1
|
Zhou J, Zhao W, Wu M, Wu J, Zhu J, Liu X, Hu J, Cai Z, Chan LL. Quorum sensing regulates the efficiency of a microcystin-degrading microbial consortium. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138479. [PMID: 40339372 DOI: 10.1016/j.jhazmat.2025.138479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/04/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Microbial biodegradation represents an environmentally friendly solution for microcystin (MC) removal. However, the regulatory factors influencing MC biodegradation within microbial communities remain poorly understood. We hypothesized that a consortium of MC-degrading microorganisms can synergistically enhance MC biodegradation efficiency under quorum sensing (QS) signal regulation. Initially, analysis of publicly available data identified a widespread correlation between QS signals and MC-degrading genes. Subsequent laboratory studies confirmed that acyl-homoserine lactones (AHLs) represent the predominant QS signal type during the degradation of MCs by microbial consortia. A significant positive correlation was found among the AHL signal, MC degradation genes, and microbial members of the degradation process. Finally, we found that the absence of the AHL system reduced both the efficiency of MC degradation and the expression of mlr cluster genes in the microbial consortium, confirming the regulatory role of the AHL system in MC degradation at the community level. The mutualistic cooperation mechanisms were also demonstrated by metatranscriptomic and qRT-PCR analyses. These findings underscore the significant role played by the QS system in microbial community-mediated MC degradation and suggest that the manipulation of QS signals could be a promising strategy for enhancing MC treatment efficiency. Harnessing microbial cooperation through QS offers a sustainable approach for mitigating MC contamination and safeguarding water health.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China.
| | - Wei Zhao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China
| | - Mengjie Wu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, PR China
| | - Jinming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Xiaowan Liu
- State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, PR China
| | - Jing Hu
- State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, PR China.
| |
Collapse
|
2
|
Wu S, Bu X, Chen D, Wu X, Wu H, Caiyin Q, Qiao J. Molecules-mediated bidirectional interactions between microbes and human cells. NPJ Biofilms Microbiomes 2025; 11:38. [PMID: 40038292 PMCID: PMC11880406 DOI: 10.1038/s41522-025-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Complex molecules-mediated interactions, which are based on the bidirectional information exchange between microbes and human cells, enable the defense against diseases and health maintenance. Recently, diverse single-direction interactions based on active metabolites, immunity factors, and quorum sensing signals have largely been summarized separately. In this review, according to a simplified timeline, we proposed the framework of Molecules-mediated Bidirectional Interactions (MBI) between microbe and humans to decipher and understand their intricate interactions systematically. About the microbe-derived interactions, we summarized various molecules, such as short-chain fatty acids, bile acids, tryptophan catabolites, and quorum sensing molecules, and their corresponding human receptors. Concerning the human-derived interactions, we reviewed the effect of human molecules, including hormones, cytokines, and other circulatory metabolites on microbial characteristics and phenotypes. Finally, we discussed the challenges and trends for developing and deciphering molecule-mediated bidirectional interactions and their potential applications in the guard of human health.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueying Bu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueyan Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Kacena C. Effects of the Curcuminoid and Non-Curcuminoid Compounds of Turmeric on the Gut Microbiome and Inflammation: Potential Use in the Treatment and Prevention of Disease. Nutr Rev 2025:nuae221. [PMID: 39873671 DOI: 10.1093/nutrit/nuae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The gut microbiome is a complex system that directly interacts with and influences many systems in the body. This delicate balance of microbiota plays an important role in health and disease and is highly influenced by lifestyle factors and the surrounding environment. As further research emerges, understanding the full potential of the gut microbiome and the impact of using nutraceuticals to positively influence its function may open the door to greater therapeutic outcomes in the treatment and prevention of disease. Curcumin, a bioactive compound derived from the turmeric rhizome, has been studied in depth for its influence on human health as a potent anti-inflammatory and antioxidant properties. However, the therapeutic activity of curcumin is limited by its low oral bioavailability. While most available research has primarily focused on the curcuminoid compounds of turmeric, the non-curcuminoid compounds hold promise to offer therapeutic benefits while synergistically enhancing the bioavailability of curcumin and supporting the gut microbiome. This review summarizes current knowledge of the relationship between the gut and the various systems within the body, and how dysbiosis, or disruption in the gut microbial balance, leads to inflammation and increased risk of chronic disease. The review also summarizes recent research that focuses on the bioactivity of both the curcuminoid and non-curcuminoid compounds that comprise the whole turmeric root and their synergistic role in enhancing bioavailability to support a healthy gut microbiome and promising use in the treatment and prevention of disease.
Collapse
|
4
|
Ghannadzadeh Kermani Pour R, Kamali Zounouzi S, Farshbafnadi M, Rezaei N. The interplay between gut microbiota composition and dementia. Rev Neurosci 2025:revneuro-2024-0113. [PMID: 39829047 DOI: 10.1515/revneuro-2024-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Recently, researchers have been interested in the potential connection between gut microbiota composition and various neuropsychological disorders. Dementia significantly affects the socioeconomics of families. Gut microbiota is considered as a probable factor in its pathogenesis. Multiple bacterial metabolites such as short-chain fatty acids, lipopolysaccharides, and various neurotransmitters that are responsible for the incidence and progression of dementia can be produced by gut microbiota. Various bacterial species such as Bifidobacterium breve, Akkermansia muciniphila, Streptococcus thermophilus, Escherichia coli, Blautia hydrogenotrophica, etc. are implicated in the pathogenesis of dementia. Gut microbiota can be a great target for imitating or inhibiting their metabolites as an adjunctive therapy based on their role in its pathogenesis. Therefore, some diets can prevent or decelerate dementia by altering the gut microbiota composition. Moreover, probiotics can modulate gut microbiota composition by increasing beneficial bacteria and reducing detrimental species. These therapeutic modalities are considered novel methods that are probably safe and effective. They can enhance the efficacy of traditional medications and improve cognitive function.
Collapse
Affiliation(s)
| | - Sara Kamali Zounouzi
- School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| | - Melina Farshbafnadi
- School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| |
Collapse
|
5
|
Yao M, Qu Y, Zheng Y, Guo H. The effect of exercise on depression and gut microbiota: Possible mechanisms. Brain Res Bull 2025; 220:111130. [PMID: 39557221 DOI: 10.1016/j.brainresbull.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Exercise can effectively prevent and treat depression and anxiety, with gut microbiota playing a crucial role in this process. Studies have shown that exercise can influence the diversity and composition of gut microbiota, which in turn affects depression through immune, endocrine, and neural pathways in the gut-brain axis. The effectiveness of exercise varies based on its type, intensity, and duration, largely due to the different changes in gut microbiota. This article summarizes the possible mechanisms by which exercise affects gut microbiota and how gut microbiota influences depression. Additionally, we reviewed literature on the effects of exercise on depression at different intensities, types, and durations to provide a reference for future exercise-based therapies for depression.
Collapse
Affiliation(s)
- Mingchen Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yaqi Qu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
6
|
Ziegert Z, Dietz M, Hill M, McBride M, Painter E, Elias MH, Staley C. Targeting quorum sensing for manipulation of commensal microbiota. BMC Biotechnol 2024; 24:106. [PMID: 39696328 PMCID: PMC11653937 DOI: 10.1186/s12896-024-00937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
Bacteria communicate through the accumulation of autoinducer (AI) molecules that regulate gene expression at critical densities in a process called quorum sensing (QS). Extensive work using simple systems and single strains of bacteria have revealed a role for QS in the regulation of virulence factors and biofilm formation; however, less is known about QS dynamics among communities, especially in vivo. In this review, we summarize the diversity of QS signals as well as their ability to influence "non-target" behaviors among species that have receptors but not synthases for those signals. We highlight host-microbe interactions facilitated by QS and describe cross-talk between QS and the mammalian endocrine and immune systems, as well as host surveillance of QS. Further, we describe emerging evidence for the role of QS in non-infectious, chronic, microbially associated diseases including inflammatory bowel diseases and cancers. Finally, we describe potential therapeutic approaches that involve leveraging QS signals as well as quorum quenching approaches to block signaling in vivo to mitigate deleterious consequences to the host. Ultimately, QS offers a previously underexplored target that may be leveraged for precision modification of the microbiota without deleterious bactericidal consequences.
Collapse
Affiliation(s)
- Zachary Ziegert
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Matthew Dietz
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Max Hill
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Marjais McBride
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Elizabeth Painter
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mikael H Elias
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
7
|
Dezfouli MA, Rashidi SK, Yazdanfar N, Khalili H, Goudarzi M, Saadi A, Kiani Deh Kiani A. The emerging roles of neuroactive components produced by gut microbiota. Mol Biol Rep 2024; 52:1. [PMID: 39570444 DOI: 10.1007/s11033-024-10097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND As a multifunctional ecosystem, the human digestive system contains a complex network of microorganisms, collectively known as gut microbiota. This consortium composed of more than 1013 microorganisms and Firmicutes and Bacteroidetes are the dominant microbes. Gut microbiota is increasingly recognized for its critical role in physiological processes beyond digestion. Gut microbiota participates in a symbiotic relationship with the host and takes advantage of intestinal nutrients and mutually participates in the digestion of complex carbohydrates and maintaining intestinal functions. METHOD AND RESULT We reviewed the neuroactive components produced by gut microbiota. Interestingly, microbiota plays a crucial role in regulating the activity of the intestinal lymphatic system, regulation of the intestinal epithelial barrier, and maintaining the tolerance to food immunostimulating molecules. The gut-brain axis is a two-way communication pathway that links the gut microbiota to the central nervous system (CNS) and importantly is involved in neurodevelopment, cognition, emotion and synaptic transmissions. The connections between gut microbiota and CNS are via endocrine system, immune system and vagus nerve. CONCLUSION The gut microbiota produces common neurotransmitters and neuromodulators of the nervous system. These compounds play a role in neuronal functions, immune system regulation, gastrointestinal homeostasis, permeability of the blood brain barrier and other physiological processes. This review investigates the essential aspects of the neurotransmitters and neuromodulators produced by gut microbiota and their implications in health and disease.
Collapse
Affiliation(s)
- Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Khalil Rashidi
- Department of Medical Biotechnology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nada Yazdanfar
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Khalili
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Saadi
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Kiani Deh Kiani
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Jandl B, Dighe S, Baumgartner M, Makristathis A, Gasche C, Muttenthaler M. Gastrointestinal Biofilms: Endoscopic Detection, Disease Relevance, and Therapeutic Strategies. Gastroenterology 2024; 167:1098-1112.e5. [PMID: 38876174 DOI: 10.1053/j.gastro.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/16/2024]
Abstract
Gastrointestinal biofilms are matrix-enclosed, highly heterogenic and spatially organized polymicrobial communities that can cover large areas in the gastrointestinal tract. Gut microbiota dysbiosis, mucus disruption, and epithelial invasion are associated with pathogenic biofilms that have been linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel diseases, gastric cancer, and colorectal cancer. Intestinal biofilms are highly prevalent in ulcerative colitis and irritable bowel syndrome patients, and most endoscopists will have observed such biofilms during colonoscopy, maybe without appreciating their biological and clinical importance. Gut biofilms have a protective extracellular matrix that renders them challenging to treat, and effective therapies are yet to be developed. This review covers gastrointestinal biofilm formation, growth, appearance and detection, biofilm architecture and signalling, human host defence mechanisms, disease and clinical relevance of biofilms, therapeutic approaches, and future perspectives. Critical knowledge gaps and open research questions regarding the biofilm's exact pathophysiological relevance and key hurdles in translating therapeutic advances into the clinic are discussed. Taken together, this review summarizes the status quo in gut biofilm research and provides perspectives and guidance for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Bernhard Jandl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Garbero OV, Sardelli L, Butnarasu CS, Frasca E, Medana C, Dal Bello F, Visentin S. Tracing the path of Quorum sensing molecules in cystic fibrosis mucus in a biomimetic in vitro permeability platform. Sci Rep 2024; 14:25907. [PMID: 39472521 PMCID: PMC11522324 DOI: 10.1038/s41598-024-77375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
P. aeruginosa employs specific quorum sensing (QS) mechanisms to orchestrate biofilm formation, enhancing resistance to host defences. In physiological conditions, QS molecules permeate the lung environment and cellular membrane to reach the cytoplasmic Aryl Hydrocarbon Receptor (AhR) that is pivotal for activating the immune response against infection. In pathological conditions like cystic fibrosis (CF) this interkingdom communication is altered, favouring P. aeruginosa persistence and chronic infection. Here, we aim to investigate the molecular journey of QS molecules from CF-like environments to the cytoplasm by quantifying via HPLC-MS the permeability of selected QS molecules (quinolones, lactones, and phenazines) through in vitro models of the two main biological lung barriers: CF-mucus and cellular membrane. While QS molecules not activating AhR exhibit intermediate permeability through the cellular membrane model (PAMPA) (1.0-4.0 × 10-6 cm/s), the AhR-activating molecule (pyocyanin) shows significantly higher permeability (8.6 ± 1.4 × 10-6 cm/s). Importantly, combining the CF mucus model with PAMPA induces a 50% decrease in pyocyanin permeability, indicating a strong mucus-shielding effect with pathological implications in infection eradication. This study underscores the importance of quantitatively describing the AhR-active bacterial molecules, even in vitro, to offer new perspectives for understanding P. aeruginosa virulence mechanisms and for proposing new antibacterial therapeutic approaches.
Collapse
Affiliation(s)
- Olga Valentina Garbero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Lorenzo Sardelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Cosmin Stefan Butnarasu
- Institute of Pharmacy Biopharmaceuticals, SupraFAB, Freie Universität Berlin, Altensteinstr 23a, 14195, Berlin, Germany
| | - Enrica Frasca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy.
| |
Collapse
|
10
|
Moulding PB, El-Halfawy OM. Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Can J Microbiol 2024; 70:405-425. [PMID: 38905704 DOI: 10.1139/cjm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The rising antimicrobial resistance rates and declining antimicrobial discovery necessitate alternative strategies to combat multidrug-resistant pathogens. Targeting microbial virulence is an emerging area of interest. Traditionally, virulence factors were largely restricted to bacteria-derived toxins, adhesins, capsules, quorum sensing systems, secretion systems, factors required to sense, respond to, acquire, or synthesize, and utilize trace elements (such as iron and other metals) and micronutrients (such as vitamins), and other factors bacteria use to establish infection, form biofilms, or damage the host tissues and regulatory elements thereof. However, this traditional definition overlooks bacterial virulence that may be induced or influenced by host-produced metabolites or other chemicals that bacteria may encounter at the infection site. This review will discuss virulence from a non-traditional perspective, shedding light on chemical-mediated host-pathogen interactions and outlining currently available mechanistic insight into increased bacterial virulence in response to host factors. This review aims to define a possibly underestimated theme of chemically mediated host-pathogen interactions and encourage future validation and characterization of the contribution of host chemicals to microbial virulence in vivo. From this perspective, we discuss proposed antivirulence compounds and suggest new potential targets for antimicrobials that prevent chemical-mediated virulence. We also explore proposed host-targeting therapeutics reducing the level of host chemicals that induce microbial virulence, serving as virulence attenuators. Understanding the host chemical-mediated virulence may enable new antimicrobial solutions to fight multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
11
|
Markus V. Gut bacterial quorum sensing molecules and their association with inflammatory bowel disease: Advances and future perspectives. Biochem Biophys Res Commun 2024; 724:150243. [PMID: 38857558 DOI: 10.1016/j.bbrc.2024.150243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Inflammatory Bowel Disease (IBD) is an enduring inflammatory disease of the gastrointestinal tract (GIT). The complexity of IBD, its profound impact on patient's quality of life, and its burden on healthcare systems necessitate continuing studies to elucidate its etiology, refine care strategies, improve treatment outcomes, and identify potential targets for novel therapeutic interventions. The discovery of a connection between IBD and gut bacterial quorum sensing (QS) molecules has opened exciting opportunities for research into IBD pathophysiology. QS molecules are small chemical messengers synthesized and released by bacteria based on population density. These chemicals are sensed not only by the microbial species but also by host cells and are essential in gut homeostasis. QS molecules are now known to interact with inflammatory pathways, therefore rendering them potential therapeutic targets for IBD management. Given these intriguing developments, the most recent research findings in this area are herein reviewed. First, the global burden of IBD and the disruptions of the gut microbiota and intestinal barrier associated with the disease are assessed. Next, the general QS mechanism and signaling molecules in the gut are discussed. Then, the roles of QS molecules and their connection with IBD are elucidated. Lastly, the review proposes potential QS-based therapeutic targets for IBD, offering insights into the future research trajectory in this field.
Collapse
Affiliation(s)
- Victor Markus
- Near East University, Faculty of Medicine, Department of Medical Biochemistry, Nicosia, TRNC Mersin 10, Turkey.
| |
Collapse
|
12
|
Hasaniani N, Mostafa Rahimi S, Akbari M, Sadati F, Pournajaf A, Rostami-Mansoor S. The Role of Intestinal Microbiota and Probiotics Supplementation in Multiple Sclerosis Management. Neuroscience 2024; 551:31-42. [PMID: 38777135 DOI: 10.1016/j.neuroscience.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune disorder predominantly afflicting young adults. The etiology of MS is intricate, involving a variety of environmental and genetic factors. Current research increasingly focuses on the substantial contribution of gut microbiota in MS pathogenesis. The commensal microbiota resident within the intestinal milieu assumes a central role within the intricate network recognized as the gut-brain axis (GBA), wielding beneficial impact in neurological and psychological facets. As a result, the modulation of gut microbiota is considered a pivotal aspect in the management of neural disorders, including MS. Recent investigations have unveiled the possibility of using probiotic supplements as a promising strategy for exerting a positive impact on the course of MS. This therapeutic approach operates through several mechanisms, including the reinforcement of gut epithelial integrity, augmentation of the host's resistance against pathogenic microorganisms, and facilitation of mucosal immunomodulatory processes. The present study comprehensively explains the gut microbiome's profound influence on the central nervous system (CNS). It underscores the pivotal role played by probiotics in forming the immune system and modulating neurotransmitter function. Furthermore, the investigation elucidates various instances of probiotic utilization in MS patients, shedding light on the potential therapeutic advantages afforded by this intervention.
Collapse
Affiliation(s)
- Nima Hasaniani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Mostafa Rahimi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Marziyeh Akbari
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Fahimeh Sadati
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
13
|
Noda M, Noguchi S, Danshiitsoodol N, Hara T, Sugiyama M. Non-pathogenic Heyndrickxia coagulans (Bacillus coagulans) 29-2E inhibits the virulence of pathogenic Salmonella Typhimurium by quorum-sensing regulation. J Biosci Bioeng 2024; 137:445-452. [PMID: 38553372 DOI: 10.1016/j.jbiosc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 05/20/2024]
Abstract
Bacteria produce and release small signal molecules, autoinducers, as an indicator of their cell density. The system, called a quorum-sensing (QS) system, is used to control not only virulence factors but also antibiotic production, sporulation, competence, and biofilm formation in bacteria. Different from antibiotics, QS inhibitors are expected to specifically repress the virulence factors in pathogenic bacteria without inhibiting growth or bactericidal effects. Therefore, since QS inhibitors have little risk of antibiotic-resistant bacteria emergence, they have been proposed as promising anti-bacterial agents. In the present study, we aimed to find new QS inhibitors that prohibit the signaling cascade of autoinducer 3 (AI-3) recognized by a QseCB two-component system that regulates some virulence factors of pathogens, such as enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica subsp. enterica serovar Typhimurium. We have established the method for QS-inhibitor screening using a newly constructed plasmid pLES-AQSA. E. coli DH5α transformed with the pLES-AQSA can produce β-galactosidase that converts 5-bromo-4-chloro-3-indolyl β-d-galactopyranoside (X-gal) into blue pigment (5-bromo-4-chloro-indoxyl) under the control of the QseCB system. By screening, Heyndrickxia coagulans (formerly Bacillus coagulans) 29-2E was found to produce an exopolysaccharide (EPS)-like water-soluble polymer that prohibits QseCB-mediated β-galactosidase production without antibacterial activities. Further, the simultaneous injection of the 29-2E strain significantly improves the survival rate of Salmonella Typhimurium-infected silkworm larvae (from 0% to 83.3%), suggesting that the substance may be a promising inhibitor against the virulence of pathogens without risk of the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Shino Noguchi
- Department of Pharmaceutical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Toshinori Hara
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Kasumi 1-2-3 Minami-ku, Hiroshima 734-8551, Japan
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
14
|
Li X, Song S, Kong X, Chen X, Zhao Z, Lin Z, Jia Y, Zhang Y, Luo HB, Wang QP, Zhang LH, Qian W, Deng Y. Regulation of Burkholderia cenocepacia virulence by the fatty acyl-CoA ligase DsfR as a response regulator of quorum sensing signal. Cell Rep 2024; 43:114223. [PMID: 38748879 DOI: 10.1016/j.celrep.2024.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.
Collapse
Affiliation(s)
- Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhuoxian Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zizi Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yantao Jia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
15
|
Priyadarshini E, Kumar R, Balakrishnan K, Pandit S, Kumar R, Jha NK, Gupta PK. Biofilm Inhibition on Medical Devices and Implants Using Carbon Dots: An Updated Review. ACS APPLIED BIO MATERIALS 2024; 7:2604-2619. [PMID: 38622845 DOI: 10.1021/acsabm.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Biofilms are an intricate community of microbes that colonize solid surfaces, communicating via a quorum-sensing mechanism. These microbial aggregates secrete exopolysaccharides facilitating adhesion and conferring resistance to drugs and antimicrobial agents. The escalating global concern over biofilm-related infections on medical devices underscores the severe threat to human health. Carbon dots (CDs) have emerged as a promising substrate to combat microbes and disrupt biofilm matrices. Their numerous advantages such as facile surface functionalization and specific antimicrobial properties, position them as innovative anti-biofilm agents. Due to their minuscule size, CDs can penetrate microbial cells, inhibiting growth via cytoplasmic leakage, reactive oxygen species (ROS) generation, and genetic material fragmentation. Research has demonstrated the efficacy of CDs in inhibiting biofilms formed by key pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Consequently, the development of CD-based coatings and hydrogels holds promise for eradicating biofilm formation, thereby enhancing treatment efficacy, reducing clinical expenses, and minimizing the need for implant revision surgeries. This review provides insights into the mechanisms of biofilm formation on implants, surveys major biofilm-forming pathogens and associated infections, and specifically highlights the anti-biofilm properties of CDs emphasizing their potential as coatings on medical implants.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Kalpana Balakrishnan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal, 637215 Tamil Nadu, India
| | - Soumya Pandit
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Ranvijay Kumar
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105 Tamil Nadu, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401 Punjab, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand, India
| |
Collapse
|
16
|
Ashok AK, Gnanasekaran TS, Santosh Kumar HS, Srikanth K, Prakash N, Gollapalli P. High-throughput screening and molecular dynamics simulations of natural products targeting LuxS/AI-2 system as a novel antibacterial strategy for antibiotic resistance in Helicobacter pylori. J Biomol Struct Dyn 2024; 42:2913-2928. [PMID: 37160706 DOI: 10.1080/07391102.2023.2210674] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
The main goal of treating any Helicobacter pylori (H. pylori)-related gastrointestinal disease is completely eradicating infection. Falling eradication efficiency, off-target effects, and patient noncompliance with prolonged and broad spectrums have sparked clinical interest in exploring other effective, safer therapeutic choices. As natural substances are risk-free and privileged with high levels of antibacterial activity, most of these natural chemical's specific modes of action are unknown. With the aid of in silico molecular docking-based virtual screening studies and molecular dynamic simulations, the current study is intended to gather data on numerous such natural chemicals and assess their affinity for the S-ribosyl homocysteine lyase (LuxS) protein of H. pylori. The ligand with the highest binding energy with LuxS, glucoraphanin, catechin gallate and epigallocatechin gallate were rationally selected for further computational analysis. The solution stability of the three compounds' optimal docking postures with LuxS was initially assessed using long-run molecular dynamics simulations. Using molecular dynamics simulation, the epigallocatechin gallate was found to be the most stable molecule with the highest binding free energy, indicating that it might compete with the natural ligand of the inhibitors. According to ADMET analysis, his phytochemical was a promising therapeutic candidate for an antibacterial action since it had a range of physicochemical, pharmacokinetic, and drug-like qualities and had no discernible adverse effects. Additional in vitro, in vivo, and clinical trials are needed to confirm the drug's precise efficacy during H. pylori infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Avinash Karkada Ashok
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| | - Tamizh Selvan Gnanasekaran
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | | | - Koigoora Srikanth
- Department of Biotechnology, Vignans Foundation for Science, Research and Technology (Deemed to be University), Guntur, Andhra Pradesh, India
| | - Nayana Prakash
- Department of Biotechnology and Bioinformatics, Jnana Sahyadri campus, Kuvempu University, Shankaraghatta, Karnataka, India
| | - Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
17
|
Petakh P, Oksenych V, Kamyshna I, Boisak I, Lyubomirskaya K, Kamyshnyi O. Exploring the complex interplay: gut microbiome, stress, and leptospirosis. Front Microbiol 2024; 15:1345684. [PMID: 38476949 PMCID: PMC10927737 DOI: 10.3389/fmicb.2024.1345684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Leptospirosis, a re-emerging zoonotic disease, remains a significant global health concern, especially amid floods and disasters such as the Kakhovka Dam destruction. As is known, the stress that occurs in the conditions of military conflicts among civilian and military personnel significantly affects susceptibility to infectious diseases and possibly even influences their course. This review aims to explore how the gut microbiome and stress mediators (such as catecholamines and corticosteroids) might impact the leptospirosis disease course. The review opens new horizons for research by elucidating the connections between the gut microbiome, stress, and leptospirosis.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Boisak
- Department of Childhood Diseases, Uzhhorod National University, Uzhhorod, Ukraine
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical and Pharmaceuticals University, Zaporizhzhia, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
18
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
19
|
Hooks GM, Ayala JC, Holley CL, Dhulipala V, Beggs GA, Perfect JR, Schumacher MA, Shafer WM, Brennan RG. Hormonal steroids induce multidrug resistance and stress response genes in Neisseria gonorrhoeae by binding to MtrR. Nat Commun 2024; 15:1153. [PMID: 38326294 PMCID: PMC10850145 DOI: 10.1038/s41467-024-45195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Transcriptional regulator MtrR inhibits the expression of the multidrug efflux pump operon mtrCDE in the pathogenic bacterium Neisseria gonorrhoeae. Here, we show that MtrR binds the hormonal steroids progesterone, β-estradiol, and testosterone, which are present at urogenital infection sites, as well as ethinyl estrogen, a component of some hormonal contraceptives. Steroid binding leads to the decreased affinity of MtrR for cognate DNA, increased mtrCDE expression, and enhanced antimicrobial resistance. Furthermore, we solve crystal structures of MtrR bound to each steroid, thus revealing their binding mechanisms and the conformational changes that induce MtrR.
Collapse
Affiliation(s)
- Grace M Hooks
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Julio C Ayala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- STD Laboratory Reference and Research Branch, Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Concerta L Holley
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Vijaya Dhulipala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Grace A Beggs
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, GA, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
20
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
21
|
Su Y, Ding T. Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections. Gut Microbes 2023; 15:2252780. [PMID: 37680117 PMCID: PMC10486307 DOI: 10.1080/19490976.2023.2252780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Bacteria synchronize social behaviors via a cell-cell communication and interaction mechanism termed as quorum sensing (QS). QS has been extensively studied in monocultures and proved to be intensively involved in bacterial virulence and infection. Despite the role QS plays in pathogens during laboratory engineered infections has been proved, the potential functions of QS related to pathogenesis in context of microbial consortia remain poorly understood. In this review, we summarize the basic molecular mechanisms of QS, primarily focusing on pathogenic microbes driving gastrointestinal (GI) infections. We further discuss how GI pathogens disequilibrate the homeostasis of the indigenous microbial consortia, rebuild a realm dominated by pathogens, and interact with host under worsening infectious conditions via pathogen-biased QS signaling. Additionally, we present recent applications and main challenges of manipulating QS network in microbial consortia with the goal of better understanding GI bacterial sociality and facilitating novel therapies targeting bacterial infections.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| |
Collapse
|
22
|
Mendes SG, Combo SI, Allain T, Domingues S, Buret AG, Da Silva GJ. Co-regulation of biofilm formation and antimicrobial resistance in Acinetobacter baumannii: from mechanisms to therapeutic strategies. Eur J Clin Microbiol Infect Dis 2023; 42:1405-1423. [PMID: 37897520 PMCID: PMC10651561 DOI: 10.1007/s10096-023-04677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
In recent years, multidrug-resistant Acinetobacter baumannii has emerged globally as a major threat to the healthcare system. It is now listed by the World Health Organization as a priority one for the need of new therapeutic agents. A. baumannii has the capacity to develop robust biofilms on biotic and abiotic surfaces. Biofilm development allows these bacteria to resist various environmental stressors, including antibiotics and lack of nutrients or water, which in turn allows the persistence of A. baumannii in the hospital environment and further outbreaks. Investigation into therapeutic alternatives that will act on both biofilm formation and antimicrobial resistance (AMR) is sorely needed. The aim of the present review is to critically discuss the various mechanisms by which AMR and biofilm formation may be co-regulated in A. baumannii in an attempt to shed light on paths towards novel therapeutic opportunities. After discussing the clinical importance of A. baumannii, this critical review highlights biofilm-formation genes that may be associated with the co-regulation of AMR. Particularly worthy of consideration are genes regulating the quorum sensing system AbaI/AbaR, AbOmpA (OmpA protein), Bap (biofilm-associated protein), the two-component regulatory system BfmRS, the PER-1 β-lactamase, EpsA, and PTK. Finally, this review discusses ongoing experimental therapeutic strategies to fight A. baumannii infections, namely vaccine development, quorum sensing interference, nanoparticles, metal ions, natural products, antimicrobial peptides, and phage therapy. A better understanding of the mechanisms that co-regulate biofilm formation and AMR will help identify new therapeutic targets, as combined approaches may confer synergistic benefits for effective and safer treatments.
Collapse
Affiliation(s)
- Sérgio G Mendes
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Sofia I Combo
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Thibault Allain
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Andre G Buret
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Gabriela J Da Silva
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
23
|
Kattner AA. Colonizing foreign terrain: Insights into bacterial enteropathogens. Biomed J 2023; 46:100681. [PMID: 38042347 PMCID: PMC10774447 DOI: 10.1016/j.bj.2023.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023] Open
Abstract
In this present issue of the Biomedical Journal insights into pediatric campylobacteriosis are granted, and a potential path to developing a parenteral vaccine against enterotoxigenic E. coli is demonstrated. Additionally, a study shows how the use of extracorporeal shockwave therapy contributes to countering osteonecrosis of the femoral head. Furthermore, the relation between intimate partner violence and a saliva biomarker is explored. Finally, findings concerning the risk of dementia in patients with autonomic nervous system dysregulation are elucidated; and patterns of non-Alzheimer disease pathophysiology in individuals with depressive disorder are revealed.
Collapse
|
24
|
Purtov YA, Ozoline ON. Neuromodulators as Interdomain Signaling Molecules Capable of Occupying Effector Binding Sites in Bacterial Transcription Factors. Int J Mol Sci 2023; 24:15863. [PMID: 37958845 PMCID: PMC10647483 DOI: 10.3390/ijms242115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Hormones and neurotransmitters are important components of inter-kingdom signaling systems that ensure the coexistence of eukaryotes with their microbial community. Their ability to affect bacterial physiology, metabolism, and gene expression was evidenced by various experimental approaches, but direct penetration into bacteria has only recently been reported. This opened the possibility of considering neuromodulators as potential effectors of bacterial ligand-dependent regulatory proteins. Here, we assessed the validity of this assumption for the neurotransmitters epinephrine, dopamine, and norepinephrine and two hormones (melatonin and serotonin). Using flexible molecular docking for transcription factors with ligand-dependent activity, we assessed the ability of neuromodulators to occupy their effector binding sites. For many transcription factors, including the global regulator of carbohydrate metabolism, CRP, and the key regulator of lactose assimilation, LacI, this ability was predicted based on the analysis of several 3D models. By occupying the ligand binding site, neuromodulators can sterically hinder the interaction of the target proteins with the natural effectors or even replace them. The data obtained suggest that the direct modulation of the activity of at least some bacterial transcriptional factors by neuromodulators is possible. Therefore, the natural hormonal background may be a factor that preadapts bacteria to the habitat through direct perception of host signaling molecules.
Collapse
Affiliation(s)
- Yuri A. Purtov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
25
|
Li X, Wang G, Guo Q, Cui B, Wang M, Song S, Yang L, Deng Y. Membrane-enclosed Pseudomonas quinolone signal attenuates bacterial virulence by interfering with quorum sensing. Appl Environ Microbiol 2023; 89:e0118423. [PMID: 37796010 PMCID: PMC10617430 DOI: 10.1128/aem.01184-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 10/06/2023] Open
Abstract
Outer membrane vesicle (OMV)-delivered Pseudomonas quinolone signal (PQS) plays a critical role in cell-cell communication in Pseudomonas aeruginosa. However, the functions and mechanisms of membrane-enclosed PQS in interspecies communication in microbial communities are not clear. Here, we demonstrate that PQS delivered by both OMVs from P. aeruginosa and liposome reduces the competitiveness of Burkholderia cenocepacia, which usually shares the same niche in the lungs of cystic fibrosis patients, by interfering with quorum sensing (QS) in B. cenocepacia through the LysR-type regulator ShvR. Intriguingly, we found that ShvR regulates the production of the QS signals cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) by directly binding to the promoters of signal synthase-encoding genes. Perception of PQS influences the regulatory activity of ShvR and thus ultimately reduces QS signal production and virulence in B. cenocepacia. Our findings provide insights into the interspecies communication mediated by the membrane-enclosed QS signal among bacterial species residing in the same microbial community.IMPORTANCEQuorum sensing (QS) is a ubiquitous cell-to-cell communication mechanism. Previous studies showed that Burkholderia cenocepacia mainly employs cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) QS systems to regulate biological functions and virulence. Here, we demonstrate that Pseudomonas quinolone signal (PQS) delivered by outer membrane vesicles from Pseudomonas aeruginosa or liposome attenuates B. cenocepacia virulence by targeting the LysR-type regulator ShvR, which regulates the production of the QS signals BDSF and AHL in B. cenocepacia. Our results not only suggest the important roles of membrane-enclosed PQS in interspecies and interkingdom communications but also provide a new perspective on the use of functional nanocarriers loaded with QS inhibitors for treating pathogen infections.
Collapse
Affiliation(s)
- Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Gerun Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shihao Song
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
26
|
Tao R, Liu S, Crawford J, Tao F. Gut-Brain Crosstalk and the Central Mechanisms of Orofacial Pain. Brain Sci 2023; 13:1456. [PMID: 37891825 PMCID: PMC10605055 DOI: 10.3390/brainsci13101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Accumulated evidence has demonstrated that the gut microbiome can contribute to pain modulation through the microbiome-gut-brain axis. Various relevant microbiome metabolites in the gut are involved in the regulation of pain signaling in the central nervous system. In this review, we summarize recent advances in gut-brain interactions by which the microbiome metabolites modulate pain, with a focus on orofacial pain, and we further discuss the role of gut-brain crosstalk in the central mechanisms of orofacial pain whereby the gut microbiome modulates orofacial pain via the vagus nerve-mediated direct pathway and the gut metabolites/molecules-mediated indirect pathway. The direct and indirect pathways both contribute to the central regulation of orofacial pain through different brain structures (such as the nucleus tractus solitarius and the parabrachial nucleus) and signaling transmission across the blood-brain barrier, respectively. Understanding the gut microbiome-regulated pain mechanisms in the brain could help us to develop non-opioid novel therapies for orofacial pain.
Collapse
Affiliation(s)
| | | | | | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| |
Collapse
|
27
|
Vallverdú J, Talanov M, Leukhin A, Fatykhova E, Erokhin V. Hormonal computing: a conceptual approach. Front Chem 2023; 11:1232949. [PMID: 37663143 PMCID: PMC10469008 DOI: 10.3389/fchem.2023.1232949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
This paper provides a conceptual roadmap for the use of hormonal bioinspired models in a broad range of AI, neuroengineering, or computational systems. The functional signaling nature of hormones provides an example of a reliable multidimensional information management system that can solve parallel multitasks. Two existing examples of hormonal computing bioinspired possibilities are shortly reviewed, and two novel approaches are introduced, with a special emphasis on what researchers propose as hormonal computing for neurorehabilitation in patients with complete spinal cord injuries. They extend the use of epidural electrical stimulation (EES) by applying sequential stimulations to limbs through prostheses. The prostheses include various limb models and are connected to a neurostimulation bus called the central pattern generator (CPG). The CPG bus utilizes hormonal computing principles to coordinate the stimulation of the spinal cord and muscles.
Collapse
Affiliation(s)
- Jordi Vallverdú
- ICREA Academia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Max Talanov
- Institute for Artificial Intelligence R&D, Novi Sad, Serbia
- Laboratory of Neuromorphic Computing and Neurosimulatons, Kazan Federal University, Kazan, Russia
| | - Alexey Leukhin
- Laboratory of Neuromorphic Computing and Neurosimulatons, Kazan Federal University, Kazan, Russia
- B-Rain Labs LLC, Kazan, Russi
| | - Elsa Fatykhova
- Children’s Republican Clinical Hospital, Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | - Victor Erokhin
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, National Research Council (CNR), Parma, Italy
| |
Collapse
|
28
|
Lange ME, Clarke ST, Boras VF, Brown CLJ, Zhang G, Laing CR, Uwiera RRE, Montina T, Kalmokoff ML, Taboada EN, Gannon VPJ, Metz GAS, Church JS, Inglis GD. Commensal Escherichia coli Strains of Bovine Origin Competitively Mitigated Escherichia coli O157:H7 in a Gnotobiotic Murine Intestinal Colonization Model with or without Physiological Stress. Animals (Basel) 2023; 13:2577. [PMID: 37627368 PMCID: PMC10451813 DOI: 10.3390/ani13162577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cattle are a primary reservoir of enterohemorrhagic Escherichia coli (EHEC) O157:H7. Currently, there are no effective methods of eliminating this important zoonotic pathogen from cattle, and colonization resistance in relation to EHEC O157:H7 in cattle is poorly understood. We developed a gnotobiotic EHEC O157:H7 murine model to examine aspects of the cattle pathogen-microbiota interaction, and to investigate competitive suppression of EHEC O157:H7 by 18 phylogenetically distinct commensal E. coli strains of bovine origin. As stress has been suggested to influence enteric colonization by EHEC O157:H7 in cattle, corticosterone administration (±) to incite a physiological stress response was included as an experimental variable. Colonization of the intestinal tract (IT) of mice by the bovine EHEC O157:H7 strain, FRIK-2001, mimicked characteristics of bovine IT colonization. In this regard, FRIK-2001 successfully colonized the IT and temporally incited minimal impacts on the host relative to other EHEC O157:H7 strains, including on the renal metabolome. The presence of the commensal E. coli strains decreased EHEC O157:H7 densities in the cecum, proximal colon, and distal colon. Moreover, histopathologic changes and inflammation markers were reduced in the distal colon of mice inoculated with commensal E. coli strains (both propagated separately and communally). Although stress induction affected the behavior of mice, it did not influence EHEC O157:H7 densities or disease. These findings support the use of a gnotobiotic murine model of enteric bovine EHEC O157:H7 colonization to better understand pathogen-host-microbiota interactions toward the development of effective on-farm mitigations for EHEC O157:H7 in cattle, including the identification of bacteria capable of competitively colonizing the IT.
Collapse
Affiliation(s)
- Maximo E. Lange
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Sandra T. Clarke
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| | - Valerie F. Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB T1J 1W5, Canada;
| | - Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| | - Guangzhi Zhang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (G.Z.); (E.N.T.)
| | - Chad R. Laing
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada;
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Martin L. Kalmokoff
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada;
| | - Eduardo N. Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (G.Z.); (E.N.T.)
| | - Victor P. J. Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4, Canada;
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - John S. Church
- Natural Resource Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| |
Collapse
|
29
|
Tarracchini C, Alessandri G, Fontana F, Rizzo SM, Lugli GA, Bianchi MG, Mancabelli L, Longhi G, Argentini C, Vergna LM, Anzalone R, Viappiani A, Turroni F, Taurino G, Chiu M, Arboleya S, Gueimonde M, Bussolati O, van Sinderen D, Milani C, Ventura M. Genetic strategies for sex-biased persistence of gut microbes across human life. Nat Commun 2023; 14:4220. [PMID: 37452041 PMCID: PMC10349097 DOI: 10.1038/s41467-023-39931-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp. longum. Comparative genome analyses, coupled with experiments including intimate interaction between microbes and human intestinal cells, show that specific bacterial glycosyl hydrolases related to host-glycan metabolism may contribute to more efficient colonization in females compared to males. These findings point to an intriguing ancient sex-specific host-microbe coevolution driving the selective persistence in women of key microbial taxa that may be vertically passed on to the next generation.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano Giovanni Bianchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, CSIC, 33300, Villaviciosa, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, CSIC, 33300, Villaviciosa, Spain
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, T12YT20, Cork, Ireland
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| |
Collapse
|
30
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
31
|
Shen Y, Gao S, Fan Q, Zuo J, Wang Y, Yi L, Wang Y. New antibacterial targets: Regulation of quorum sensing and secretory systems in zoonotic bacteria. Microbiol Res 2023; 274:127436. [PMID: 37343493 DOI: 10.1016/j.micres.2023.127436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Quorum sensing (QS) is a communication mechanism that controls bacterial communication and can influence the transcriptional expression of multiple genes through one or more signaling molecules, thereby coordinating the population response of multiple bacterial pathogens. Secretion systems (SS) play an equally important role in bacterial information exchange, relying on the secretory systems to secrete proteins that act as virulence factors to promote adhesion to host cells. Eight highly efficient SS have been described, all of which are involved in the secretion or transfer of virulence factors, and the effector proteins they secrete play a key role in the virulence and pathogenicity of bacteria. It has been shown that many bacterial SS are directly or indirectly regulated by QS and thus influence bacterial virulence and antibiotic resistance. This review describes the relationship between QS and SS of several common zoonotic pathogenic bacteria and outlines the molecular mechanisms of how QS systems regulate SS, to provide a theoretical basis for the study of bacterial pathogenicity and the development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Li Yi
- Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China.
| |
Collapse
|
32
|
Wang M, Zeng J, Zhu Y, Chen X, Guo Q, Tan H, Cui B, Song S, Deng Y. A 4-Hydroxybenzoic Acid-Mediated Signaling System Controls the Physiology and Virulence of Shigella sonnei. Microbiol Spectr 2023; 11:e0483522. [PMID: 37036340 PMCID: PMC10269604 DOI: 10.1128/spectrum.04835-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Many bacteria use small molecules, such as quorum sensing (QS) signals, to perform intraspecies signaling and interspecies or interkingdom communication. Previous studies demonstrated that some bacteria regulate their physiology and pathogenicity by employing 4-hydroxybenzoic acid (4-HBA). Here, we report that 4-HBA controls biological functions, virulence, and anthranilic acid production in Shigella sonnei. The biosynthesis of 4-HBA is performed by UbiC (SSON_4219), which is a chorismate pyruvate-lyase that catalyzes the conversion of chorismate to 4-HBA. Deletion of ubiC caused S. sonnei to exhibit impaired phenotypes, including impaired biofilm formation, extracellular polysaccharide (EPS) production, and virulence. In addition, we found that 4-HBA controls the physiology and virulence of S. sonnei through the response regulator AaeR (SSON_3385), which contains a helix-turn-helix (HTH) domain and a LysR substrate-binding (LysR_substrate) domain. The same biological functions are controlled by AaeR and the 4-HBA signal, and 4-HBA-deficient mutant phenotypes were rescued by in trans expression of AaeR. We found that 4-HBA binds to AaeR and then enhances the binding of AaeR to the promoter DNA regions in target genes. Moreover, we revealed that 4-HBA from S. sonnei reduces the competitive fitness of Candida albicans by interfering with morphological transition. Together, our results suggested that the 4-HBA signaling system plays crucial roles in bacterial physiology and interkingdom communication. IMPORTANCE Shigella sonnei is an important pathogen in human intestines. Following previous findings that some bacteria employ 4-HBA as a QS signal to regulate biological functions, we demonstrate that 4-HBA controls the physiology and virulence of S. sonnei. This study is significant because it identifies both the signal synthase UbiC and receptor AaeR and unveils the signaling pathway of 4-HBA in S. sonnei. In addition, this study also supports the important role of 4-HBA in microbial cross talk, as 4-HBA strongly inhibits hyphal formation by Candida albicans. Together, our findings describe the dual roles of 4-HBA in both intraspecies signaling and interkingdom communication.
Collapse
Affiliation(s)
- Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jia Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yu Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Huihui Tan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Shihao Song
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
33
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
34
|
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023; 8:112. [PMID: 36906608 PMCID: PMC10007681 DOI: 10.1038/s41392-023-01375-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.
Collapse
Affiliation(s)
- Ninglin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziqi Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Duan
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Host-microbiota interactions and oncogenesis: Crosstalk and its implications in etiology. Microb Pathog 2023; 178:106063. [PMID: 36893903 DOI: 10.1016/j.micpath.2023.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/03/2022] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
A number of articles have discussed the potential of microbiota in oncogenesis. Several of these have evaluated the modulation of microbiota and its influence on cancer development. Even in recent past, a plethora of studies have gathered in order to understand the difference in microbiota population among different cancer and normal individuals. Although in majority of studies, microbiota mediated oncogenesis has been primarily attributed to the inflammatory mechanisms, there are several other ways through which microbiota can influence oncogenesis. These relatively less discussed aspects including the hormonal modulation through estrobolome and endobolome, production of cyclomodulins, and lateral gene transfer need more attention of scientific community. We prepared this article to discuss the role of microbiota in oncogenesis in order to provide concise information on these relatively less discussed microbiota mediated oncogenesis mechanisms.
Collapse
|
36
|
Study on the interaction between grain polyphenols and intestinal microorganisms: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
37
|
Melchior K, Salgaço MK, Sivieri K, Moreira CG. QseC sensor kinase modulates the human microbiota during enterohemorrhagic Escherichia coli O157:H7 infection in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Braz J Microbiol 2023; 54:1-14. [PMID: 36469301 PMCID: PMC9943815 DOI: 10.1007/s42770-022-00877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important gastrointestinal pathogen known for its ability to cause hemorrhagic colitis and induce hemolytic-uremic syndrome. The inner membrane QseC histidine kinase sensor has shown to be an important regulator of the locus of enterocyte effacement (LEE) island, where important EHEC key virulence genes are located. However, the QseC role during EHEC infection in human microbiota remains unknown. Herein, using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), we investigated whether the QseC sensor has a role in human microbiota modulation by EHEC in a dynamic model. Our data demonstrated that the QseC sensor modulates human microbiota during EHEC infection, and its absence leads to an increase in Lactobacillaceae and Bifidobacterium genus predominance, although non-effect on Bacteroides genus by EHEC strains was observed. In co-culture, the Lactobacillus acidophilus has affected EHEC growth and impaired the EHEC growth under space-niche competition, although no growth difference was observed in the QseC sensor presence. Also, differences in EHEC growth were not detected in competition with Bacteroides thetaiotaomicron and EHEC strains did not affect B. thetaiotaomicron growth either. When investigating the mechanisms behind the SHIME results, we found that hcp-2 expression for the type 6 secretion system, known to be involved in bacterial competition, is under QseC sensor regulation beneath different environmental signals, such as glucose and butyrate. Our findings broaden the knowledge about the QseC sensor in modulating the human microbiota and its importance for EHEC pathogenesis.
Collapse
Affiliation(s)
- Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mateus Kawata Salgaço
- Department of Food and Nutrition, School of Pharmaceutical Sciences, State University of São Paulo (UNESP), Araraquara, SP, Brazil
| | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, State University of São Paulo (UNESP), Araraquara, SP, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
| |
Collapse
|
38
|
Markus V, Paul AA, Teralı K, Özer N, Marks RS, Golberg K, Kushmaro A. Conversations in the Gut: The Role of Quorum Sensing in Normobiosis. Int J Mol Sci 2023; 24:ijms24043722. [PMID: 36835135 PMCID: PMC9963693 DOI: 10.3390/ijms24043722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
An imbalance in gut microbiota, termed dysbiosis, has been shown to affect host health. Several factors, including dietary changes, have been reported to cause dysbiosis with its associated pathologies that include inflammatory bowel disease, cancer, obesity, depression, and autism. We recently demonstrated the inhibitory effects of artificial sweeteners on bacterial quorum sensing (QS) and proposed that QS inhibition may be one mechanism behind such dysbiosis. QS is a complex network of cell-cell communication that is mediated by small diffusible molecules known as autoinducers (AIs). Using AIs, bacteria interact with one another and coordinate their gene expression based on their population density for the benefit of the whole community or one group over another. Bacteria that cannot synthesize their own AIs secretly "listen" to the signals produced by other bacteria, a phenomenon known as "eavesdropping". AIs impact gut microbiota equilibrium by mediating intra- and interspecies interactions as well as interkingdom communication. In this review, we discuss the role of QS in normobiosis (the normal balance of bacteria in the gut) and how interference in QS causes gut microbial imbalance. First, we present a review of QS discovery and then highlight the various QS signaling molecules used by bacteria in the gut. We also explore strategies that promote gut bacterial activity via QS activation and provide prospects for the future.
Collapse
Affiliation(s)
- Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus
| | - Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, Nicosia 99258, Cyprus
| | - Nazmi Özer
- Department of Biochemistry, Faculty of Pharmacy, Girne American University, Kyrenia 99428, Cyprus
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Karina Golberg
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Correspondence: (K.G.); (A.K.); Tel.: +972-74-7795293 (K.G.); +972-747795291 (A.K.)
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Correspondence: (K.G.); (A.K.); Tel.: +972-74-7795293 (K.G.); +972-747795291 (A.K.)
| |
Collapse
|
39
|
Miri S, Yeo J, Abubaker S, Hammami R. Neuromicrobiology, an emerging neurometabolic facet of the gut microbiome? Front Microbiol 2023; 14:1098412. [PMID: 36733917 PMCID: PMC9886687 DOI: 10.3389/fmicb.2023.1098412] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The concept of the gut microbiome is emerging as a metabolic interactome influenced by diet, xenobiotics, genetics, and other environmental factors that affect the host's absorption of nutrients, metabolism, and immune system. Beyond nutrient digestion and production, the gut microbiome also functions as personalized polypharmacy, where bioactive metabolites that our microbes excrete or conjugate may reach systemic circulation and impact all organs, including the brain. Appreciable evidence shows that gut microbiota produce diverse neuroactive metabolites, particularly neurotransmitters (and their precursors), stimulating the local nervous system (i.e., enteric and vagus nerves) and affecting brain function and cognition. Several studies have demonstrated correlations between the gut microbiome and the central nervous system sparking an exciting new research field, neuromicrobiology. Microbiome-targeted interventions are seen as promising adjunctive treatments (pre-, pro-, post-, and synbiotics), but the mechanisms underlying host-microbiome interactions have yet to be established, thus preventing informed evidence-based therapeutic applications. In this paper, we review the current state of knowledge for each of the major classes of microbial neuroactive metabolites, emphasizing their biological effects on the microbiome, gut environment, and brain. Also, we discuss the biosynthesis, absorption, and transport of gut microbiota-derived neuroactive metabolites to the brain and their implication in mental disorders.
Collapse
Affiliation(s)
- Saba Miri
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - JuDong Yeo
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sarah Abubaker
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
40
|
Topol IA, Polyakova IS, Elykova AV. Role of intestinal microbiota in regulation of immune reactions of gut-associated lymphoid tissue under stress and following the modulation of its composition by antibiotics and probiotics administration. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2023. [DOI: 10.36233/0372-9311-270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the past two decades, active study of the microbial ecosystem of the host organism gastrointestinal tract has led to the recognition of gut microbiome as a "key player" that carries a significant immune pressure and is responsible both for the course of physiological processes and for the development of pathological conditions in humans and animals. A vast number of bacteria living in the human gastrointestinal tract are considered as an organ functioning in dialogue in formation of immunological tolerance, the regulation of normal functional activity of the immune system and maintaining the intestinal mucosa homeostasis. However, disturbances in interaction between these physiological systems is closely related to the pathogenesis of different immune-mediated diseases. In turn, in a large number of works chronic social stress, along with the use of antibiotics, pre- and probiotics, is recognized as one of the leading factors modulating in the microbiota of the gastrointestinal tract. This review focuses on the role of the gut microbiome in the regulation of immune responses of GALT under stress and modulation of its composition by antibiotics and probiotics administration.
Collapse
|
41
|
The Role of Quorum Sensing Molecules in Bacterial-Plant Interactions. Metabolites 2023; 13:metabo13010114. [PMID: 36677039 PMCID: PMC9863971 DOI: 10.3390/metabo13010114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Quorum sensing (QS) is a system of communication of bacterial cells by means of chemical signals called autoinducers, which modulate the behavior of entire populations of Gram-negative and Gram-positive bacteria. Three classes of signaling molecules have been recognized, Al-1, Al-2, Al-3, whose functions are slightly different. However, the phenomenon of quorum sensing is not only concerned with the interactions between bacteria, but the whole spectrum of interspecies interactions. A growing number of research results confirm the important role of QS molecules in the growth stimulation and defense responses in plants. Although many of the details concerning the signaling metabolites of the rhizosphere microflora and plant host are still unknown, Al-1 compounds should be considered as important components of bacterial-plant interactions, leading to the stimulation of plant growth and the biological control of phytopathogens. The use of class 1 autoinducers in plants to induce beneficial activity may be a practical solution to improve plant productivity under field conditions. In addition, researchers are also interested in tools that offer the possibility of regulating the activity of autoinducers by means of degrading enzymes or specific inhibitors (QSI). Current knowledge of QS and QSI provides an excellent foundation for the application of research to biopreparations in agriculture, containing a consortia of AHL-producing bacteria and QS inhibitors and limiting the growth of phytopathogenic organisms.
Collapse
|
42
|
Zhang X, Liu B, Ding X, Bin P, Yang Y, Zhu G. Regulatory Mechanisms between Quorum Sensing and Virulence in Salmonella. Microorganisms 2022; 10:2211. [PMID: 36363803 PMCID: PMC9693372 DOI: 10.3390/microorganisms10112211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 08/28/2023] Open
Abstract
Salmonella is a foodborne pathogen that causes enterogastritis among humans, livestock and poultry, and it not only causes huge economic losses for the feed industry but also endangers public health around the world. However, the prevention and treatment of Salmonella infection has remained poorly developed because of its antibiotic resistance. Bacterial quorum sensing (QS) system is an intercellular cell-cell communication mechanism involving multiple cellular processes, especially bacterial virulence, such as biofilm formation, motility, adherence, and invasion. Therefore, blocking the QS system may be a new strategy for Salmonella infection independent of antibiotic treatment. Here, we have reviewed the central role of the QS system in virulence regulation of Salmonella and summarized the most recent advances about quorum quenching (QQ) in virulence attenuation during Salmonella infection. Unraveling the complex relationship between QS and bacterial virulence may provide new insight into the therapy of pathogen infection.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Baobao Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyan Ding
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Peng Bin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yang Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
43
|
Liu Y, Li B, Wei Y. New understanding of gut microbiota and colorectal anastomosis leak: A collaborative review of the current concepts. Front Cell Infect Microbiol 2022; 12:1022603. [PMID: 36389160 PMCID: PMC9663802 DOI: 10.3389/fcimb.2022.1022603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
Anastomotic leak (AL) is a life-threatening postoperative complication following colorectal surgery, which has not decreased over time. Until now, no specific risk factors or surgical technique could be targeted to improve anastomotic healing. In the past decade, gut microbiota dysbiosis has been recognized to contribute to AL, but the exact effects are still vague. In this context, interpretation of the mechanisms underlying how the gut microbiota contributes to AL is significant for improving patients' outcomes. This review concentrates on novel findings to explain how the gut microbiota of patients with AL are altered, how the AL-specific pathogen colonizes and is enriched on the anastomosis site, and how these pathogens conduct their tissue breakdown effects. We build up a framework between the gut microbiota and AL on three levels. Firstly, factors that shape the gut microbiota profiles in patients who developed AL after colorectal surgery include preoperative intervention and surgical factors. Secondly, AL-specific pathogenic or collagenase bacteria adhere to the intestinal mucosa and defend against host clearance, including the interaction between bacterial adhesion and host extracellular matrix (ECM), the biofilm formation, and the weakened host commercial bacterial resistance. Thirdly, we interpret the potential mechanisms of pathogen-induced poor anastomotic healing.
Collapse
Affiliation(s)
- Yang Liu
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
| | - Bowen Li
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China,*Correspondence: Yunwei Wei,
| |
Collapse
|
44
|
Kou TS, Wu JH, Chen XW, Peng B. Functional proteomics identify mannitol metabolism in serum resistance and therapeutic implications in Vibrio alginolyticus. Front Immunol 2022; 13:1010526. [PMID: 36389821 PMCID: PMC9660324 DOI: 10.3389/fimmu.2022.1010526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 08/18/2023] Open
Abstract
Serum resistance is recognized as one of the most important pathogenic traits of bacterial pathogens, and no control measure is available. Based on our previous discovery that pathogenic Escherichia coli represses glycine, serine, and threonine metabolism to confer serum resistance and that the reactivation of this pathway by exogenous glycine could restore serum sensitivity, we further investigate the mechanism underlying the action of glycine in Vibrio alginolyticus. Thus, V. alginolyticus is treated with glycine, and the proteomic change is profiled with tandem mass tag-based quantitative proteomics. Compared to the control group, glycine treatment influences the expression of a total of 291 proteins. Among them, a trap-type mannitol/chloroaromatic compound transport system with periplasmic component, encoded by N646_0992, is the most significantly increased protein. In combination with the pathway enrichment analysis showing the altered fructose and mannitol metabolism, mannitol has emerged as a possible metabolite in enhancing the serum killing activity. To demonstrate this, exogenous mannitol reduces bacterial viability. This synergistic effect is further confirmed in a V. alginolyticus-Danio rerio infection model. Furthermore, the mechanism underlying mannitol-enabled serum killing is dependent on glycolysis and the pyruvate cycle that increases the deposition of complement components C3b and C5b-9 on the bacterial surface, whereas inhibiting glycolysis or the pyruvate cycle significantly weakened the synergistic effects and complement deposition. These data together suggest that mannitol is a potent metabolite in reversing the serum resistance of V. alginolyticus and has promising use in aquaculture.
Collapse
Affiliation(s)
- Tian-shun Kou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuan-wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
45
|
Sarda PP, Acharya S, Huse S, Ghulaxe Y, Chavada J. Intra-body Networks and Molecular Communication Networks in Diagnostic Sciences. Cureus 2022; 14:e30399. [DOI: 10.7759/cureus.30399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
|
46
|
Dicks LMT. Gut Bacteria and Neurotransmitters. Microorganisms 2022; 10:1838. [PMID: 36144440 PMCID: PMC9504309 DOI: 10.3390/microorganisms10091838] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gut bacteria play an important role in the digestion of food, immune activation, and regulation of entero-endocrine signaling pathways, but also communicate with the central nervous system (CNS) through the production of specific metabolic compounds, e.g., bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT) and histamine. Afferent vagus nerve (VN) fibers that transport signals from the gastro-intestinal tract (GIT) and gut microbiota to the brain are also linked to receptors in the esophagus, liver, and pancreas. In response to these stimuli, the brain sends signals back to entero-epithelial cells via efferent VN fibers. Fibers of the VN are not in direct contact with the gut wall or intestinal microbiota. Instead, signals reach the gut microbiota via 100 to 500 million neurons from the enteric nervous system (ENS) in the submucosa and myenteric plexus of the gut wall. The modulation, development, and renewal of ENS neurons are controlled by gut microbiota, especially those with the ability to produce and metabolize hormones. Signals generated by the hypothalamus reach the pituitary and adrenal glands and communicate with entero-epithelial cells via the hypothalamic pituitary adrenal axis (HPA). SCFAs produced by gut bacteria adhere to free fatty acid receptors (FFARs) on the surface of intestinal epithelial cells (IECs) and interact with neurons or enter the circulatory system. Gut bacteria alter the synthesis and degradation of neurotransmitters. This review focuses on the effect that gut bacteria have on the production of neurotransmitters and vice versa.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
47
|
Lange ME, Uwiera RRE, Inglis GD. Enteric Escherichia coli O157:H7 in Cattle, and the Use of Mice as a Model to Elucidate Key Aspects of the Host-Pathogen-Microbiota Interaction: A Review. Front Vet Sci 2022; 9:937866. [PMID: 35898542 PMCID: PMC9310005 DOI: 10.3389/fvets.2022.937866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is responsible for foodborne disease outbreaks, typically associated with the consumption of undercooked foods contaminated with cattle manure containing the bacterium. At present, effective mitigations do not exist. Many of the factors regulating enteric colonization by E. coli O157:H7 in cattle, and how cattle respond to the bacterium are unknown. In this regard, intestinal colonization locations, shedding patterns, interactions with the enteric microbiota, and host immune responses to infection are current knowledge gaps. As disturbances to host homeostasis are believed to play an important role in the enteric survival of the bacterium, it is important to consider the potential importance of stress during cattle production. Husbandry logistics, cost, and the high genetic, physiological, and microbial heterogeneity in cattle has greatly hampered the ability of researchers to elucidate key aspects of the host-pathogen-microbiota interaction. Although mice have not been extensively used as a cattle model, the utilization of murine models has the potential to identify mechanisms to facilitate hypothesis formulation and efficacy testing in cattle. Murine models have been effectively used to mechanistically examine colonization of the intestine, host responses to infection, and to interactively ascertain how host physiological status (e.g., due to physiological stress) and the enteric microbiota influences colonization and disease. In addition to reviewing the relevant literature on intestinal colonization and pathogenesis, including existing knowledge gaps, the review provides information on how murine models can be used to elucidate mechanisms toward the development of rationale-based mitigations for E. coli O157:H7 in cattle.
Collapse
Affiliation(s)
- Maximo E. Lange
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - G. Douglas Inglis
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| |
Collapse
|
48
|
Yan X, Dai K, Gu C, Yu Z, He M, Xiao W, Zhao M, He L. Deletion of two-component system QseBC weakened virulence of Glaesserella parasuis in a murine acute infection model and adhesion to host cells. PeerJ 2022; 10:e13648. [PMID: 35769141 PMCID: PMC9235811 DOI: 10.7717/peerj.13648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
The widespread two-component system (TCS), QseBC, involves vital virulence regulators in Enterobacteriaceae and Pasteurellaceae. Here we studied the function of QseBC in Glaesserella parasuis. A ΔqseBC mutant was constructed using a Glaesserella parasuis serovar 11 clinical strain SC1401 by natural transformation. Immunofluorescence was used to evaluate cellular adhesion, the levels of inflammation and apoptosis. The ability of ΔqseBC and ΔqseC mutant strains to adhere to PAM and MLE-12 cells was significantly reduced. Additionally, by focusing on the clinical signs, H&E, and IFA for inflammation and apoptosis, we found that the ΔqseBC mutant weakened virulence in the murine models. Together, these findings suggest that QseBC plays an important role in the virulence of Glaesserella parasuis.
Collapse
Affiliation(s)
| | - Ke Dai
- Sichuan Agricultural University, Chengdu, China
| | - Congwei Gu
- Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Southwest Medical University, Luzhou, China
| | - Manli He
- Southwest Medical University, Luzhou, China
| | | | | | - Lvqin He
- Southwest Medical University, Luzhou, China
| |
Collapse
|
49
|
Edrington TS, Brown TR. A Commentary on Salmonella From a Pre-Harvest Perspective. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.877392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonella occurs in all the major meat producing livestock species (ruminants, swine and poultry), most often residing within the gastrointestinal tract asymptomatically. While considerable success has been achieved post-harvest, the design of effective pre-harvest interventions to control Salmonella has lagged. A simplistic view of the extremely complex host/pathogen interaction suggests that the pathogen has a vested interest in not causing illness or death to the host. The former would initiate an immune response from the host and/or the application of therapeutic antibacterial agents, while the latter would require finding another suitable host. Due to the widespread prevalence of Salmonella within livestock and poultry, and the relatively few salmonellosis cases in comparison, it appears, and is supported by new research, that Salmonella has developed methods to avoid detection by the animal’s immune system and live essentially as a commensal organism within the gastrointestinal tract of the animal. Yet, for reasons that are not fully understood, this “commensal” Salmonella does on occasion become virulent, in young and mature animals alike. Indeed, these researchers have documented Salmonella carriage throughout the year in cattle, but only rarely, if at all, was salmonellosis observed. Further, evaluation of Salmonella isolates (serotype and antimicrobial resistance patterns) from sick and healthy cattle failed to explain that while Salmonella was present in the majority of cattle sampled on that farm, only a few developed salmonellosis. Virulence, as well as multi-drug resistance, in both livestock and humans appears to cluster within a few serotypes. As a result, petitions are circulating calling for the labeling of some Salmonella serotypes as adulterants, as was done with Escherichia coli O157:H7 and other enterohemorrhagic E. coli strains. Regulators are considering approaching the Salmonella problem by serotype, such as focusing specifically on the top 10 reported serotypes causing human illness. Herein, the authors will discuss the many challenges of controlling Salmonella pre-harvest, reflecting on the significant research portfolio that has been generated over the last 25 years, as well as challenging existing paradigms surrounding this pathogen and the experimental methods used to further our understanding of Salmonella and/or evaluate methods of control.
Collapse
|
50
|
Wu S, Feng J, Liu C, Wu H, Qiu Z, Ge J, Sun S, Hong X, Li Y, Wang X, Yang A, Guo F, Qiao J. Machine learning aided construction of the quorum sensing communication network for human gut microbiota. Nat Commun 2022; 13:3079. [PMID: 35654892 PMCID: PMC9163137 DOI: 10.1038/s41467-022-30741-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/17/2022] [Indexed: 01/02/2023] Open
Abstract
Quorum sensing (QS) is a cell-cell communication mechanism that connects members in various microbial systems. Conventionally, a small number of QS entries are collected for specific microbes, which is far from being able to fully depict communication-based complex microbial interactions in human gut microbiota. In this study, we propose a systematic workflow including three modules and the use of machine learning-based classifiers to collect, expand, and mine the QS-related entries. Furthermore, we develop the Quorum Sensing of Human Gut Microbes (QSHGM) database ( http://www.qshgm.lbci.net/ ) including 28,567 redundancy removal entries, to bridge the gap between QS repositories and human gut microbiota. With the help of QSHGM, various communication-based microbial interactions can be searched and a QS communication network (QSCN) is further constructed and analysed for 818 human gut microbes. This work contributes to the establishment of the QSCN which may form one of the key knowledge maps of the human gut microbiota, supporting future applications such as new manipulations to synthetic microbiota and potential therapies to gut diseases.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Feng
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Hao Wu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Zekai Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianjun Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuyang Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xia Hong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yukun Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaona Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|