1
|
Zhang L, Gao C, Gao Y, Yang H, Jia M, Wang X, Zhang B, Zhou Y. New insights into plant cell wall functions. J Genet Genomics 2025:S1673-8527(25)00122-5. [PMID: 40287129 DOI: 10.1016/j.jgg.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The plant cell wall is an extremely complicated natural nanoscale structure composed of cellulose microfibrils embedded in a matrix of noncellulosic polysaccharides, further reinforced by the phenolic compound lignins in some cell types. Such network formed by the interactions of multiscale polymers actually reflects functional form of cell wall to meet the requirements of plant cell functionalization. Therefore, how plants assemble cell wall functional structure is fundamental in plant biology and critical for crop trait formation and domestication as well. Due to the lack of effective analytical techniques to characterize this fundamental but complex network, it remains difficult to establish direct links between cell-wall genes and phenotypes. The roles of plant cell walls are often underestimated as indirect. Over the past decades, many genes involved in cell wall biosynthesis, modification, and remodeling have been identified. The application of a variety of state-of-the-art techniques has made it possible to reveal the fine cell wall networks and polymer interactions. Hence, many exciting advances in cell wall biology have been achieved in recent years. This review provides an updated overview of the mechanistic and conceptual insights in cell wall functionality, and prospects the opportunities and challenges in this field.
Collapse
Affiliation(s)
- Lanjun Zhang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxu Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihong Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanlei Yang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiru Jia
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohong Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yihua Zhou
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Turella S, He C, Zhao L, Banerjee S, Plouhinec L, Assiah Yao R, Nørgaard Kejlstrup MC, Grisel S, So Y, Annic B, Fanuel M, Haddad Momeni M, Bissaro B, Meier S, Morth JP, Dong S, Berrin JG, Abou Hachem M. Enzymatic oxidation of galacturonides from pectin breakdown contributes to stealth infection by Oomycota phytopathogens. Nat Commun 2025; 16:3467. [PMID: 40216756 PMCID: PMC11992081 DOI: 10.1038/s41467-025-58668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Phytophthora phytopathogens from Oomycota cause devastating crop losses and threaten food security. However, Phytophthora secreted proteins that interact with plant-hosts remain underexplored. Here, auxiliary activity family 7 (AA7) enzymes from Ascomycota and Oomycota phytopathogens were shown to oxidise pectin-derived galacturonic acid and/or oligogalacturonides (OGs). Unique mono-cysteinyl-FAD oxidases with positively-charged active sites, suited to oxidise OGs, were discovered in Phytophthora sojae. The P. sojae OG oxidase genes, prevalent in this genus, were co-transcribed with pectin-degradation counterparts during early infection of soybean. Single OG oxidase knockouts significantly decreased P. sojae biomass in planta, potentially linking OG oxidases to virulence. We propose that oxidation by AA7 enzymes impairs the elicitor activity of OGs, potentially contributing to stealth Oomycota infection. Oxidation of OGs unravels a previously unknown microbial mechanism that contributes to evade plant immune-response against pathogens. Our findings highlight a unique oxidase architecture and hitherto unexplored targets for bioprotection from major plant pathogens.
Collapse
Affiliation(s)
- Simone Turella
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Cheng He
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sanchari Banerjee
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lauriane Plouhinec
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Roseline Assiah Yao
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | | | - Sacha Grisel
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Yunjeong So
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bastien Annic
- INRAE, UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
- INRAE, PROBE research infrastructure, BIBS Facility, Nantes, France
| | - Mathieu Fanuel
- INRAE, UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
- INRAE, PROBE research infrastructure, BIBS Facility, Nantes, France
| | - Majid Haddad Momeni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Suomeng Dong
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Maher Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Salvati A, Diomaiuti A, Locci F, Gravino M, Gramegna G, Ilyas M, Benedetti M, Costantini S, De Caroli M, Castel B, Jones JDG, Cervone F, Pontiggia D, De Lorenzo G. Berberine bridge enzyme-like oxidases orchestrate homeostasis and signaling of oligogalacturonides in defense and upon mechanical damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70150. [PMID: 40220003 PMCID: PMC11992967 DOI: 10.1111/tpj.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Plant immunity is triggered by endogenous elicitors known as damage-associated molecular patterns (DAMPs). Oligogalacturonides (OGs) are DAMPs released from the cell wall (CW) demethylated homogalacturonan during microbial colonization, mechanical or pest-provoked mechanical damage, and physiological CW remodeling. Berberine bridge enzyme-like (BBE-l) proteins named OG oxidases (OGOXs) oxidize and inactivate OGs to avoid deleterious growth-affecting hyper-immunity and possible cell death. Using OGOX1 over-expressing lines and ogox1/2 double mutants, we show that these enzymes determine the levels of active OGs vs. inactive oxidized products (ox-OGs). The ogox1/2-deficient plants have elevated levels of OGs, while plants overexpressing OGOX1 accumulate ox-OGs. The balance between OGs and ox-OGs affects disease resistance against Pseudomonas syringae pv. tomato, Pectobacterium carotovorum, and Botrytis cinerea depending on the microbial capacity to respond to OGs and metabolize ox-OGs. Gene expression upon plant infiltration with OGs reveals that OGOXs orchestrate OG signaling in defense as well as upon mechanical damage, pointing to these enzymes as apoplastic players in immunity and tissue repair.
Collapse
Affiliation(s)
- Ascenzo Salvati
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Alessandra Diomaiuti
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Federica Locci
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Plant–Microbe InteractionsMax‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Cologne50829Germany
| | - Matteo Gravino
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Giovanna Gramegna
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Environmental biologySapienza University of RomeRome00185Italy
| | - Muhammad Ilyas
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Manuel Benedetti
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'Aquila67100Italy
| | - Sara Costantini
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Institute of Nanotechnology, National Research Council (CNR‐NANOTEC)Campus EcotekneLecce73100Italy
| | - Monica De Caroli
- Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoCampus EcotekneLecce73100Italy
- NBFC National Biodiversity Future CenterPalermo90133Italy
| | - Baptiste Castel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkColney LaneNorwichNR4 7UHUK
- Present address:
Laboratoire de Recherche en Sciences Vegetales (LRSV)Université de Toulouse, CNRS, UPS24 chemin de Borde Rouge, Auzeville, BP42617Castanet Tolosan31326France
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkColney LaneNorwichNR4 7UHUK
| | - Felice Cervone
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural HeritageSapienza University of RomeRomeItaly
| | - Giulia De Lorenzo
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural HeritageSapienza University of RomeRomeItaly
| |
Collapse
|
4
|
Degli Esposti C, Guerrisi L, Peruzzi G, Giulietti S, Pontiggia D. Cell wall bricks of defence: the case study of oligogalacturonides. FRONTIERS IN PLANT SCIENCE 2025; 16:1552926. [PMID: 40201780 PMCID: PMC11975879 DOI: 10.3389/fpls.2025.1552926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025]
Abstract
The plant cell wall (CW) is more than a structural barrier; it serves as the first line of defence against pathogens and environmental stresses. During pathogen attacks or physical damage, fragments of the CW, known as CW-derived Damage-Associated Molecular Patterns (CW-DAMPs), are released. These molecular signals play a critical role in activating the plant's immune responses. Among CW-DAMPs, oligogalacturonides (OGs), fragments derived from the breakdown of pectin, are some of the most well-studied. This review highlights recent advances in understanding the functional and signalling roles of OGs, beginning with their formation through enzymatic CW degradation during pathogen invasion or mechanical injury. We discuss how OGs perception triggers intracellular signalling pathways that enhance plant defence and regulate interactions with microbes. Given that excessive OG levels can negatively impact growth and development, we also examine the regulatory mechanisms plants use to fine-tune their responses, avoiding immune overactivation or hyper- immunity. As natural immune modulators, OGs (and more generally CW-DAMPs), offer a promising, sustainable alternative to chemical pesticides by enhancing crop resilience without harming the environment. By strengthening plant defences and supporting eco-friendly agricultural practices, OGs hold great potential for advancing resilient and sustainable farming systems.
Collapse
Affiliation(s)
- Chiara Degli Esposti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Laura Guerrisi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giulia Peruzzi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sarah Giulietti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural Heritage, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Giovannoni M, Scortica A, Scafati V, Piccirilli E, Sorio D, Benedetti M, Mattei B. The reducing end of cell wall oligosaccharides is critical for DAMP activity in Arabidopsis thaliana and can be exploited by oligosaccharide oxidases in the reduction of oxidized phenolics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109466. [PMID: 39793330 DOI: 10.1016/j.plaphy.2024.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligosaccharide-oxidases (OSOXs) suppresses their elicitor activity in vivo, suggesting a protective role of OSOXs against a prolonged activation of defense responses potentially deleterious for plant health. However, OSOXs are also produced by phytopathogens and saprotrophs, complicating the understanding of their role in plant-microbe interactions. Here, we demonstrate the oxidation catalyzed by specific fungal OSOXs also converts the elicitor-active cello-tetraose and xylo-tetraose into elicitor-inactive forms, indicating that the oxidation state of cell wall oligosaccharides is crucial for their DAMP function, irrespective of whether the OSOX originates from fungi or plants. In addition, we also found that certain OSOXs can transfer the electrons from the reducing end of these oligosaccharides to oxidized phenolics (bi-phenoquinones) instead of molecular O2, highlighting an unexpected sub-functionalization of these enzymes. The activity of OSOXs may be crucial for a thorough understanding of cell wall metabolism since these enzymes can redirect the reducing power from sugars to phenolic components of the plant cell wall, an insight with relevant implications for plant physiology and biotechnology.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Anna Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Emilia Piccirilli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; University School for Advanced Studies IUSS Pavia, Pavia, 27100, Italy
| | - Daniela Sorio
- Centro Piattaforme Tecnologiche, University of Verona, 37134, Verona, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
6
|
Wei H, Yang R, Xue Z, Zhu J, Zhang Q, Luan Y. Molecular Traits of Rapid Alkalinization Factor Family and Functional Analysis of SlRALF2 in Tomato Resistance to Phytophthora infestans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3622-3634. [PMID: 39880400 DOI: 10.1021/acs.jafc.4c12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), poses a significant threat to tomato yield and quality. Traditional disease control strategies rely heavily on frequent applications of chemical pesticides, leading to environmental pollution and the emergence of pesticide-resistant pathogens. This highlights the urgent need for environmentally friendly plant disease control technologies. Rapid alkalinization factors (RALFs) are secreted peptides that play crucial roles in plant defense. Here, 11 SlRALF genes were identified in tomato. Bioinformatics analyses were conducted to characterize them. SlRALF2, which responded significantly to P. infestans infection, was chosen for investigation. Functional analyses demonstrated that SlRALF2 enhances tomato resistance by promoting the expression level of SlPRs and modulating key enzyme activities. GO and KEGG analyses of key genes influenced by SlRALF2 revealed its involvement in several critical pathways. Altogether, our findings establish SlRALF2 as a pivotal component of tomato defense signaling, offering valuable insights for crop breeding.
Collapse
Affiliation(s)
- Hongbo Wei
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruirui Yang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaxuan Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- Core Facilities of School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Peng C, Xu W, Wang X, Meng F, Zhao Y, Wang Q, Wang X, Lodi RS, Dong X, Zhu C, Peng L. Alginate oligosaccharides trigger multiple defense responses in tobacco and induce resistance to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2025; 16:1506873. [PMID: 40012726 PMCID: PMC11863610 DOI: 10.3389/fpls.2025.1506873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Alginate oligosaccharides (AOSs), important plant immunity inducers, are widely used in agriculture because of their important role in the biological control of crop diseases. However, the mechanism by which AOSs induce plant resistance to pathogens is not clear. Here, we report AOS with a degree of polymerization of 2-5, which was obtained by a newly reported enzyme Aly2. AOS treatment exhibited high activity in enhancing resistance to Phytophthora infestans (P. infestans). AOS significantly induced reactive oxygen species (ROS) accumulation, calcium influx, stomata closure, and callose deposition. The salicylic acid (SA) synthesis-related gene and the defense-related genes were upregulated after AOS treatment. A transcriptome file generated from AOS-treated seedlings verified the SA pathway and suggested the presence of chitin elicitor receptor kinase (CERK). The subsequent results showed that AtCERK1 binds AOS tightly, suggesting that AtCERK1 is responsible for AOS recognition. This study laid a theoretical foundation for the broad application of AOS.
Collapse
Affiliation(s)
- Chune Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Xu
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xipan Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Fanxiao Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yumeng Zhao
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Qingbin Wang
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Xinkun Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rathna Silviya Lodi
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaodan Dong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lizeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
8
|
Munzert KS, Engelsdorf T. Plant cell wall structure and dynamics in plant-pathogen interactions and pathogen defence. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:228-242. [PMID: 39470457 DOI: 10.1093/jxb/erae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Plant cell walls delimit cells from their environment and provide mechanical stability to withstand internal turgor pressure as well as external influences. Environmental factors can be beneficial or harmful for plants and vary substantially depending on prevailing combinations of climate conditions and stress exposure. Consequently, the physicochemical properties of plant cell walls need to be adaptive, and their functional integrity needs to be monitored by the plant. One major threat to plants is posed by phytopathogens, which employ a diversity of infection strategies and lifestyles to colonize host tissues. During these interactions, the plant cell wall represents a barrier that impedes the colonization of host tissues and pathogen spread. In a competition for maintenance and breakdown, plant cell walls can be rapidly and efficiently remodelled by enzymatic activities of plant and pathogen origin, heavily influencing the outcome of plant-pathogen interactions. We review the role of locally and systemically induced cell wall remodelling and the importance of tissue-dependent cell wall properties for the interaction with pathogens. Furthermore, we discuss the importance of cell wall-dependent signalling for defence response induction and the influence of abiotic factors on cell wall integrity and cell wall-associated pathogen resistance mechanisms.
Collapse
Affiliation(s)
- Kristina S Munzert
- Molecular Plant Physiology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
| | - Timo Engelsdorf
- Molecular Plant Physiology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
| |
Collapse
|
9
|
Fuertes-Rabanal M, Rebaque D, Largo-Gosens A, Encina A, Mélida H. Cell walls, a comparative view of the composition of cell surfaces of plants, algae and microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae512. [PMID: 39705009 DOI: 10.1093/jxb/erae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 12/21/2024]
Abstract
While evolutionary studies indicate that the most ancient groups of organisms on Earth likely descended from a common wall-less ancestor, contemporary organisms lacking a carbohydrate-rich cell surface are exceedingly rare. By developing a cell wall to cover the plasma membrane, cells were able to withstand higher osmotic pressures, colonise new habitats and develop complex multicellular structures. This way, the cells of plants, algae and microorganisms are covered by a cell wall, which can generally be defined as a highly complex structure whose main framework is usually composed of carbohydrates. Rather than static structures, they are highly dynamic and serve a multitude of functions that modulate vital cellular processes, such as growth and interactions with neighbouring cells or the surrounding environment. Thus, despite its vital importance for many groups of life, it is striking that there are few comprehensive documents comparing the cell wall composition of these groups. Thus, the aim of this review was to compare the cell walls of plants with those of algae and microorganisms, paying particular attention to their polysaccharide components. It should be highlighted that, despite the important differences in composition, we have also found numerous common aspects and functionalities.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Diego Rebaque
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
10
|
Olanrewaju OS, Glick BR, Babalola OO. Beyond correlation: Understanding the causal link between microbiome and plant health. Heliyon 2024; 10:e40517. [PMID: 39669148 PMCID: PMC11636107 DOI: 10.1016/j.heliyon.2024.e40517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Understanding the causal link between the microbiome and plant health is crucial for the future of crop production. Established studies have shown a symbiotic relationship between microbes and plants, reshaping our knowledge of plant microbiomes' role in health and disease. Addressing confounding factors in microbiome study is essential, as standardization enables precise identification of microbiome features that influence outcomes. The microbiome significantly impacts plant development, necessitating holistic investigation for maintaining plant health. Mechanistic studies have deepened our understanding of microbiome structure and function related to plant health, though much research still needs to be carried out. This review, therefore, discusses current challenges and proposes advancing studies from correlation to causation and translation. We explore current knowledge on the microbiome and plant health, emphasizing multi-omics approaches and hypothesis-driven research. Future studies should focus on developing translational research for producing probiotics and prebiotics from biomarkers that regulate the microbiome-plant health connection, promoting sustainable crop production through microbiome applications.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Buckhurst road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
11
|
Fuertes-Rabanal M, Largo-Gosens A, Fischer A, Munzert KS, Carrasco-López C, Sánchez-Vallet A, Engelsdorf T, Mélida H. Linear β-1,2-glucans trigger immune hallmarks and enhance disease resistance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7337-7350. [PMID: 39225413 PMCID: PMC11630039 DOI: 10.1093/jxb/erae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Immune responses in plants are triggered by molecular patterns or elicitors, recognized by plant pattern recognition receptors. Such molecular patterns are the consequence of host-pathogen interactions, and the response cascade activated after their perception is known as pattern-triggered immunity (PTI). Glucans have emerged as key players in PTI, but the ability of certain glucans to stimulate defensive responses in plants remains understudied. This work focused on identifying novel glucan oligosaccharides as molecular patterns. The ability of various microorganism-derived glucans to trigger PTI responses was tested, revealing that specific microbial-derived molecules, such as short linear β-1,2-glucans, trigger this response in plants by increasing the production of reactive oxygen species (ROS), mitogen-activated protein kinase phosphorylation, and differential expression of defence-related genes in Arabidopsis thaliana. Pre-treatments with β-1,2-glucan trisaccharide (B2G3) improved Arabidopsis defence against bacterial and fungal infections in a hypersusceptible genotype. The knowledge generated was then transferred to the monocotyledonous model species maize and wheat, demonstrating that these plants also respond to β-1,2-glucans, with increased ROS production and improved protection against fungal infections following B2G3 pre-treatments. In summary, as with other β-glucans, plants perceive β-1,2-glucans as warning signals which stimulate defence responses against phytopathogens.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Alicia Fischer
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kristina S Munzert
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón(Madrid), Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón(Madrid), Spain
| | - Timo Engelsdorf
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
12
|
Molina A, Sánchez-Vallet A, Jordá L, Carrasco-López C, Rodríguez-Herva JJ, López-Solanilla E. Plant cell walls: source of carbohydrate-based signals in plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102630. [PMID: 39306957 DOI: 10.1016/j.pbi.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 12/06/2024]
Abstract
Plant cell walls are essential elements for disease resistance that pathogens need to overcome to colonise the host. Certain pathogens secrete a large battery of enzymes to hydrolyse plant cell wall polysaccharides, which leads to the release of carbohydrate-based molecules (glycans) that are perceived by plant pattern recognition receptors and activate pattern-triggered immunity and disease resistance. These released glycans are used by colonizing microorganisms as carbon source, chemoattractants to locate entry points at plant surface, and as signals triggering gene expression reprogramming. The release of wall glycans and their perception by plants and microorganisms determines plant-microbial interaction outcome. Here, we summarise and discuss the most recent advances in these less explored aspects of plant-microbe interaction.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - José Juan Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
13
|
Lelas L, Rouffet J, Filachet A, Sechet J, Davière A, Desprez T, Vernhettes S, Voxeur A. A fungal phospholipase C involved in the degradation of plant glycosylinositol phosphorylceramides during Arabidopsis/Botrytis interaction. Commun Biol 2024; 7:1372. [PMID: 39438581 PMCID: PMC11496612 DOI: 10.1038/s42003-024-07064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigates the presence and significance of phosphorylated oligosaccharides that accumulate during the interaction between Arabidopsis thaliana and Botrytis cinerea, a necrotrophic fungus that poses a major threat to crops worldwide. While previous research has extensively characterized cell wall-derived molecules during fungal infection, the role of plasma membrane-derived ones remains unclear. Here, we reveal the discovery of inositol phosphate glycans (IPGs) released during infection, originating from plant sphingolipids, specifically glycosylinositol phosphorylceramides (GIPC). Advanced chromatography, mass spectrometry techniques and molecular biology were employed to identify these IPGs, and determine their origins. In addition to the well-characterized role of B. cinerea in releasing cell wall-degrading enzymes, this research suggests that B. cinerea's enzymatic machinery may also target the degradation of the plant plasma membrane. As a consequence of this, IPGs identical to those generated by the host plant are released, most likely due to activity of a putative phospholipase C that acts on GIPC plasma membrane lipids. These insights could pave the way for developing new strategies to enhance crop resistance by focusing on membrane integrity in addition to cell wall fortification.
Collapse
Affiliation(s)
- Luka Lelas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Justine Rouffet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000, Angers, France
| | - Alexis Filachet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Julien Sechet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
- AlkInnov, Innovation for Life, 92100, Boulogne-Billancourt, France
| | - Antoine Davière
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Thierry Desprez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Samantha Vernhettes
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
14
|
Saberi Riseh R, Gholizadeh Vazvani M, Taheri A, Kennedy JF. Pectin-associated immune responses in plant-microbe interactions: A review. Int J Biol Macromol 2024; 273:132790. [PMID: 38823736 DOI: 10.1016/j.ijbiomac.2024.132790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This review explores the role of pectin, a complex polysaccharide found in the plant cell wall, in mediating immune responses during interactions between plants and microbes. The objectives of this study were to investigate the molecular mechanisms underlying pectin-mediated immune responses and to understand how these interactions shape plant-microbe communication. Pectin acts as a signaling molecule, triggering immune responses such as the production of antimicrobial compounds, reinforcement of the cell wall, and activation of defense-related genes. Pectin functions as a target for pathogen-derived enzymes, enabling successful colonization by certain microbial species. The document discusses the complexity of pectin-based immune signaling networks and their modulation by various factors, including pathogen effectors and host proteins. It also emphasizes the importance of understanding the crosstalk between pectin-mediated immunity and other defense pathways to develop strategies for enhancing plant resistance against diseases. The insights gained from this study have implications for the development of innovative approaches to enhance crop protection and disease management in agriculture. Further investigations into the components and mechanisms involved in pectin-mediated immunity will pave the way for future advancements in plant-microbe interaction research.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Abdolhossein Taheri
- Department of Plant Protection, Faculty of Plant Production, University of agricultural Sciences and natural resources of Gorgan, Iran.
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
15
|
Zhao T, Ma S, Kong Z, Zhang H, Wang Y, Wang J, Liu J, Feng W, Liu T, Liu C, Liang S, Lu S, Li X, Zhao H, Lu C, Latif MZ, Yin Z, Li Y, Ding X. Recognition of the inducible, secretory small protein OsSSP1 by the membrane receptor OsSSR1 and the co-receptor OsBAK1 confers rice resistance to the blast fungus. MOLECULAR PLANT 2024; 17:807-823. [PMID: 38664971 DOI: 10.1016/j.molp.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.
Collapse
Affiliation(s)
- Tianfeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shijie Ma
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ziying Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yi Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Junzhe Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jiazong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Wanzhen Feng
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, Hainan, China
| | - Tong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chunyan Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Suochen Liang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shilin Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xinyu Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
16
|
Molina A, Jordá L, Torres MÁ, Martín-Dacal M, Berlanga DJ, Fernández-Calvo P, Gómez-Rubio E, Martín-Santamaría S. Plant cell wall-mediated disease resistance: Current understanding and future perspectives. MOLECULAR PLANT 2024; 17:699-724. [PMID: 38594902 DOI: 10.1016/j.molp.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Beyond their function as structural barriers, plant cell walls are essential elements for the adaptation of plants to environmental conditions. Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues. These wall changes are perceived by plant sensors/receptors to trigger adaptative responses during development and upon stress perception. Plant cell wall damage caused by pathogen infection, wounding, or other stresses leads to the release of wall molecules, such as carbohydrates (glycans), that function as damage-associated molecular patterns (DAMPs). DAMPs are perceived by the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI) and disease resistance. Similarly, glycans released from the walls and extracellular layers of microorganisms interacting with plants are recognized as microbe-associated molecular patterns (MAMPs) by specific ECD-PRRs triggering PTI responses. The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years. However, the structural mechanisms underlying glycan recognition by plant PRRs remain limited. Currently, this knowledge is mainly focused on receptors of the LysM-PRR family, which are involved in the perception of various molecules, such as chitooligosaccharides from fungi and lipo-chitooligosaccharides (i.e., Nod/MYC factors from bacteria and mycorrhiza, respectively) that trigger differential physiological responses. Nevertheless, additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition. These include receptor kinases (RKs) with leucine-rich repeat and Malectin domains in their ECDs (LRR-MAL RKs), Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE group (CrRLK1L) with Malectin-like domains in their ECDs, as well as wall-associated kinases, lectin-RKs, and LRR-extensins. The characterization of structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception. The gained knowledge holds the potential to facilitate the development of sustainable, glycan-based crop protection solutions.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Patricia Fernández-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Elena Gómez-Rubio
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
17
|
Xiao Y, Sun G, Yu Q, Gao T, Zhu Q, Wang R, Huang S, Han Z, Cervone F, Yin H, Qi T, Wang Y, Chai J. A plant mechanism of hijacking pathogen virulence factors to trigger innate immunity. Science 2024; 383:732-739. [PMID: 38359129 DOI: 10.1126/science.adj9529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) interact with pathogen-derived polygalacturonases to inhibit their virulence-associated plant cell wall-degrading activity but stimulate immunity-inducing oligogalacturonide production. Here we show that interaction between Phaseolus vulgaris PGIP2 (PvPGIP2) and Fusarium phyllophilum polygalacturonase (FpPG) enhances substrate binding, resulting in inhibition of the enzyme activity of FpPG. This interaction promotes FpPG-catalyzed production of long-chain immunoactive oligogalacturonides, while diminishing immunosuppressive short oligogalacturonides. PvPGIP2 binding creates a substrate binding site on PvPGIP2-FpPG, forming a new polygalacturonase with boosted substrate binding activity and altered substrate preference. Structure-based engineering converts a putative PGIP that initially lacks FpPG-binding activity into an effective FpPG-interacting protein. These findings unveil a mechanism for plants to transform pathogen virulence activity into a defense trigger and provide proof of principle for engineering PGIPs with broader specificity.
Collapse
Affiliation(s)
- Yu Xiao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiangsheng Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Gao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinsheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Huang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhifu Han
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jijie Chai
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
18
|
Zhang C, Tetteh C, Luo S, Jin P, Hao X, Sun M, Fang N, Liu Y, Zhang H. Exogenous application of pectin triggers stomatal closure and immunity in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2024; 25:e13438. [PMID: 38393695 PMCID: PMC10887356 DOI: 10.1111/mpp.13438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Pectin has been extensively studied in animal immunity, and exogenous pectin as a food additive can provide protection against inflammatory bowel disease. However, the utility of pectin to improve immunity in plants is still unstudied. Here, we found exogenous application of pectin triggered stomatal closure in Arabidopsis in a dose- and time-dependent manner. Additionally, pectin activated peroxidase and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to produce reactive oxygen species (ROS), which subsequently increased cytoplasmic Ca2+ concentration ([Ca2+ ]cyt ) and was followed by nitric oxide (NO) production, leading to stomatal closure in an abscisic acid (ABA) and salicylic acid (SA) signalling-dependent mechanism. Furthermore, pectin enhanced the disease resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) with mitogen-activated protein kinases (MPKs) MPK3/6 activated and upregulated expression of defence-responsive genes in Arabidopsis. These results suggested that exogenous pectin-induced stomatal closure was associated with ROS and NO production regulated by ABA and SA signalling, contributing to defence against Pst DC3000 in Arabidopsis.
Collapse
Affiliation(s)
- Cheng Zhang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Charles Tetteh
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Sheng Luo
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Pinyuan Jin
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Xingqian Hao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Min Sun
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Nan Fang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Yingjun Liu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| | - Huajian Zhang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Key Laboratory of Agri‐products Quality and Biosafety, Department of Plant PathologyCollege of Plant Protection, Ministry of Education, Anhui Agricultural UniversityHefeiAnhuiChina
| |
Collapse
|
19
|
Matuszkiewicz M, Sobczak M. Syncytium Induced by Plant-Parasitic Nematodes. Results Probl Cell Differ 2024; 71:371-403. [PMID: 37996687 DOI: 10.1007/978-3-031-37936-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Plant-parasitic nematodes from the genera Globodera, Heterodera (cyst-forming nematodes), and Meloidogyne (root-knot nematodes) are notorious and serious pests of crops. They cause tremendous economic losses between US $80 and 358 billion a year. Nematodes infect the roots of plants and induce the formation of specialised feeding structures (syncytium and giant cells, respectively) that nourish juveniles and adults of the nematodes. The specialised secretory glands enable nematodes to synthesise and secrete effectors that facilitate migration through root tissues and alter the morphogenetic programme of host cells. The formation of feeding sites is associated with the suppression of plant defence responses and deep reprogramming of the development and metabolism of plant cells.In this chapter, we focus on syncytia induced by the sedentary cyst-forming nematodes and provide an overview of ultrastructural changes that occur in the host roots during syncytium formation in conjunction with the most important molecular changes during compatible and incompatible plant responses to infection with nematodes.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
20
|
Dewangan BP, Gupta A, Sah RK, Das S, Kumar S, Bhattacharjee S, Pawar PAM. Xylobiose treatment triggers a defense-related response and alters cell wall composition. PLANT MOLECULAR BIOLOGY 2023; 113:383-400. [PMID: 37991689 DOI: 10.1007/s11103-023-01391-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023]
Abstract
Plant cell wall-derived oligosaccharides, i.e., damage-associated molecular patterns (DAMPs), could be generated after pathogen attack or during normal plant development, perceived by cell wall receptors, and can alter immunity and cell wall composition. Therefore, we hypothesised that xylo-oligosaccharides (XOS) could act as an elicitor and trigger immune responses. To test this, we treated Arabidopsis with xylobiose (XB) and investigated different parameters. XB-treatment significantly triggered the generation of reactive oxygen species (ROS), activated MAPK protein phosphorylation, and induced callose deposition. The combination of XB (DAMP) and flg22 a microbe-associated molecular pattern (MAMP) further enhanced ROS response and gene expression of PTI marker genes. RNA sequencing analysis revealed that more genes were differentially regulated after 30 min compared to 24 h XB-treated leaves, which correlated with ROS response. Increased xylosidase activity and soluble xylose level after 30 min and 3 h of XB-treatment were observed which might have weakened the DAMP response. However, an increase in total cell wall sugar and a decrease in uronic acid level was observed at both 30 min and 24 h. Additionally, arabinose, rhamnose, and xylose levels were increased in 30 min, and glucose was increased in 24 h compared to mock-treated leaves. The level of jasmonic acid, abscisic acid, auxin, and cytokinin were also affected after XB treatment. Overall, our data revealed that the shortest XOS can act as a DAMP, which triggers the PTI response and alters cell wall composition and hormone level.
Collapse
Affiliation(s)
- Bhagwat Prasad Dewangan
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Arunima Gupta
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Rajan Kumar Sah
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Sandeep Kumar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Saikat Bhattacharjee
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
21
|
Schulz K, Machaj G, Knox P, Hancock RD, Verrall SR, Korpinen R, Saranpää P, Kärkönen A, Karpinska B, Foyer CH. Restraining Quiescence Release-Related Ageing in Plant Cells: A Case Study in Carrot. Cells 2023; 12:2465. [PMID: 37887309 PMCID: PMC10605352 DOI: 10.3390/cells12202465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The blackening of cut carrots causes substantial economic losses to the food industry. Blackening was not observed in carrots that had been stored underground for less than a year, but the susceptibility to blackening increased with the age of the carrots that were stored underground for longer periods. Samples of black, border, and orange tissues from processed carrot batons and slices, prepared under industry standard conditions, were analyzed to identify the molecular and metabolic mechanisms underpinning processing-induced blackening. The black tissues showed substantial molecular and metabolic rewiring and large changes in the cell wall structure, with a decreased abundance of xyloglucan, pectins (homogalacturonan, rhamnogalacturonan-I, galactan and arabinan), and higher levels of lignin and other phenolic compounds when compared to orange tissues. Metabolite profiling analysis showed that there was a major shift from primary to secondary metabolism in the black tissues, which were depleted in sugars, amino acids, and tricarboxylic acid (TCA) cycle intermediates but were rich in phenolic compounds. These findings suggest that processing triggers a release from quiescence. Transcripts encoding proteins associated with secondary metabolism were less abundant in the black tissues, but there were no increases in transcripts associated with oxidative stress responses, programmed cell death, or senescence. We conclude that restraining quiescence release alters cell wall metabolism and composition, particularly regarding pectin composition, in a manner that increases susceptibility to blackening upon processing.
Collapse
Affiliation(s)
- Katie Schulz
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.S.); (P.K.)
| | - Gabriela Machaj
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, 31-120 Krakow, Poland;
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.S.); (P.K.)
| | - Robert D. Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Susan R. Verrall
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 1BE, UK;
| | - Risto Korpinen
- Natural Resources Institute Finland, Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland; (R.K.); (P.S.); (A.K.)
| | - Pekka Saranpää
- Natural Resources Institute Finland, Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland; (R.K.); (P.S.); (A.K.)
| | - Anna Kärkönen
- Natural Resources Institute Finland, Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland; (R.K.); (P.S.); (A.K.)
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
22
|
Huang Y, Li Y, Zou K, Wang Y, Ma Y, Meng D, Luo H, Qu J, Li F, Xuan Y, Du W. The Resistance of Maize to Ustilago maydis Infection Is Correlated with the Degree of Methyl Esterification of Pectin in the Cell Wall. Int J Mol Sci 2023; 24:14737. [PMID: 37834187 PMCID: PMC10573042 DOI: 10.3390/ijms241914737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Common smut caused by Ustilago maydis is one of the dominant fungal diseases in plants. The resistance mechanism to U. maydis infection involving alterations in the cell wall is poorly studied. In this study, the resistant single segment substitution line (SSSL) R445 and its susceptible recurrent parent line Ye478 of maize were infected with U. maydis, and the changes in cell wall components and structure were studied at 0, 2, 4, 8, and 12 days postinfection. In R445 and Ye478, the contents of cellulose, hemicellulose, pectin, and lignin increased by varying degrees, and pectin methylesterase (PME) activity increased. The changes in hemicellulose and pectin in the cell wall after U. maydis infection were analyzed via immunolabeling using monoclonal antibodies against hemicellulsic xylans and high/low-methylated pectin. U. maydis infection altered methyl esterification of pectin, and the degree of methyl esterification was correlated with the resistance of maize to U. maydis. Furthermore, the relationship between methyl esterification of pectin and host resistance was validated using 15 maize inbred lines with different resistance levels. The results revealed that cell wall components, particularly pectin, were important factors affecting the colonization and propagation of U. maydis in maize, and methyl esterification of pectin played a role in the resistance of maize to U. maydis infection.
Collapse
Affiliation(s)
- Yingni Huang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Kunkun Zou
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Wang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuting Ma
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Dexuan Meng
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Haishan Luo
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianzhou Qu
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanli Du
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
23
|
Bu Z, Li W, Liu X, Liu Y, Gao Y, Pei G, Zhuo R, Cui K, Qin Z, Zheng H, Wu J, Yang Y, Su P, Cao M, Xiong X, Liu X, Zhu Y. The Rice Endophyte-Derived α-Mannosidase ShAM1 Degrades Host Cell Walls To Activate DAMP-Triggered Immunity against Disease. Microbiol Spectr 2023; 11:e0482422. [PMID: 37154721 PMCID: PMC10269736 DOI: 10.1128/spectrum.04824-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Endophytes play an important role in shaping plant growth and immunity. However, the mechanisms for endophyte-induced disease resistance in host plants remain unclear. Here, we screened and isolated the immunity inducer ShAM1 from the endophyte Streptomyces hygroscopicus OsiSh-2, which strongly antagonizes the pathogen Magnaporthe oryzae. Recombinant ShAM1 can trigger rice immune responses and induce hypersensitive responses in various plant species. After infection with M. oryzae, blast resistance was dramatically improved in ShAM1-inoculated rice. In addition, the enhanced disease resistance by ShAM1 was found to occur through a priming strategy and was mainly regulated through the jasmonic acid-ethylene (JA/ET)-dependent signaling pathway. ShAM1 was identified as a novel α-mannosidase, and its induction of immunity is dependent on its enzyme activity. When we incubated ShAM1 with isolated rice cell walls, the release of oligosaccharides was observed. Notably, extracts from the ShAM1-digested cell wall can enhance the disease resistance of the host rice. These results indicated that ShAM1 triggered immune defense against pathogens by damage-associated molecular pattern (DAMP)-related mechanisms. Our work provides a representative example of endophyte-mediated modulation of disease resistance in host plants. The effects of ShAM1 indicate the promise of using active components from endophytes as plant defense elicitors for the management of plant disease. IMPORTANCE The specific biological niche inside host plants allows endophytes to regulate plant disease resistance effectively. However, there have been few reports on the role of active metabolites from endophytes in inducing host disease resistance. In this study, we demonstrated that an identified α-mannosidase protein, ShAM1, secreted by the endophyte S. hygroscopicus OsiSh-2 could activate typical plant immunity responses and induce a timely and cost-efficient priming defense against the pathogen M. oryzae in rice. Importantly, we revealed that ShAM1 enhanced plant disease resistance through its hydrolytic enzyme (HE) activity to digest the rice cell wall and release damage-associated molecular patterns. Taken together, these findings provide an example of the interaction mode of endophyte-plant symbionts and suggest that HEs derived from endophytes can be used as environmentally friendly and safe prevention agent for plant disease control.
Collapse
Affiliation(s)
- Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Wei Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xiaoli Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Ying Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Gang Pei
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province Hunan, University of Chinese Medicine, Changsha, People’s Republic of China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Kunpeng Cui
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Ziwei Qin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Heping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Jie Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yutong Yang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Pin Su
- Hunan Academy of Agricultural Sciences, Hunan Plant Protection Institute, Changsha, People’s Republic of China
| | - Meiting Cao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xianqiu Xiong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| |
Collapse
|
24
|
Dutta P, Mahanta M, Singh SB, Thakuria D, Deb L, Kumari A, Upamanya GK, Boruah S, Dey U, Mishra AK, Vanlaltani L, VijayReddy D, Heisnam P, Pandey AK. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1145715. [PMID: 37255560 PMCID: PMC10225716 DOI: 10.3389/fpls.2023.1145715] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Trichoderma spp. (Hypocreales) are used worldwide as a lucrative biocontrol agent. The interactions of Trichoderma spp. with host plants and pathogens at a molecular level are important in understanding the various mechanisms adopted by the fungus to attain a close relationship with their plant host through superior antifungal/antimicrobial activity. When working in synchrony, mycoparasitism, antibiosis, competition, and the induction of a systemic acquired resistance (SAR)-like response are considered key factors in deciding the biocontrol potential of Trichoderma. Sucrose-rich root exudates of the host plant attract Trichoderma. The soluble secretome of Trichoderma plays a significant role in attachment to and penetration and colonization of plant roots, as well as modulating the mycoparasitic and antibiosis activity of Trichoderma. This review aims to gather information on how Trichoderma interacts with host plants and its role as a biocontrol agent of soil-borne phytopathogens, and to give a comprehensive account of the diverse molecular aspects of this interaction.
Collapse
Affiliation(s)
- Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Madhusmita Mahanta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | | | - Dwipendra Thakuria
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Arti Kumari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Gunadhya K. Upamanya
- Sarat Chandra Singha (SCS) College of Agriculture, Assam Agricultural University (Jorhat), Dhubri, Assam, India
| | - Sarodee Boruah
- Krishi Vigyan Kendra (KVK)-Tinsukia, Assam Agricultural University (Jorhat), Tinsukia, Assam, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Tripura, Sepahijala, India
| | - A. K. Mishra
- Department of Plant Pathology, Dr Rajendra Prasad Central Agricultural University, Bihar, Samastipur, India
| | - Lydia Vanlaltani
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Dumpapenchala VijayReddy
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Punabati Heisnam
- Department of Agronomy, Central Agricultural University (Imphal), Pasighat, India
| | - Abhay K. Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional, R & D Center, Jalpaiguri, West Bengal, India
| |
Collapse
|
25
|
Zhou L, Ma Y, Zhong S, Cao J, Luo Y, Qu G. Phytohormone ethylene mediates oligogalacturonic acid-induced growth inhibition in tomato etiolated seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111643. [PMID: 36805420 DOI: 10.1016/j.plantsci.2023.111643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plant growth and immunity are tightly interconnected. Oligogalacturonic acids (OGs) are pectic fragments and have been well investigated in plant immunity as a damage-associated molecular pattern. However, little is known regarding how OGs affect plant growth. Here, we reveal that OGs inhibit the growth of intact etiolated seedling by using the horticultural crop tomato as a model. This inhibitory effect is partially suppressed by the action of ethylene biosynthesis inhibitors, or the gene silencing of SlACS2, an essential rate-limiting enzyme for ethylene biosynthesis, suggesting that SlACS2-mediated ethylene production promotes OG-induced growth inhibition. Furthermore, OGs treatment elevates the SlACS2 protein phosphorylation, and its decrease by the kinase inhibitor K252a partially rescue OG-induced growth inhibition, indicating that SlACS2 phosphorylation involves in OG-induced growth inhibition. Moreover, the mitogen-activated protein kinase SlMPK3 could be activated by OGs treatment and can directly phosphorylate SlACS2 in vitro, and the bimolecular fluorescence complementation combining with the yeast two-hybrid assay shows that SlMPK3 interacts with SlACS2, indicating that SlMPK3 may participate in modulating the OG-induced SlACS2 phosphorylation and growth inhibition. Our results reveal a regulatory mechanism at both the transcriptional and post-transcriptional levels by which OGs inhibit the growth of intact plant seedlings.
Collapse
Affiliation(s)
- Leilei Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yingxuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
26
|
Liu S, Tian L, Cong Y, Shi Q, Wang L, Lu Y, Wang L, Yang G. Recent advances in polygalacturonase: Industrial applications and challenges. Carbohydr Res 2023; 528:108816. [PMID: 37094533 DOI: 10.1016/j.carres.2023.108816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
This review focuses on the applications of polygalacturonase (PG), one of the most commercially produced enzymes on the biocatalyst market, in the food, beverage, feed, textile, and paper industries. Most PGs are acidic mesophilic enzymes, as shown by a summary of their biochemical properties. However, the acidic PGs discovered to date are insufficiently effective for industrial applications. The sequence and structural characteristics of thermophilic PGs are analyzed based on the results of extensive discussions regarding the catalytic mechanism and structural characteristics of PGs with shared right-handed parallel β-helical structures. In addition, the molecular modification methods for obtaining thermostable PGs are systematically presented. Notably, the demand for alkaline heat-resistant PGs has increased significantly concurrent with the biomanufacturing industry development. Therefore, this review also provides a theoretical guideline for mining heat-resistant PG gene resources and modifying PG thermostability.
Collapse
Affiliation(s)
- Siyi Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Linfang Tian
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Yuting Cong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Qianqian Shi
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Lianshun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Li Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Guojun Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China.
| |
Collapse
|
27
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
28
|
Ante- and post-mortem cellular injury dynamics in hybrid poplar foliage as a function of phytotoxic O3 dose. PLoS One 2023; 18:e0282006. [PMID: 36857351 PMCID: PMC9977006 DOI: 10.1371/journal.pone.0282006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
After reaching phytotoxic levels during the last century, tropospheric ozone (O3) pollution is likely to remain a major concern in the coming decades. Despite similar injury processes, there is astounding interspecific-and sometimes intraspecific-foliar symptom variability, which may be related to spatial and temporal variation in injury dynamics. After characterizing the dynamics of physiological responses and O3 injury in the foliage of hybrid poplar in an earlier study, here we investigated the dynamics of changes in the cell structure occurring in the mesophyll as a function of O3 treatment, time, phytotoxic O3 dose (POD0), leaf developmental stage, and mesophyll layer. While the number of Hypersensitive Response-like (HR-like) lesions increased with higher O3 concentrations and POD0, especially in older leaves, most structural HR-like markers developed after cell death, independent of the experimental factors. The pace of degenerative Accelerated Cell Senescence (ACS) responses depended closely on the O3 concentration and POD0, in interaction with leaf age. Changes in total chlorophyll content, plastoglobuli and chloroplast shape pointed to thylakoid membranes in chloroplasts as being especially sensitive to O3 stress. Hence, our study demonstrates that early HR-like markers can provide reasonably specific, sensitive and reliable quantitative structural estimates of O3 stress for e.g. risk assessment studies, especially if they are associated with degenerative and thylakoid-related injury in chloroplasts from mesophyll.
Collapse
|
29
|
Frezzini M, Scortica A, Capone M, Narzi D, Benedetti M, Angelucci F, Mattei B, Guidoni L. Molecular dynamics simulations and kinetic measurements provide insights into the structural requirements of substrate size-dependent specificity of oligogalacturonide oxidase 1 (OGOX1). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:315-325. [PMID: 36455304 DOI: 10.1016/j.plaphy.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Oligogalacturonides (OGs) are pectin fragments released from the breakdown of the homogalacturonan during pathogenesis that act as Damage-Associated Molecular Patterns. OG-oxidase 1 (OGOX1) is an Arabidopsis berberine bridge enzyme-like (BBE-l) oligosaccharide oxidase that oxidizes OGs, impairing their elicitor activity and concomitantly releasing H2O2. The OG-oxidizing activity of OGOX1 is markedly pH-dependent, with optimum pH around 10, and is higher towards OGs with a degree of polymerization higher than two. Here, the molecular determinants of OGOX1 responsible for the binding of OGs with different lengths have been investigated through molecular dynamics simulations and enzyme kinetics studies. OGOX1 was simulated in complex with OGs with different degree of polymerization such as di-, tri-, tetra- and penta-galacturonide, in water solution at alkaline pH. Our simulations revealed that, among the four OGOX1/OG combinations, the penta-galacturonide (OG5) showed the best conformation in the active site to be efficiently oxidized by OGOX1. The optimal conformation can be stabilized by salt-bridges formed between the carboxyl groups of OG5 and five positively charged amino acids of OGOX1, highly conserved in all OGOX paralogs. Our results suggest that these interactions limit the mobility of OG5 as well as longer OGs, contributing to maintain the terminal monomer of OGs in the optimal orientation in order to be oxidized by the enzyme. In accordance with these results, the enzyme efficiency (Kcat/KM) of OGOX1 on OG5 (40.04) was found to be significantly higher than that on OG4 (13.05) and OG3 (0.6).
Collapse
Affiliation(s)
- Mario Frezzini
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Anna Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Matteo Capone
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Daniele Narzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Leonardo Guidoni
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| |
Collapse
|
30
|
Liao W, Nie W, Ahmad I, Chen G, Zhu B. The occurrence, characteristics, and adaptation of A-to-I RNA editing in bacteria: A review. Front Microbiol 2023; 14:1143929. [PMID: 36960293 PMCID: PMC10027721 DOI: 10.3389/fmicb.2023.1143929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
A-to-I RNA editing is a very important post-transcriptional modification or co-transcriptional modification that creates isoforms and increases the diversity of proteins. In this process, adenosine (A) in RNA molecules is hydrolyzed and deaminated into inosine (I). It is well known that ADAR (adenosine deaminase acting on RNA)-dependent A-to-I mRNA editing is widespread in animals. Next, the discovery of A-to-I mRNA editing was mediated by TadA (tRNA-specific adenosine deaminase) in Escherichia coli which is ADAR-independent event. Previously, the editing event S128P on the flagellar structural protein FliC enhanced the bacterial tolerance to oxidative stress in Xoc. In addition, the editing events T408A on the enterobactin iron receptor protein XfeA act as switches by controlling the uptake of Fe3+ in response to the concentration of iron in the environment. Even though bacteria have fewer editing events, the great majority of those that are currently preserved have adaptive benefits. Interestingly, it was found that a TadA-independent A-to-I RNA editing event T408A occurred on xfeA, indicating that there may be other new enzymes that perform a function like TadA. Here, we review recent advances in the characteristics, functions, and adaptations of editing in bacteria.
Collapse
Affiliation(s)
- Weixue Liao
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhan Nie
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Wenhan Nie,
| | - Iftikhar Ahmad
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Bo Zhu,
| |
Collapse
|
31
|
Dejana L, Ramírez-Serrano B, Rivero J, Gamir J, López-Ráez JA, Pozo MJ. Phosphorus availability drives mycorrhiza induced resistance in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1060926. [PMID: 36600909 PMCID: PMC9806178 DOI: 10.3389/fpls.2022.1060926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis can provide multiple benefits to the host plant, including improved nutrition and protection against biotic stress. Mycorrhiza induced resistance (MIR) against pathogens and insect herbivores has been reported in different plant systems, but nutrient availability may influence the outcome of the interaction. Phosphorus (P) is a key nutrient for plants and insects, but also a regulatory factor for AM establishment and functioning. However, little is known about how AM symbiosis and P interact to regulate plant resistance to pests. Here, using the tomato-Funneliformis mosseae mycorrhizal system, we analyzed the effect of moderate differences in P fertilization on plant and pest performance, and on MIR against biotic stressors including the fungal pathogen Botrytis cinerea and the insect herbivore Spodoperta exigua. P fertilization impacted plant nutritional value, plant defenses, disease development and caterpillar survival, but these effects were modulated by the mycorrhizal status of the plant. Enhanced resistance of F. mosseae-inoculated plants against B. cinerea and S. exigua depended on P availability, as no protection was observed under the most P-limiting conditions. MIR was not directly explained by changes in the plant nutritional status nor to basal differences in defense-related phytohormones. Analysis of early plant defense responses to the damage associated molecules oligogalacturonides showed primed transcriptional activation of plant defenses occurring at intermediate P levels, but not under severe P limitation. The results show that P influences mycorrhizal priming of plant defenses and the resulting induced-resistance is dependent on P availability, and suggest that mycorrhiza fine-tunes the plant growth vs defense prioritization depending on P availability. Our results highlight how MIR is context dependent, thus unravel molecular mechanism based on plant defence in will contribute to improve the efficacy of mycorrhizal inoculants in crop protection.
Collapse
Affiliation(s)
- Laura Dejana
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Beatriz Ramírez-Serrano
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, /Universite de Tours Centre National de la Recherche Scientifique (CNRS), Tours, France
| | - Javier Rivero
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jordi Gamir
- Plant Immunity and Biochemistry Group, Department of Biology Biochemistry and Natural Sciences, Universitat Jaume I, Avd. Vicente Sos Baynat s/n, Castellón, Spain
| | - Juan A. López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
32
|
Scortica A, Giovannoni M, Scafati V, Angelucci F, Cervone F, De Lorenzo G, Benedetti M, Mattei B. Berberine Bridge Enzyme-like Oligosaccharide Oxidases Act as Enzymatic Transducers Between Microbial Glycoside Hydrolases and Plant Peroxidases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:881-886. [PMID: 35704684 DOI: 10.1094/mpmi-05-22-0113-ta] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oligogalacturonide (OG)-oxidase 1 (OGOX1) and cellodextrin (CD)-oxidase (CELLOX) are plant berberine bridge enzyme-like oligosaccharide oxidases that oxidize OGs and CDs, cell-wall fragments with the nature of damage-associated molecular patterns. The oxidation of OGs and CDs attenuates their elicitor activity and concomitantly releases H2O2. By using a multiple enzyme-based assay, we demonstrate that the H2O2 generated downstream of the combined action between a fungal polygalacturonase and OGOX1 or an endoglucanase and CELLOX can be directed by plant peroxidases (PODs) either towards a reaction possibly involved in plant defense, such as the oxidation of monolignol or a reaction possibly involved in a developmental event, such as the oxidation of auxin (indole-3-acetic acid), pointing to OGOX1 and CELLOX as enzymatic transducers between microbial glycoside hydrolases and plant PODs. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anna Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Felice Cervone
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
33
|
Chowdhury J, Kemppainen M, Delhomme N, Shutava I, Zhou J, Takahashi J, Pardo AG, Lundberg‐Felten J. Laccaria bicolor pectin methylesterases are involved in ectomycorrhiza development with Populus tremula × Populus tremuloides. THE NEW PHYTOLOGIST 2022; 236:639-655. [PMID: 35794841 PMCID: PMC9796311 DOI: 10.1111/nph.18358] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The development of ectomycorrhizal (ECM) symbioses between soil fungi and tree roots requires modification of root cell walls. The pectin-mediated adhesion between adjacent root cells loosens to accommodate fungal hyphae in the Hartig net, facilitating nutrient exchange between partners. We investigated the role of fungal pectin modifying enzymes in Laccaria bicolor for ECM formation with Populus tremula × Populus tremuloides. We combine transcriptomics of cell-wall-related enzymes in both partners during ECM formation, immunolocalisation of pectin (Homogalacturonan, HG) epitopes in different methylesterification states, pectin methylesterase (PME) activity assays and functional analyses of transgenic L. bicolor to uncover pectin modification mechanisms and the requirement of fungal pectin methylesterases (LbPMEs) for ECM formation. Immunolocalisation identified remodelling of pectin towards de-esterified HG during ECM formation, which was accompanied by increased LbPME1 expression and PME activity. Overexpression or RNAi of the ECM-induced LbPME1 in transgenic L. bicolor lines led to reduced ECM formation. Hartig Nets formed with LbPME1 RNAi lines were shallower, whereas those formed with LbPME1 overexpressors were deeper. This suggests that LbPME1 plays a role in ECM formation potentially through HG de-esterification, which initiates loosening of adjacent root cells to facilitate Hartig net formation.
Collapse
Affiliation(s)
- Jamil Chowdhury
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Minna Kemppainen
- Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied MicrobiologyNational University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET)B1876BXDBernalArgentina
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| | - Iryna Shutava
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Jingjing Zhou
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Junko Takahashi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| | - Alejandro G. Pardo
- Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied MicrobiologyNational University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET)B1876BXDBernalArgentina
| | - Judith Lundberg‐Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| |
Collapse
|
34
|
Apoplastic and vascular defences. Essays Biochem 2022; 66:595-605. [PMID: 36062526 DOI: 10.1042/ebc20220159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
The apoplast comprises the intercellular space between cell membranes, includes the xylem, and extends to the rhizoplane and the outer surfaces of the plant. The apoplast plays roles in different biological processes including plant immunity. This highly specialised space is often the first place where pathogen recognition occurs, and this then triggers the immune response. The immune response in the apoplast involves different mechanisms that restrict pathogen infection. Among these responses, secretion of different molecules like proteases, proteins related to immunity, small RNAs and secondary metabolites play important and often additive or synergistic roles. In addition, production of reactive oxygen species occurs to cause direct deleterious effects on the pathogen as well as reinforce the plant's immune response by triggering modifications to cell wall composition and providing additional defence signalling capabilities. The pool of available sugar in the apoplast also plays a role in immunity. These sugars can be manipulated by both interactors, pathogens gaining access to nutrients whilst the plant's responses restrict the pathogen's access to nutrients. In this review, we describe the latest findings in the field to highlight the importance of the apoplast in plant-pathogen interactions and plant immunity. We also indicate where new discoveries are needed.
Collapse
|
35
|
Silva-Sanzana C, Zavala D, Moraga F, Herrera-Vásquez A, Blanco-Herrera F. Oligogalacturonides Enhance Resistance against Aphids through Pattern-Triggered Immunity and Activation of Salicylic Acid Signaling. Int J Mol Sci 2022; 23:ijms23179753. [PMID: 36077150 PMCID: PMC9456349 DOI: 10.3390/ijms23179753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The remarkable capacity of the generalist aphid Myzus persicae to resist most classes of pesticides, along with the environmental and human health risks associated with these agrochemicals, has necessitated the development of safer and greener solutions to control this agricultural pest. Oligogalacturonides (OGs) are pectin-derived molecules that can be isolated from fruit industry waste. OGs have been shown to efficiently stimulate plant defenses against pathogens such as Pseudomonas syringae and Botrytis cinerea. However, whether OGs confer resistance against phytophagous insects such as aphids remains unknown. Here, we treated Arabidopsis plants with OGs and recorded their effects on the feeding performance and population of M. persicae aphids. We also identified the defense mechanism triggered by OGs in plants through the analysis of gene expression and histological approaches. We found that OG treatments increased their resistance to M. persicae infestation by reducing the offspring number and feeding performance. Furthermore, this enhanced resistance was related to a substantial accumulation of callose and reactive oxygen species and activation of the salicylic acid signaling pathway.
Collapse
Affiliation(s)
- Christian Silva-Sanzana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8370186, Chile
| | - Diego Zavala
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8370186, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile
| | - Felipe Moraga
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8370186, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile
| | - Ariel Herrera-Vásquez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8370186, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8370186, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile
- Correspondence: ; Tel.: +56-2-26618319
| |
Collapse
|
36
|
Gregusová V, Kaňuková Š, Hudcovicová M, Bojnanská K, Ondreičková K, Piršelová B, Mészáros P, Lengyelová L, Galuščáková Ľ, Kubová V, Matušíková I, Mihálik D, Kraic J, Havrlentová M. The Cell-Wall β-d-Glucan in Leaves of Oat ( Avena sativa L.) Affected by Fungal Pathogen Blumeria graminis f. sp. avenae. Polymers (Basel) 2022; 14:3416. [PMID: 36015673 PMCID: PMC9415129 DOI: 10.3390/polym14163416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to the structural and storage functions of the (1,3; 1,4)-β-d-glucans (β-d-glucan), the possible protective role of this polymer under biotic stresses is still debated. The aim of this study was to contribute to this hypothesis by analyzing the β-d-glucans content, expression of related cellulose synthase-like (Csl) Cs1F6, CslF9, CslF3 genes, content of chlorophylls, and β-1,3-glucanase content in oat (Avena sativa L.) leaves infected with the commonly occurring oat fungal pathogen, Blumeria graminis f. sp. avenae (B. graminis). Its presence influenced all measured parameters. The content of β-d-glucans in infected leaves decreased in all used varieties, compared to the non-infected plants, but not significantly. Oats reacted differently, with Aragon and Vaclav responding with overexpression, and Bay Yan 2, Ivory, and Racoon responding with the underexpression of these genes. Pathogens changed the relative ratios regarding the expression of CslF6, CslF9, and CslF3 genes from neutral to negative correlations. However, changes in the expression of these genes did not statistically significantly affect the content of β-d-glucans. A very slight indication of positive correlation, but statistically insignificant, was observed between the contents of β-d-glucans and chlorophylls. Some isoforms of β-1,3-glucanases accumulated to a several-times higher level in the infected leaves of all varieties. New isoforms of β-1,3-glucanases were also detected in infected leaves after fungal infection.
Collapse
Affiliation(s)
- Veronika Gregusová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Šarlota Kaňuková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Martina Hudcovicová
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Katarína Bojnanská
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Katarína Ondreičková
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Beáta Piršelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Patrik Mészáros
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Libuša Lengyelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Ľudmila Galuščáková
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Veronika Kubová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Ildikó Matušíková
- Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Daniel Mihálik
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Ján Kraic
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Michaela Havrlentová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| |
Collapse
|
37
|
Chen Q, Li J, Liu G, Lu X, Chen K, Tian J, Liang C. A Berberine Bridge Enzyme-Like Protein, GmBBE-like43, Confers Soybean's Coordinated Adaptation to Aluminum Toxicity and Phosphorus Deficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:947986. [PMID: 36003807 PMCID: PMC9393741 DOI: 10.3389/fpls.2022.947986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) deficiency and aluminum (Al) toxicity often coexist and are two major limiting factors for crop production in acid soils. The purpose of this study was to characterize the function of GmBBE-like43, a berberine bridge enzyme-like protein-encoding gene, in soybean (Glycine max) adaptation to Al and low P stresses. Present quantitative real-time PCR (qRT-PCR) assays confirmed the phosphate (Pi)-starvation enhanced and Al-stress up-regulated expression pattern of GmBBE-like43 in soybean roots. Meanwhile, the expression of a GmBBE-like43-GFP chimera in both common bean hairy roots and tobacco leaves demonstrated its cell wall localization. Moreover, both transgenic Arabidopsis and soybean hairy roots revealed the function of GmBBE-like43 in promoting root growth under both Al and low P stresses. GmBBE-like43-overexpression also resulted in more H2O2 production on transgenic soybean hairy root surface with oligogalacturonides (OGs) application and antagonized the effects of Al on the expression of two SAUR-like genes. Taken together, our results suggest that GmBBE-like43 might be involved in the soybean's coordinated adaptation to Al toxicity and Pi starvation through modulation of OGs-oxidation in the cell wall.
Collapse
|
38
|
Baez LA, Tichá T, Hamann T. Cell wall integrity regulation across plant species. PLANT MOLECULAR BIOLOGY 2022; 109:483-504. [PMID: 35674976 PMCID: PMC9213367 DOI: 10.1007/s11103-022-01284-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/05/2022] [Indexed: 05/05/2023]
Abstract
Plant cell walls are highly dynamic and chemically complex structures surrounding all plant cells. They provide structural support, protection from both abiotic and biotic stress as well as ensure containment of turgor. Recently evidence has accumulated that a dedicated mechanism exists in plants, which is monitoring the functional integrity of cell walls and initiates adaptive responses to maintain integrity in case it is impaired during growth, development or exposure to biotic and abiotic stress. The available evidence indicates that detection of impairment involves mechano-perception, while reactive oxygen species and phytohormone-based signaling processes play key roles in translating signals generated and regulating adaptive responses. More recently it has also become obvious that the mechanisms mediating cell wall integrity maintenance and pattern triggered immunity are interacting with each other to modulate the adaptive responses to biotic stress and cell wall integrity impairment. Here we will review initially our current knowledge regarding the mode of action of the maintenance mechanism, discuss mechanisms mediating responses to biotic stresses and highlight how both mechanisms may modulate adaptive responses. This first part will be focused on Arabidopsis thaliana since most of the relevant knowledge derives from this model organism. We will then proceed to provide perspective to what extent the relevant molecular mechanisms are conserved in other plant species and close by discussing current knowledge of the transcriptional machinery responsible for controlling the adaptive responses using selected examples.
Collapse
Affiliation(s)
- Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Tereza Tichá
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
39
|
Pastor V, Cervero R, Gamir J. The simultaneous perception of self- and non-self-danger signals potentiates plant innate immunity responses. PLANTA 2022; 256:10. [PMID: 35697869 PMCID: PMC9192368 DOI: 10.1007/s00425-022-03918-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The simultaneous perception of endogenous and exogenous danger signals potentiates PAMP-triggered immunity in tomato and other downstream defence responses depending on the origin of the signal. Abstract Plant cells perceive a pathogen invasion by recognising endogenous or exogenous extracellular signals such as Damage-Associated Molecular Patterns (DAMPs) or Pathogen-Associated Molecular Patterns (PAMPs). In particular, DAMPs are intracellular molecules or cell wall fragments passive or actively released to the apoplast, whose extracellular recognition by intact cells triggers specific immune signalling, the so-called DAMP-triggered immunity. The extracellular recognition of DAMPs and PAMPs leads to a very similar intracellular signalling, and this similarity has generated a biological need to know why plants perceive molecules with such different origins and with overlapped innate immunity responses. Here, we report that the simultaneous perception of DAMPs and a PAMP strengthens early and late plant defence responses. To this aim, we studied classical PTI responses such as the generation of ROS and MAPK phosphorylation, but we also monitored the biosynthesis of phytocytokines and performed a non-targeted metabolomic analysis. We demonstrate that co-application of the bacterial peptide flagellin with the DAMPs cyclic AMP or cellobiose amplifies PAMP-triggered immunity responses. Both co-applications enhanced the synthesis of phytocytokines, but only simultaneous treatments with cAMP strengthened the flagellin-dependent metabolomic responses. In addition, cAMP and cellobiose treatments induced resistance against the hemibiotrophic bacteria Pseudomonas syringae pv. tomato DC3000. Overall, these results indicate that the complex mixture of DAMPs and PAMPs carries specific information that potentiates plant defence responses. However, downstream responses seem more specific depending on the composition of the mixture.
Collapse
Affiliation(s)
- Victoria Pastor
- Metabolic Integration and Cell Signaling Group, Departamento de Biología, Bioquímica y Ciencias Naturales, University Jaume I of Castellón, 12071, Castelló de la Plana, Spain
| | - Raquel Cervero
- Metabolic Integration and Cell Signaling Group, Departamento de Biología, Bioquímica y Ciencias Naturales, University Jaume I of Castellón, 12071, Castelló de la Plana, Spain
| | - Jordi Gamir
- Metabolic Integration and Cell Signaling Group, Departamento de Biología, Bioquímica y Ciencias Naturales, University Jaume I of Castellón, 12071, Castelló de la Plana, Spain.
| |
Collapse
|
40
|
Temple H, Phyo P, Yang W, Lyczakowski JJ, Echevarría-Poza A, Yakunin I, Parra-Rojas JP, Terrett OM, Saez-Aguayo S, Dupree R, Orellana A, Hong M, Dupree P. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. NATURE PLANTS 2022; 8:656-669. [PMID: 35681018 DOI: 10.1038/s41477-022-01156-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Polysaccharide methylation, especially that of pectin, is a common and important feature of land plant cell walls. Polysaccharide methylation takes place in the Golgi apparatus and therefore relies on the import of S-adenosyl methionine (SAM) from the cytosol into the Golgi. However, so far, no Golgi SAM transporter has been identified in plants. Here we studied major facilitator superfamily members in Arabidopsis that we identified as putative Golgi SAM transporters (GoSAMTs). Knockout of the two most highly expressed GoSAMTs led to a strong reduction in Golgi-synthesized polysaccharide methylation. Furthermore, solid-state NMR experiments revealed that reduced methylation changed cell wall polysaccharide conformations, interactions and mobilities. Notably, NMR revealed the existence of pectin 'egg-box' structures in intact cell walls and showed that their formation is enhanced by reduced methyl esterification. These changes in wall architecture were linked to substantial growth and developmental phenotypes. In particular, anisotropic growth was strongly impaired in the double mutant. The identification of putative transporters involved in import of SAM into the Golgi lumen in plants provides new insights into the paramount importance of polysaccharide methylation for plant cell wall structure and function.
Collapse
Affiliation(s)
- Henry Temple
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Pyae Phyo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weibing Yang
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS) and CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China
| | - Jan J Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Yakunin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry, UK
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Plant immunity by damage-associated molecular patterns (DAMPs). Essays Biochem 2022; 66:459-469. [PMID: 35612381 DOI: 10.1042/ebc20210087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Recognition by plant receptors of microbe-associated molecular patterns (MAMPs) and pathogenicity effectors activates immunity. However, before evolving the capacity of perceiving and responding to MAMPs and pathogenicity factors, plants, like animals, must have faced the necessity to protect and repair the mechanical wounds used by pathogens as an easy passage into their tissue. Consequently, plants evolved the capacity to react to damage-associated molecular patterns (DAMPs) with responses capable of functioning also in the absence of pathogens. DAMPs include not only primarily cell wall (CW) fragments but also extracellular peptides, nucleotides and amino acids that activate both local and long-distance systemic responses and, in some cases, prime the subsequent responses to MAMPs. It is conceivable that DAMPs and MAMPs act in synergy to activate a stronger plant immunity and that MAMPs exploit the mechanisms and transduction pathways traced by DAMPs. The interest for the biology and mechanism of action of DAMPs, either in the plant or animal kingdom, is expected to substantially increase in the next future. This review focuses on the most recent advances in DAMPs biology, particularly in the field of CW-derived DAMPs.
Collapse
|
42
|
Přerovská T, Jindřichová B, Henke S, Yvin JC, Ferrieres V, Burketová L, Lipovová P, Nguema-Ona E. Arabinogalactan Protein-Like Proteins From Ulva lactuca Activate Immune Responses and Plant Resistance in an Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:893858. [PMID: 35668790 PMCID: PMC9164130 DOI: 10.3389/fpls.2022.893858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.
Collapse
Affiliation(s)
- Tereza Přerovská
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Barbora Jindřichová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Svatopluk Henke
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jean-Claude Yvin
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| | - Vincent Ferrieres
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Eric Nguema-Ona
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| |
Collapse
|
43
|
Abstract
Plant architecture fundamentally differs from that of other multicellular organisms in that individual cells serve as osmotic bricks, defined by the equilibrium between the internal turgor pressure and the mechanical resistance of the surrounding cell wall, which constitutes the interface between plant cells and their environment. The state and integrity of the cell wall are constantly monitored by cell wall surveillance pathways, which relay information to the cell interior. A recent surge of discoveries has led to significant advances in both mechanistic and conceptual insights into a multitude of cell wall response pathways that play diverse roles in the development, defense, stress response, and maintenance of structural integrity of the cell. However, these advances have also revealed the complexity of cell wall sensing, and many more questions remain to be answered, for example, regarding the mechanisms of cell wall perception, the molecular players in this process, and how cell wall-related signals are transduced and integrated into cellular behavior. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future discoveries in this exciting area of plant biology.
Collapse
Affiliation(s)
- Sebastian Wolf
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls University, Tübingen, Germany;
| |
Collapse
|
44
|
Chen MM, Yang SR, Wang J, Fang YL, Peng YL, Fan J. Fungal oxysterol-binding protein-related proteins promote pathogen virulence and activate plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2125-2141. [PMID: 34864987 DOI: 10.1093/jxb/erab530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Oxysterol-binding protein-related proteins (ORPs) are a conserved class of lipid transfer proteins that are closely involved in multiple cellular processes in eukaryotes, but their roles in plant-pathogen interactions are mostly unknown. We show that transient expression of ORPs of Magnaporthe oryzae (MoORPs) in Nicotiana benthamina plants triggered oxidative bursts and cell death; treatment of tobacco Bright Yellow-2 suspension cells with recombinant MoORPs elicited the production of reactive oxygen species. Despite ORPs being normally described as intracellular proteins, we detected MoORPs in fungal culture filtrates and intercellular fluids from barley plants infected with the fungus. More importantly, infiltration of Arabidopsis plants with recombinant Arabidopsis or fungal ORPs activated oxidative bursts, callose deposition, and PR1 gene expression, and enhanced plant disease resistance, implying that ORPs may function as endogenous and exogenous danger signals triggering plant innate immunity. Extracellular application of fungal ORPs exerted an opposite impact on salicylic acid and jasmonic acid/ethylene signaling pathways. Brassinosteroid Insensitive 1-associated Kinase 1 was dispensable for the ORP-activated defense. Besides, simultaneous knockout of MoORP1 and MoORP3 abolished fungal colony radial growth and conidiation, whereas double knockout of MoORP1 and MoORP2 compromised fungal virulence on barley and rice plants. These observations collectively highlight the multifaceted role of MoORPs in the modulation of plant innate immunity and promotion of fungal development and virulence in M. oryzae.
Collapse
Affiliation(s)
- Meng-Meng Chen
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Si-Ru Yang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jian Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ya-Li Fang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jun Fan
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Bradley EL, Ökmen B, Doehlemann G, Henrissat B, Bradshaw RE, Mesarich CH. Secreted Glycoside Hydrolase Proteins as Effectors and Invasion Patterns of Plant-Associated Fungi and Oomycetes. FRONTIERS IN PLANT SCIENCE 2022; 13:853106. [PMID: 35360318 PMCID: PMC8960721 DOI: 10.3389/fpls.2022.853106] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 05/06/2023]
Abstract
During host colonization, plant-associated microbes, including fungi and oomycetes, deliver a collection of glycoside hydrolases (GHs) to their cell surfaces and surrounding extracellular environments. The number and type of GHs secreted by each organism is typically associated with their lifestyle or mode of nutrient acquisition. Secreted GHs of plant-associated fungi and oomycetes serve a number of different functions, with many of them acting as virulence factors (effectors) to promote microbial host colonization. Specific functions involve, for example, nutrient acquisition, the detoxification of antimicrobial compounds, the manipulation of plant microbiota, and the suppression or prevention of plant immune responses. In contrast, secreted GHs of plant-associated fungi and oomycetes can also activate the plant immune system, either by acting as microbe-associated molecular patterns (MAMPs), or through the release of damage-associated molecular patterns (DAMPs) as a consequence of their enzymatic activity. In this review, we highlight the critical roles that secreted GHs from plant-associated fungi and oomycetes play in plant-microbe interactions, provide an overview of existing knowledge gaps and summarize future directions.
Collapse
Affiliation(s)
- Ellie L. Bradley
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Bilal Ökmen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Tübingen, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rosie E. Bradshaw
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H. Mesarich
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
46
|
Zhang A, Matsuoka K, Kareem A, Robert M, Roszak P, Blob B, Bisht A, De Veylder L, Voiniciuc C, Asahina M, Melnyk CW. Cell-wall damage activates DOF transcription factors to promote wound healing and tissue regeneration in Arabidopsis thaliana. Curr Biol 2022; 32:1883-1894.e7. [DOI: 10.1016/j.cub.2022.02.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/16/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
|
47
|
Seong SY, Matzinger P, Land WG. Editorial: DAMPs Across the Tree of Life. Front Immunol 2022; 12:844315. [PMID: 35178047 PMCID: PMC8844022 DOI: 10.3389/fimmu.2021.844315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
- Seung-Yong Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Polly Matzinger
- Ghost Lab., Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Walter Gottlieb Land
- German Academy for Transplantation Medicine, Munich, Germany
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
48
|
Yang Y, Lu L, Sun D, Wang J, Wang N, Qiao L, Guo Q, Wang C. Fungus Polygalacturonase-Generated Oligogalacturonide Restrains Fruit Softening in Ripening Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:759-769. [PMID: 34932342 DOI: 10.1021/acs.jafc.1c04972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fruit softening exacerbates mechanical damage incurred during shipping and handling and the increase in pathogen susceptibility. Here, oligogalacturonides (OGs) produced by fungal polygalacturonase (PG) delayed fruit softening in tomato and maintained fruit firmness at 8.37 ± 0.45 N at 13 d of storage, which was consistent with the fruit firmness level of 5 d in the control groups. From RNA sequencing data in line production of phytohormones, we confirmed ethylene and jasmonic acid signals, the MAPK signaling cascade, and calmodulin involved in the OG-mediated firmness response of whole fruit. SlPG2, SlPL3, and SlPL5 were the major contributing factors for fruit softening, and their expression decreased continuously upon OG application. Suppression of the expression of ethylene response factors using a virus-induced gene-silencing strategy revealed that SlERF6 was negatively involved in OG-restrained fruit softening. Taken together, these results indicated that fungal PG-generated OGs have potential application value in controlling tomato fruit softening.
Collapse
Affiliation(s)
- Ying Yang
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Laifeng Lu
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Dandan Sun
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jinghao Wang
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Nifei Wang
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Liping Qiao
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qingbin Guo
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Changlu Wang
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
49
|
George AS, Brandl MT. Plant Bioactive Compounds as an Intrinsic and Sustainable Tool to Enhance the Microbial Safety of Crops. Microorganisms 2021; 9:2485. [PMID: 34946087 PMCID: PMC8704493 DOI: 10.3390/microorganisms9122485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022] Open
Abstract
Outbreaks of produce-associated foodborne illness continue to pose a threat to human health worldwide. New approaches are necessary to improve produce safety. Plant innate immunity has potential as a host-based strategy for the deactivation of enteric pathogens. In response to various biotic and abiotic threats, plants mount defense responses that are governed by signaling pathways. Once activated, these result in the release of reactive oxygen and nitrogen species in addition to secondary metabolites that aim at tempering microbial infection and pest attack. These phytochemicals have been investigated as alternatives to chemical sanitization, as many are effective antimicrobial compounds in vitro. Their antagonistic activity toward enteric pathogens may also provide an intrinsic hurdle to their viability and multiplication in planta. Plants can detect and mount basal defenses against enteric pathogens. Evidence supports the role of plant bioactive compounds in the physiology of Salmonella enterica, Escherichia coli, and Listeria monocytogenes as well as their fitness on plants. Here, we review the current state of knowledge of the effect of phytochemicals on enteric pathogens and their colonization of plants. Further understanding of the interplay between foodborne pathogens and the chemical environment on/in host plants may have lasting impacts on crop management for enhanced microbial safety through translational applications in plant breeding, editing technologies, and defense priming.
Collapse
Affiliation(s)
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA;
| |
Collapse
|
50
|
Lenz RR, Louie KB, Søndreli KL, Galanie SS, Chen JG, Muchero W, Bowen BP, Northen TR, LeBoldus JM. Metabolomic Patterns of Septoria Canker Resistant and Susceptible Populus trichocarpa Genotypes 24 Hours Postinoculation. PHYTOPATHOLOGY 2021; 111:2052-2066. [PMID: 33881913 DOI: 10.1094/phyto-02-21-0053-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sphaerulina musiva is an economically and ecologically important fungal pathogen that causes Septoria stem canker and leaf spot disease of Populus species. To bridge the gap between genetic markers and structural barriers previously found to be linked to Septoria canker disease resistance in poplar, we used hydrophilic interaction liquid chromatography and tandem mass spectrometry to identify and quantify metabolites involved with signaling and cell wall remodeling. Fluctuations in signaling molecules, organic acids, amino acids, sterols, phenolics, and saccharides in resistant and susceptible P. trichocarpa inoculated with S. musiva were observed. The patterns of 222 metabolites in the resistant host implicate systemic acquired resistance (SAR), cell wall apposition, and lignin deposition as modes of resistance to this hemibiotrophic pathogen. This pattern is consistent with the expected response to the biotrophic phase of S. musiva colonization during the first 24 h postinoculation. The fungal pathogen metabolized key regulatory signals of SAR, other phenolics, and precursors of lignin biosynthesis that were depleted in the susceptible host. This is the first study to characterize metabolites associated with the response to initial colonization by S. musiva between resistant and susceptible hosts.
Collapse
Affiliation(s)
- Ryan R Lenz
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Katherine B Louie
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kelsey L Søndreli
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | | | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Benjamin P Bowen
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Trent R Northen
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jared M LeBoldus
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
- Forest Resources, Engineering, and Management Department, Oregon State University, Corvallis, OR 97331
| |
Collapse
|