1
|
Heron SD, Shaw J, Dapprich J. Anti-HLA antibodies may be a subset of polyreactive immunoglobulins generated after viral superinfection. Transpl Immunol 2025; 90:102197. [PMID: 39954820 DOI: 10.1016/j.trim.2025.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Chronic rejection remains an obstacle to long-term allograft survival. Donor-specific anti-HLA antibodies (DSA) play a significant role in causing chronic antibody-mediated allograft rejection. Exposure to mismatched HLA antigens via transfusion, pregnancy, or transplanted tissue has been described in the literature as an immunogenic stimulus of anti-HLA antibodies. Yet anti-HLA antibodies also develop in the absence of traditional sensitization events and molecular mimicry has been postulated as a stimulus for these naturally occurring alloantibodies. While heterologous reactivity has been documented between virus components and allogeneic T cells, there is insufficient evidence to support the development of anti-HLA antibodies from viral components. We hypothesized that anti-HLA antibodies may develop following viral coinfection or superinfection. The objectives of this investigation included: 1) developing an in-silico algorithm to identify viral peptide components that exhibit HLA-specific homology, and 2) identifying cellular changes that take place during ischemia/reperfusion injury which could facilitate the generation of novel anti-HLA antibodies from viral sources. We developed the neoepitope transplant rejection and autoimmune disease (NETRAD) algorithm to identify amino acid sequence homology between viral envelope proteins and HLA. The algorithm integrates post-translational protein modifications that are consistent with ischemia/reperfusion injury. Seventy-two HLA-specific epitopes were demarcated as examples using this approach. In conclusion, we present in-silico evidence which supports the identification of anti-HLA antibodies as a subset of polyreactive antibodies generated from stress-modified viral envelope proteins. Remarkably, each targeted HLA epitope associated with a distinct anti-HLA antibody could be consistently attributed to a major envelope glycoprotein component of Epstein Barr virus. Transplant Immunology manuscript # TRIM-D-24-00351. Dryad data repository:https://doi.org/10.5061/dryad.qjq2bvqpq.
Collapse
Affiliation(s)
| | - Jim Shaw
- Cellanalytics, Chesterbrook, PA USA
| | | |
Collapse
|
2
|
Xu X, Yin K, Wu R. Systematic Investigation of the Trafficking of Glycoproteins on the Cell Surface. Mol Cell Proteomics 2024; 23:100761. [PMID: 38593903 PMCID: PMC11087972 DOI: 10.1016/j.mcpro.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Glycoproteins located on the cell surface play a pivotal role in nearly every extracellular activity. N-glycosylation is one of the most common and important protein modifications in eukaryotic cells, and it often regulates protein folding and trafficking. Glycosylation of cell-surface proteins undergoes meticulous regulation by various enzymes in the endoplasmic reticulum (ER) and the Golgi, ensuring their proper folding and trafficking to the cell surface. However, the impacts of protein N-glycosylation, N-glycan maturity, and protein folding status on the trafficking of cell-surface glycoproteins remain to be explored. In this work, we comprehensively and site-specifically studied the trafficking of cell-surface glycoproteins in human cells. Integrating metabolic labeling, bioorthogonal chemistry, and multiplexed proteomics, we investigated 706 N-glycosylation sites on 396 cell-surface glycoproteins in monocytes, either by inhibiting protein N-glycosylation, disturbing N-glycan maturation, or perturbing protein folding in the ER. The current results reveal their distinct impacts on the trafficking of surface glycoproteins. The inhibition of protein N-glycosylation dramatically suppresses the trafficking of many cell-surface glycoproteins. The N-glycan immaturity has more substantial effects on proteins with high N-glycosylation site densities, while the perturbation of protein folding in the ER exerts a more pronounced impact on surface glycoproteins with larger sizes. Furthermore, for N-glycosylated proteins, their trafficking to the cell surface is related to the secondary structures and adjacent amino acid residues of glycosylation sites. Systematic analysis of surface glycoprotein trafficking advances our understanding of the mechanisms underlying protein secretion and surface presentation.
Collapse
Affiliation(s)
- Xing Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
3
|
Szczykutowicz J. Ligand Recognition by the Macrophage Galactose-Type C-Type Lectin: Self or Non-Self?-A Way to Trick the Host's Immune System. Int J Mol Sci 2023; 24:17078. [PMID: 38069400 PMCID: PMC10707269 DOI: 10.3390/ijms242317078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The cells and numerous macromolecules of living organisms carry an array of simple and complex carbohydrates on their surface, which may be recognized by many types of proteins, including lectins. Human macrophage galactose-type lectin (MGL, also known as hMGL/CLEC10A/CD301) is a C-type lectin receptor expressed on professional antigen-presenting cells (APCs) specific to glycans containing terminal GalNAc residue, such as Tn antigen or LacdiNAc but also sialylated Tn antigens. Macrophage galactose-type lectin (MGL) exhibits immunosuppressive properties, thus facilitating the maintenance of immune homeostasis. Hence, MGL is exploited by tumors and some pathogens to trick the host immune system and induce an immunosuppressive environment to escape immune control. The aims of this article are to discuss the immunological outcomes of human MGL ligand recognition, provide insights into the molecular aspects of these interactions, and review the MGL ligands discovered so far. Lastly, based on the human fetoembryonic defense system (Hu-FEDS) hypothesis, this paper raises the question as to whether MGL-mediated interactions may be relevant in the development of maternal tolerance toward male gametes and the fetus.
Collapse
Affiliation(s)
- Justyna Szczykutowicz
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, Sklodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
4
|
Goodson H, Kawahara R, Chatterjee S, Goncalves G, Fehring J, Purcell AW, Croft NP, Thaysen-Andersen M. Profound N-glycan remodelling accompanies MHC-II immunopeptide presentation. Front Immunol 2023; 14:1258518. [PMID: 38022636 PMCID: PMC10663315 DOI: 10.3389/fimmu.2023.1258518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Immunopeptidomics, the study of peptide antigens presented on the cell surface by the major histocompatibility complex (MHC), offers insights into how our immune system recognises self/non-self in health and disease. We recently discovered that hyper-processed (remodelled) N-glycans are dominant features decorating viral spike immunopeptides presented via MHC-class II (MHC-II) molecules by dendritic cells pulsed with SARS-CoV-2 spike protein, but it remains unknown if endogenous immunopeptides also undergo N-glycan remodelling. Taking a multi-omics approach, we here interrogate published MHC-II immunopeptidomics datasets of cultured monocyte-like (THP-1) and breast cancer-derived (MDA-MB-231) cell lines for overlooked N-glycosylated peptide antigens, which we compare to their source proteins in the cellular glycoproteome using proteomics and N-glycomics data from matching cell lines. Hyper-processed chitobiose core and paucimannosidic N-glycans alongside under-processed oligomannosidic N-glycans were found to prevalently modify MHC-II-bound immunopeptides isolated from both THP-1 and MDA-MB-231, while complex/hybrid-type N-glycans were (near-)absent in the immunopeptidome as supported further by new N-glycomics data generated from isolated MHC-II-bound peptides derived from MDA-MB-231 cells. Contrastingly, the cellular proteomics and N-glycomics data from both cell lines revealed conventional N-glycosylation rich in complex/hybrid-type N-glycans, which, together with the identification of key lysosomal glycosidases, suggest that MHC-II peptide antigen processing is accompanied by extensive N-glycan trimming. N-glycan remodelling appeared particularly dramatic for cell surface-located glycoproteins while less remodelling was observed for lysosomal-resident glycoproteins. Collectively, our findings indicate that both under- and hyper-processed N-glycans are prevalent features of endogenous MHC-II immunopeptides, an observation that demands further investigation to enable a better molecular-level understanding of immune surveillance.
Collapse
Affiliation(s)
- Hayley Goodson
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Rebeca Kawahara
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Sayantani Chatterjee
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Gabriel Goncalves
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Joshua Fehring
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nathan P. Croft
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Bedran G, Polasky DA, Hsiao Y, Yu F, da Veiga Leprevost F, Alfaro JA, Cieslik M, Nesvizhskii AI. Unraveling the glycosylated immunopeptidome with HLA-Glyco. Nat Commun 2023; 14:3461. [PMID: 37308510 PMCID: PMC10258777 DOI: 10.1038/s41467-023-39270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Recent interest in targeted therapies has been sparked by the study of MHC-associated peptides (MAPs) that undergo post-translational modifications (PTMs), particularly glycosylation. In this study, we introduce a fast computational workflow that merges the MSFragger-Glyco search algorithm with a false discovery rate control for glycopeptide analysis from mass spectrometry-based immunopeptidome data. By analyzing eight large-scale publicly available studies, we find that glycosylated MAPs are predominantly presented by MHC class II. Here, we present HLA-Glyco, a comprehensive resource containing over 3,400 human leukocyte antigen (HLA) class II N-glycopeptides from 1,049 distinct protein glycosylation sites. This resource provides valuable insights, including high levels of truncated glycans, conserved HLA-binding cores, and differences in glycosylation positional specificity between HLA allele groups. We integrate the workflow within the FragPipe computational platform and provide HLA-Glyco as a free web resource. Overall, our work provides a valuable tool and resource to aid the nascent field of glyco-immunopeptidomics.
Collapse
Affiliation(s)
- Georges Bedran
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Hsiao
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Javier A Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Pantazica AM, van Eerde A, Dobrica MO, Caras I, Ionescu I, Costache A, Tucureanu C, Steen H, Lazar C, Heldal I, Haugslien S, Onu A, Stavaru C, Branza-Nichita N, Liu Clarke J. The "humanized" N-glycosylation pathway in CRISPR/Cas9-edited Nicotiana benthamiana significantly enhances the immunogenicity of a S/preS1 Hepatitis B Virus antigen and the virus-neutralizing antibody response in vaccinated mice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1176-1190. [PMID: 36779605 DOI: 10.1111/pbi.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with "humanized" N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of β-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.
Collapse
Affiliation(s)
| | - André van Eerde
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Iuliana Caras
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Irina Ionescu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Adriana Costache
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Catalin Tucureanu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Hege Steen
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Catalin Lazar
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Inger Heldal
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Adrian Onu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Crina Stavaru
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | | | | |
Collapse
|
7
|
Riu F, Ruda A, Ibba R, Sestito S, Lupinu I, Piras S, Widmalm G, Carta A. Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview. Pharmaceuticals (Basel) 2022; 15:942. [PMID: 36015090 PMCID: PMC9414505 DOI: 10.3390/ph15080942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Certain bacteria constitute a threat to humans due to their ability to escape host defenses as they easily develop drug resistance. Bacteria are classified into gram-positive and gram-negative according to the composition of the cell membrane structure. Gram-negative bacteria have an additional outer membrane (OM) that is not present in their gram-positive counterpart; the latter instead hold a thicker peptidoglycan (PG) layer. This review covers the main structural and functional properties of cell wall polysaccharides (CWPs) and PG. Drugs targeting CWPs are discussed, both noncarbohydrate-related (β-lactams, fosfomycin, and lipopeptides) and carbohydrate-related (glycopeptides and lipoglycopeptides). Bacterial resistance to these drugs continues to evolve, which calls for novel antibacterial approaches to be developed. The use of carbohydrate-based vaccines as a valid strategy to prevent bacterial infections is also addressed.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Ilenia Lupinu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| |
Collapse
|
8
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
9
|
Olvera A, Cedeño S, Llano A, Mothe B, Sanchez J, Arsequell G, Brander C. Does Antigen Glycosylation Impact the HIV-Specific T Cell Immunity? Front Immunol 2021; 11:573928. [PMID: 33552045 PMCID: PMC7862545 DOI: 10.3389/fimmu.2020.573928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
It is largely unknown how post-translational protein modifications, including glycosylation, impacts recognition of self and non-self T cell epitopes presented by HLA molecules. Data in the literature indicate that O- and N-linked glycosylation can survive epitope processing and influence antigen presentation and T cell recognition. In this perspective, we hypothesize that glycosylation of viral proteins and processed epitopes contribute to the T cell response to HIV. Although there is some evidence for T cell responses to glycosylated epitopes (glyco-epitopes) during viral infections in the literature, this aspect has been largely neglected for HIV. To explore the role of glyco-epitope specific T cell responses in HIV infection we conducted in silico and ex vivo immune studies in individuals with chronic HIV infection. We found that in silico viral protein segments with potentially glycosylable epitopes were less frequently targeted by T cells. Ex vivo synthetically added glycosylation moieties generally masked T cell recognition of HIV derived peptides. Nonetheless, in some cases, addition of simple glycosylation moieties produced neo-epitopes that were recognized by T cells from HIV infected individuals. Herein, we discuss the potential importance of these observations and compare limitations of the employed technology with new methodologies that may have the potential to provide a more accurate assessment of glyco-epitope specific T cell immunity. Overall, this perspective is aimed to support future research on T cells recognizing glycosylated epitopes in order to expand our understanding on how glycosylation of viral proteins could alter host T cell immunity against viral infections.
Collapse
Affiliation(s)
- Alex Olvera
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | | | - Anuska Llano
- IrsiCaixa-AIDS Research Institute, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Christian Brander
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
10
|
Efstathiou C, Abidi SH, Harker J, Stevenson NJ. Revisiting respiratory syncytial virus's interaction with host immunity, towards novel therapeutics. Cell Mol Life Sci 2020; 77:5045-5058. [PMID: 32556372 PMCID: PMC7298439 DOI: 10.1007/s00018-020-03557-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Every year there are > 33 million cases of Respiratory Syncytial Virus (RSV)-related respiratory infection in children under the age of five, making RSV the leading cause of lower respiratory tract infection (LRTI) in infants. RSV is a global infection, but 99% of related mortality is in low/middle-income countries. Unbelievably, 62 years after its identification, there remains no effective treatment nor vaccine for this deadly virus, leaving infants, elderly and immunocompromised patients at high risk. The success of all pathogens depends on their ability to evade and modulate the host immune response. RSV has a complex and intricate relationship with our immune systems, but a clearer understanding of these interactions is essential in the development of effective medicines. Therefore, in a bid to update and focus our research community's understanding of RSV's interaction with immune defences, this review aims to discuss how our current knowledgebase could be used to combat this global viral threat.
Collapse
Affiliation(s)
- C Efstathiou
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - S H Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - J Harker
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - N J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Gómez-Henao W, Tenorio EP, Sanchez FRC, Mendoza MC, Ledezma RL, Zenteno E. Relevance of glycans in the interaction between T lymphocyte and the antigen presenting cell. Int Rev Immunol 2020; 40:274-288. [PMID: 33205679 DOI: 10.1080/08830185.2020.1845331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The immunological synapse promotes receptors and ligands interaction in the contact interface between the T lymphocyte and the antigen presenting cell; glycosylation of the proteins involved in this biological process favors regulation of molecular interactions and development of the T lymphocyte effector response. Glycans in the immunological synapse influence cellular and molecular processes such as folding, expression, and structural stability of proteins, they also mediate ligand-receptor interaction and propagation of the intracellular signaling or inhibition of uncontrolled cellular activation that could lead to the development of autoimmunity, among others. It has been suggested that altered glycosylation of proteins that participate in the immunological synapse affects the signaling processes and cell proliferation, as well as exacerbation of the effector mechanisms of T cells that trigger systemic damage and autoimmunity. Understanding the role of glycans in the immune response has allowed for advances in the development of immunotherapies in different fields through the controlled and specific activation of the immune response. This review describes the structural and biological aspects of glycans associated with some molecules present in the immunological synapse, providing information that allows understanding the function of glycosylation in the interaction between the T lymphocyte and the antigen-presenting cell, as well as its impact on signaling and development regulation of T lymphocytes effector response.
Collapse
Affiliation(s)
- Wilton Gómez-Henao
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico.,Cell Growth, Tissue Repair and Regeneration (CRRET), CNRS ERL 9215, Université Paris Est Créteil (UPEC), Créteil, France
| | - Eda Patricia Tenorio
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | | | - Miguel Cuéllar Mendoza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Ricardo Lascurain Ledezma
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| |
Collapse
|
12
|
Hils M, Wölbing F, Hilger C, Fischer J, Hoffard N, Biedermann T. The History of Carbohydrates in Type I Allergy. Front Immunol 2020; 11:586924. [PMID: 33163001 PMCID: PMC7583601 DOI: 10.3389/fimmu.2020.586924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Although first described decades ago, the relevance of carbohydrate specific antibodies as mediators of type I allergy had not been recognized until recently. Previously, allergen specific IgE antibodies binding to carbohydrate epitopes were considered to demonstrate a clinically irrelevant cross-reactivity. However, this changed following the discovery of type I allergies specifically mediated by oligosaccharide structures. Especially the emerging understanding of red meat allergy characterized by IgE directed to the oligosaccharide alpha-gal showed that carbohydrate-mediated reactions can result in life threatening systemic anaphylaxis which in contrast to former assumptions proves a high clinical relevance of some carbohydrate allergens. Within the scope of this review article, we illustrate the historical development of carbohydrate-allergen-research, reaching from only diagnostically relevant crossreactive-carbohydrate-determinants to clinically important antigens mediating type I allergy. Focusing on clinical and immunological features of the alpha-gal syndrome, we highlight the discovery of oligosaccharides as potentially highly immunogenic antigens and mediators of type I allergy, report what is known about the route of sensitization and the immunological mechanisms involved in sensitization and elicitation phase of allergic responses as well as currently available diagnostic and therapeutic tools. Finally, we briefly report on carbohydrates being involved in type I allergies different from alpha-gal.
Collapse
Affiliation(s)
- Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nils Hoffard
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
- Clinical Unit Allergology, Helmholtz Zentrum München, German Research Center for Environmental 10 Health GmbH, Neuherberg, Germany
| |
Collapse
|
13
|
Moffett S, Shiao TC, Mousavifar L, Mignani S, Roy R. Aberrant glycosylation patterns on cancer cells: Therapeutic opportunities for glycodendrimers/metallodendrimers oncology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1659. [PMID: 32776710 DOI: 10.1002/wnan.1659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 01/29/2023]
Abstract
Despite exciting discoveries and progresses in drug design against cancer, its cure is still rather elusive and remains one of the humanities major challenges in health care. The safety profiles of common small molecule anti-cancer therapeutics are less than at acceptable levels and limiting deleterious side-effects have to be urgently addressed. This is mainly caused by their incapacity to differentiate healthy cells from cancer cells; hence, the use of high dosage becomes necessary. One possible solution to improve the therapeutic windows of anti-cancer agents undoubtedly resides in modern nanotechnology. This review presents a discussion concerning multivalent carbohydrate-protein interactions as this topic pertains to the fundamental aspects that lead glycoscientists to tackle glyconanoparticles. The second section describes the detailed properties of cancer cells and how their aberrant glycan surfaces differ from those of healthy cells. The third section briefly describes the immune systems, both innate and adaptative, because the numerous displays of cell surface protein receptors necessitate to be addressed from the multivalent angles, a strength full characteristic of nanoparticles. The next chapter presents recent advances in glyconanotechnologies, including glycodendrimers in particular, as they apply to glycobiology and carbohydrate-based cancer vaccines. This was followed by an overview of metallodendrimers and how this rapidly evolving field may contribute to our arsenal of therapeutic tools to fight cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | | | | | | | - René Roy
- Glycovax Pharma Inc, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Khatun F, Toth I, Stephenson RJ. Immunology of carbohydrate-based vaccines. Adv Drug Deliv Rev 2020; 165-166:117-126. [PMID: 32320714 DOI: 10.1016/j.addr.2020.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 11/29/2022]
Abstract
Carbohydrates are considered as promising targets for vaccine development against infectious diseases where cell surface glycan's on many infectious agents are attributed to playing an important role in pathogenesis. Understanding the relationship between carbohydrates and immune components at a molecular level is crucial for the development of well-defined vaccines. Recently, carbohydrate immunology research has been accelerated by the development of new technologies that contribute to the design of optimum antigens, synthesis of antigens and the studies of antigen-antibody interactions, and as a result, several promising carbohydrate-based vaccine candidates have been prepared in recent years. This article briefly presents the mechanistic pathways of polysaccharide, glycoconjugate, glycolipid and zwitterionic vaccines and the interplay between carbohydrate antigen and immune response.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; East West University, Dhaka, 1212, Bangladesh
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Institute for Molecular Biosciences, The University of Queensland, Woolloongabba, QLD 4072, Australia.
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
15
|
Carlson RD, Flickinger JC, Snook AE. Talkin' Toxins: From Coley's to Modern Cancer Immunotherapy. Toxins (Basel) 2020; 12:E241. [PMID: 32283684 PMCID: PMC7232517 DOI: 10.3390/toxins12040241] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
The ability of the immune system to precisely target and eliminate aberrant or infected cells has long been studied in the field of infectious diseases. Attempts to define and exploit these potent immunological processes in the fight against cancer has been a longstanding effort dating back over 100 years to when Dr. William Coley purposefully infected cancer patients with a cocktail of heat-killed bacteria to stimulate anti-cancer immune processes. Although the field of cancer immunotherapy has been dotted with skepticism at times, the success of immune checkpoint inhibitors and recent FDA approvals of autologous cell therapies have pivoted immunotherapy to center stage as one of the most promising strategies to treat cancer. This review aims to summarize historic milestones throughout the field of cancer immunotherapy as well as highlight current and promising immunotherapies in development.
Collapse
Affiliation(s)
| | | | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (R.D.C.); (J.C.F.J.)
| |
Collapse
|
16
|
Klasse PJ, Ozorowski G, Sanders RW, Moore JP. Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens? Cell Host Microbe 2020; 27:507-518. [PMID: 32272076 PMCID: PMC7187920 DOI: 10.1016/j.chom.2020.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
Recombinant HIV-1 envelope (Env) glycoproteins of ever-increasing sophistication have been evaluated as vaccine candidates for over 30 years. Structurally defined mimics of native trimeric Env glycoproteins (e.g., SOSIP trimers) present multiple epitopes for broadly neutralizing antibodies (bNAbs) and their germline precursors, but elicitation of bNAbs remains elusive. Here, we argue that the interactions between Env and the immune system render it exceptional among viral vaccine antigens and hinder its immunogenicity in absolute and comparative terms. In other words, Env binds to CD4 on key immune cells and transduces signals that can compromise their function. Moreover, the extensive array of oligomannose glycans on Env shields peptidic B cell epitopes, impedes the presentation of T helper cell epitopes, and attracts mannose binding proteins, which could affect the antibody response. We suggest lines of research for assessing how to overcome obstacles that the exceptional features of Env impose on the creation of a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine Development, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
17
|
Wu J, Kaplaneris N, Ni S, Kaltenhäuser F, Ackermann L. Late-stage C(sp 2)-H and C(sp 3)-H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem Sci 2020; 11:6521-6526. [PMID: 34094117 PMCID: PMC8152807 DOI: 10.1039/d0sc01260b] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
C(sp3)–H and C(sp2)–H glycosylations of structurally complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed peptide–saccharide conjugation provided modular access to structurally complex C-alkyl glycoamino acids, glycopeptides and C-aryl glycosides, while enabling the assembly of fluorescent-labeled glycoamino acids. The C–H activation approach represents an expedient and efficient strategy for peptide late-stage diversification in a programmable as well as chemo-, regio-, and diastereo-selective fashion. C–H glycosylations of complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed glycosylation provided access to complex C-glycosides and fluorescent-labeled glycoamino acids.![]()
Collapse
Affiliation(s)
- Jun Wu
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Nikolaos Kaplaneris
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Shaofei Ni
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Felix Kaltenhäuser
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany .,German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| |
Collapse
|
18
|
Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Proc Natl Acad Sci U S A 2020; 117:1438-1446. [PMID: 31900356 PMCID: PMC6983407 DOI: 10.1073/pnas.1908898117] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We report here a 3.3-Å cryo-EM structure of feline infectious peritonitis virus (FIPV) S protein derived from the serotype I FIPV UU4 strain. The near-atomic EM map enabled ab initio modeling of 27 out of the 33 experimentally verified high-mannose and complex-type N-glycans that mask most of the protein surface. We demonstrated the feasibility to directly visualize the core fucose of a complex-type glycan, which was independently cross-validated by glycopeptide mass spectrometry analyses. There exist 3 N-glycans that wedge between 2 galectin-like domains within the S1 subunit of FIPV-UU4 S protein, resulting in a propeller-like conformation unique to all reported CoV S proteins. The results highlight a structural role of glycosylation in maintaining complex protein structures. Feline infectious peritonitis virus (FIPV) is an alphacoronavirus that causes a nearly 100% mortality rate without effective treatment. Here we report a 3.3-Å cryoelectron microscopy (cryo-EM) structure of the serotype I FIPV spike (S) protein, which is responsible for host recognition and viral entry. Mass spectrometry provided site-specific compositions of densely distributed high-mannose and complex-type N-glycans that account for 1/4 of the total molecular mass; most of the N-glycans could be visualized by cryo-EM. Specifically, the N-glycans that wedge between 2 galectin-like domains within the S1 subunit of FIPV S protein result in a unique propeller-like conformation, underscoring the importance of glycosylation in maintaining protein structures. The cleavage site within the S2 subunit responsible for activation also showed distinct structural features and glycosylation. These structural insights provide a blueprint for a better molecular understanding of the pathogenesis of FIP.
Collapse
|
19
|
Wang W, Subramanian P, Martinazzoli O, Wu J, Ackermann L. Glycopeptides by Linch‐Pin C−H Activations for Peptide‐Carbohydrate Conjugation by Manganese(I)‐Catalysis. Chemistry 2019; 25:10585-10589. [DOI: 10.1002/chem.201902788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Parthasarathi Subramanian
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Oscar Martinazzoli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
20
|
Bednarska NG, Wren BW, Willcocks SJ. The importance of the glycosylation of antimicrobial peptides: natural and synthetic approaches. Drug Discov Today 2017; 22:919-926. [PMID: 28212948 DOI: 10.1016/j.drudis.2017.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Glycosylation is one of the most prevalent post-translational modifications of a protein, with a defining impact on its structure and function. Many of the proteins involved in the innate or adaptive immune response, including cytokines, chemokines, and antimicrobial peptides (AMPs), are glycosylated, contributing to their myriad activities. The current availability of synthetic coupling and glycoengineering technology makes it possible to customise the most beneficial glycan modifications for improved AMP stability, microbicidal potency, pathogen specificity, tissue or cell targeting, and immunomodulation.
Collapse
Affiliation(s)
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Sam J Willcocks
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
21
|
Sun L, Middleton DR, Wantuch PL, Ozdilek A, Avci FY. Carbohydrates as T-cell antigens with implications in health and disease. Glycobiology 2016; 26:1029-1040. [PMID: 27236197 DOI: 10.1093/glycob/cww062] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/11/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease.
Collapse
Affiliation(s)
- Lina Sun
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Dustin R Middleton
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Paeton L Wantuch
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ahmet Ozdilek
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Adaptive immune activation: glycosylation does matter. Nat Chem Biol 2014; 9:776-84. [PMID: 24231619 DOI: 10.1038/nchembio.1403] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class I and II are glycoproteins that can present antigenic peptides at the cell surface for recognition and activation of circulating T lymphocytes. Here, the importance of the modification of protein antigens by glycans on cellular uptake, proteolytic processing, presentation by MHC and subsequent T-cell priming is reviewed. Antigen glycosylation is important for a number of diseases and vaccine design. All of the key proteins involved in antigen recognition and the orchestration of downstream effector functions are glycosylated. The influence of protein glycosylation on immune function and disease is covered.
Collapse
|
23
|
Nandakumar S, Kannanganat S, Dobos KM, Lucas M, Spencer JS, Fang S, McDonald MA, Pohl J, Birkness K, Chamcha V, Ramirez MV, Plikaytis BB, Posey JE, Amara RR, Sable SB. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection. PLoS Pathog 2013; 9:e1003705. [PMID: 24130497 PMCID: PMC3795050 DOI: 10.1371/journal.ppat.1003705] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/28/2013] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.
Collapse
Affiliation(s)
- Subhadra Nandakumar
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sunil Kannanganat
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - John S. Spencer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sunan Fang
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melissa A. McDonald
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kristin Birkness
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Venkateswarlu Chamcha
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Melissa V. Ramirez
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bonnie B. Plikaytis
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James E. Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rama Rao Amara
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Suraj B. Sable
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
24
|
Berti F, Adamo R. Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem Biol 2013; 8:1653-63. [PMID: 23841819 DOI: 10.1021/cb400423g] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vaccination is a key strategy for the control of various infectious diseases. Many pathogens, such as Streptococcus pneumoniae , Haemophilus influenzae type b (Hib), and Neisseria meningitidis produce on their surfaces dense and complex glycan structures, which represent an optimal target for eliciting carbohydrate specific antibodies able to confer protection against those bacteria. Glycoconjugates represent nowadays an important class of efficacious and safe commercial vaccines. It has been known for a long time that covalent linkage of poorly immunogenic carbohydrates to protein is fundamental to provide T cell epitopes for eliciting a memory response of the immune system against the saccharide. However, while the traditional mechanism of action of glycoconjugates has considered peptides generated from the carrier protein to be responsible of T cell help recruitment, only recently evidence of the active involvement of the carbohydrate part in determining the T cell help has been shown. In addition, zwitterionic polysaccharides have been proven to activate the adaptive immune system without further conjugation to protein. Progress in this interface area between chemistry and biology, in combination with novel synthetic and biosynthetic methods for the preparation of glycoconjugates, is opening new perspectives to clarify their mechanism of action and give new insights for the design of improved carbohydrate-based vaccines.
Collapse
Affiliation(s)
- Francesco Berti
- Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| | - Roberto Adamo
- Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
25
|
Avci FY, Li X, Tsuji M, Kasper DL. Carbohydrates and T cells: a sweet twosome. Semin Immunol 2013; 25:146-51. [PMID: 23757291 DOI: 10.1016/j.smim.2013.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/04/2013] [Accepted: 05/10/2013] [Indexed: 01/12/2023]
Abstract
Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease.
Collapse
Affiliation(s)
- Fikri Y Avci
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
26
|
State of the art in tumor antigen and biomarker discovery. Cancers (Basel) 2011; 3:2554-96. [PMID: 24212823 PMCID: PMC3757432 DOI: 10.3390/cancers3022554] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/24/2011] [Accepted: 05/27/2011] [Indexed: 12/22/2022] Open
Abstract
Our knowledge of tumor immunology has resulted in multiple approaches for the treatment of cancer. However, a gap between research of new tumors markers and development of immunotherapy has been established and very few markers exist that can be used for treatment. The challenge is now to discover new targets for active and passive immunotherapy. This review aims at describing recent advances in biomarkers and tumor antigen discovery in terms of antigen nature and localization, and is highlighting the most recent approaches used for their discovery including “omics” technology.
Collapse
|
27
|
Roy B, Das T, Maiti TK, Chakraborty S. Effect of fluidic transport on the reaction kinetics in lectin microarrays. Anal Chim Acta 2011; 701:6-14. [PMID: 21763802 DOI: 10.1016/j.aca.2011.05.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/16/2011] [Accepted: 05/28/2011] [Indexed: 11/16/2022]
Abstract
Lectins are the proteins which can distinguish glycosylation patterns. They are frequently used as biomarkers for progressions of several diseases including cancer. As the lectin microarray based prognosis devices miniaturize the process of glycoprofiling, it is anticipated that their performance can be augmented by integration with microfluidic framework. This is analogous to microfluidics based DNA arrays. However, unlike small oligonucleotide microarrays, it remains uncertain whether the binding reaction-kinetic parameters can be considered invariant of imposed hydrodynamics, for relatively larger and structure sensitive molecules such as lectins. Here we show, using two standard lectins namely Concanavalin A and Abrus Agglutinin, that the steady state binding efficiency unexpectedly declines beyond a critical shear rate magnitude. This observation can be explained only if the associated reaction constants are presumed to be functions of hydrodynamic parameters. We methodically deduce the shear rate dependence of association and dissociation constants from the comparison of experimental and model-simulation trends. The aforementioned phenomena are perceived to be the consequences of strong hydrodynamic perturbations, culminating into molecular structural distortion. The exploration, therefore, reveals a unique coupling between reaction kinetics and hydrodynamics for biomacromolecules and provides a generic scheme towards futuristic microfluidics-coupled biomedical assays.
Collapse
Affiliation(s)
- Bibhas Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | | |
Collapse
|
28
|
Nechansky A, Kircheis R. Immunogenicity of therapeutics: a matter of efficacy and safety. Expert Opin Drug Discov 2010; 5:1067-79. [DOI: 10.1517/17460441.2010.514326] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Andreas Nechansky
- Vela pharmazeutische Entwicklung und Laboranalytik GmbH, Brunnerstrasse 59, 1230, Vienna, Austria
| | - Ralf Kircheis
- ViroLogik GmbH, Henkestrasse 91, Erlangen, D-91052, Germany
| |
Collapse
|
29
|
McCurley N, Mellman I. Monocyte-derived dendritic cells exhibit increased levels of lysosomal proteolysis as compared to other human dendritic cell populations. PLoS One 2010; 5:e11949. [PMID: 20689855 PMCID: PMC2914042 DOI: 10.1371/journal.pone.0011949] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/10/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Fine control of lysosomal degradation for limited processing of internalized antigens is a hallmark of professional antigen presenting cells. Previous work in mice has shown that dendritic cells (DCs) contain lysosomes with remarkably low protease content. Combined with the ability to modulate lysosomal pH during phagocytosis and maturation, murine DCs enhance their production of class II MHC-peptide complexes for presentation to T cells. METHODOLOGY/PRINCIPAL FINDINGS In this study we extend these findings to human DCs and distinguish between different subsets of DCs based on their ability to preserve internalized antigen. Whereas DCs derived in vitro from CD34+ hematopoietic progenitor cells or isolated from peripheral blood of healthy donors are protease poor, DCs derived in vitro from monocytes (MDDCs) are more similar to macrophages (M Phis) in protease content. Unlike other DCs, MDDCs also fail to reduce their intralysosomal pH in response to maturation stimuli. Indeed, functional characterization of lysosomal proteolysis indicates that MDDCs are comparable to M Phis in the rapid degradation of antigen while other human DC subtypes are attenuated in this capacity. CONCLUSIONS/SIGNIFICANCE Human DCs are comparable to murine DCs in exhibiting a markedly reduced level of lysosomal proteolysis. However, as an important exception to this, human MDDCs stand apart from all other DCs by a heightened capacity for proteolysis that resembles that of M Phis. Thus, caution should be exercised when using human MDDCs as a model for DC function and cell biology.
Collapse
Affiliation(s)
- Nathanael McCurley
- Departments of Cell Biology and Immunobiology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Ira Mellman
- Departments of Cell Biology and Immunobiology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Genentech, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
The capsular polysaccharides (CPSs) of most pathogenic bacteria are T cell-independent antigens whose conjugation to carrier proteins evokes a carbohydrate-specific response eliciting T cell help. However, certain bacterial CPSs, known as zwitterionic polysaccharides (ZPSs), activate the adaptive immune system through processing by antigen-presenting cells and presentation by the major histocompatibility complex class II pathway to CD4(+) T cells. This discovery was the first mechanistic insight into how carbohydrates-a class of biological molecules previously thought to be T cell independent-can in fact activate T cells. Through their ability to activate CD4(+) T cells, ZPSs direct the cellular and physical maturation of the developing immune system. In this review, we explore the still-enigmatic relations between CPSs and the adaptive immune machinery at the cellular and molecular levels, and we discuss how new insights into the biological impact of ZPSs expand our concepts of the role of carbohydrates in microbial interactions with the adaptive immune system.
Collapse
Affiliation(s)
- Fikri Y Avci
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
31
|
Yang H, Cho NH, Seong SY. The Tat-conjugated N-terminal region of mucin antigen 1 (MUC1) induces protective immunity against MUC1-expressing tumours. Clin Exp Immunol 2009; 158:174-185. [PMID: 19737144 PMCID: PMC2768807 DOI: 10.1111/j.1365-2249.2009.03997.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2009] [Indexed: 12/23/2022] Open
Abstract
Mucin antigen 1 (MUC1) is overexpressed on various human adenocarcinomas and haematological malignancies and has long been used as a target antigen for cancer immunotherapy. Most of the preclinical and clinical studies using MUC1 have used the tandem repeat region of MUC1, which could be presented by only a limited set of major histocompatibility complex haplotypes. Here, we evaluated N-terminal region (2-147 amino acids) of MUC1 (MUC1-N) for dendritic cell (DC)-based cancer immunotherapy. We used Esherichia coli-derived MUC1-N that was fused to the protein transduction domain of human immunodeficiency virus Tat protein for three reasons. First, mature DCs do not phagocytose soluble protein antigens. Secondly, tumour cells express underglycosylated MUC1, which can generate epitopes repertoire that differs from normal cells, which express hyperglycosylated MUC1. Finally, aberrantly glycosylated MUC1 has been known to impair DC function. In our study, Tat-MUC1-N-loaded DCs induced type 1 T cell responses as well as cytotoxic T lymphocytes efficiently. Furthermore, they could break tolerance in the transgenic breast tumour mouse model, where MUC1-positive breast cancers grow spontaneously. Compared with DCs pulsed with unconjugated MUC1-N, DCs loaded with Tat-conjugated MUC1-N could delay tumour growth more effectively in the transgenic tumour model as well as in the tumour injection model. These results suggest that the recombinant N-terminal part of MUC1, which may provide a diverse epitope repertoire, could be utilized as an effective tumour antigen for DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- H Yang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
32
|
Wierzbicki A, Gil M, Ciesielski M, Fenstermaker RA, Kaneko Y, Rokita H, Lau JT, Kozbor D. Immunization with a mimotope of GD2 ganglioside induces CD8+ T cells that recognize cell adhesion molecules on tumor cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6644-53. [PMID: 18941255 PMCID: PMC2730120 DOI: 10.4049/jimmunol.181.9.6644] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The GD2 ganglioside expressed on neuroectodermal tumor cells has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have reported that immunization of mice with a 47-LDA mimotope of GD2, isolated from a phage display peptide library with anti-GD2 mAb 14G2a, induces MHC class I-restricted CD8(+) T cell responses to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated Ag cross-reacting with 47-LDA. Glycan microarray and immunoblotting studies using 14G2a mAb demonstrated that this Ab is highly specific for the entire carbohydrate motif of GD2 but also cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(-) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by the 105 kDa-activated leukocyte cell adhesion molecule (ALCAM/CD166). A recombinant CD166 glycoprotein was shown to be recognized by 14G2a Ab and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. The binding of 14G2a to CD166 was not disruptable by a variety of exo- and endo-glycosidases, implying recognition of a non-glycan epitope on CD166. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166, and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate Ags.
Collapse
Affiliation(s)
- Andrzej Wierzbicki
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Margaret Gil
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Michael Ciesielski
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Yutaro Kaneko
- Institute of Immunotherapy for Cancer, Kinki University, Osaka, Japan
| | - Hanna Rokita
- Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joseph T. Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Danuta Kozbor
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
33
|
Schietinger A, Philip M, Schreiber H. Specificity in cancer immunotherapy. Semin Immunol 2008; 20:276-85. [PMID: 18684640 DOI: 10.1016/j.smim.2008.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 06/29/2008] [Accepted: 07/01/2008] [Indexed: 11/29/2022]
Abstract
From the earliest days in the field of tumor immunology three questions have been asked: do cancer cells express tumor-specific antigens, does the immune system recognize these antigens and if so, what is their biochemical nature? We now know that truly tumor-specific antigens exist, that they are caused by somatic mutations, and that these antigens can induce both humoral and cell-mediated immune responses. Because tumor-specific antigens are exclusively expressed by the cancer cell and are often crucial for tumorigenicity, they are ideal targets for anti-cancer immunotherapy. Nevertheless, the antigens that are targeted today by anti-tumor immunotherapy are not tumor-specific antigens, but antigens that are normal molecules also expressed by normal tissues (so-called "tumor-associated" antigens). If tumor-specific antigens exist and are ideal targets for immunotherapy, why are they not being targeted? In this review, we summarize current knowledge of tumor-specific antigens: their identification, immunological relevance and clinical use. We discuss novel tumor-specific epitopes and propose new approaches that could improve the success of cancer immunotherapy, especially for the treatment of solid tumors.
Collapse
Affiliation(s)
- Andrea Schietinger
- Department of Pathology and Committee on Immunology, The University of Chicago, 5841 South Maryland Avenue MC 3008, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
34
|
Kircheis R, Siegl P, Grunt S, Halanek N, Loibner H, Mudde GC, Nechansky A. Immunization of Rhesus monkeys with a SialylTn-mAb17-1A conjugate vaccine co-formulated with QS-21 induces a temporary systemic cytokine release and NK cytotoxicity against tumor cells. Cancer Immunol Immunother 2007; 56:863-73. [PMID: 17009044 PMCID: PMC11030659 DOI: 10.1007/s00262-006-0231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 08/26/2006] [Indexed: 01/20/2023]
Abstract
Tumor-associated antigens resulting from aberrant glycosylation, such as the SialylTn carbohydrate antigen, are frequently over-expressed on cancer cells and provide potential targets for cancer vaccination. Immunization of Rhesus monkeys with SialylTn coupled to a highly immunogenic carrier molecule and formulated on aluminum hydroxide induced a strong immune response against the carrier protein but only a moderate IgM immune response against the SialylTn carbohydrate antigen. Co-formulation with QS-21 adjuvant dramatically enhanced the anti-SialylTn immune response and resulted in a SialylTn-specific IgG switch. The kinetics of the carbohydrate-specific IgG response correlated with a temporary release of cytokines such as IFNgamma, IL-2, IL-1beta, TNFalpha and GM-CSF which was measurable in the immune serum by xMAP Multiplex technology. Furthermore, tumor cell killing by activated natural killer cells was induced. These data demonstrate that immunization with a tumor-associated carbohydrate antigen in a highly immunogenic formulation results in a temporary release of type 1 cytokines which may be required for the induction of a specific IgG immune response against the carbohydrate antigen as well as for activation of effector cells against tumor cells.
Collapse
Affiliation(s)
- Ralf Kircheis
- Igeneon GmbH, Immunotherapy of Cancer, Brunnerstrasse 69/3, 1230 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
35
|
van Leeuwen EBM, Cloosen S, Senden-Gijsbers BLMG, Agervig Tarp M, Mandel U, Clausen H, Havenga MJE, Duffour MT, García-Vallejo JJ, Germeraad WTV, Bos GMJ. Expression of aberrantly glycosylated tumor mucin-1 on human DC after transduction with a fiber-modified adenoviral vector. Cytotherapy 2006; 8:24-35. [PMID: 16627342 DOI: 10.1080/14653240500513018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND DC-presenting tumor Ag are currently being developed to be used as a vaccine in human cancer immunotherapy. To increase chances for successful therapy it is important to deliver full-length tumor Ag instead of loading single peptides. METHODS In this study we used a fiber-modified adenoviral vector (rAd5F35) containing full-length tumor Ag cDNA to transduce human monocyte (Mo)-derived DC in vitro. Cells were efficiently transduced and survived for at least 3 days after adenoviral transduction. Phenotype and function after maturation of Mo-DC were not impaired by infection with adenovirus particles. Expression of the tumor-associated Ag mucin-1 (MUC1) was detected using MAb defining different MUC1 glycoforms. RESULTS Non-transduced mature Mo-DC express endogenous MUC1 with normal glycosylation. After transduction with the rAd5F35-MUC1 adenoviral vector, Mo-DC also expressed MUC1 with tumor-associated glycosylation (Tn and T glycoforms), although no changes in mRNA levels of relevant glycosyltransferases could be demonstrated. DISCUSSION The presence of aberrantly glycosylated MUC1 may influence Ag presentation of the tumor glycoforms of MUC1 to immune cells, affecting tumor cell killing. These findings could be highly relevant to developing strategies for cancer immunotherapy based on DC vaccines using MUC1 as tumor Ag.
Collapse
Affiliation(s)
- E B M van Leeuwen
- Department of Internal Medicine, Division of Hemato-Oncology, University Hospital Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The epithelial type 1 transmembrane mucin MUC1 is long-established as a marker for monitoring recurrence of breast cancer, and beyond its diagnostic marker qualities, it is a promising target for immunotherapeutic strategies to treat cancer by active specific immunization. The mucin is able to break tolerance and to induce humoral immune responses in healthy subjects and in cancer patients, but the response is generally weak. These natural responses to tumour-associated MUC1 glycoforms indicate that antibody reactivities are more directed to glycopeptide than to non-glycosylated peptide epitopes. To overcome the weak immunogenicity of heavily O-glycosylated MUC1, the question of whether O-linked glycans remain intact during processing in the MHC class II pathway was addressed. Attempts were made to define site-specific O-glycosylation and the structural requirements for efficient endosomal proteolysis by cathepsin L in dendritic cells. A fraction of glycopeptides survive the processing machinery, and have the capacity to bind to MHC class II and to activate sub-populations of glycopeptide-specific helper T-cell clones as a prerequisite for strong and long-lasting immune responses to MUC1-positive tumours. Moreover, studies on clusters of sequence-variant repeats, which are interspersed in the repeat domain of MUC1 at high frequency, have revealed that a limited set of concerted amino-acid replacements (Asp-Thr0-Arg1-Pro10 to Glu-Ser0-Arg1-Ala10) contributes considerably to increased peptide flexibility and to under-glycosylation of sequence-variant repeats which in concert modify immunological features of the mucin. Peptides and glycopeptides with the immunodominant DTR (Asp-Thr-Arg) or with the variant ESR (Glu-Ser-Arg) motif, and highly immunogenic peptides of the degenerate repeats that flank the repeat domain are currently evaluated as potential targets in multi-epitopic adjuvant-based vaccine strategies for their capacity to induce cytotoxic T-cell responses.
Collapse
Affiliation(s)
- F-G Hanisch
- Center of Biochemistry, Medical Faculty, and Center for Molecular Medicine University of Cologne (CMMC), Joseph-Stelzmann-Str. 52, Köln 50931, Germany.
| |
Collapse
|
37
|
Hang HC, Bertozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg Med Chem 2005; 13:5021-34. [PMID: 16005634 DOI: 10.1016/j.bmc.2005.04.085] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 04/26/2005] [Indexed: 02/04/2023]
Abstract
Mucin-type O-linked glycosylation is a fundamental post-translational modification that is involved in a variety of important biological processes. However, the lack of chemical tools to study mucin-type O-linked glycosylation has hindered our molecular understanding of O-linked glycans in many biological contexts. The review discusses the significance of mucin-type O-linked glycosylation initiated by the polypeptide N-acetylgalactosaminyltransferases in biology and development of chemical tools to study these enzymes and their substrates.
Collapse
Affiliation(s)
- Howard C Hang
- Department of Chemistry, University of California, Berkeley 94720-1460, USA.
| | | |
Collapse
|
38
|
Monzavi-Karbassi B, Luo P, Jousheghany F, Torres-Quiñones M, Cunto-Amesty G, Artaud C, Kieber-Emmons T. A mimic of tumor rejection antigen-associated carbohydrates mediates an antitumor cellular response. Cancer Res 2004; 64:2162-6. [PMID: 15026358 DOI: 10.1158/0008-5472.can-03-1532] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor-associated carbohydrate antigens are typically perceived as inadequate targets for generating tumor-specific cellular responses. Lectin profile reactivity and crystallographic studies demonstrate that MHC class I molecules can present to the immune system posttranslationally modified cytosolic peptides carrying O-beta-linked N-acetylglucosamine (GlcNAc). Here we report that a peptide surrogate of GlcNAc can facilitate an in vivo tumor-specific cellular response to established Meth A tumors that display native O-GlcNAc glycoproteins on the tumor cell surface. Peptide immunization of tumor-bearing mice had a moderate effect on tumor regression. Inclusion of interleukin 12 in the immunization regimen stimulated complete elimination of tumor cells in all of the mice tested, whereas interleukin 12 administration alone afforded no tumor growth inhibition. Adoptive transfer of immune T cells into tumor-bearing nude mice indicates a role for CD8+ T cells in tumor regression. This work postulates that peptide mimetics of glycosylated tumor rejection antigens might be further developed for immune therapy of cancer.
Collapse
MESH Headings
- Acetylglucosamine/immunology
- Animals
- Antigen Presentation
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Antigens, Tumor-Associated, Carbohydrate/therapeutic use
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytosol/metabolism
- Female
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunization
- Immunotherapy
- Interferon-gamma/metabolism
- Interleukin-12/therapeutic use
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Mimicry
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Peptide Fragments/therapeutic use
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/pathology
- Sarcoma, Experimental/prevention & control
- Spleen/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Behjatolah Monzavi-Karbassi
- Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Mogemark M, Cirrito TP, Sjölin P, Unanue ER, Kihlberg J. Influence of saccharide size on the cellular immune response to glycopeptides. Org Biomol Chem 2003; 1:2063-9. [PMID: 12945896 DOI: 10.1039/b301747h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycopeptides that bind to MHC molecules on antigen presenting cells may elicit carbohydrate selective T cells. In order to investigate how the cellular immune response depends on the size of the carbohydrate moiety, a trigalactosylated derivative of an immunogenic peptide from hen egg-white lysozyme (HEL52-61) was prepared. Synthesis was accomplished by assembly of an alpha-1,4-linked trigalactose peracetate which was coupled to Fmoc serine. After activation as a pentafluorophenyl ester the resulting building block was used in solid-phase synthesis In contrast to the corresponding mono- and digalactosylated derivatives of HEL52-61, the trigalactosylated HEL52-61 was not immunogenic. Somewhat surprisingly, this was found to be because the trigalactosyl derivative bound approximately two orders of magnitude weaker to I-Ak MHC molecules than the mono- and digalactosyl peptides. Our observation suggests an explanation for previous findings, which show that glycopeptides isolated from MHC molecules in nature usually carry small saccharides.
Collapse
Affiliation(s)
- Mickael Mogemark
- Organic Chemistry, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|