated Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Miranda R. Lyons-Cohen
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Kymberly M. Gowdy
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | - Paul A. Wade
- Embryonic Stem Cell and Chromatin Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Donald N. Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
37
|
Zeng Q, Hu C, Qi R, Lu D. PYNOD reduces microglial inflammation and consequent neurotoxicity upon lipopolysaccharides stimulation. Exp Ther Med 2018; 15:5337-5343. [PMID: 29904414 PMCID: PMC5996706 DOI: 10.3892/etm.2018.6108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 03/28/2018] [Indexed: 01/01/2023] Open
Abstract
PYNOD, a nod-like receptors (NLR)-like protein, was indicated to inhibit NF-κB activation, caspase-1-mediated interleukin (IL)-1β release and cell apoptosis in a dose-dependent manner. Exogenous addition of recombinant PYNOD to mixed glial cultures may suppress caspase-1 activation and IL-1β secretion induced by Aβ. However, to the best of our knowledge, there no study has focused on the immunoregulatory effects of PYNOD specifically in microglia. The present study aimed to explore the roles of PYNOD involved in the lipopolysaccharides (LPS)-induced microglial inflammation and consequent neurotoxicity. Murine microglial BV-2 cells were transfected with pEGFP-C2-PYNOD (0–5.0 µg/ml) for 24 h and incubated with or without LPS (1 µg/ml) for a further 24 h. Cell viability was determined using MTT assay and the secretion of nitric oxide (NO), IL-1β and caspase-1 was measured using the Griess method or ELISA. Protein expression levels of NF-κB p65 and inducible nitric oxide synthase (iNOS) were detected by immunofluorescent staining and/or western blot analysis. Co-culture of BV-2 cells with human neuroblastoma cell line SK-N-SH was performed in Transwell plates and the cell viability and apoptosis (using flow cytometry) of SK-N-SH cells were determined. Results indicated that PYNOD overexpression inhibited NO secretion and iNOS protein expression induced by LPS in BV-2 cells, with no detectable cytotoxicity. PYNOD overexpression also reduced the secretion of IL-1β and caspase-1 from BV-2 cells upon LPS stimulation. These effects were dose-dependent. Additionally, PYNOD overexpression prevented LPS-induced nuclear translocation of NF-κB p65 in BV-2 cells. The growth-inhibitory and apoptosis-promoting effects of BV-2 cells towards SK-N-SH cells were alleviated as a result of PYNOD overexpression. In conclusion, PYNOD may mitigate microglial inflammation and consequent neurotoxicity.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, P.R. China
| | - Chaofeng Hu
- Key Laboratory of State Administration of Traditional Chinese Medicine of The People's Republic of China, Institute of Brain Research, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Renbin Qi
- Key Laboratory of State Administration of Traditional Chinese Medicine of The People's Republic of China, Institute of Brain Research, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Daxiang Lu
- Key Laboratory of State Administration of Traditional Chinese Medicine of The People's Republic of China, Institute of Brain Research, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
38
|
Bigley V, Cytlak U, Collin M. Human dendritic cell immunodeficiencies. Semin Cell Dev Biol 2018; 86:50-61. [PMID: 29452225 DOI: 10.1016/j.semcdb.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/28/2017] [Accepted: 02/10/2018] [Indexed: 12/21/2022]
Abstract
The critical functions of dendritic cells (DCs) in immunity and tolerance have been demonstrated in many animal models but their non-redundant roles in humans are more difficult to probe. Human primary immunodeficiency (PID), resulting from single gene mutations, may result in DC deficiency or dysfunction. This relatively recent recognition illuminates the in vivo role of human DCs and the pathophysiology of the associated clinical syndromes. In this review, the development and function of DCs as established in murine models and human in vitro systems, discussed. This forms the basis of predicting the effects of DC deficiency in vivo and understanding the consequences of specific mutations on DC development and function. DC deficiency syndromes are associated with heterozygous GATA2 mutation, bi-allelic and heterozygous IRF8 mutation and heterozygous IKZF1 mutation. The intricate involvement of DCs in the balance between immunity and tolerance is leading to increased recognition of their involvement in a number of other immunodeficiencies and autoimmune conditions. Owing to the precise control of transcription factor gene expression by super-enhancer elements, phenotypic anomalies are relatively commonly caused by heterozygous mutations.
Collapse
Affiliation(s)
- Venetia Bigley
- Human DC Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Urszula Cytlak
- Human DC Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew Collin
- Human DC Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Benedé S, Berin MC. Mast cell heterogeneity underlies different manifestations of food allergy in mice. PLoS One 2018; 13:e0190453. [PMID: 29370173 PMCID: PMC5784907 DOI: 10.1371/journal.pone.0190453] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
Food can trigger a diverse array of symptoms in food allergic individuals from isolated local symptoms affecting skin or gut to multi-system severe reactions (systemic anaphylaxis). Although we know that gastrointestinal and systemic manifestations of food allergy are mediated by tissue mast cells (MCs), it is not clear why allergen exposure by the oral route can result in such distinct clinical manifestations. Our aim was to assess the contribution of mast cell subsets to different manifestations of food allergy. We used two common models of IgE-mediated food allergy, one resulting in systemic anaphylaxis and the other resulting in acute gastrointestinal symptoms, to study the immune basis of allergic reactions. We used responders and non-responders in each model system, as well as naïve controls to identify the association of mast cell activation with clinical reactivity rather than sensitization. Systemic anaphylaxis was uniquely associated with activation of connective tissue mast cells (identified by release of mouse mast cell protease (MMCP) -7 into the serum) and release of histamine, while activation of mucosal mast cells (identified by release of MMCP-1 in the serum) did not correlate with symptoms. Gastrointestinal manifestations of food allergy were associated with an increase of MMCP-1-expressing mast cells in the intestine, and evidence of both mucosal and connective tissue mast cell activation. The data presented in this paper demonstrates that mast cell heterogeneity is an important contributor to manifestations of food allergy, and identifies the connective tissue mast cell subset as key in the development of severe systemic anaphylaxis.
Collapse
Affiliation(s)
- Sara Benedé
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - M. Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
40
|
Lachner J, Mlitz V, Tschachler E, Eckhart L. Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Sci Rep 2017; 7:17446. [PMID: 29234126 PMCID: PMC5727156 DOI: 10.1038/s41598-017-17782-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023] Open
Abstract
The homeostasis of the epidermis depends on keratinocyte differentiation and cornification, a mode of programmed cell death that does not elicit inflammation. Here, we report that cornification is associated with the expression of specific genes that control multiple steps of pyroptosis, another form of cell death that involves the processing and release of interleukin-1 family (IL1F) cytokines. Expression levels of pro-inflammatory IL1A and IL1B and of the pyroptotic pore-forming gasdermin (GSDM) D were downregulated during terminal differentiation of human keratinocytes in vitro. By contrast, negative regulators of IL-1 processing, including NLR family pyrin domain containing 10 (NLRP10) and pyrin domain-containing 1 (PYDC1), the anti-inflammatory IL1F members IL-37 (IL1F7) and IL-38 (IL1F10), and GSDMA, were strongly induced in differentiated keratinocytes. In human tissues, these keratinocyte differentiation-associated genes are expressed in the skin at higher levels than in any other organ, and mammalian species, that have lost the epidermal cornification program during evolution, i.e. whales and dolphins, lack homologs of these genes. Together, our results suggest that human epidermal cornification is accompanied by a tight control of pyroptosis and warrant further studies of potential defects in the balance between cornification and pyroptosis in skin pathologies.
Collapse
Affiliation(s)
- Julia Lachner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
41
|
Vacca M, Böhme J, Zambetti LP, Khameneh HJ, Paleja BS, Laudisi F, Ho AWS, Neo K, Leong KWK, Marzuki M, Lee B, Poidinger M, Santambrogio L, Tsenova L, Zolezzi F, De Libero G, Singhal A, Mortellaro A. NLRP10 Enhances CD4 + T-Cell-Mediated IFNγ Response via Regulation of Dendritic Cell-Derived IL-12 Release. Front Immunol 2017; 8:1462. [PMID: 29163529 PMCID: PMC5673625 DOI: 10.3389/fimmu.2017.01462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
Abstract
NLRP10 is a nucleotide-binding oligomerization domain-like receptor that functions as an intracellular pattern recognition receptor for microbial products. Here, we generated a Nlrp10-/- mouse to delineate the role of NLRP10 in the host immune response and found that Nlrp10-/- dendritic cells (DCs) elicited sub-optimal IFNγ production by antigen-specific CD4+ T cells compared to wild-type (WT) DCs. In response to T-cell encounter, CD40 ligation or Toll-like receptor 9 stimulation, Nlrp10-/- DCs produced low levels of IL-12, due to a substantial decrease in NF-κB activation. Defective IL-12 production was also evident in vivo and affected IFNγ production by CD4+ T cells. Upon Mycobacterium tuberculosis (Mtb) infection, Nlrp10-/- mice displayed diminished T helper 1-cell responses and increased bacterial growth compared to WT mice. These data indicate that NLRP10-mediated IL-12 production by DCs is critical for IFNγ induction in T cells and contributes to promote the host defense against Mtb.
Collapse
Affiliation(s)
- Maurizio Vacca
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julia Böhme
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Lia Paola Zambetti
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Bhairav S Paleja
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Federica Laudisi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Adrian W S Ho
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kurt Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Keith Weng Kit Leong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Mardiana Marzuki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
| | - Liana Tsenova
- Department of Biological Sciences, New York City College of Technology, Brooklyn, NY, United States
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Gennaro De Libero
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Amit Singhal
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiencies (PIDs) are inherited conditions where components of the immune system are missing or dysfunctional. Over 300 genes have been causally linked to monogenic forms of PID, including a number that regulate the actin cytoskeleton. The majority of cytoskeletal defects disrupt assembly and disassembly of filamentous actin in multiple immune cell lineages impacting functions such as cell migration and adhesion, pathogen uptake, intercellular communication, intracellular signalling, and cell division. RECENT FINDINGS In the past 24 months, new actin defects have been identified through next generation sequencing technologies. Substantial progress has also been made in understanding the pathogenic mechanisms that contribute to immunological dysfunction, and also how the cytoskeleton participates in normal physiological immune processes. SUMMARY This review summarises recent advances in the field, raising awareness of these conditions and our current understanding of their presentation. Description of further cases and new conditions will extend the clinical phenotype of actin-related disorders, and will promote the development of more effective and targeted therapies.
Collapse
|
43
|
CCDC88B is required for pathogenesis of inflammatory bowel disease. Nat Commun 2017; 8:932. [PMID: 29030607 PMCID: PMC5640600 DOI: 10.1038/s41467-017-01381-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 09/13/2017] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) involves interaction between host genetic factors and environmental triggers. CCDC88B maps within one IBD risk locus on human chromosome 11q13. Here we show that CCDC88B protein increases in the colon during intestinal injury, concomitant with an influx of CCDC88B+lymphoid and myeloid cells. Loss of Ccdc88b protects against DSS-induced colitis, with fewer pathological lesions and reduced intestinal inflammation in Ccdc88b-deficient mice. In a T cell transfer model of colitis, Ccdc88b mutant CD4+ T cells do not induce colitis in immunocompromised hosts. Expression of human CCDC88B RNA and protein is higher in IBD patient colons than in control colon tissue. In human CD14+ myeloid cells, CCDC88B is regulated by cis-acting variants. In a cohort of patients with Crohn's disease, CCDC88B expression correlates positively with disease risk. These findings suggest that CCDC88B has a critical function in colon inflammation and the pathogenesis of IBD.Hook-related protein family member CCDC88b is encoded by a locus that has been associated with inflammatory bowel disease. Here the authors show that Ccdc88b inactivation in T cells prevents colitis in a transfer model, and detect high colonic levels of CCDC88b in patients with Crohn disease or ulcerative colitis, identifying that expression correlates with disease risk.
Collapse
|
44
|
Clay GM, Valadares DG, Graff JW, Ulland TK, Davis RE, Scorza BM, Zhanbolat BS, Chen Y, Sutterwala FS, Wilson ME. An Anti-Inflammatory Role for NLRP10 in Murine Cutaneous Leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2017; 199:2823-2833. [PMID: 28931602 DOI: 10.4049/jimmunol.1500832] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/10/2017] [Indexed: 12/30/2022]
Abstract
The role of the nucleotide-binding domain and leucine-rich repeat containing receptor NLRP10 in disease is incompletely understood. Using three mouse strains lacking the gene encoding NLRP10, only one of which had a coincidental mutation in DOCK8, we documented a role for NLRP10 as a suppressor of the cutaneous inflammatory response to Leishmania major infection. There was no evidence that the enhanced local inflammation was due to enhanced inflammasome activity. NLRP10/DOCK8-deficient mice harbored lower parasite burdens at the cutaneous site of inoculation compared with wild-type controls, whereas NLRP10-deficient mice and controls had similar parasite loads, suggesting that DOCK8 promotes local growth of parasites in the skin, whereas NLRP10 does not. NLRP10-deficient mice developed vigorous adaptive immune responses, indicating that there was not a global defect in the development of Ag-specific cytokine production. Bone marrow chimeras showed that the anti-inflammatory role of NLRP10 was mediated by NLRP10 expressed in resident cells in the skin rather than by bone marrow-derived cells. These data suggest a novel role for NLRP10 in the resolution of local inflammatory responses during L. major infection.
Collapse
Affiliation(s)
- Gwendolyn M Clay
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242
| | - Diogo G Valadares
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Joel W Graff
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242.,Veterans Affairs Medical Center, Iowa City, IA 52246
| | - Tyler K Ulland
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242
| | - Richard E Davis
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and
| | - Breanna M Scorza
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and
| | | | - Yani Chen
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Fayyaz S Sutterwala
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242.,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and
| | - Mary E Wilson
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242; .,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242.,Veterans Affairs Medical Center, Iowa City, IA 52246.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and.,Department of Microbiology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
45
|
Takagi M, Takakubo Y, Pajarinen J, Naganuma Y, Oki H, Maruyama M, Goodman SB. Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. J Orthop Translat 2017; 10:68-85. [PMID: 29130033 PMCID: PMC5676564 DOI: 10.1016/j.jot.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The innate immune sensors, Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), can recognize not only exogenous pathogen-associated molecular patterns (PAMPs), but also endogenous molecules created upon tissue injury, sterile inflammation, and degeneration. Endogenous ligands are called damage-associated molecular patterns (DAMPs), and include endogenous molecules released from activated and necrotic cells as well as damaged extracellular matrix. TLRs and NLRs can interact with various ligands derived from PAMPs and DAMPs, leading to activation and/or modulation of intracellular signalling pathways. Intensive research on the innate immune sensors, TLRs and NLRs, has brought new insights into the pathogenesis of not only various infectious and rheumatic diseases, but also aseptic foreign body granuloma and septic inflammation of failed total hip replacements (THRs). In this review, recent knowledge is summarized on the innate immune system, including TLRs and NLRs and their danger signals, with special reference to their possible role in the adverse local host response to THRs. Translational potential of this article: A clear understanding of the roles of Toll-like receptors and NOD-like receptors in aseptic and septic loosening of joint replacements will facilitate potential strategies to mitigate these events, thereby extending the longevity of implants in humans.
Collapse
Affiliation(s)
- Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Yuya Takakubo
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yasushi Naganuma
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Hiroharu Oki
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan.,Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
46
|
Higashijima Y, Hirano S, Nangaku M, Nureki O. Applications of the CRISPR-Cas9 system in kidney research. Kidney Int 2017; 92:324-335. [PMID: 28433382 DOI: 10.1016/j.kint.2017.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 12/26/2022]
Abstract
The recently discovered clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) is an RNA-guided DNA nuclease, and has been harnessed for the development of simple, efficient, and relatively inexpensive technologies to precisely manipulate the genomic information in virtually all cell types and organisms. The CRIPSR-Cas9 systems have already been effectively used to disrupt multiple genes simultaneously, create conditional alleles, and generate reporter proteins, even in vivo. The ability of Cas9 to target a specific genomic region has also been exploited for various applications, such as transcriptional regulation, epigenetic control, and chromosome labeling. Here we first describe the molecular mechanism of the RNA-guided DNA targeting by the CRISPR-Cas9 system and then outline the current applications of this system as a genome-editing tool in mice and other species, to better model and study human diseases. We also discuss the practical and potential uses of the CRISPR-Cas9 system in kidney research and highlight the further applications of this technology beyond genome editing. Undoubtedly, the CRISPR-Cas9 system holds enormous potential for revolutionizing and accelerating kidney research and therapeutic applications in the future.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
47
|
Kearney CJ, Randall KL, Oliaro J. DOCK8 regulates signal transduction events to control immunity. Cell Mol Immunol 2017; 14:406-411. [PMID: 28366940 DOI: 10.1038/cmi.2017.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
Genetic mutations in the gene encoding DOCK8 cause an autosomal recessive form of hyper immunoglobulin E syndrome (AR-HIES), referred to as DOCK8 deficiency. DOCK8 deficiency in humans results in the onset of combined immunodeficiency disease (CID), clinically associated with chronic infections with diverse microbial pathogens, and a predisposition to malignancy. It is now becoming clear that DOCK8 regulates the function of diverse immune cell sub-types, particularly lymphocytes, to drive both innate and adaptive immune responses. Early studies demonstrated that DOCK8 is required for lymphocyte survival, migration and immune synapse formation, which translates to poor pathogen control in the absence of DOCK8. However, more recent advances have pointed to a crucial role for DOCK8 in regulating the signal transduction events that control transcriptional activity, cytokine production and functional polarization of immune cells. Here, we summarize recent advances in our understanding of DOCK8 function, paying particular attention to an emerging role as a signaling intermediate to promote immune responses to diverse external stimuli.
Collapse
Affiliation(s)
- Conor J Kearney
- Immune Defence Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Katrina L Randall
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia.,Australian National University Medical School, Australian National University, Acton, Australian Capital Territory 2605, Australia
| | - Jane Oliaro
- Immune Defence Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
48
|
Pattern of cardiotoxin-induced muscle remodeling in distinct TLR-4 deficient mouse strains. Histochem Cell Biol 2017; 148:49-60. [DOI: 10.1007/s00418-017-1556-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 01/04/2023]
|
49
|
The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction. Nat Commun 2017; 8:13946. [PMID: 28067314 PMCID: PMC5228069 DOI: 10.1038/ncomms13946] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
Mutations of DOCK8 in humans cause a combined immunodeficiency characterized by atopic dermatitis with high serum IgE levels. However, the molecular link between DOCK8 deficiency and atopic skin inflammation is unknown. Here we show that CD4+ T cells from DOCK8-deficient mice produce large amounts of IL-31, a major pruritogen associated with atopic dermatitis. IL-31 induction critically depends on the transcription factor EPAS1, and its conditional deletion in CD4+ T cells abrogates skin disease development in DOCK8-deficient mice. Although EPAS1 is known to form a complex with aryl hydrocarbon receptor nuclear translocator (ARNT) and control hypoxic responses, EPAS1-mediated Il31 promoter activation is independent of ARNT, but in collaboration with SP1. On the other hand, we find that DOCK8 is an adaptor and negative regulator of nuclear translocation of EPAS1. Thus, EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction in CD4+ T cells.
Collapse
|
50
|
Shiraishi A, Uruno T, Sanematsu F, Ushijima M, Sakata D, Hara T, Fukui Y. DOCK8 Protein Regulates Macrophage Migration through Cdc42 Protein Activation and LRAP35a Protein Interaction. J Biol Chem 2016; 292:2191-2202. [PMID: 28028174 DOI: 10.1074/jbc.m116.736306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/25/2016] [Indexed: 11/06/2022] Open
Abstract
DOCK8 is an atypical guanine nucleotide exchange factor for Cdc42, and its mutations cause combined immunodeficiency in humans. Accumulating evidence indicates that DOCK8 regulates the migration and activation of various subsets of leukocytes, but its regulatory mechanism is poorly understood. We here report that DOCK8-deficient macrophages exhibit a migration defect in a 2D setting. Although DOCK8 deficiency in macrophages did not affect the global Cdc42 activation induced by chemokine stimulation, rescue experiments revealed that the guanine nucleotide exchange factor activity of DOCK8 was required for macrophage migration. We found that DOCK8 associated with LRAP35a, an adaptor molecule that binds to the Cdc42 effector myotonic dystrophy kinase-related Cdc42-binding kinase, and facilitated its activity to phosphorylate myosin II regulatory light chain. When this interaction was disrupted in WT macrophages, they showed a migration defect, as seen in DOCK8-deficient macrophages. These results suggest that, during macrophage migration, DOCK8 links Cdc42 activation to actomyosin dynamics through the association with LRAP35a.
Collapse
Affiliation(s)
- Akira Shiraishi
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation.,Department of Pediatrics, Graduate School of Medical Sciences, and
| | - Takehito Uruno
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation.,Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan and
| | - Fumiyuki Sanematsu
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation.,Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan and
| | - Miho Ushijima
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Daiji Sakata
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Toshiro Hara
- the Fukuoka Children's Hospital, Fukuoka 813-0017, Japan
| | - Yoshinori Fukui
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, .,Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan and
| |
Collapse
|