1
|
Salih MM, Weindel CG, Malekos E, Sudek L, Katzman S, Mabry CJ, Chapman MJ, Coleman AK, Azam S, Watson RO, Patrick KL, Carpenter S. Myeloid-specific HNRNPA2B1 deficiency disrupts macrophage function and in vivo responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf073. [PMID: 40414614 DOI: 10.1093/jimmun/vkaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 05/27/2025]
Abstract
The mechanisms through which heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1) contributes to innate immune gene regulation are poorly understood. To fill this gap, we generated a myeloid lineage-specific HNRNPA2B1-conditional mouse using LysMCre. In an endotoxic shock model, HNRNPA2B1-deficient mice exhibit dampened expression of inflammatory mediators despite increased infiltration of macrophages and neutrophils. Likewise, during infection with the gram-negative bacterial pathogen Salmonella enterica, HNRNPA2B1-deficient mice fail to mount protective inflammatory responses and experience higher bacterial burdens. To better understand the molecular mechanisms driving these phenotypes in vivo, we performed transcriptomics analysis of LPS-treated HNRNPA2B1-deficient macrophages ex vivo. We noted an increase in transcripts encoding nonproductive isoforms of a number of Interferon (IFN)-regulated genes, including the IFNG receptor (IFNGR). Focusing on IFNGR, we confirmed lower surface expression on HNRNPA2B1-deficient macrophages and dampened responsiveness in response to IFNG treatment. In conclusion, our data demonstrates that HNRNPA2B1 is essential for optimal macrophage function, particularly in the context of intracellular bacterial restriction in the case of Salmonella infection. This highlights a previously unappreciated role for RNA-binding proteins in mounting effective immune defenses.
Collapse
Affiliation(s)
- Mays Mohammed Salih
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Chi G Weindel
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Eric Malekos
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Lisa Sudek
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Sol Katzman
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Cory J Mabry
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Morgan J Chapman
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Aja K Coleman
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Sikandar Azam
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
2
|
Richter HI, Gover O, Hamburg A, Bendalak K, Ziv T, Schwartz B. Impact of Black Soldier Fly Larvae Oil on Immunometabolic Processes. Int J Mol Sci 2025; 26:4855. [PMID: 40429995 PMCID: PMC12112032 DOI: 10.3390/ijms26104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
The oil extract derived from black soldier fly (Hermetia illucens) larvae (BSFL) is characterized by a distinctive fatty acid composition and bioactive compounds with demonstrated anti-inflammatory properties, as shown in our previous work. The present study aims to mechanistically explore the immunomodulatory effects of a saponified form of BSFL oil (MBSFL) and its potential interaction with metabolic signaling pathways. Using Pam3CSK4-polarized M1 primary human peripheral blood mononuclear cells (PBMCs), we demonstrate that MBSFL phenotypically suppressed the secretion of pro-inflammatory cytokines TNFα, IL-6, IL-17, and GM-CSF (p < 0.01) without altering anti-inflammatory cytokine levels (TGFβ1, IL-13, and IL-4). A phosphoproteomic analysis of Pam3CSK4-stimulated THP-1 macrophages revealed MBSFL-mediated downregulation of CK2 and ERK kinases (p < 0.05), key regulators of NF-κB signaling activation. We confirmed that MBSFL directly inhibits NF-κB p65 nuclear translocation (p < 0.05), using both immunofluorescence staining and a western blot analysis of nuclear and cytoplasmic fractions. In the context of metabolism, using a luciferase reporter assay, we demonstrate that MBSFL functions as a weak agonist of PPARγ and PPARδ (p < 0.05), which are nuclear receptors involved in lipid metabolism and immune regulation. However, subsequent immunoblotting revealed a macrophage polarization-dependent regulation: MBSFL upregulated PPARγ in M0 macrophages but did not prevent its suppression upon Pam3CSK4 stimulation, whereas it specifically enhanced PPARδ expression during M1 polarization (p < 0.05). This study provides novel experimental evidence supporting our hypothesis of MBSFL's role in immunometabolism. We demonstrate for the first time that MBSFL acts as a dual regulator by suppressing NF-κB-mediated inflammation while promoting PPARδ activity-an inverse relationship with potential relevance to immunometabolic disorders.
Collapse
Affiliation(s)
- Hadas Inbart Richter
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ofer Gover
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Amit Hamburg
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Keren Bendalak
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Ljubimov VA, Sun T, Wang J, Li L, Wang PZ, Ljubimov AV, Holler E, Black KL, Kopeček J, Ljubimova JY, Yang J. Blood-brain barrier crossing biopolymer targeting c-Myc and anti-PD-1 activate primary brain lymphoma immunity: Artificial intelligence analysis. J Control Release 2025; 381:113611. [PMID: 40088978 DOI: 10.1016/j.jconrel.2025.113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Primary Central Nervous System Lymphoma is an aggressive central nervous system neoplasm with poor response to pharmacological treatment, partially due to insufficient drug delivery across blood-brain barrier. In this study, we developed a novel therapy for this lymphoma by combining a targeted nanopolymer treatment with an immune checkpoint inhibitor antibody (anti-PD-1). A N-(2-hydroxypropyl)methacrylamide copolymer-based nanoconjugate was designed to block tumor cell c-Myc oncogene expression by antisense oligonucleotide. Angiopep-2 peptide was conjugated to the copolymer to facilitate nanodrug crossing of the blood-brain barrier. Systemically administered polymeric nanodrug, alone or in combination with immune checkpoint inhibitor antibody anti-PD-1, was tested in syngeneic mouse model of A20 intracranial brain lymphoma. There was no significant survival difference between saline- and free anti-PD-1-treated groups. However, significant survival advantage vs. saline was observed upon treatment with nanodrug bearing Angiopep-2, H6 (6 histidines for endosome escape), and c-Myc antisense alone and especially when it was combined with anti-PD-1 antibody. Animal survival after combined treatment was also significantly increased vs. free anti-PD-1. Artificial Intelligence-assisted analysis of gene expression database after RNA-seq of tumors was used to find novel immune pathways, molecular targets and the most effective multifunctional drugs together with future drug prediction for brain lymphoma in vivo model. Spectral flow cytometry and RNA-seq analysis revealed a robust activation of tumor infiltrating T lymphocytes with enhanced interferon γ signaling and polarization to M1-type macrophages in treated tumors, which was confirmed by immunofluorescence staining. In summary, a new effective blood-brain barrier crossing nano immuno therapeutic system was developed that effectively blocked tumor c-Myc acting in combination with immune checkpoint inhibitor anti-PD-1 to treat primary brain lymphoma. The treatment improved survival of tumor-bearing animals through activation of both the adaptive and innate immune responses.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States
| | - Jiawei Wang
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Lian Li
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Paul Z Wang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Alexander V Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States; Institut für Biophysik und Physikalische Biochemie Universität Regensburg, D-93040 Regensburg, Germany
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Jindřich Kopeček
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Julia Y Ljubimova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States.
| | - Jiyuan Yang
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States.
| |
Collapse
|
4
|
An T, Guo M, Wang Z, Liu K. Tissue-Resident Macrophages in Cardiovascular Diseases: Heterogeneity and Therapeutic Potential. Int J Mol Sci 2025; 26:4524. [PMID: 40429668 PMCID: PMC12111180 DOI: 10.3390/ijms26104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Tissue-resident macrophages (TRMs) play a crucial role in maintaining tissue homeostasis and regulating immune responses. In recent years, an increasing number of studies have highlighted their central role in cardiovascular diseases. This review provides a comprehensive overview of TRMs, with a particular emphasis on cardiac resident macrophages (CRMs), discussing their origin, heterogeneity, and functions in various cardiovascular diseases. We conduct an in-depth analysis of macrophage subpopulations based on C-C Chemokine Receptor Type 2 (CCR2) receptor expression, elucidating the role of CCR2+ macrophages in promoting fibrosis and cardiac remodeling, while highlighting the protective functions of CCR2- macrophages in suppressing inflammation and promoting tissue repair. In atherosclerosis, we focus on the role of metabolic reprogramming in regulating macrophage polarization, revealing how metabolic pathways influence the balance between pro-inflammatory M1 and anti-inflammatory M2 macrophages, thereby affecting plaque stability and disease progression. By summarizing the roles of these macrophage subpopulations in myocardial infarction, heart failure, and other diseases, we propose potential therapeutic strategies aimed at modulating different macrophage subtypes. These include targeting the CCR2 signaling pathway to mitigate inflammation and fibrosis, and metabolic reprogramming to restore the balance between M1 and M2 macrophages. Finally, we highlight the need for future research to focus on the functional diversity and molecular mechanisms of human TRMs to develop novel immunotherapeutic strategies and improve the prognosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Mengyuan Guo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
5
|
Zhang X, Liu J, Li X, Zheng G, Wang T, Sun H, Huang Z, He J, Qiu J, Zhao Z, Guo Y, He Y. Blocking the HIF-1α/glycolysis axis inhibits allergic airway inflammation by reducing ILC2 metabolism and function. Allergy 2025; 80:1309-1334. [PMID: 39462230 DOI: 10.1111/all.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The role of lung group 2 innate lymphoid cell (ILC2) activation in allergic asthma is increasingly established. However, the regulatory mechanisms underlying hypoxia-inducible factor-1α (HIF-1α)-mediated glycolysis in ILC2-mediated allergic airway inflammation remain unclear. OBJECTIVE To investigate the role of the HIF-1α/glycolysis axis in ILC2-mediated allergic airway inflammation. METHODS Glycolysis and HIF-1α inhibitors were used to identify their effect on the function and glucose metabolism of mouse and human ILC2s in vivo and vitro. Blocking glycolysis and HIF-1α in mice under interleukin-33 (IL-33) stimulation were performed to test ILC2 responses. Conditional HIF-1α-deficient mice were used to confirm the specific role of HIF-1α in ILC2-driven airway inflammation models. Transcriptomic, metabolic, and chromatin immunoprecipitation analyses were performed to elucidate the underlying mechanism. RESULTS HIF-1α is involved in ILC2 metabolism and is crucial in allergic airway inflammation. Single-cell sequencing data analysis and qPCR confirmation revealed a significant upregulation of glycolysis-related genes, particularly HIF-1α, in murine lung ILC2s after IL-33 intranasal administration or injection. Treatment with the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) and the HIF-1α inhibitor 2-methoxyestradiol (2-ME) abrogated inflammation by suppressing ILC2s function. Conditional HIF-1α-deficient mice showed reduced ILC2 response and airway inflammation induced upon IL-33 or house dust mite (HDM) stimulation. Transcriptome and metabolic analyses revealed significantly impaired glycolysis in lung ILC2s in conditional HIF-1α knockout mice compared to that in their littermate controls. Chromatin immunoprecipitation results confirmed the transcriptional downregulation of glycolysis-related genes in HIF-1α-knockout and 2-DG-treated mice. Furthermore, impaired HIF-1α/glycolysis axis activation is correlated with downregulated ILC2 in patients with asthma. CONCLUSION The HIF-1α/glycolysis axis is critical for controlling ILC2 responses in allergic airway inflammation and has potential immunotherapeutic value in asthma.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guilang Zheng
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tianci Wang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hengbiao Sun
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhengcong Huang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhibin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Araya-Sapag MJ, Lara-Barba E, García-Guerrero C, Herrera-Luna Y, Flores-Elías Y, Bustamante-Barrientos FA, Albornoz GG, Contreras-Fuentes C, Yantén-Fuentes L, Luque-Campos N, Vega-Letter AM, Toledo J, Luz-Crawford P. New mesenchymal stem/stromal cell-based strategies for osteoarthritis treatment: targeting macrophage-mediated inflammation to restore joint homeostasis. J Mol Med (Berl) 2025:10.1007/s00109-025-02547-8. [PMID: 40272537 DOI: 10.1007/s00109-025-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are pivotal in osteoarthritis (OA) pathogenesis, as their dysregulated polarization can contribute to chronic inflammatory processes. This review explores the molecular and metabolic mechanisms that influence macrophage polarization and identifies potential strategies for OA treatment. Currently, non-surgical treatments for OA focus only on symptom management, and their efficacy is limited; thus, mesenchymal stem/stromal cells (MSCs) have gained attention for their anti-inflammatory and immunomodulatory capabilities. Emerging evidence suggests that small extracellular vesicles (sEVs) derived from MSCs can modulate macrophage function, thus offering potential therapeutic benefits in OA. Additionally, the transfer of mitochondria from MSCs to macrophages has shown promise in enhancing mitochondrial functionality and steering macrophages toward an anti-inflammatory M2-like phenotype. While further research is needed to confirm these findings, MSC-based strategies, including the use of sEVs and mitochondrial transfer, hold great promise for the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Araya-Sapag
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García-Guerrero
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yesenia Flores-Elías
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Guillermo G Albornoz
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Consuelo Contreras-Fuentes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Liliana Yantén-Fuentes
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
7
|
Woods PS, Cetin-Atalay R, Meliton AY, Sun KA, Shamaa OR, Shin KWD, Tian Y, Haugen B, Hamanaka RB, Mutlu GM. HIF-1 regulates mitochondrial function in bone marrow-derived macrophages but not in tissue-resident alveolar macrophages. Sci Rep 2025; 15:11574. [PMID: 40185846 PMCID: PMC11971270 DOI: 10.1038/s41598-025-95962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
HIF-1α plays a critical role in shaping macrophage phenotype and effector function. We have previously shown that tissue-resident alveolar macrophages (TR-AMs) have extremely low glycolytic capacity at steady-state but can shift toward glycolysis under hypoxic conditions. Here, we generated mice with tamoxifen-inducible myeloid lineage cell specific deletion of Hif1a (Hif1afl/fl:LysM-CreERT2+/-) and from these mice, we isolated TR-AMs and bone marrow-derived macrophages (BMDMs) in which Hif1a is deleted. We show that TR-AM HIF-1α is required for the glycolytic shift under prolyl hydroxylase inhibition but is dispensable at steady-state for inflammatory effector function. In contrast, HIF-1α deletion in BMDMs led to diminished glycolytic capacity at steady-state and reduced inflammatory capacity, but higher mitochondrial function. Gene set enrichment analysis revealed enhanced c-Myc transcriptional activity in Hif1a-/- BMDMs, and upregulation of gene pathways related to ribosomal biogenesis and cellular proliferation. We conclude that HIF-1α regulates mitochondrial function in BMDMs but not in TR-AMs. The findings highlight the heterogeneity of HIF-1α function in distinct macrophage populations and provide new insight into how HIF-1α regulates gene expression, inflammation, and metabolism in different types of macrophages.
Collapse
Affiliation(s)
- Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Kaitlyn A Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Benjamin Haugen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Fu Y, Gong T, Loughran PA, Li Y, Billiar TR, Liu Y, Wen Z, Fan J. Roles of TLR4 in macrophage immunity and macrophage-pulmonary vascular/lymphatic endothelial cell interactions in sepsis. Commun Biol 2025; 8:469. [PMID: 40119011 PMCID: PMC11928643 DOI: 10.1038/s42003-025-07921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
In sepsis, acute lung injury (ALI) is a severe complication and a leading cause of death, involving complex mechanisms that include cellular and molecular interactions between immune and lung parenchymal cells. In recent decades, the role of Toll-like receptor 4 (TLR4) in mediating infection-induced inflammation has been extensively studied. However, how TLR4 facilitates interactions between innate immune cells and lung parenchymal cells in sepsis remains to be fully understood. This study aims to explore the role of TLR4 in regulating macrophage immunity and metabolism in greater depth. It also seeks to reveal how changes in these processes affect the interaction between macrophages and both pulmonary endothelial cells (ECs) and lymphatic endothelial cells (LECs). Using TLR4 knockout mice and the combined approaches of single-cell RNA sequencing and experimental validation, we demonstrate that in sepsis, TLR4-deficient macrophages upregulate Abca1, enhance cholesterol efflux, and reduce glycolysis, promoting M2 polarization and attenuating inflammation. These metabolic and phenotypic shifts significantly affect their interactions with pulmonary ECs and LECs. Mechanistically, we uncovered that TLR4 operates through multiple pathways in endothelial dysfunction: macrophage TLR4 mediates inflammatory damage to ECs/LECs, while endothelial TLR4 both directly sensitizes cells to lipopolysaccharide-induced injury and determines their susceptibility to macrophage-derived inflammatory signals. These findings reveal the complex role of TLR4 in orchestrating both immune-mediated and direct endothelial responses during sepsis-induced ALI, supporting that targeting TLR4 on multiple cell populations may present an effective therapeutic strategy.
Collapse
Affiliation(s)
- Yu Fu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, China
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, China
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Zaki A, Mohsin M, Khan S, Khan A, Ahmad S, Verma A, Ali S, Fatma T, Syed MA. Vitexin mitigates oxidative stress, mitochondrial damage, pyroptosis and regulates small nucleolar RNA host gene 1/DNA methyltransferase 1/microRNA-495 axis in sepsis-associated acute lung injury. Inflammopharmacology 2025; 33:1435-1454. [PMID: 39641834 DOI: 10.1007/s10787-024-01609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
AIM OF THE STUDY This study examined vitexin's effect on sepsis-induced acute lung injury. We used network pharmacology and in vivo and in vitro experiments were performed to elucidate vitexin's role in preventing pyroptosis and regulating small nucleolar RNA host gene 1 (SNHG1)/DNA methyltransferase 1 (DNMT1)/microRNA-495 (miR-495 axis. MATERIALS AND METHODS We developed an acute lung injury model using C57BL/6 mice and MLE-12 cells. Through a combination of network pharmacology and in vitro screening, vitexin was identified as the most promising anti-inflammatory compound. Multiple techniques such as western blotting, real-time PCR, Hematoxylin and eosin staining, immunohistochemistry, and TUNEL assay were used. Additionally, immunofluorescence, DCFDA and TMRE staining, flow cytometry, methylation-specific PCR, and gene transfection techniques were performed to elucidate vitexin's potential targets and underlying mechanisms. RESULTS Vitexin treatment significantly reduced lung damage, neutrophil infiltration, and inflammation while improving tight junction integrity. In LPS-treated RAW264.7 macrophages and a septic mouse BALF-induced MLE-12 cell injury model, vitexin demonstrated anti-inflammatory effects, promoted M2 macrophage polarization, and enhanced regenerative markers. It also decreased oxidative stress, mitigated apoptosis and pyroptosis, and improved mitochondrial function. Our research uncovered a novel epigenetic regulatory mechanism involving lncRNA SNHG1, DNMT1, and miR-495. CONCLUSION Vitexin's ability to reduce inflammation, counteract oxidative stress, and modulate epigenetic processes. These findings underscore the promising role of vitexin as a treatment for ALI generated by sepsis. The SNHG1/miR-495 axis, which has been identified, represents a new target for future therapies in acute lung injury.
Collapse
Affiliation(s)
- Almaz Zaki
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Mohsin
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Salman Khan
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aman Khan
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Amit Verma
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
10
|
Wang C, Li J, Wu C, Wu Z, Jiang Z, Hong C, Ying J, Chen F, Yang Q, Xu H, Sheng S, Feng Y. Pectolinarin Promotes Functional Recovery after Spinal Cord Injury by Regulating Microglia Polarization Through the PI3K/AKT Signaling Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04793-w. [PMID: 40014266 DOI: 10.1007/s12035-025-04793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
After spinal cord injury (SCI), microglia polarization plays an important role in spinal cord recovery and axon regeneration. In this study, we conducted mRNA microarrays to identify genes associated with different microglial phenotypes. The results showed a correlation between microglial polarization and the PI3K/AKT signaling pathway, a key regulator of inflammatory responses. In addition, we found that Pectolinarin (PTR) could effectively inhibit lipopolysaccharide (LPS)-induced M1 polarization of microglia and facilitate their transition to the M2 phenotype by directly suppressing the PI3K/AKT signaling pathway. In our established animal model of SCI, it was confirmed that PTR treatment induced microglial polarization towards the M2 phenotype, resulting in reduced fibrous scar formation, enhanced myelin reconstitution, and improved axonal regeneration. In conclusion, targeting the PI3K/AKT signaling pathway with PTR presents a promising new direction for SCI treatment.
Collapse
Affiliation(s)
- Chenggui Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenyu Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhouwei Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhichen Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenglong Hong
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Juntao Ying
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Fancheng Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi Yang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hui Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| | - Sunren Sheng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| | - Yongzeng Feng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
11
|
Wang Y, Yang Q, Dong Y, Wang L, Zhang Z, Niu R, Wang Y, Bi Y, Liu G. Piezo1-directed neutrophil extracellular traps regulate macrophage differentiation during influenza virus infection. Cell Death Dis 2025; 16:60. [PMID: 39890818 PMCID: PMC11785962 DOI: 10.1038/s41419-025-07395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Neutrophils and macrophages are critical for antiviral immunity, but their reciprocal regulatory roles and mechanisms in the response to viral infection remain unclear. Herein, we found that the ion channel Piezo1 directs neutrophil extracellular trap (NET) formation and regulates macrophage functional differentiation in anti-influenza virus immunity. Genetic deletion of Piezo1 in neutrophils inhibited the generation of NETs and M1 macrophage differentiation while driving the development of M2 macrophages during viral infection. Piezo1-directed neutrophil NET DNA directly regulates macrophage differentiation in vitro and in vivo. Mechanistically, neutrophil Piezo1 deficiency inhibited NET DNA production, leading to decreased TLR9 and cGAS-STING signalling activity while inducing reciprocal differentiation from M1 to M2 macrophages. In addition, Piezo1 integrates magnesium signalling and the SIRT2-hypoxia-inducible factor-1 alpha (HIF1α)-dependent pathway to orchestrate reciprocal M1 and M2 macrophage lineage commitment through neutrophil-derived NET DNA. Our studies provide critical insight into the role of neutrophil-based mechanical regulation of immunopathology in directing macrophage lineage commitment during the response to influenza virus infection.
Collapse
Affiliation(s)
- Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 100080, Beijing, China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 100080, Beijing, China.
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
12
|
Frenis K, Badalamenti B, Mamigonian O, Weng C, Wang D, Fierstein S, Côté P, Khong H, Li H, Lummertz da Rocha E, Sankaran VG, Rowe RG. Path of differentiation defines human macrophage identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634694. [PMID: 39896569 PMCID: PMC11785145 DOI: 10.1101/2025.01.24.634694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Macrophages play central roles in immunity, wound healing, and homeostasis - a functional diversity that is underpinned by varying developmental origins. The impact of ontogeny on properties of human macrophages is inadequately understood. We demonstrate that definitive human fetal liver (HFL) hematopoietic stem cells (HSCs) possess two divergent paths of macrophage specification that lead to distinct identities. The monocyte-dependent pathway exists in both prenatal and postnatal hematopoiesis and generates macrophages with adult-like responses properties. We now uncover a fetal-specific pathway of expedited differentiation that generates tissue resident-like macrophages (TRMs) that retain HSC-like self-renewal programs governed by the aryl hydrocarbon receptor (AHR). We show that AHR antagonism promotes TRM expansion and mitigates inflammation in models of atopic dermatitis (AD). Overall, we directly connect path of differentiation with functional properties of macrophages and identify an approach to promote selective expansion of TRMs with direct relevance to inflammation and diseases of macrophage dysfunction.
Collapse
|
13
|
Ivanova D, Semkova S, Grigorov B, Tzanova M, Georgieva A, Danchev D, Nikolova B, Yaneva Z. The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game. Molecules 2025; 30:393. [PMID: 39860262 PMCID: PMC11767411 DOI: 10.3390/molecules30020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells. The second part addresses the possibility of impacts on the Warburg effect through targeting peroxisome proliferator-activated receptors (PPARs). This could be an activator of native immune responses. Because of the reported serious adverse effects of using synthetic ligands for PPARs in combination with chemotherapeutics, searches for less toxic and more active PPAR inhibitors, as well as blocking undesirable cellular PPAR-dependent processes, are in progress. On the other hand, recent research in modern immunotherapy has focused on the search for gentle immune-modulating natural compounds with harmless synergistic chemotherapeutic efficacy that can be used as an adjuvant. It is a well-known fact that the plant kingdom is a source of important therapeutic agents with multifaceted effectiveness. One of these is the known association with PPAR activities. In this regard, the secondary metabolites extracted from plants could change the game.
Collapse
Affiliation(s)
- Donika Ivanova
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
- Department of Chemistry and Biochemistry, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Boncho Grigorov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Milena Tzanova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | | | | | - Biliana Nikolova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
14
|
Liu X, Wang X, Zhang J, Tian T, Ning Y, Chen Y, Li G, Cui Z. Myc-mediated inhibition of HIF1a degradation promotes M2 macrophage polarization and impairs CD8 T cell function through lactic acid secretion in ovarian cancer. Int Immunopharmacol 2024; 141:112876. [PMID: 39146780 DOI: 10.1016/j.intimp.2024.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Ovarian cancer, the eleventh most prevalent cancer among women and a significant cause of cancer-related mortality, poses considerable challenges. While the Myc oncogene is implicated in diverse cancers, its impact on tumours expressing Myc during immune therapy processes remains enigmatic. Our study investigated Myc overexpression in a murine ovarian cancer cell line, focusing on alterations in HIF1a function. Seahorse experiments were utilized to validate metabolic shifts post-Myc overexpression. Moreover, we explored macrophage polarization and immunosuppressive potential following coculture with Myc-overexpressing tumour cells by employing Gpr132-/- mice to obtain mechanistic insights. In vivo experiments established an immune-competent tumour-bearing mouse model, and CD8 T cell, Treg, and macrophage infiltration post-Myc overexpression were evaluated via flow cytometry. Additionally, adoptive transfer of OTI CD8 T cells was conducted to investigate antigen-specific immune response variations after Myc overexpression. The findings revealed a noteworthy delay in HIF1a degradation, enhancing its functionality and promoting the classical Warburg effect upon Myc overexpression. Lactic acid secretion by Myc-overexpressing tumour cells promoted Gpr132-dependent M2 macrophage polarization, leading to the induction of macrophages capable of significantly suppressing CD8 T cell function. Remarkably, heightened macrophage infiltration in tumour microenvironments post-Myc overexpression was observed alongside impaired CD8 T cell infiltration and function. Interestingly, CD4 T-cell infiltration remained unaltered, and immune-suppressive effects were alleviated when Myc-overexpressing tumour cells were administered to Gpr132-/- mice, shedding light on potential therapeutic avenues for ovarian cancer management.
Collapse
Affiliation(s)
- Xiangyu Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangyu Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tian Tian
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ying Ning
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guoliang Li
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
15
|
Barczuk J, Galita G, Siwecka N, Golberg M, Saramowicz K, Granek Z, Wiese W, Majsterek I, Rozpędek-Kamińska W. Noradrenaline Protects Human Microglial Cells (HMC3) Against Apoptosis and DNA Damage Induced by LPS and Aβ 1-42 Aggregates In Vitro. Int J Mol Sci 2024; 25:11399. [PMID: 39518952 PMCID: PMC11546654 DOI: 10.3390/ijms252111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, characterized by the accumulation of amyloid-beta (Aβ) plaques and neuroinflammation. This study investigates the protective effects of noradrenaline (NA) on human microglial cells exposed to lipopolysaccharides (LPS) and Aβ aggregates-major contributors to inflammation and cellular damage in AD. The reduced Aβ aggregation in the HMC3 human microglial cells co-treated with Aβ and NA was confirmed by thioflavin T (ThT) assay, fluorescent ThT staining, and immunocytochemistry (ICC). The significantly increased viability of HMC3 cells after 48 h of incubation with NA at 50 µM, 25 µM, and 10 µM, exposed to IC50 LPS and IC50 Aβ, was confirmed by XTT and LDH assays. Moreover, we found that NA treatment at 25 μM and 50 μM concentrations in HMC3 cells exposed to IC50 LPS or IC50 Aβ results in an increased proliferation of HMC3 cells, their return to normal morphology, decreased levels of DNA damage, reduced caspase-3 activity, decreased expression of pro-apoptotic DDIT3 and BAX, and increased expression of anti-apoptotic BCL-2 genes and proteins, leading to enhanced cell survival, when compared to that of the HMC3 cells treated only with IC50 LPS or IC50 Aβ. Furthermore, we showed that NA induces the degradation of both extracellular and intracellular Aβ deposits and downregulates hypoxia-inducible factor 1α (HIF-1α), which is linked to impaired Aβ clearance and AD progression. These findings indicate that NA holds promise as a therapeutic target to address microglial dysfunction and potentially slow the progression of AD. Its neuroprotective effects, particularly in reducing inflammation and regulating microglial activity, warrant further investigation into its broader role in mitigating neuroinflammation and preserving microglial function in AD.
Collapse
Affiliation(s)
- Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.); (G.G.); (N.S.); (K.S.); (Z.G.); (W.W.); (I.M.)
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.); (G.G.); (N.S.); (K.S.); (Z.G.); (W.W.); (I.M.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.); (G.G.); (N.S.); (K.S.); (Z.G.); (W.W.); (I.M.)
| | - Michał Golberg
- Department of Histology and Embryology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.); (G.G.); (N.S.); (K.S.); (Z.G.); (W.W.); (I.M.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.); (G.G.); (N.S.); (K.S.); (Z.G.); (W.W.); (I.M.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.); (G.G.); (N.S.); (K.S.); (Z.G.); (W.W.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.); (G.G.); (N.S.); (K.S.); (Z.G.); (W.W.); (I.M.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.); (G.G.); (N.S.); (K.S.); (Z.G.); (W.W.); (I.M.)
| |
Collapse
|
16
|
Gong T, Fu Y, Wang Q, Loughran PA, Li Y, Billiar TR, Wen Z, Liu Y, Fan J. Decoding the multiple functions of ZBP1 in the mechanism of sepsis-induced acute lung injury. Commun Biol 2024; 7:1361. [PMID: 39433574 PMCID: PMC11493966 DOI: 10.1038/s42003-024-07072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by severe hypoxemia and pulmonary leakage, remains a leading cause of mortality in intensive care units. The exacerbation of ALI during sepsis is largely attributed to uncontrolled inflammatory responses and endothelial dysfunction. Emerging evidence suggests an important role of Z-DNA binding protein 1 (ZBP1) as a sensor in innate immune to drive inflammatory signaling and cell death during infections. However, the role of ZBP1 in sepsis-induced ALI has yet to be defined. We utilized ZBP1 knockout mice and combined single-cell RNA sequencing with experimental validation to investigate ZBP1's roles in the regulation of macrophages and lung endothelial cells during sepsis. We demonstrate that in sepsis, ZBP1 deficiency in macrophages reduces mitochondrial damage and inhibits glycolysis, thereby altering the metabolic status of macrophages. Consequently, this metabolic shift leads to a reduction in the differentiation of macrophages into pro-inflammatory states and decreases macrophage pyroptosis triggered by activation of the NLRP3 inflammasome. These changes significantly weaken the inflammatory signaling pathways between macrophages and endothelial cells and alleviate endothelial dysfunction and cellular damage. These findings reveal important roles for ZBP1 in mediating multiple pathological processes involved in sepsis-induced ALI by modulating the functional states of macrophages and endothelial cells, thereby highlighting its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA.
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
| | - Yu Fu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
17
|
Woods PS, Cetin-Atalay R, Meliton AY, Sun KA, Shamaa OR, Shin KWD, Tian Y, Haugen B, Hamanaka RB, Mutlu GM. HIF-1α regulates mitochondrial function in bone marrow-derived macrophages, but not in tissue-resident alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618294. [PMID: 39464148 PMCID: PMC11507697 DOI: 10.1101/2024.10.14.618294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
HIF-1α plays a critical role in shaping macrophage phenotype and effector function. We have previously shown that tissue-resident alveolar macrophages (TR-AMs) have extremely low glycolytic capacity at steady-state, but can shift toward glycolysis under hypoxic conditions. Here, using inducible HIF-1α knockout (Hif1a -/- ) TR-AMs and bone marrow-derived macrophages (BMDMs) and show that TR-AM HIF-1α is required for the glycolytic shift under prolyl hydroxylase inhibition, but is dispensable at steady-state for inflammatory effector function. In contrast, HIF-1α deletion in BMDMs led to diminished glycolytic capacity at steady-state and reduced inflammatory capacity, but higher mitochondrial function. Gene set enrichment analysis revealed enhanced c-Myc transcriptional activity in Hif1a -/- BMDMs, and upregulation of gene pathways related to ribosomal biogenesis and cellular proliferation. The findings highlight the heterogeneity of HIF-1α function in distinct macrophage populations and provide new insight into how HIF-1α regulates gene expression, inflammation, and metabolism in macrophages.
Collapse
Affiliation(s)
- Parker S. Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Angelo Y. Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Kaitlyn A. Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Obada R. Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Kun Woo D. Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Benjamin Haugen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
- Lead contact
| |
Collapse
|
18
|
Cai X, Padilla NT, Rosbe K, Tugizov SM. Breast milk induces the differentiation of monocytes into macrophages, promoting human cytomegalovirus infection. J Virol 2024; 98:e0117724. [PMID: 39194236 PMCID: PMC11406957 DOI: 10.1128/jvi.01177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus found in human breast milk that is frequently transmitted from HCMV-seropositive mothers to their infants during the postnatal period. Despite extensive research, the mechanisms underlying HCMV transmission from breast milk and the anatomical location at which virus transfer takes place remain unclear. Breast milk contains many uniquely differentiated macrophages that undergo specific morphological and functional modifications in the mammary gland during lactation. Although the existence of permissive HCMV infection in differentiated macrophages has been well-described, the role of breast milk in this process remains unknown. Herein, we report that exposure of isolated peripheral blood monocytes to breast milk induces their differentiation into macrophages that exhibit an M2 phenotype (CD14highCD163highCD68highCD206high) and promotes a productive and sustained HCMV infection. We also found that breast milk triggers macrophage proliferation and thus sustains a unique population of proliferating, long-lived, and HCMV-susceptible macrophages that are capable of ongoing production of infectious virions. These results suggest a mechanism that explains chronic HCMV shedding into the breast milk of postpartum seropositive mothers. We also found that HCMV virions released from breast milk-induced macrophages generate a productive infection in primary infant tonsil epithelial cells. Collectively, our results suggest that breast milk may facilitate HCMV transmission from mother to infant via the oropharyngeal mucosa. IMPORTANCE While human cytomegalovirus (HCMV) is frequently detected in the breast milk of HCMV-seropositive women and is often transmitted to infants via breastfeeding, the mechanisms by which this transmission occurs remain unclear. In this study, we modeled HCMV transmission at the oropharyngeal mucosa. We treated human monocytes with breast milk to mimic the lactating mammary gland microenvironment. We found that monocytes differentiated into macrophages with an M2 phenotype, which were highly permissive for HCMV. We also discovered that breast milk induces macrophage proliferation. Thus, exposure to breast milk increased the number of HCMV-susceptible macrophages and supported high levels of infectious HCMV. We found that HCMV virions released from breast milk-induced macrophages could infect primary infant tonsil epithelial cells. Collectively, these findings reveal the dual role of breast milk that induces the differentiation and proliferation of macrophages in the mammary gland and thus facilitates mother-to-child HCMV transmission at the oropharyngeal mucosa.
Collapse
Affiliation(s)
- Xiaodan Cai
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Nicole T. Padilla
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, California, USA
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Zhang W, Ge Z, Xiao Y, Liu D, Du J. Antioxidant and Immunomodulatory Polymer Vesicles for Effective Diabetic Wound Treatment through ROS Scavenging and Immune Modulating. NANO LETTERS 2024; 24:9494-9504. [PMID: 39058893 DOI: 10.1021/acs.nanolett.4c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Chronic diabetic wound patients usually show high glucose levels and systemic immune disorder, resulting in high reactive oxygen species (ROS) levels and immune cell dysfunction, prolonged inflammation, and delayed wound healing. Herein, we prepared an antioxidant and immunomodulatory polymer vesicle for diabetic wound treatment. This vesicle is self-assembled from poly(ε-caprolactone)36-block-poly[lysine4-stat-(lysine-mannose)22-stat-tyrosine)16] ([PCL36-b-P[Lys4-stat-(Lys-Man)22-stat-Tyr16]). Polytyrosine is an antioxidant polypeptide that can scavenge ROS. d-Mannose was introduced to afford immunomodulatory functions by promoting macrophage transformation and Treg cell activation through inhibitory cytokines. The mice treated with polymer vesicles showed 23.7% higher Treg cell levels and a 91.3% higher M2/M1 ratio than those treated with PBS. Animal tests confirmed this vesicle accelerated healing and achieved complete healing of S. aureus-infected diabetic wounds within 8 days. Overall, this is the first antioxidant and immunomodulatory vesicle for diabetic wound healing by scavenging ROS and regulating immune homeostasis, opening new avenues for effective diabetic wound healing.
Collapse
Affiliation(s)
- Wenqing Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhenghong Ge
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Danqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Novobrantseva T, Manfra D, Ritter J, Razlog M, O’Nuallain B, Zafari M, Nowakowska D, Basinski S, Phennicie RT, Nguyen PA, Brehm MA, Sazinsky S, Feldman I. Preclinical Efficacy of VTX-0811: A Humanized First-in-Class PSGL-1 mAb Targeting TAMs to Suppress Tumor Growth. Cancers (Basel) 2024; 16:2778. [PMID: 39199551 PMCID: PMC11352552 DOI: 10.3390/cancers16162778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Omnipresent suppressive myeloid populations in the tumor microenvironment limit the efficacy of T-cell-directed immunotherapies, become more inhibitory after administration of T-cell checkpoint inhibitors, and are overall associated with worse survival of cancer patients. In early clinical trials, positive outcomes have been demonstrated for therapies aimed at repolarizing suppressive myeloid populations in the tumor microenvironment. We have previously described the key role of P-selectin glycoprotein ligand-1 (PSGL-1) in maintaining an inhibitory state of tumor-associated macrophages (TAMs), most of which express high levels of PSGL-1. Here we describe a novel, first-in-class humanized high-affinity monoclonal antibody VTX-0811 that repolarizes human macrophages from an M2-suppressive phenotype towards an M1 inflammatory phenotype, similar to siRNA-mediated knockdown of PSGL-1. VTX-0811 binds to PSGL-1 of human and cynomolgus macaque origins without inhibiting PSGL-1 interaction with P- and L-Selectins or VISTA. In multi-cellular assays and in patient-derived human tumor cultures, VTX-0811 leads to the induction of pro-inflammatory mediators. RNAseq data from VTX-0811 treated ex vivo tumor cultures and M2c macrophages show similar pathways being modulated, indicating that the mechanism of action translates from isolated macrophages to tumors. A chimeric version of VTX-0811, consisting of the parental murine antibody in a human IgG4 backbone, inhibits tumor growth in a humanized mouse model of cancer. VTX-0811 is exceptionally well tolerated in NHP toxicology assessment and is heading into clinical evaluation after successful IND clearance.
Collapse
Affiliation(s)
- Tatiana Novobrantseva
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Denise Manfra
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Jessica Ritter
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Maja Razlog
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Brian O’Nuallain
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Mohammad Zafari
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Dominika Nowakowska
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Sara Basinski
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Ryan T. Phennicie
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Phuong A. Nguyen
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Michael A. Brehm
- Diabetes Center of Excellence, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA;
| | - Stephen Sazinsky
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Igor Feldman
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| |
Collapse
|
21
|
Bartens MC, Willcocks S, Werling D, Gibson AJ. Respiratory bioenergetics is enhanced in human, but not bovine macrophages after exposure to M. bovis PPD: Exploratory insights into overall similar Cellular Metabolic Profiles. Innate Immun 2024; 30:136-149. [PMID: 39563509 PMCID: PMC11577332 DOI: 10.1177/17534259241296630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
The role of macrophage (MØ) cellular metabolism and reprogramming during TB infection is of great interest due to the influence of Mycobacterium spp. on MØ bioenergetics. Recent studies have shown that M. tuberculosis induces a TLR2-dependent shift towards aerobic glycolysis, comparable to the established LPS induced pro-inflammatory M1 MØ polarisation. Distinct differences in the metabolic profile of murine and human MØ indicates species-specific differences in bioenergetics. So far, studies examining the metabolic potential of bovine MØ are lacking, thus the basic bioenergetics of bovine and human MØ were explored in response to a variety of innate immune stimuli. Cellular energy metabolism kinetics were measured concurrently for both species on a Seahorse XFe96 platform to generate bioenergetic profiles for the response to the bona-fide TLR2 and TLR4 ligands, FSL-1 and LPS respectively. Despite previous reports of species-specific differences in TLR signalling and cytokine production between human and bovine MØ, we observed similar respiratory profiles for both species. Basal respiration remained constant between stimulated MØ and controls, whereas addition of TLR ligands induced increased glycolysis, as measured by the surrogate parameter ECAR. In contrast to MØ stimulation with M. tuberculosis PPD, another TLR2 ligand, M. bovis PPD treatment significantly enhanced basal respiration rates and glycolysis only in human MØ. Respiratory profiling further revealed significant elevation of ATP-linked OCR and maximal respiration suggesting a strong OXPHOS activation upon M. bovis PPD stimulation in human MØ. Our results provide an exploratory set of data elucidating the basic respiratory profile of bovine vs. human MØ that will not only lay the foundation for future studies to investigate host-tropism of the M. tuberculosis complex but may explain inflammatory differences observed for other zoonotic diseases.
Collapse
Affiliation(s)
- Marie-Christine Bartens
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Science, Royal Veterinary College, Hatfield, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, UK
| | - Sam Willcocks
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, UK
- Department of Life Sciences, Brunel University, UK
| | - Dirk Werling
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Science, Royal Veterinary College, Hatfield, UK
| | - Amanda J Gibson
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Science, Royal Veterinary College, Hatfield, UK
- Department of Life Science, Aberystwyth University, UK
| |
Collapse
|
22
|
Vassileff N, Spiers JG, Juliani J, Lowe RGT, Datta KK, Hill AF. Acute neuroinflammation promotes a metabolic shift that alters extracellular vesicle cargo in the mouse brain cortex. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e165. [PMID: 38947878 PMCID: PMC11212288 DOI: 10.1002/jex2.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Neuroinflammation is initiated through microglial activation and cytokine release which can be induced through lipopolysaccharide treatment (LPS) leading to a transcriptional cascade culminating in the differential expression of target proteins. These differentially expressed proteins can then be packaged into extracellular vesicles (EVs), a form of cellular communication, further propagating the neuroinflammatory response over long distances. Despite this, the EV proteome in the brain, following LPS treatment, has not been investigated. Brain tissue and brain derived EVs (BDEVs) isolated from the cortex of LPS-treated mice underwent thorough characterisation to meet the minimal information for studies of extracellular vesicles guidelines before undergoing mass spectrometry analysis to identify the differentially expressed proteins. Fourteen differentially expressed proteins were identified in the LPS brain tissue samples compared to the controls and 57 were identified in the BDEVs isolated from the LPS treated mice compared to the controls. This included proteins associated with the initiation of the inflammatory response, epigenetic regulation, and metabolism. These results allude to a potential link between small EV cargo and early inflammatory signalling.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Jereme G. Spiers
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Juliani Juliani
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Rohan G. T. Lowe
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Keshava K. Datta
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityFootscrayVictoriaAustralia
| |
Collapse
|
23
|
Hendrix SV, Mreyoud Y, McNehlan ME, Smirnov A, Chavez SM, Hie B, Chamberland MM, Bradstreet TR, Webber AM, Kreamalmeyer D, Taneja R, Bryson BD, Edelson BT, Stallings CL. BHLHE40 Regulates Myeloid Cell Polarization through IL-10-Dependent and -Independent Mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1766-1781. [PMID: 38683120 PMCID: PMC11105981 DOI: 10.4049/jimmunol.2200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/16/2024] [Indexed: 05/01/2024]
Abstract
Better understanding of the host responses to Mycobacterium tuberculosis infections is required to prevent tuberculosis and develop new therapeutic interventions. The host transcription factor BHLHE40 is essential for controlling M. tuberculosis infection, in part by repressing Il10 expression, where excess IL-10 contributes to the early susceptibility of Bhlhe40-/- mice to M. tuberculosis infection. Deletion of Bhlhe40 in lung macrophages and dendritic cells is sufficient to increase the susceptibility of mice to M. tuberculosis infection, but how BHLHE40 impacts macrophage and dendritic cell responses to M. tuberculosis is unknown. In this study, we report that BHLHE40 is required in myeloid cells exposed to GM-CSF, an abundant cytokine in the lung, to promote the expression of genes associated with a proinflammatory state and better control of M. tuberculosis infection. Loss of Bhlhe40 expression in murine bone marrow-derived myeloid cells cultured in the presence of GM-CSF results in lower levels of proinflammatory associated signaling molecules IL-1β, IL-6, IL-12, TNF-α, inducible NO synthase, IL-2, KC, and RANTES, as well as higher levels of the anti-inflammatory-associated molecules MCP-1 and IL-10 following exposure to heat-killed M. tuberculosis. Deletion of Il10 in Bhlhe40-/- myeloid cells restored some, but not all, proinflammatory signals, demonstrating that BHLHE40 promotes proinflammatory responses via both IL-10-dependent and -independent mechanisms. In addition, we show that macrophages and neutrophils within the lungs of M. tuberculosis-infected Bhlhe40-/- mice exhibit defects in inducible NO synthase production compared with infected wild-type mice, supporting that BHLHE40 promotes proinflammatory responses in innate immune cells, which may contribute to the essential role for BHLHE40 during M. tuberculosis infection in vivo.
Collapse
Affiliation(s)
- Skyler V. Hendrix
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael E. McNehlan
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sthefany M. Chavez
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Hie
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan M. Chamberland
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ashlee M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan D. Bryson
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Pinello N, Song R, Lee Q, Calonne E, Duan KL, Wong E, Tieng J, Mehravar M, Rong B, Lan F, Roediger B, Ma CJ, Yuan BF, Rasko JEJ, Larance M, Ye D, Fuks F, Wong JJL. Dynamic changes in RNA m 6A and 5 hmC influence gene expression programs during macrophage differentiation and polarisation. Cell Mol Life Sci 2024; 81:229. [PMID: 38780787 PMCID: PMC11116364 DOI: 10.1007/s00018-024-05261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
RNA modifications are essential for the establishment of cellular identity. Although increasing evidence indicates that RNA modifications regulate the innate immune response, their role in monocyte-to-macrophage differentiation and polarisation is unclear. While m6A has been widely studied, other RNA modifications, including 5 hmC, remain poorly characterised. We profiled m6A and 5 hmC epitranscriptomes, transcriptomes, translatomes and proteomes of monocytes and macrophages at rest and pro- and anti-inflammatory states. Transcriptome-wide mapping of m6A and 5 hmC reveals enrichment of m6A and/or 5 hmC on specific categories of transcripts essential for macrophage differentiation. Our analyses indicate that m6A and 5 hmC modifications are present in transcripts with critical functions in pro- and anti-inflammatory macrophages. Notably, we also discover the co-occurrence of m6A and 5 hmC on alternatively-spliced isoforms and/or opposing ends of the untranslated regions (UTR) of mRNAs with key roles in macrophage biology. In specific examples, RNA 5 hmC controls the decay of transcripts independently of m6A. This study provides (i) a comprehensive dataset to interrogate the role of RNA modifications in a plastic system (ii) a resource for exploring different layers of gene expression regulation in the context of human monocyte-to-macrophage differentiation and polarisation, (iii) new insights into RNA modifications as central regulators of effector cells in innate immunity.
Collapse
Affiliation(s)
- Natalia Pinello
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Renhua Song
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Quintin Lee
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kun-Long Duan
- The Molecular and Cell Biology Lab, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Emilie Wong
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Jessica Tieng
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Majid Mehravar
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ben Roediger
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Skin Inflammation Group, Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Cheng-Jie Ma
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Bi-Feng Yuan
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - John E J Rasko
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, NSW, Australia
| | - Mark Larance
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, 2006, Australia
| | - Dan Ye
- The Molecular and Cell Biology Lab, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Justin J-L Wong
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
25
|
Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024; 36:927-946. [PMID: 38513649 DOI: 10.1016/j.cmet.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
26
|
Dong H, Zhang X, Duan Y, He Y, Zhao J, Wang Z, Wang J, Li Q, Fan G, Liu Z, Shen C, Zhang Y, Yu M, Fei J, Huang F. Hypoxia inducible factor-1α regulates microglial innate immune memory and the pathology of Parkinson's disease. J Neuroinflammation 2024; 21:80. [PMID: 38555419 PMCID: PMC10981320 DOI: 10.1186/s12974-024-03070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Neuroinflammation is one of the core pathological features of Parkinson's disease (PD). Innate immune cells play a crucial role in the progression of PD. Microglia, the major innate immune cells in the brain, exhibit innate immune memory effects and are recognized as key regulators of neuroinflammatory responses. Persistent modifications of microglia provoked by the first stimuli are pivotal for innate immune memory, resulting in an enhanced or suppressed immune response to second stimuli, which is known as innate immune training and innate immune tolerance, respectively. In this study, LPS was used to establish in vitro and in vivo models of innate immune memory. Microglia-specific Hif-1α knockout mice were further employed to elucidate the regulatory role of HIF-1α in innate immune memory and MPTP-induced PD pathology. Our results showed that different paradigms of LPS could induce innate immune training or tolerance in the nigrostriatal pathway of mice. We found that innate immune tolerance lasting for one month protected the dopaminergic system in PD mice, whereas the effect of innate immune training was limited. Deficiency of HIF-1α in microglia impeded the formation of innate immune memory and exerted protective effects in MPTP-intoxicated mice by suppressing neuroinflammation. Therefore, HIF-1α is essential for microglial innate immune memory and can promote neuroinflammation associated with PD.
Collapse
Affiliation(s)
- Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zishan Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jinghui Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Qing Li
- School of Life Science and Technology, Tongji University, 1239 Shipping Road, Shanghai, 200092, China
| | - Guangchun Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chenye Shen
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yunhe Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Shipping Road, Shanghai, 200092, China.
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai, 201203, China.
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
27
|
Lin J, Rao D, Zhang M, Gao Q. Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol 2024; 17:6. [PMID: 38297372 PMCID: PMC10832230 DOI: 10.1186/s13045-024-01527-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
The liver is essential for metabolic homeostasis. The onset of liver cancer is often accompanied by dysregulated liver function, leading to metabolic rearrangements. Overwhelming evidence has illustrated that dysregulated cellular metabolism can, in turn, promote anabolic growth and tumor propagation in a hostile microenvironment. In addition to supporting continuous tumor growth and survival, disrupted metabolic process also creates obstacles for the anticancer immune response and restrains durable clinical remission following immunotherapy. In this review, we elucidate the metabolic communication between liver cancer cells and their surrounding immune cells and discuss how metabolic reprogramming of liver cancer impacts the immune microenvironment and the efficacy of anticancer immunotherapy. We also describe the crucial role of the gut-liver axis in remodeling the metabolic crosstalk of immune surveillance and escape, highlighting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jian Lin
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Mao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Lomovskaya YV, Krasnov KS, Kobyakova MI, Kolotova AA, Ermakov AM, Senotov AS, Fadeeva IS, Fetisova EI, Lomovsky AI, Zvyagina AI, Akatov VS, Fadeev RS. Studying Signaling Pathway Activation in TRAIL-Resistant Macrophage-Like Acute Myeloid Leukemia Cells. Acta Naturae 2024; 16:48-58. [PMID: 38698963 PMCID: PMC11062100 DOI: 10.32607/actanaturae.27317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 05/05/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant neoplasm characterized by extremely low curability and survival. The inflammatory microenvironment and maturation (differentiation) of AML cells induced by it contribute to the evasion of these cells from effectors of antitumor immunity. One of the key molecular effectors of immune surveillance, the cytokine TRAIL, is considered a promising platform for developing selective anticancer drugs. Previously, under in vitro conditions of the inflammatory microenvironment (a three-dimensional high-density culture of THP-1 AML cells), we demonstrated the emergence of differentiated macrophage-like THP-1ad clones resistant to TRAIL-induced death. In the present study, constitutive activation of proinflammatory signaling pathways, associated transcription factors, and increased expression of the anti-apoptotic BIRC3 gene were observed in TRAIL-resistant macrophage-like THP-1ad AML cells. For the first time, a bioinformatic analysis of the transcriptome revealed the main regulator, the IL1B gene, which triggers proinflammatory activation and induces resistance to TRAIL in THP-1ad macrophage-like cells.
Collapse
Affiliation(s)
- Y. V. Lomovskaya
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - K. S. Krasnov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - M. I. Kobyakova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
- Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics SB RAS, Novosibirsk, 630060 Russian Federation
| | - A. A. Kolotova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - A. M. Ermakov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - A. S. Senotov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - I. S. Fadeeva
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - E. I. Fetisova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - A. I. Lomovsky
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - A. I. Zvyagina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - V. S. Akatov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - R. S. Fadeev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| |
Collapse
|
29
|
Arumugam P, Kielian T. Metabolism Shapes Immune Responses to Staphylococcus aureus. J Innate Immun 2023; 16:12-30. [PMID: 38016430 PMCID: PMC10766399 DOI: 10.1159/000535482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a common cause of hospital- and community-acquired infections that can result in various clinical manifestations ranging from mild to severe disease. The bacterium utilizes different combinations of virulence factors and biofilm formation to establish a successful infection, and the emergence of methicillin- and vancomycin-resistant strains introduces additional challenges for infection management and treatment. SUMMARY Metabolic programming of immune cells regulates the balance of energy requirements for activation and dictates pro- versus anti-inflammatory function. Recent investigations into metabolic adaptations of leukocytes and S. aureus during infection indicate that metabolic crosstalk plays a crucial role in pathogenesis. Furthermore, S. aureus can modify its metabolic profile to fit an array of niches for commensal or invasive growth. KEY MESSAGES Here we focus on the current understanding of immunometabolism during S. aureus infection and explore how metabolic crosstalk between the host and S. aureus influences disease outcome. We also discuss how key metabolic pathways influence leukocyte responses to other bacterial pathogens when information for S. aureus is not available. A better understanding of how S. aureus and leukocytes adapt their metabolic profiles in distinct tissue niches may reveal novel therapeutic targets to prevent or control invasive infections.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
30
|
Yang Y, Johnson J, Troupes CD, Feldsott EA, Kraus L, Megill E, Bian Z, Asangwe N, Kino T, Eaton DM, Wang T, Wagner M, Ma L, Bryan C, Wallner M, Kubo H, Berretta RM, Khan M, Wang H, Kishore R, Houser SR, Mohsin S. miR-182/183-Rasa1 axis induced macrophage polarization and redox regulation promotes repair after ischemic cardiac injury. Redox Biol 2023; 67:102909. [PMID: 37801856 PMCID: PMC10570148 DOI: 10.1016/j.redox.2023.102909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Few therapies have produced significant improvement in cardiac structure and function after ischemic cardiac injury (ICI). Our possible explanation is activation of local inflammatory responses negatively impact the cardiac repair process following ischemic injury. Factors that can alter immune response, including significantly altered cytokine levels in plasma and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI is a valid strategy for reducing infarct size and damage after myocardial injury. Our previous studies showed that cortical bone stem cells (CBSCs) possess reparative effects after ICI. In our current study, we have identified that the beneficial effects of CBSCs appear to be mediated by miRNA in their extracellular vesicles (CBSC-EV). Our studies showed that CBSC-EV treated animals demonstrated reduced scar size, attenuated structural remodeling, and improved cardiac function versus saline treated animals. These effects were linked to the alteration of immune response, with significantly altered cytokine levels in plasma, and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI. Our detailed in vitro studies demonstrated that CBSC-EV are enriched in miR-182/183 that mediates the pro-reparative polarization and metabolic reprogramming in macrophages, including enhanced OXPHOS rate and reduced ROS, via Ras p21 protein activator 1 (RASA1) axis under Lipopolysaccharides (LPS) stimulation. In summary, CBSC-EV deliver unique molecular cargoes, such as enriched miR-182/183, that modulate the immune response after ICI by regulating macrophage polarization and metabolic reprogramming to enhance repair.
Collapse
Affiliation(s)
- Yijun Yang
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Jaslyn Johnson
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Constantine D Troupes
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Eric A Feldsott
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Lindsay Kraus
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Emily Megill
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Zilin Bian
- Tandon School of Engineering, New York University, NY, United States
| | - Ngefor Asangwe
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Tabito Kino
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Deborah M Eaton
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Tao Wang
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Marcus Wagner
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Lena Ma
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Christopher Bryan
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Markus Wallner
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States; Division of Cardiology, Medical University of Graz, 8036, Graz, Austria
| | - Hajime Kubo
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Remus M Berretta
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease Research (CMDR), Temple University Lewis Katz School of Medicine, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research (CMDR), Temple University Lewis Katz School of Medicine, PA, United States
| | - Raj Kishore
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, PA, United States
| | - Steven R Houser
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Sadia Mohsin
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States.
| |
Collapse
|
31
|
Nunes JPS, Roda VMDP, Andrieux P, Kalil J, Chevillard C, Cunha-Neto E. Inflammation and mitochondria in the pathogenesis of chronic Chagas disease cardiomyopathy. Exp Biol Med (Maywood) 2023; 248:2062-2071. [PMID: 38235691 PMCID: PMC10800136 DOI: 10.1177/15353702231220658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is a neglected disease affecting around 6 million people. About 30% of CD patients develop chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy that occurs decades after the initial infection, while most infected patients (60%) remain asymptomatic in the so-called indeterminate form (IF). Death results from heart failure or arrhythmia in a subset of CCC patients. Myocardial fibrosis, inflammation, and mitochondrial dysfunction are involved in the arrhythmia substrate and triggering events. Survival in CCC is worse than in other cardiomyopathies, which may be linked to a Th1-T cell rich myocarditis with abundant interferon (IFN)-γ and tumor necrosis factor (TNF)-α, selectively lower levels of mitochondrial energy metabolism enzymes in the heart, and reduced levels of high-energy phosphate, indicating poor adenosine triphosphate (ATP) production. IFN-γ and TNF-α signaling, which are constitutively upregulated in CD patients, negatively affect mitochondrial function in cardiomyocytes, recapitulating findings in CCC heart tissue. Genetic studies such as whole-exome sequencing (WES) in nuclear families with multiple CCC/IF cases has disclosed rare heterozygous pathogenic variants in mitochondrial and inflammatory genes segregating in CCC cases. In this minireview, we summarized studies showing how IFN-γ and TNF-α affect cell energy generation, mitochondrial health, and redox homeostasis in cardiomyocytes, in addition to human CD and mitochondria. We hypothesize that cytokine-induced mitochondrial dysfunction in genetically predisposed patients may be the underlying cause of CCC severity and we believe this mechanism may have a bearing on other inflammatory cardiomyopathies.
Collapse
Affiliation(s)
- João Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
- Institute for Investigation in Immunology (III), Instituto Nacional de Ciência e Tecnologia (INCT), 05403-900 São Paulo, Brazil
| | - Vinicius Moraes de Paiva Roda
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
| | - Pauline Andrieux
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) U1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, 13288 Marseille, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
- Institute for Investigation in Immunology (III), Instituto Nacional de Ciência e Tecnologia (INCT), 05403-900 São Paulo, Brazil
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) U1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, 13288 Marseille, France
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
- Institute for Investigation in Immunology (III), Instituto Nacional de Ciência e Tecnologia (INCT), 05403-900 São Paulo, Brazil
| |
Collapse
|
32
|
Vick LV, Canter RJ, Monjazeb AM, Murphy WJ. Multifaceted effects of obesity on cancer immunotherapies: Bridging preclinical models and clinical data. Semin Cancer Biol 2023; 95:88-102. [PMID: 37499846 PMCID: PMC10836337 DOI: 10.1016/j.semcancer.2023.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Obesity, defined by excessive body fat, is a highly complex condition affecting numerous physiological processes, such as metabolism, proliferation, and cellular homeostasis. These multifaceted effects impact cells and tissues throughout the host, including immune cells as well as cancer biology. Because of the multifaceted nature of obesity, common parameters used to define it (such as body mass index in humans) can be problematic, and more nuanced methods are needed to characterize the pleiotropic metabolic effects of obesity. Obesity is well-accepted as an overall negative prognostic factor for cancer incidence, progression, and outcome. This is in part due to the meta-inflammatory and immunosuppressive effects of obesity. Immunotherapy is increasingly used in cancer therapy, and there are many different types of immunotherapy approaches. The effects of obesity on immunotherapy have only recently been studied with the demonstration of an "obesity paradox", in which some immune therapies have been demonstrated to result in greater efficacy in obese subjects despite the direct adverse effects of obesity and excess body fat acting on the cancer itself. The multifactorial characteristics that influence the effects of obesity (age, sex, lean muscle mass, underlying metabolic conditions and drugs) further confound interpretation of clinical data and necessitate the use of more relevant preclinical models mirroring these variables in the human scenario. Such models will allow for more nuanced mechanistic assessment of how obesity can impact, both positively and negatively, cancer biology, host metabolism, immune regulation, and how these intersecting processes impact the delivery and outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Logan V Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA; Department of Internal Medicine, Division of Malignant Hematology, Cellular Therapy and Transplantation, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
33
|
Zhang W, Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol 2023; 11:1266973. [PMID: 37808079 PMCID: PMC10556696 DOI: 10.3389/fcell.2023.1266973] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Succinate serves as an essential circulating metabolite within the tricarboxylic acid (TCA) cycle and functions as a substrate for succinate dehydrogenase (SDH), thereby contributing to energy production in fundamental mitochondrial metabolic pathways. Aberrant changes in succinate concentrations have been associated with pathological states, including chronic inflammation, ischemia/reperfusion (IR) injury, and cancer, resulting from the exaggerated response of specific immune cells, thereby rendering it a central area of investigation. Recent studies have elucidated the pivotal involvement of succinate and SDH in immunity beyond metabolic processes, particularly in the context of cancer. Current scientific endeavors are concentrated on comprehending the functional repercussions of metabolic modifications, specifically pertaining to succinate and SDH, in immune cells operating within a hypoxic milieu. The efficacy of targeting succinate and SDH alterations to manipulate immune cell functions in hypoxia-related diseases have been demonstrated. Consequently, a comprehensive understanding of succinate's role in metabolism and the regulation of SDH is crucial for effectively targeting succinate and SDH as therapeutic interventions to influence the progression of specific diseases. This review provides a succinct overview of the latest advancements in comprehending the emerging functions of succinate and SDH in metabolic processes. Furthermore, it explores the involvement of succinate, an intermediary of the TCA cycle, in chronic inflammation, IR injury, and cancer, with particular emphasis on the mechanisms underlying succinate accumulation. This review critically assesses the potential of modulating succinate accumulation and metabolism within the hypoxic milieu as a means to combat various diseases. It explores potential targets for therapeutic interventions by focusing on succinate metabolism and the regulation of SDH in hypoxia-related disorders.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Wilson JJ, Wei J, Daamen AR, Sears JD, Bechtel E, Mayberry CL, Stafford GA, Bechtold L, Grammer AC, Lipsky PE, Roopenian DC, Chang CH. Glucose oxidation-dependent survival of activated B cells provides a putative novel therapeutic target for lupus treatment. iScience 2023; 26:107487. [PMID: 37636066 PMCID: PMC10448027 DOI: 10.1016/j.isci.2023.107487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/27/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Aberrant metabolic demand is observed in immune/inflammatory disorders, yet the role in pathogenesis remains unclear. Here, we discover that in lupus, activated B cells, including germinal center B (GCB) cells, have remarkably high glycolytic requirement for survival over T cell populations, as demonstrated by increased metabolic activity in lupus-activated B cells compared to immunization-induced cells. The augmented reliance on glucose oxidation makes GCB cells vulnerable to mitochondrial ROS-induced oxidative stress and apoptosis. Short-term glycolysis inhibition selectively reduces pathogenic activated B in lupus-prone mice, extending their lifespan, without affecting T follicular helper cells. Particularly, BCMA-expressing GCB cells rely heavily on glucose oxidation. Depleting BCMA-expressing activated B cells with APRIL-based CAR-T cells significantly prolongs the lifespan of mice with severe autoimmune disease. These results reveal that glycolysis-dependent activated B and GCB cells, especially those expressing BCMA, are potentially key lupus mediators, and could be targeted to improve disease outcomes.
Collapse
Affiliation(s)
- John J. Wilson
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA
| | - Jian Wei
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Andrea R. Daamen
- AMPEL BioSolutions and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - John D. Sears
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elaine Bechtel
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA
| | | | | | | | - Amrie C. Grammer
- AMPEL BioSolutions and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - Peter E. Lipsky
- AMPEL BioSolutions and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
35
|
Chowdary AR, Maerz T, Henn D, Hankenson KD, Pagani CA, Marini S, Gallagher K, Aguilar CA, Tower RJ, Levi B. Macrophage-mediated PDGF Activation Correlates With Regenerative Outcomes Following Musculoskeletal Trauma. Ann Surg 2023; 278:e349-e359. [PMID: 36111847 PMCID: PMC10014496 DOI: 10.1097/sla.0000000000005704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Our objective was to identify macrophage subpopulations and gene signatures associated with regenerative or fibrotic healing across different musculoskeletal injury types. BACKGROUND Subpopulations of macrophages are hypothesized to fine tune the immune response after damage, promoting either normal regenerative, or aberrant fibrotic healing. METHODS Mouse single-cell RNA sequencing data before and after injury were assembled from models of musculoskeletal injury, including regenerative and fibrotic mouse volumetric muscle loss (VML), regenerative digit tip amputation, and fibrotic heterotopic ossification. R packages Harmony , MacSpectrum , and Seurat were used for data integration, analysis, and visualizations. RESULTS There was a substantial overlap between macrophages from the regenerative VML (2 mm injury) and regenerative bone models, as well as a separate overlap between the fibrotic VML (3 mm injury) and fibrotic bone (heterotopic ossification) models. We identified 2 fibrotic-like (FL 1 and FL 2) along with 3 regenerative-like (RL 1, RL 2, and RL 3) subpopulations of macrophages, each of which was transcriptionally distinct. We found that regenerative and fibrotic conditions had similar compositions of proinflammatory and anti-inflammatory macrophages, suggesting that macrophage polarization state did not correlate with healing outcomes. Receptor/ligand analysis of macrophage-to-mesenchymal progenitor cell crosstalk showed enhanced transforming growth factor β in fibrotic conditions and enhanced platelet-derived growth factor signaling in regenerative conditions. CONCLUSION Characterization of macrophage subtypes could be used to predict fibrotic responses following injury and provide a therapeutic target to tune the healing microenvironment towards more regenerative conditions.
Collapse
Affiliation(s)
- Ashish R. Chowdary
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75235
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dominic Henn
- Department of Plastic Surgery, University of Texas Southwestern, Dallas, TX, 75235
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chase A. Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75235
| | - Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL 32611, USA
| | - Katherine Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J. Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75235
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75235
| |
Collapse
|
36
|
Zhang W, Zhao Y, He Q, Lang R. Therapeutically targeting essential metabolites to improve immunometabolism manipulation after liver transplantation for hepatocellular carcinoma. Front Immunol 2023; 14:1211126. [PMID: 37492564 PMCID: PMC10363744 DOI: 10.3389/fimmu.2023.1211126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy worldwide and is associated with a poor prognosis. Sophisticated molecular mechanisms and biological characteristics need to be explored to gain a better understanding of HCC. The role of metabolites in cancer immunometabolism has been widely recognized as a hallmark of cancer in the tumor microenvironment (TME). Recent studies have focused on metabolites that are derived from carbohydrate, lipid, and protein metabolism, because alterations in these may contribute to HCC progression, ischemia-reperfusion (IR) injury during liver transplantation (LT), and post-LT rejection. Immune cells play a central role in the HCC microenvironment and the duration of IR or rejection. They shape immune responses through metabolite modifications and by engaging in complex crosstalk with tumor cells. A growing number of publications suggest that immune cell functions in the TME are closely linked to metabolic changes. In this review, we summarize recent findings on the primary metabolites in the TME and post-LT metabolism and relate these studies to HCC development, IR injury, and post-LT rejection. Our understanding of aberrant metabolism and metabolite targeting based on regulatory metabolic pathways may provide a novel strategy to enhance immunometabolism manipulation by reprogramming cell metabolism.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Lendoiro-Cino N, Rodríguez-Coello A, Saborido A, F-Burguera E, Fernández-Rodríguez JA, Meijide-Faílde R, Blanco FJ, Vaamonde-García C. Study of hydrogen sulfide biosynthesis in synovial tissue from diabetes-associated osteoarthritis and its influence on macrophage phenotype and abundance. J Physiol Biochem 2023:10.1007/s13105-023-00968-y. [PMID: 37335394 DOI: 10.1007/s13105-023-00968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Type 2 diabetes (DB) is an independent risk factor for osteoarthritis (OA). However, the mechanisms underlying the connection between both diseases remain unclear. Synovial macrophages from OA patients with DB present a marked pro-inflammatory phenotype. Since hydrogen sulphide (H2S) has been previously described to be involved in macrophage polarization, in this study we examined H2S biosynthesis in synovial tissue from OA patients with DB, observing a reduction of H2S-synthetizing enzymes in this subset of individuals. To elucidate these findings, we detected that differentiated TPH-1 cells to macrophages exposed to high levels of glucose presented a lower expression of H2S-synthetizing enzymes and an increased inflammatory response to LPS, showing upregulated expression of markers associated with M1 phenotype (i.e., CD11c, CD86, iNOS, and IL-6) and reduced levels of those related to M2 fate (CD206 and CD163). The co-treatment of the cells with a slow-releasing H2S donor, GYY-4137, attenuated the expression of M1 markers, but failed to modulate the levels of M2 indicators. GYY-4137 also reduced HIF-1α expression and upregulated the protein levels of HO-1, suggesting their involvement in the anti-inflammatory effects of H2S induction. In addition, we observed that intraarticular administration of H2S donor attenuated synovial abundance of CD68+ cells, mainly macrophages, in an in vivo model of OA. Taken together, the findings of this study seem to reinforce the key role of H2S in the M1-like polarization of synovial macrophages associated to OA and specifically its metabolic phenotype, opening new therapeutic perspectives in the management of this pathology.
Collapse
Affiliation(s)
- Natalia Lendoiro-Cino
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006, A Coruña, Spain
| | - Arianna Rodríguez-Coello
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006, A Coruña, Spain
| | - Anna Saborido
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006, A Coruña, Spain
| | - Elena F-Burguera
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Jennifer A Fernández-Rodríguez
- Grupo Envejecimiento e Inflamación, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006, A Coruña, Spain
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Centro Interdisciplinar de Química e Bioloxía (CICA), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias da Saúde, Universidade da Coruña (UDC), 15006, A Coruña, Spain
| | - Francisco J Blanco
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006, A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Centro Interdisciplinar de Química e Bioloxía (CICA), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Universidade da Coruña (UDC), 15006, A Coruña, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006, A Coruña, Spain.
- Grupo de Investigación en Reumatología y Salud, Centro Interdisciplinar de Química e Bioloxía (CICA), Departamento de Bioloxía, Facultad de Ciencias, Universidade da Coruña (UDC), 15008, A Coruña, Spain.
| |
Collapse
|
38
|
Zuo C, Baer JM, Knolhoff BL, Belle JI, Liu X, Alarcon De La Lastra A, Fu C, Hogg GD, Kingston NL, Breden MA, Dodhiawala PB, Zhou DC, Lander VE, James CA, Ding L, Lim KH, Fields RC, Hawkins WG, Weber JD, Zhao G, DeNardo DG. Stromal and therapy-induced macrophage proliferation promotes PDAC progression and susceptibility to innate immunotherapy. J Exp Med 2023; 220:e20212062. [PMID: 36951731 PMCID: PMC10072222 DOI: 10.1084/jem.20212062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/08/2022] [Accepted: 02/01/2023] [Indexed: 03/24/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are abundant in pancreatic ductal adenocarcinomas (PDACs). While TAMs are known to proliferate in cancer tissues, the impact of this on macrophage phenotype and disease progression is poorly understood. We showed that in PDAC, proliferation of TAMs could be driven by colony stimulating factor-1 (CSF1) produced by cancer-associated fibroblasts. CSF1 induced high levels of p21 in macrophages, which regulated both TAM proliferation and phenotype. TAMs in human and mouse PDACs with high levels of p21 had more inflammatory and immunosuppressive phenotypes. p21 expression in TAMs was induced by both stromal interaction and/or chemotherapy treatment. Finally, by modeling p21 expression levels in TAMs, we found that p21-driven macrophage immunosuppression in vivo drove tumor progression. Serendipitously, the same p21-driven pathways that drive tumor progression also drove response to CD40 agonist. These data suggest that stromal or therapy-induced regulation of cell cycle machinery can regulate both macrophage-mediated immune suppression and susceptibility to innate immunotherapy.
Collapse
Affiliation(s)
- Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John M. Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brett L. Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jad I. Belle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiuting Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Christina Fu
- Department of Biology, Grinnell College, Grinnell, IA, USA
| | - Graham D. Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Natalie L. Kingston
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marcus A. Breden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Paarth B. Dodhiawala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Varintra E. Lander
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - C. Alston James
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Kian-Huat Lim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan C. Fields
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - William G. Hawkins
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason D. Weber
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guoyan Zhao
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
39
|
Wang Y, Jiang Q, Sun D, Zhang N, Lin Y, Li H, Chen L. Ent-kauranes and ent-atisanes from Euphorbia wallichii and their anti-inflammatory activity. PHYTOCHEMISTRY 2023; 210:113643. [PMID: 36933878 DOI: 10.1016/j.phytochem.2023.113643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Phytochemical investigation on the whole plant of Euphorbia wallichii led to the identification of twelve diterpenoids, including nine undescribed ones, in which wallkauranes A-E (1-5) were classified as ent-kaurane diterpenoids and wallatisanes A-D (6-9) were assigned as ent-atisane diterpenoids. The biological evaluation of these isolates against NO production was conducted in the LPS-induced RAW264.7 macrophage cells model, resulting in the identification of a series of potent NO inhibitors, with the most active wallkaurane A showing an IC50 value of 4.21 μM. The mechanistic study disclosed that wallkaurane A could inhibit pro-inflammatory cytokines generation such as TNF-α, IL-1β, and IL-6, and decrease the expression of iNOS and COX-2. Wallkaurane A could regulate the NF-κB signaling pathways and the JAK2/STAT3 signaling pathway to suppress the inflammatory reaction in LPS-induced RAW264.7 cells. Meanwhile, wallkaurane A could also inhibit the JAK2/STAT3 signaling pathway, thereby suppressing apoptosis in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Yali Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Na Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Lin
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
40
|
Song Z, Cheng Y, Chen M, Xie X. Macrophage polarization in bone implant repair: A review. Tissue Cell 2023; 82:102112. [PMID: 37257287 DOI: 10.1016/j.tice.2023.102112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Macrophages (MΦ) are highly adaptable and functionally polarized cells that play a crucial role in various physiological and pathological processes. Typically, MΦ differentiate into two distinct subsets: the proinflammatory (M1) and anti-inflammatory (M2) phenotypes. Due to their potent immunomodulatory and anti-inflammatory properties, MΦ have garnered significant attention in recent decades. In the context of bone implant repair, the immunomodulatory function of MΦ is of paramount importance. Depending on their polarization phenotype, MΦ can exert varying effects on osteogenesis, angiogenesis, and the inflammatory response around the implant. This paper provides an overview of the immunomodulatory and inflammatory effects of MΦ polarization in the repair of bone implants.
Collapse
Affiliation(s)
- Zhengzheng Song
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Yuxi Cheng
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Minmin Chen
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China.
| | - Xiaoli Xie
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Hunan Key Laboratory of Oral Health Research, Changsha 410008, Hunan, China.
| |
Collapse
|
41
|
Zhou Q, Wang Y, Lu Z, Wang B, Li L, You M, Wang L, Cao T, Zhao Y, Li Q, Mou A, Shu W, He H, Zhao Z, Liu D, Zhu Z, Gao P, Yan Z. Mitochondrial dysfunction caused by SIRT3 inhibition drives proinflammatory macrophage polarization in obesity. Obesity (Silver Spring) 2023; 31:1050-1063. [PMID: 36894333 DOI: 10.1002/oby.23707] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 03/11/2023]
Abstract
OBJECTIVE Metabolic reprogramming is a main feature of proinflammatory macrophage polarization, a process that leads to inflammation in dysfunctional adipose tissue. Therefore, the study aim was to explore whether sirtuin 3 (SIRT3), a mitochondrial deacetylase, participates in this pathophysiological process. METHODS Macrophage-specific Sirt3 knockout (Sirt3-MKO) mice and wild-type littermates were treated with a high-fat diet. Body weight, glucose tolerance, and inflammation were evaluated. Bone marrow-derived macrophages and RAW264.7 cells were treated with palmitic acid to explore the mechanism of SIRT3 on inflammation. RESULTS The expression of SIRT3 was significantly repressed in both bone marrow-derived macrophages and adipose tissue macrophages in mice fed with a high-fat diet. Sirt3-MKO mice exhibited accelerated body weight and severe inflammation, accompanied with reduced energy expenditure and worsened glucose metabolism. In vitro experiments showed that SIRT3 inhibition or knockdown exacerbated palmitic acid-induced proinflammatory macrophage polarization, whereas SIRT3 restoration displayed opposite effects. Mechanistically, SIRT3 deficiency resulted in hyperacetylation of succinate dehydrogenase that led to succinate accumulation, which suppressed the transcription of Kruppel-like factor 4 via increasing histone methylation on its promoter, thus evoking proinflammatory macrophages. CONCLUSIONS This study emphasizes an important preventive role of SIRT3 in macrophage polarization and implies that SIRT3 is a promising therapeutic target for obesity.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Yuyan Wang
- School of Medicine, Chongqing University, Chongqing, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Bowen Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Wentao Shu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Hongbo He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Zhigang Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| |
Collapse
|
42
|
Dong L, Cao Y, Yang H, Hou Y, He Y, Wang Y, Yang Q, Bi Y, Liu G. The hippo kinase MST1 negatively regulates the differentiation of follicular helper T cells. Immunology 2023; 168:511-525. [PMID: 36210514 DOI: 10.1111/imm.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
Follicular helper T (TFH ) cells are essential for inducing germinal centre (GC) reactions to mediate humoral adaptive immunity and antiviral effects, but the mechanisms of TFH cell differentiation remain unclear. Here, we found that the hippo kinase MST1 is critical for TFH cell differentiation, GC formation, and antibody production under steady-state conditions and viral infection. MST1 deficiency intrinsically enhanced TFH cell differentiation and GC reactions in vivo and in vitro. Mechanistically, mTOR and HIF1α signalling is involved in glucose metabolism and increased glycolysis and decreased OXPHOS, which are critically required for MST1 deficiency-directed TFH cell differentiation. Moreover, upregulated Foxo3 expression is critically responsible for TFH cell differentiation induced by Mst1-/- . Thus, our findings identify a previously unrecognized relationship between hippo kinase MST1 signalling and mTOR-HIF1α-metabolic reprogramming coupled with Foxo3 signalling in reprogramming TFH cell differentiation.
Collapse
Affiliation(s)
- Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
43
|
Liu PS, Chen YT, Li X, Hsueh PC, Tzeng SF, Chen H, Shi PZ, Xie X, Parik S, Planque M, Fendt SM, Ho PC. CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat Immunol 2023; 24:452-462. [PMID: 36823405 PMCID: PMC9977680 DOI: 10.1038/s41590-023-01430-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/09/2023] [Indexed: 02/25/2023]
Abstract
Exposure of lipopolysaccharide triggers macrophage pro-inflammatory polarization accompanied by metabolic reprogramming, characterized by elevated aerobic glycolysis and a broken tricarboxylic acid cycle. However, in contrast to lipopolysaccharide, CD40 signal is able to drive pro-inflammatory and anti-tumorigenic polarization by some yet undefined metabolic programming. Here we show that CD40 activation triggers fatty acid oxidation (FAO) and glutamine metabolism to promote ATP citrate lyase-dependent epigenetic reprogramming of pro-inflammatory genes and anti-tumorigenic phenotypes in macrophages. Mechanistically, glutamine usage reinforces FAO-induced pro-inflammatory and anti-tumorigenic activation by fine-tuning the NAD+/NADH ratio via glutamine-to-lactate conversion. Genetic ablation of important metabolic enzymes involved in CD40-mediated metabolic reprogramming abolishes agonistic anti-CD40-induced antitumor responses and reeducation of tumor-associated macrophages. Together these data show that metabolic reprogramming, which includes FAO and glutamine metabolism, controls the activation of pro-inflammatory and anti-tumorigenic polarization, and highlight a therapeutic potential of metabolic preconditioning of tumor-associated macrophages before agonistic anti-CD40 treatments.
Collapse
Affiliation(s)
- Pu-Ste Liu
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan.
| | - Yi-Ting Chen
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Xiaoyun Li
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Ludwig Lausanne Branch, Lausanne, Switzerland
| | - Pei-Chun Hsueh
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Ludwig Lausanne Branch, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Ludwig Lausanne Branch, Lausanne, Switzerland
| | - Hsi Chen
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Pei-Zhu Shi
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Xin Xie
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Sweta Parik
- Laboratory of Cellular Metabolism and Metabolic Regulation, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ping-Chih Ho
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Ludwig Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
44
|
Matz AJ, Qu L, Karlinsey K, Vella AT, Zhou B. Capturing the multifaceted function of adipose tissue macrophages. Front Immunol 2023; 14:1148188. [PMID: 36875144 PMCID: PMC9977801 DOI: 10.3389/fimmu.2023.1148188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Adipose tissue macrophages (ATMs) bolster obesity-induced metabolic dysfunction and represent a targetable population to lessen obesity-associated health risks. However, ATMs also facilitate adipose tissue function through multiple actions, including adipocyte clearance, lipid scavenging and metabolism, extracellular remodeling, and supporting angiogenesis and adipogenesis. Thus, high-resolution methods are needed to capture macrophages' dynamic and multifaceted functions in adipose tissue. Herein, we review current knowledge on regulatory networks critical to macrophage plasticity and their multifaceted response in the complex adipose tissue microenvironment.
Collapse
Affiliation(s)
- Alyssa J. Matz
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
45
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Qu L, Wang C, Xu H, Li L, Liu Y, Wan Q, Xu K. Atractylodin targets GLA to regulate D-mannose metabolism to inhibit osteogenic differentiation of human valve interstitial cells and ameliorate aortic valve calcification. Phytother Res 2023; 37:477-489. [PMID: 36199227 DOI: 10.1002/ptr.7628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 11/07/2022]
Abstract
Atractylodin (ATL) has been reported to exert anti-inflammatory effects. Osteogenic changes induced by inflammation in valve interstitial cells (VICs) play a key role in the development of calcified aortic valve disease (CAVD). This study aimed to investigate the anti-calcification effects of ATL on aortic valves. Human VICs (hVICs) were exposed to osteogenic induction medium (OM) containing ATL to investigate cell viability, osteogenic gene and protein expression, and anti-calcification effects. Gas chromatography-mass spectroscopy (GC-MS) metabolomics analysis was used to detect changes in the metabolites of hVICs stimulated with OM before and after ATL administration. The compound-reaction-enzyme-gene network was used to identify drug targets. Gene interference was used to verify the targets. ApoE-/- mice fed a high-fat (HF) diet were used to evaluate the inhibition of aortic valve calcification by ATL. Treatment with 20 μM ATL in OM prevented calcified nodule accumulation and decreases in the gene and protein expression levels of ALP, RUNX2, and IL-1β. Differential metabolite analysis showed that D-mannose was highly associated with the anti-calcification effect of ATL. The addition of D-mannose prevented calcified nodule accumulation and inhibited succinate-mediated HIF-1α activation and IL-1β production. The target of ATL was identified as GLA. Silencing of the GLA gene (si-GLA) reversed the anti-osteogenic differentiation of ATL. In vivo, ATL ameliorated aortic valve calcification by preventing decreases in GLA expression and the up-regulation of IL-1β expression synchronously. In conclusion, ATL is a potential drug for the treatment of CAVD by targeting GLA to regulate D-mannose metabolism, thereby inhibiting succinate-mediated HIF-1α activation and IL-1β production.
Collapse
Affiliation(s)
- Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chunli Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haiying Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lanqing Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | | | | |
Collapse
|
47
|
Gao FY, Li XT, Xu K, Wang RT, Guan XX. c-MYC mediates the crosstalk between breast cancer cells and tumor microenvironment. Cell Commun Signal 2023; 21:28. [PMID: 36721232 PMCID: PMC9887805 DOI: 10.1186/s12964-023-01043-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/08/2023] [Indexed: 02/01/2023] Open
Abstract
The MYC oncogenic family is dysregulated in diverse tumors which is generally linked to the poor prognosis of tumors. The members in MYC family are transcription factors which are responsible for the regulation of various genes expression. Among them, c-MYC is closely related to the progression of tumors. Furthermore, c-MYC aberrations is tightly associated with the prevalence of breast cancer. Tumor microenvironment (TME) is composed of many different types of cellular and non-cellular factors, mainly including cancer-associated fibroblasts, tumor-associated macrophages, vascular endothelial cells, myeloid-derived suppressor cells and immune cells, all of which can affect the diagnosis, prognosis, and therapeutic efficacy of breast cancer. Importantly, the biological processes occurred in TME, such as angiogenesis, immune evasion, invasion, migration, and the recruition of stromal and tumor-infiltrating cells are under the modulation of c-MYC. These findings indicated that c-MYC serves as a critical regulator of TME. Here, we aimed to summarize and review the relevant research, thus to clarify c-MYC is a key mediator between breast cancer cells and TME. Video Abstract.
Collapse
Affiliation(s)
- Fang-yan Gao
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xin-tong Li
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Kun Xu
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Run-tian Wang
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xiao-xiang Guan
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
48
|
Knudsen-Clark AM, Cazarin J, Altman BJ. Do macrophages follow the beat of circadian rhythm in TIME (Tumor Immune Microenvironment)? F1000Res 2023; 12:101. [PMID: 37469718 PMCID: PMC10352629 DOI: 10.12688/f1000research.129863.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 07/21/2023] Open
Abstract
Advances in cancer research have made clear the critical role of the immune response in clearing tumors. This breakthrough in scientific understanding was heralded by the success of immune checkpoint blockade (ICB) therapies such as anti-programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), as well as the success of chimeric antigen receptor (CAR) T cells in treating liquid tumors. Thus, much effort has been made to further understand the role of the immune response in tumor progression, and how we may target it to treat cancer. Macrophages are a component of the tumor immune microenvironment (TIME) that can promote tumor growth both indirectly, by suppressing T cell responses necessary for tumor killing, as well as directly, through deposition of extracellular matrix and promotion of angiogenesis. Thus, understanding regulation of macrophages within the tumor microenvironment (TME) is key to targeting them for immunotherapy. However, circadian rhythms (24-hour cycles) are a fundamental aspect of macrophage biology that have yet to be investigated for their role in macrophage-mediated suppression of the anti-tumor immune response Circadian rhythms regulate macrophage-mediated immune responses through time-of-day-dependent regulation of macrophage function. A better understanding of the circadian biology of macrophages in the context of the TME may allow us to exploit synergy between existing and upcoming treatments and circadian regulation of immunity.
Collapse
Affiliation(s)
- Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14620, USA
| |
Collapse
|
49
|
Huang X, Zeng Z, Li S, Xie Y, Tong X. The Therapeutic Strategies Targeting Mitochondrial Metabolism in Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14122760. [PMID: 36559254 PMCID: PMC9788260 DOI: 10.3390/pharmaceutics14122760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of systemic disorders threatening human health with complex pathogenesis, among which mitochondrial energy metabolism reprogramming has a critical role. Mitochondria are cell organelles that fuel the energy essential for biochemical reactions and maintain normal physiological functions of the body. Mitochondrial metabolic disorders are extensively involved in the progression of CVD, especially for energy-demanding organs such as the heart. Therefore, elucidating the role of mitochondrial metabolism in the progression of CVD is of great significance to further understand the pathogenesis of CVD and explore preventive and therapeutic methods. In this review, we discuss the major factors of mitochondrial metabolism and their potential roles in the prevention and treatment of CVD. The current application of mitochondria-targeted therapeutic agents in the treatment of CVD and advances in mitochondria-targeted gene therapy technologies are also overviewed.
Collapse
Affiliation(s)
- Xiaoyang Huang
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenhua Zeng
- Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, China
| | - Siqi Li
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Yufei Xie
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
50
|
Endotoxin contamination alters macrophage-cancer cell interaction and therapeutic efficacy in pre-clinical 3D in vitro models. BIOMATERIALS ADVANCES 2022; 144:213220. [PMID: 36476713 DOI: 10.1016/j.bioadv.2022.213220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The rapid developments in biofabrication, in particular 3D bioprinting, in the recent years have facilitated the need for novel biomaterials that aim to replicate the target tissue in great detail. The presence of endotoxins in these biomaterials is often an overlooked problem. In pre-clinical 3D in vitro models, endotoxins can have significant influence on cell behavior and credibility of the model. In this study we demonstrate the effects of high levels of endotoxins in commercially-available gelatin on the macrophage-cancer cell crosstalk in a 3D bioprinted co-culture model. First, it is demonstrated that, while presenting the same mechanical and structural stimuli, high levels of endotoxin can have significant influence on the metabolic activity of macrophages and cancer cells. Furthermore, this study shows that high endotoxin contamination causes a strong inflammatory reaction in macrophages and significantly inhibits the effects of a paracrine macrophage-cancer cell co-culture. At last, it is demonstrated that the differences in endotoxin levels can drastically alter the efficacy of novel macrophage modulating immunotherapies, AS1517499 and 3-methyladenine. Altogether, this study shows that endotoxin contamination in biomaterials can significantly alter intra- and intercellular communication and thereby drug efficacy, which might lead to misinterpretation of the potency and safety of the tested compounds.
Collapse
|