1
|
Scheltema E, Morgan K, Singh P, Adlington B, Howe L. Morphological and molecular description of a novel species of Eimeria (Apicomplexa) that infects extraintestinal tissues of kiwi (Aves: Apteryx spp.). Syst Parasitol 2025; 102:30. [PMID: 40202622 PMCID: PMC11982086 DOI: 10.1007/s11230-025-10227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025]
Abstract
Coccidia (Apiconmplexa) are naturally occurring and occasionally detrimental parasites of kiwi (Apteryx spp.), a unique, flightless bird species dependent upon conservation efforts for survival. Using morphological and molecular data, a new coccidia species, Eimeria koka n. sp., isolated from two closely related but geographically isolated kiwi host species, Apteryx rowi Tennyson et al. (rowi) and Apteryx mantelli Bartlett (North Island brown kiwi), is described. Oocysts are oval (20.8 × 15.9 μm) with a mean L/W ratio of 1.3, and a distinctive rough, crenellated brown oocyst wall (mean 1.2 μm), an oocyst residuum, 1-2 polar granules, and no micropyle. Sporocysts are ellipsoidal (11.6 × 6.3 μm) with a Stieda body and sporocyst residuum. Phylogenetic analysis of the cytochrome C oxidase subunit 1 (CO1) placed E. koka n. sp. in a separate clade to other Eimeria species previously identified from kiwi (Coker et al., Syst Parasitol 100(3):269-281, 2023). Comparison of DNA from oocysts with infected tissues from a single juvenile North Island brown kiwi confirmed parasitism of the kidney and lung tissues. This is the first Eimeria species identified from extraintestinal tissues in kiwi. Further molecular studies are recommended to determine the tissue distribution of E. koka n. sp. and other Eimeria species in kiwi.
Collapse
Affiliation(s)
- Emma Scheltema
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand.
| | - Kerri Morgan
- Wildbase, Massey University, Palmerston North, New Zealand
| | - Preet Singh
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Barbara Adlington
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Laryssa Howe
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Lubbe P, Rawlence NJ, Dussex N, Kardialsky O, Knapp M. Plio-Pleistocene Environmental Changes Drove the Settlement of Aotearoa New Zealand by Australian Open-Habitat Bird Lineages. Mol Ecol 2025; 34:e17648. [PMID: 39783862 DOI: 10.1111/mec.17648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 01/12/2025]
Abstract
In a changing environment, vacant niches can be filled either by adaptation of local taxa or range-expanding invading species. The relative tempo of these patterns is of key interest in the modern age of climate change. Aotearoa New Zealand has been a hotspot of biogeographic research for decades due to its long-term isolation and dramatic geological history. An island with high levels of faunal endemicity, it is a system well suited to studying the relative effects of in situ evolution versus dispersal in determining faunal assemblages, while its turbulent climate and geological history provide valuable insights into the evolutionary impacts of environmental changes. Such investigations are of urgent importance given predicted climate change and human impacts rapidly affecting environments globally. Here, we analyse the divergence dates of nearly all endemic Aotearoa New Zealand bird species from their overseas relatives to assess the role of environmental changes in driving speciation and colonisation, with special regard to cooling climate during the Pliocene and Pleistocene. We uncover a wave of colonisation events by Australian open-habitat adapted species since the Pliocene that peaked at the beginning of the Pleistocene. Furthermore, we highlight an even distribution of divergence dates in forest-adapted taxa through time, consistent with millions of years of extensive forest cover. Finally, we note parallels to the modern-day establishment of new bird populations from Australia and suggest this is largely influenced by anthropogenic land-use patterns. This research contributes to the growing body of work recognising the long-lasting impacts of Pleistocene climate change on Aotearoa New Zealand's avifauna, and reinforces biological invasions as a key evolutionary response to changing environmental conditions.
Collapse
Affiliation(s)
- Pascale Lubbe
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Olga Kardialsky
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael Knapp
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Coastal People, Southern Skies Centre of Research Excellence, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Rick JA, Junker J, Lewanski AL, Swope B, McGlue MM, Sweke EA, Kimirei IA, Seehausen O, Wagner CE. Admixture and environmental fluctuations shape the evolutionary history of a predator radiation in East Africa's Lake Tanganyika. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633002. [PMID: 39868196 PMCID: PMC11761459 DOI: 10.1101/2025.01.14.633002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Top predators have oversized impacts on food webs and ecosystem dynamics, and introducing a novel predator to a naive environment can have dramatic consequences for endemic biodiversity. Lake Tanganyika is unique among African lakes in the diversity of the pelagic top predators in the genus Lates, where four species are endemic to the lake. Using a combination of reduced-representation and whole genome resequencing data, and pairing these with phylogenetic and demographic modeling approaches, we find that Lates colonization of Lake Tanganyika was much more recent (~1-2 Mya) than other major and diverse clades within the lake. Demographic modeling suggests that diversification among Lates species within the lake occurred during a time period of dramatic changes in lake levels driven by glacial-interglacial cycles, supporting a role of these fluctuations as a "species pump" for lacustrine taxa. We further find that these lake level fluctuations likely contributed to multiple bouts of admixture among Lates species during the mid- to late-Pleistocene (~90-500 Kya). Together, our findings suggest a dynamic and environmentally linked evolutionary history of the Lates radiation with the potential for dramatic ecosystem consequences for the taxa already present in Lake Tanganyika prior to Lates colonization and diversification. Significance Statement When introduced to novel ecosystems, top predators can cause major alterations to biodiversity and food webs. Species introductions to novel habitats can also provide invading taxa with ecological opportunities that facilitate evolutionary diversification. Here, we find evidence that the radiation of endemic top predators in East Africa's Lake Tanganyika originated surprisingly recently, and that these species have experienced periods of hybridization with a widespread riverine relative throughout their history. These findings have major implications for the history of the lake and suggest that the introduction of Nile perch into Lake Victoria, which caused dramatic ecosystem and food web changes, may be a contemporary analog to the historical events in Lake Tanganyika.
Collapse
Affiliation(s)
- Jessica A. Rick
- School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA
| | - Julian Junker
- Center for Ecology, Evolution, and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Evolution, Institute of Ecology & Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Alexander L. Lewanski
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Brittany Swope
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| | - Michael M. McGlue
- Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA
| | | | - Ismael A. Kimirei
- Tanzanian Fisheries Research Institute, Kunduchi, 14122 Dar es Salaam, Tanzania
| | - Ole Seehausen
- Division of Aquatic Ecology & Evolution, Institute of Ecology & Evolution, University of Bern, CH-3012 Bern, Switzerland
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Catherine E. Wagner
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
- Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
4
|
Nekola JC, Divíšek J, Horsák M. The ghost of ice ages past: Impact of Last Glacial Maximum landscapes on modern biodiversity. iScience 2024; 27:111272. [PMID: 39628579 PMCID: PMC11613197 DOI: 10.1016/j.isci.2024.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024] Open
Abstract
Modeled modern and Last Glacial Maximum (LGM) climate ranges for 47 genetically confirmed small Holarctic land snails documented profound landscape dynamism over the last 21,000 years. Following deglaciation, range areas tended to increase by 50% while isolating barrier widths were cut in half. At the same time, the nature of isolating barriers underwent profound change, with the North American continental ice sheet becoming as important in the LGM as the Atlantic Ocean is today in separating Nearctic and Palearctic faunas. Because appropriate modern climate occurs for these species throughout the Holarctic, with no clear barriers being present-especially for such efficient passive dispersers-the current >90% turnover observed between Eurasian and North American species pools appears at least in part related to the LGM landscape. Understanding current and predicting potential future biodiversity patterns thus requires consideration of the landscape template across at least 15,000 years time scales.
Collapse
Affiliation(s)
- Jeffrey C. Nekola
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Jan Divíšek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Michal Horsák
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| |
Collapse
|
5
|
Chhina AK, Abhari N, Mooers A, Lewthwaite JMM. Linking the spatial and genomic structure of adaptive potential for conservation management: a review. Genome 2024; 67:403-423. [PMID: 39083766 DOI: 10.1139/gen-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e., its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e., its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.
Collapse
Affiliation(s)
- Avneet K Chhina
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Niloufar Abhari
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Arne Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Jayme M M Lewthwaite
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Rancilhac L, Enbody ED, Harris R, Saitoh T, Irestedt M, Liu Y, Lei F, Andersson L, Alström P. Introgression Underlies Phylogenetic Uncertainty But Not Parallel Plumage Evolution in a Recent Songbird Radiation. Syst Biol 2024; 73:12-25. [PMID: 37801684 PMCID: PMC11129591 DOI: 10.1093/sysbio/syad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/08/2023] Open
Abstract
Instances of parallel phenotypic evolution offer great opportunities to understand the evolutionary processes underlying phenotypic changes. However, confirming parallel phenotypic evolution and studying its causes requires a robust phylogenetic framework. One such example is the "black-and-white wagtails," a group of 5 species in the songbird genus Motacilla: 1 species, Motacilla alba, shows wide intra-specific plumage variation, while the 4r others form 2 pairs of very similar-looking species (M. aguimp + M. samveasnae and M. grandis + M. maderaspatensis, respectively). However, the 2 species in each of these pairs were not recovered as sisters in previous phylogenetic inferences. Their relationships varied depending on the markers used, suggesting that gene tree heterogeneity might have hampered accurate phylogenetic inference. Here, we use whole genome resequencing data to explore the phylogenetic relationships within this group, with a special emphasis on characterizing the extent of gene tree heterogeneity and its underlying causes. We first used multispecies coalescent methods to generate a "complete evidence" phylogenetic hypothesis based on genome-wide variants, while accounting for incomplete lineage sorting (ILS) and introgression. We then investigated the variation in phylogenetic signal across the genome to quantify the extent of discordance across genomic regions and test its underlying causes. We found that wagtail genomes are mosaics of regions supporting variable genealogies, because of ILS and inter-specific introgression. The most common topology across the genome, supporting M. alba and M. aguimp as sister species, appears to be influenced by ancient introgression. Additionally, we inferred another ancient introgression event, between M. alba and M. grandis. By combining results from multiple analyses, we propose a phylogenetic network for the black-and-white wagtails that confirms that similar phenotypes evolved in non-sister lineages, supporting parallel plumage evolution. Furthermore, the inferred reticulations do not connect species with similar plumage coloration, suggesting that introgression does not underlie parallel plumage evolution in this group. Our results demonstrate the importance of investing genome-wide patterns of gene tree heterogeneity to help understand the mechanisms underlying phenotypic evolution. [Gene tree heterogeneity; incomplete lineage sorting; introgression; parallel evolution; phylogenomics; plumage evolution; wagtails.].
Collapse
Affiliation(s)
- Loïs Rancilhac
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36 Uppsala, Sweden
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Biomolecular Engineering, University of California, 95064 Santa Cruz, CA, USA
| | - Rebecca Harris
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Takema Saitoh
- Yamashina Institute for Ornithology, 115 Konoyama, Abiko, Chiba 270-1145, Japan
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm, Sweden
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Per Alström
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36 Uppsala, Sweden
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
7
|
Verry AJF, Mas-Carrió E, Gibb GC, Dutoit L, Robertson BC, Waters JM, Rawlence NJ. Ancient mitochondrial genomes unveil the origins and evolutionary history of New Zealand's enigmatic takahē and moho. Mol Ecol 2024; 33:e17227. [PMID: 38018770 DOI: 10.1111/mec.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Many avian species endemic to Aotearoa New Zealand were driven to extinction or reduced to relict populations following successive waves of human arrival, due to hunting, habitat destruction and the introduction of mammalian predators. Among the affected species were the large flightless South Island takahē (Porphyrio hochstetteri) and the moho (North Island takahē; P. mantelli), with the latter rendered extinct and the former reduced to a single relictual population. Little is known about the evolutionary history of these species prior to their decline and/or extinction. Here we sequenced mitochondrial genomes from takahē and moho subfossils (12 takahē and 4 moho) and retrieved comparable sequence data from takahē museum skins (n = 5) and contemporary individuals (n = 17) to examine the phylogeny and recent evolutionary history of these species. Our analyses suggest that prehistoric takahē populations lacked deep phylogeographic structure, in contrast to moho, which exhibited significant spatial genetic structure, albeit based on limited sample sizes (n = 4). Temporal genetic comparisons show that takahē have lost much of their mitochondrial genetic diversity, likely due to a sudden demographic decline soon after human arrival (~750 years ago). Time-calibrated phylogenetic analyses strongly support a sister species relationship between takahē and moho, suggesting these flightless taxa diverged around 1.5 million years ago, following a single colonisation of New Zealand by a flighted Porphyrio ancestor approximately 4 million years ago. This study highlights the utility of palaeogenetic approaches for informing the conservation and systematic understanding of endangered species whose ranges have been severely restricted by anthropogenic impacts.
Collapse
Affiliation(s)
- Alexander J F Verry
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Eduard Mas-Carrió
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Gillian C Gibb
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Jonathan M Waters
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Nevado B, Atchison GW, Bridges EL, Orzell S, Filatov D, Hughes CE. Pleistocene diversification of unifoliolate-leaved Lupinus (Leguminosae: Papilionoideae) in Florida. Mol Ecol 2024; 33:e17232. [PMID: 38205900 DOI: 10.1111/mec.17232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024]
Abstract
The importance and prevalence of recent ice-age and post-glacial speciation and species diversification during the Pleistocene across many organismal groups and physiographic settings are well established. However, the extent to which Pleistocene diversification can be attributed to climatic oscillations and their effects on distribution ranges and population structure remains debatable. In this study, we use morphologic, geographic and genetic (RADseq) data to document Pleistocene speciation and intra-specific diversification of the unifoliolate-leaved clade of Florida Lupinus, a small group of species largely restricted to inland and coastal sand ridges across the Florida peninsula and panhandle. Phylogenetic and demographic analyses alongside morphological and geographic evidence suggest that recent speciation and intra-specific divergence within this clade were driven by a combination of non-adaptive allopatric divergence caused by edaphic niche conservatism and opportunities presented by the emergence of new post-glacial sand ridge habitats. These results highlight the central importance of even modest geographic isolation and short periods of allopatric divergence following range expansion in the emergence of new taxa and add to the growing evidence that Pleistocene climatic oscillations may contribute to rapid diversification in a myriad of physiographic settings. Furthermore, our results shed new light on long-standing taxonomic debate surrounding the number of species in the Florida unifoliate Lupinus clade providing support for recognition of five species and a set of intra-specific variants. The important conservation implications for the narrowly restricted, highly endangered species Lupinus aridorum, which we show to be genetically distinct from its sister species Lupinus westianus, are discussed.
Collapse
Affiliation(s)
- Bruno Nevado
- Faculty of Sciences, cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, University of Lisbon, Lisbon, Portugal
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Guy W Atchison
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Edwin L Bridges
- Botanical and Ecological Consultant, Gig Harbor, Washington, USA
| | - Steve Orzell
- Avon Park Air Force Range, Avon Park, Florida, USA
| | | | - Colin E Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Winker K, Withrow JJ, Gibson DD, Pruett CL. Beringia as a high-latitude engine of avian speciation. Biol Rev Camb Philos Soc 2023; 98:1081-1099. [PMID: 36879465 DOI: 10.1111/brv.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Beringia is a biogeographically dynamic region that extends from northeastern Asia into northwestern North America. This region has affected avian divergence and speciation in three important ways: (i) by serving as a route for intercontinental colonisation between Asia and the Americas; (ii) by cyclically splitting (and often reuniting) populations, subspecies, and species between these continents; and (iii) by providing isolated refugia through glacial cycles. The effects of these processes can be seen in taxonomic splits of shallow to increasing depths and in the presence of regional endemics. We review the taxa involved in the latter two processes (splitting-reuniting and isolation), with a focus on three research topics: avian diversity, time estimates of the generation of that diversity, and the regions within Beringia that might have been especially important. We find that these processes have generated substantial amounts of avian diversity, including 49 pairs of avian subspecies or species whose breeding distributions largely replace one another across the divide between the Old World and the New World in Beringia, and 103 avian species and subspecies endemic to this region. Among endemics, about one in three is recognised as a full biological species. Endemic taxa in the orders Charadriiformes (shorebirds, alcids, gulls, and terns) and Passeriformes (perching birds) are particularly well represented, although they show very different levels of diversity through evolutionary time. Endemic Beringian Charadriiformes have a 1.31:1 ratio of species to subspecies. In Passeriformes, endemic taxa have a 0.09:1 species-to-subspecies ratio, suggesting that passerine (and thus terrestrial) endemism might be more prone to long-term extinction in this region, although such 'losses' could occur through their being reconnected with wider continental populations during favourable climatic cycles (e.g. subspecies reintegration with other populations). Genetic evidence suggests that most Beringian avian taxa originated over the past 3 million years, confirming the importance of Quaternary processes. There seems to be no obvious clustering in their formation through time, although there might be temporal gaps with lower rates of diversity generation. For at least 62 species, taxonomically undifferentiated populations occupy this region, providing ample potential for future evolutionary diversification.
Collapse
Affiliation(s)
- Kevin Winker
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Jack J Withrow
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Daniel D Gibson
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Christin L Pruett
- Department of Biology, Ouachita Baptist University, 410 Ouachita St, Arkadelphia, AR, 71998, USA
| |
Collapse
|
10
|
Choi S, Hauber ME, Legendre LJ, Kim NH, Lee YN, Varricchio DJ. Microstructural and crystallographic evolution of palaeognath (Aves) eggshells. eLife 2023; 12:e81092. [PMID: 36719067 PMCID: PMC9889092 DOI: 10.7554/elife.81092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/11/2022] [Indexed: 02/01/2023] Open
Abstract
The avian palaeognath phylogeny has been recently revised significantly due to the advancement of genome-wide comparative analyses and provides the opportunity to trace the evolution of the microstructure and crystallography of modern dinosaur eggshells. Here, eggshells of all major clades of Palaeognathae (including extinct taxa) and selected eggshells of Neognathae and non-avian dinosaurs are analysed with electron backscatter diffraction. Our results show the detailed microstructures and crystallographies of (previously) loosely categorized ostrich-, rhea-, and tinamou-style morphotypes of palaeognath eggshells. All rhea-style eggshell appears homologous, while respective ostrich-style and tinamou-style morphotypes are best interpreted as homoplastic morphologies (independently acquired). Ancestral state reconstruction and parsimony analysis additionally show that rhea-style eggshell represents the ancestral state of palaeognath eggshells both in microstructure and crystallography. The ornithological and palaeontological implications of the current study are not only helpful for the understanding of evolution of modern and extinct dinosaur eggshells, but also aid other disciplines where palaeognath eggshells provide useful archive for comparative contrasts (e.g. palaeoenvironmental reconstructions, geochronology, and zooarchaeology).
Collapse
Affiliation(s)
- Seung Choi
- Department of Earth Sciences, Montana State UniversityBozemanUnited States
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-ChampaignUrbanaUnited States
| | - Lucas J Legendre
- Department of Geological Sciences, University of Texas at AustinAustinUnited States
| | - Noe-Heon Kim
- School of Earth and Environmental Sciences, Seoul National UniversitySeoulRepublic of Korea
- Department of Geosciences, Princeton UniversityPrincetonUnited States
| | - Yuong-Nam Lee
- School of Earth and Environmental Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - David J Varricchio
- Department of Earth Sciences, Montana State UniversityBozemanUnited States
| |
Collapse
|
11
|
Westbury MV, De Cahsan B, Shepherd LD, Holdaway RN, Duchene DA, Lorenzen ED. Genomic insights into the evolutionary relationships and demographic history of kiwi. PLoS One 2022; 17:e0266430. [PMID: 36215252 PMCID: PMC9550048 DOI: 10.1371/journal.pone.0266430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Kiwi are a unique and emblematic group of birds endemic to New Zealand. Deep-time evolutionary relationships among the five extant kiwi species have been difficult to resolve, in part due to the absence of pre-Quaternary fossils to inform speciation events. Here, we utilise single representative nuclear genomes of all five extant kiwi species (great spotted kiwi, little spotted kiwi, Okarito brown kiwi, North Island brown kiwi, and southern brown kiwi) and investigate their evolutionary histories with phylogenomic, genetic diversity, and deep-time (past million years) demographic analyses. We uncover relatively low levels of gene-tree phylogenetic discordance across the genomes, suggesting clear distinction between species. However, we also find indications of post-divergence gene flow, concordant with recent reports of interspecific hybrids. The four species for which unbiased levels of genetic diversity could be calculated, due to the availability of reference assemblies (all species except the southern brown kiwi), show relatively low levels of genetic diversity, which we suggest reflects a combination of older environmental as well as more recent anthropogenic influence. In addition, we suggest hypotheses regarding the impact of known past environmental events, such as volcanic eruptions and glacial periods, on the similarities and differences observed in the demographic histories of the five kiwi species over the past million years.
Collapse
Affiliation(s)
- Michael V. Westbury
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (MVW); (EDL)
| | - Binia De Cahsan
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lara D. Shepherd
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Richard N. Holdaway
- Palaecol Research Ltd, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | | | - Eline D. Lorenzen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (MVW); (EDL)
| |
Collapse
|
12
|
Verry AJF, Lubbe P, Mitchell KJ, Rawlence NJ. Thirty years of ancient DNA and the faunal biogeography of Aotearoa New Zealand: lessons and future directions. J R Soc N Z 2022; 54:75-97. [PMID: 39439471 PMCID: PMC11459812 DOI: 10.1080/03036758.2022.2093227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Thirty years ago, DNA sequences were obtained from an extinct Aotearoa New Zealand animal for the first time. Since then, ancient DNA research has provided many - often unexpected - insights into the origins of New Zealand's terrestrial and marine vertebrate fauna. Because recent human activities in New Zealand have caused the decline or extinction of many endemic plant, bird, reptile, and marine mammal species, ancient DNA has been instrumental in reconstructing their identities and origins. However, most ancient DNA studies focusing on New Zealand species have been restricted to vertebrates, with small sample sizes, and/or relatively few genetic markers. This has limited their power to infer fine-scale biogeographic patterns, including (pre)historic distributions and range-shifts driven by past climate and environmental change. Recently, 'next-generation' methodological and technological advances have broadened the range of hypotheses that can feasibly be tested with ancient DNA. These advances represent an exciting opportunity for further exploring New Zealand biogeography using ancient DNA, but their promise has not yet been fully realised. In this review, we summarise the last 30 years of ancient DNA research into New Zealand faunal biogeography and highlight key objectives, challenges, and possibilities for the next 30 years and beyond.
Collapse
Affiliation(s)
- Alexander J. F. Verry
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
- Centre for Anthropobiology and Genomics of Toulouse, Faculté de Médecine Purpan, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Pascale Lubbe
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Kieren J. Mitchell
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nicolas J. Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Feijen F, Zajac N, Vorburger C, Blasco-Costa I, Jokela J. Phylogeography and Cryptic Species Structure of a Locally Adapted Parasite in New Zealand. Mol Ecol 2022; 31:4112-4126. [PMID: 35726517 PMCID: PMC9541338 DOI: 10.1111/mec.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
Phylogeographic patterns of many taxa on New Zealand's South Island are characterised by disjunct distributions that have been attributed to Pleistocene climatic cycles and the formation of the Southern Alps. Pleistocene glaciation has also been implicated in shaping the contemporary genetic differentiation between populations of the aquatic snail Potamopyrgus antipodarum. We investigated whether similar phylogeographic patterns exist for the snail's locally adapted trematode parasite, Atriophallophorus winterbourni. We found evidence for a barrier to gene-flow in sympatry between cryptic, but ecologically divergent species. When focusing on the most common of these species, disjunct geographic distributions are found for mitochondrial lineages that diverged during the Pleistocene. The boundary between these distributions is found in the central part of the South Island and reinforced by low cross-alpine migration. Further support for a vicariant origin of the phylogeographic pattern was found when assessing nuclear multilocus SNP data. Nuclear and mitochondrial population differentiation was concordant in pattern, except for populations in a potential secondary contact zone. Additionally, we found larger than expected differentiation between nuclear- and mitochondrial-based empirical Bayes FST estimates (global FST : 0.02 versus 0.39 for nuclear and mitochondrial data, respectively). Population subdivision is theoretically expected to be stronger for mitochondrial genomes due to a smaller effective population size, but the strong difference here, together with mito-nuclear discordance in a putative contact zone, is potentially indicative of divergent gene flow of nuclear and mitochondrial genomes.
Collapse
Affiliation(s)
- Frida Feijen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,ETH-Zurich, Department of Environmental Systems Sciences, Institute of Integrative Biology, Zürich, Switzerland
| | - Natalia Zajac
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,ETH-Zurich, Department of Environmental Systems Sciences, Institute of Integrative Biology, Zürich, Switzerland.,Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Zürich, Switzerland
| | - Christoph Vorburger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,ETH-Zurich, Department of Environmental Systems Sciences, Institute of Integrative Biology, Zürich, Switzerland
| | - Isabel Blasco-Costa
- Natural History Museum of Geneva, PO, Geneva, Switzerland.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, PO, Tromsø, Norway
| | - Jukka Jokela
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,ETH-Zurich, Department of Environmental Systems Sciences, Institute of Integrative Biology, Zürich, Switzerland
| |
Collapse
|
14
|
Bemmels JB, Haddrath O, Colbourne RM, Robertson HA, Weir JT. Legacy of supervolcanic eruptions on population genetic structure of brown kiwi. Curr Biol 2022; 32:3389-3397.e8. [PMID: 35728597 DOI: 10.1016/j.cub.2022.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Supervolcanoes are volcanoes capable of mega-colossal eruptions that emit more than 1,000 km3 of ash and other particles.1 The earth's most recent mega-colossal eruption was the Oruanui eruption of the Taupo supervolcano 25,580 years before present (YBP) on the central North Island of New Zealand.2 This eruption blanketed major swaths of the North Island in thick layers of ash and igneous rock,2,3 devastating habitats and likely causing widespread population extinctions.4-7 An additional devastating super-colossal eruption (>100 km3) of the Taupo supervolcano occurred approximately 1,690 YBP.8 The impacts of such massive but ephemeral natural disasters on contemporary population genetic structure remain underexplored. Here, we combined data for 4,951 SNPs with spatially explicit demographic and coalescent models within an approximate Bayesian computation framework to test the drivers of genetic structure in brown kiwi (Apteryx mantelli). Our results strongly support the importance of eruptions of the Taupo supervolcano in restructuring pre-existing geographic patterns of population differentiation and genetic diversity. Range shifts due to climatic oscillations-a frequent explanation for genetic structure9-are insufficient to fully explain the empirical data. Meanwhile, recent range contraction and fragmentation due to historically documented anthropogenic habitat alteration adds no explanatory power to our models. Our results support a major role for cycles of destruction and post-volcanic recolonization in restructuring the population genomic landscape of brown kiwi and highlight how ancient and ephemeral mega-disasters may leave a lasting legacy on patterns of intraspecific genetic variation.
Collapse
Affiliation(s)
- Jordan B Bemmels
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Oliver Haddrath
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Rogan M Colbourne
- Department of Conservation, PO Box 10420, Wellington 6140, New Zealand
| | - Hugh A Robertson
- Department of Conservation, PO Box 10420, Wellington 6140, New Zealand
| | - Jason T Weir
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada.
| |
Collapse
|
15
|
Banerjee AK, Feng H, Guo W, Harms NE, Xie H, Liang X, Xing F, Lin Y, Shao H, Guo Z, Ng WL, Huang Y. Glacial vicariance and oceanic circulation shape population structure of the coastal legume Derris trifoliata in the Indo-West Pacific. AMERICAN JOURNAL OF BOTANY 2022; 109:1016-1034. [PMID: 35419829 DOI: 10.1002/ajb2.1851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
PREMISE The phylogeography of coastal plant species is shaped by contemporary and historical biogeographic processes. In this study, we aim to decipher the phylogeography of Derris trifoliata, a woody legume of relatively recent origin and wide distribution, in coastal areas in the Indo-West Pacific (IWP) region. METHODS Genetic diversity and population structure were assessed by analyzing six nuclear and three chloroplast DNA sequences from 30 populations across the species' range. Phylogeography was inferred by estimating gene flow, divergence time, historical population size changes, and historical habitat suitability using paleoclimatic niche modeling. RESULTS High genetic diversity was observed at the species level. The populations of three oceanic regions included in this study (i.e., Indian Ocean, South China Sea, and Pacific Ocean) formed distinct clades and likely diverged during the late Pleistocene. Potential barriers to gene flow were identified, including the Sunda and Sahul shelves, geographic distance, and current patterns of oceanic circulation. Analysis of changes in population size supported the bottleneck model, which was strengthened by estimates of habitat suitability across paleoclimatic conditions. CONCLUSIONS The once widespread distribution of D. trifoliata was fragmented by changes in climatic suitability and biogeographic barriers that arose following sea-level changes during the Pleistocene. In addition, contemporary patterns of oceanic circulation and geographic distance between populations appear to maintain genetic differentiation across its distribution in the IWP.
Collapse
Affiliation(s)
- Achyut Kumar Banerjee
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Hui Feng
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Wuxia Guo
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
- Department of Bioengineering, Zunyi Medical University, Zhuhai, 519041 Guangdong, China
| | - Nathan E Harms
- US Army Engineer Research and Development Center, Lewisville, TX 75057, USA
| | - Hongxian Xie
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Xinru Liang
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Fen Xing
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Yuting Lin
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Huiyu Shao
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Zixiao Guo
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University, Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Yelin Huang
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| |
Collapse
|
16
|
Marske KA, Boyer SL. Phylogeography reveals the complex impact of the Last Glacial Maximum on New Zealand's terrestrial biota. J R Soc N Z 2022; 54:8-29. [PMID: 39439472 PMCID: PMC11459792 DOI: 10.1080/03036758.2022.2079682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
We review the major phylogeographic patterns in Aotearoa New Zealand's terrestrial flora and fauna that have been associated with the Ōtira Glaciation of the Pleistocene, the end of which coincides with the global Last Glacial Maximum (LGM). We focus on (1) the complexity of biogeographic histories of New Zealand species, with LGM-driven phenomena overlaying the impacts of mountain-building and other drivers of phylogeographic structure; (2) the locations of glacial refugia and sets of taxa which may have shared refugia; and (3) the role of glaciation in driving diversification. We end with a brief focus on the next directions, including what can we learn about New Zealand's glacial history by expanding our phylogeographic toolbox to include genomic methods and hypothesis-driven inference methods. We provide follow-up questions which take advantage of the wealth of phylogeographic data for New Zealand.
Collapse
Affiliation(s)
| | - Sarah L. Boyer
- Biology Department, Macalester College, St. Paul, MN, USA
| |
Collapse
|
17
|
Verry AJF, Mitchell KJ, Rawlence NJ. Genetic evidence for post-glacial expansion from a southern refugium in the eastern moa ( Emeus crassus). Biol Lett 2022; 18:20220013. [PMID: 35538842 PMCID: PMC9091836 DOI: 10.1098/rsbl.2022.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
Cycles of glacial expansion and contraction throughout the Pleistocene drove increases and decreases, respectively, in the geographical range and population size of many animal species. Genetic data have revealed that during glacial maxima the distribution of many Eurasian animals was restricted to small refugial areas, from which species expanded to reoccupy parts of their former range as the climate warmed. It has been suggested that the extinct eastern moa (Emeus crassus)-a large, flightless bird from New Zealand-behaved analogously during glacial maxima, possibly surviving only in a restricted area of lowland habitat in the southern South Island of New Zealand during the Last Glacial Maximum (LGM). However, previous studies have lacked the power and geographical sampling to explicitly test this hypothesis using genetic data. Here we analyse 46 ancient mitochondrial genomes from Late Pleistocene and Holocene bones of the eastern moa from across their post-LGM distribution. Our results are consistent with a post-LGM increase in the population size and genetic diversity of eastern moa. We also demonstrate that genetic diversity was higher in eastern moa from the southern extent of their range, supporting the hypothesis that they expanded from a single glacial refugium following the LGM.
Collapse
Affiliation(s)
- Alexander J. F. Verry
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
| | - Kieren J. Mitchell
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nicolas J. Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Shepherd L, Simon C, Langton-Myers S, Morgan-Richards M. Insights into Aotearoa New Zealand's biogeographic history provided by the study of natural hybrid zones. J R Soc N Z 2022; 54:55-74. [PMID: 39439473 PMCID: PMC11459830 DOI: 10.1080/03036758.2022.2061020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Hybridisation is commonly observed in geographical zones of contact between distinct lineages. These contact zones have long been of interest for biogeographers because they provide insight into the evolutionary and ecological processes that influence the distribution of species as well as the process of speciation. Here we review research on hybrid zones and zones of past introgression, both terrestrial and marine, in Aotearoa New Zealand. Many of New Zealand's hybrid zones occur between lineages or species that diverged prior to the Last Glacial Maximum (LGM), with numerous divergences dating to the early Pleistocene or Pliocene. Few secondary contact zones have been detected in terrestrial plants and in marine taxa. This may reflect a lack of the intensive sampling required to detect hybrid zones in these groups but for plants may also indicate widespread Pleistocene survival across the country. Lastly, we suggest avenues for research into New Zealand hybrid zones that are likely to be fruitful.
Collapse
Affiliation(s)
- Lara Shepherd
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | | |
Collapse
|
19
|
MacPherson A, Wang S, Yamaguchi R, Rieseberg L, Otto S. Parental Population Range Expansion Before Secondary Contact Promotes Heterosis. Am Nat 2022; 200:E1-E15. [DOI: 10.1086/719656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Bemmels JB, Mikkelsen EK, Haddrath O, Colbourne RM, Robertson HA, Weir JT. Demographic decline and lineage-specific adaptations characterize New Zealand kiwi. Proc Biol Sci 2021; 288:20212362. [PMID: 34905706 PMCID: PMC8670953 DOI: 10.1098/rspb.2021.2362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small and fragmented populations may become rapidly differentiated due to genetic drift, making it difficult to distinguish whether neutral genetic structure is a signature of recent demographic events, or of long-term evolutionary processes that could have allowed populations to adaptively diverge. We sequenced 52 whole genomes to examine Holocene demographic history and patterns of adaptation in kiwi (Apteryx), and recovered 11 strongly differentiated genetic clusters corresponding to previously recognized lineages. Demographic models suggest that all 11 lineages experienced dramatic population crashes relative to early- or mid-Holocene levels. Small population size is associated with low genetic diversity and elevated genetic differentiation (FST), suggesting that population declines have strengthened genetic structure and led to the loss of genetic diversity. However, population size is not correlated with inbreeding rates. Eight lineages show signatures of lineage-specific selective sweeps (284 sweeps total) that are unlikely to have been caused by demographic stochasticity. Overall, these results suggest that despite strong genetic drift associated with recent bottlenecks, most kiwi lineages possess unique adaptations and should be recognized as separate adaptive units in conservation contexts. Our work highlights how whole-genome datasets can address longstanding uncertainty about the evolutionary and conservation significance of small and fragmented populations of threatened species.
Collapse
Affiliation(s)
- Jordan B. Bemmels
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
| | - Else K. Mikkelsen
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
| | - Oliver Haddrath
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Canada ON M5S 2C6
| | | | | | - Jason T. Weir
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Canada ON M5S 2C6
| |
Collapse
|
21
|
Galbraith JD, Kortschak RD, Suh A, Adelson DL. Genome Stability Is in the Eye of the Beholder: CR1 Retrotransposon Activity Varies Significantly across Avian Diversity. Genome Biol Evol 2021; 13:6433158. [PMID: 34894225 PMCID: PMC8665684 DOI: 10.1093/gbe/evab259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since the sequencing of the zebra finch genome it has become clear that avian genomes, while largely stable in terms of chromosome number and gene synteny, are more dynamic at an intrachromosomal level. A multitude of intrachromosomal rearrangements and significant variation in transposable element (TE) content have been noted across the avian tree. TEs are a source of genome plasticity, because their high similarity enables chromosomal rearrangements through nonallelic homologous recombination, and they have potential for exaptation as regulatory and coding sequences. Previous studies have investigated the activity of the dominant TE in birds, chicken repeat 1 (CR1) retrotransposons, either focusing on their expansion within single orders, or comparing passerines with nonpasserines. Here, we comprehensively investigate and compare the activity of CR1 expansion across orders of birds, finding levels of CR1 activity vary significantly both between and within orders. We describe high levels of TE expansion in genera which have speciated in the last 10 Myr including kiwis, geese, and Amazon parrots; low levels of TE expansion in songbirds across their diversification, and near inactivity of TEs in the cassowary and emu for millions of years. CR1s have remained active over long periods of time across most orders of neognaths, with activity at any one time dominated by one or two families of CR1s. Our findings of higher TE activity in species-rich clades and dominant families of TEs within lineages mirror past findings in mammals and indicate that genome evolution in amniotes relies on universal TE-driven processes.
Collapse
Affiliation(s)
- James D Galbraith
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | | | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.,Department of Organismal Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Sweden
| | - David L Adelson
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Warmuth VM, Burgess MD, Laaksonen T, Manica A, Mägi M, Nord A, Primmer CR, Sætre GP, Winkel W, Ellegren H. Major population splits coincide with episodes of rapid climate change in a forest-dependent bird. Proc Biol Sci 2021; 288:20211066. [PMID: 34727712 PMCID: PMC8564624 DOI: 10.1098/rspb.2021.1066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Climate change influences population demography by altering patterns of gene flow and reproductive isolation. Direct mutation rates offer the possibility for accurate dating on the within-species level but are currently only available for a handful of vertebrate species. Here, we use the first directly estimated mutation rate in birds to study the evolutionary history of pied flycatchers (Ficedula hypoleuca). Using a combination of demographic inference and species distribution modelling, we show that all major population splits in this forest-dependent system occurred during periods of increased climate instability and rapid global temperature change. We show that the divergent Spanish subspecies originated during the Eemian-Weichselian transition 115-104 thousand years ago (kya), and not during the last glacial maximum (26.5-19 kya), as previously suggested. The magnitude and rates of climate change during the glacial-interglacial transitions that preceded population splits in pied flycatchers were similar to, or exceeded, those predicted to occur in the course of the current, human-induced climate crisis. As such, our results provide a timely reminder of the strong impact that episodes of climate instability and rapid temperature changes can have on species' evolutionary trajectories, with important implications for the natural world in the Anthropocene.
Collapse
Affiliation(s)
- Vera M. Warmuth
- Department of Evolutionary Biology, Biozentrum Martinsried, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
| | - Malcolm D. Burgess
- Centre for Animal Behaviour, University of Exeter, Exeter, UK
- RSPB Centre for Conservation Science, Sandy, UK
| | - Toni Laaksonen
- Department of Biology, University of Turku, Turku, Finland
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marko Mägi
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Andreas Nord
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden
| | - Craig R. Primmer
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Finland
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Wolfgang Winkel
- Institute of Avian Research, ‘Vogelwarte Helgoland’, Wilhelmshaven, Germany
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Heck CT, Woodward HN. Intraskeletal bone growth patterns in the North Island Brown Kiwi (Apteryx mantelli): Growth mark discrepancy and implications for extinct taxa. J Anat 2021; 239:1075-1095. [PMID: 34258760 PMCID: PMC8546512 DOI: 10.1111/joa.13503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Osteohistology, the study of bone microstructure, provides an important avenue for assessing extinct and extant vertebrate growth and life history. Cortical vascularity and collagen fibre organization are direct reflections of growth rate, while bone growth marks are indicative of absolute age. However, each skeletal element has its own ontogenetic trajectory and microstructure of certain bones may not be a true representation of whole body growth. Extensive comparative study of modern taxa is required to resolve intraskeletal discrepancies among age, vascularity and tissue organization in extinct vertebrates. Despite their comparative utility, studies of bone microstructure in modern taxa are severely lacking. Here, we add to a growing comparative osteohistological database by describing (1) bone tissue organization, (2) growth mark count, (3) sexually dimorphic bone (e.g. medullary bone) and (4) secondary cortical reconstruction in the bone microstructure of a 14-year-old male and 5-year-old female North Island Brown Kiwi (Apteryx mantelli). Transverse and longitudinal histological ground sections were processed and described for femora, tibiotarsi, tarsometatarsi, humeri, ulnae and radii in both kiwis. Cortical bone can generally be described as parallel-fibered tissue, interrupted by cyclical growth marks, with vascular canals oriented longitudinally within primary and secondary osteons. Tissue morphologically resembling medullary bone is present in the hindlimbs of the female, and coarse compacted cancellous bone (CCCB) is found sporadically in the male and female hindlimbs. Lines of arrested growth (LAGs) are present in all hindlimb bones of both kiwi, but remodelling has obliterated all LAGs in the male ulnae and radii. LAG count varies intraskeletally, but large weight bearing elements such as femora and tibiotarsi have less remodelling and, thus, higher number of LAGs. LAG count did not match absolute age in any skeletal element; a maximum of seven LAGs are present in the male kiwi and a maximum of seven LAGs in the female kiwi. The tissue organization within the forelimbs and hindlimbs is reflective of the protracted growth strategy of the North Island Brown Kiwi and congruent with previous studies of the kiwi. LAGs were highly variable throughout the skeleton of the kiwi and a decoupling of age and LAG deposition is apparent from the male kiwi samples. Excess LAGs in the 5-year-old female kiwi may be a product of hatching, egg laying or captivity. Regardless, LAG count variation in the kiwi stresses the importance of intraskeletal sampling when assessing growth patterns of extinct taxa. An extensive ontogenetic sampling of kiwi is necessary for future investigations of bone growth patterns, CCCB formation, medullary bone and LAG deposition and obliteration in these elusive birds.
Collapse
Affiliation(s)
- Christian T. Heck
- Department of Biomedical SciencesOklahoma State University – Center for Health SciencesTulsaOKUSA
| | - Holly N. Woodward
- Department of Biomedical SciencesOklahoma State University – Center for Health SciencesTulsaOKUSA
| |
Collapse
|
24
|
Tang Q, Burri R, Liu Y, Suh A, Sundev G, Heckel G, Schweizer M. Seasonal migration patterns and the maintenance of evolutionary diversity in a cryptic bird radiation. Mol Ecol 2021; 31:632-645. [PMID: 34674334 PMCID: PMC9298432 DOI: 10.1111/mec.16241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 02/03/2023]
Abstract
Morphological differentiation associated with evolutionary diversification is often explained with adaptive benefits but the processes and mechanisms maintaining cryptic diversity are still poorly understood. Using genome‐wide data, we show here that the pale sand martin Riparia diluta in Central and East Asia consists of three genetically deeply differentiated lineages which vary only gradually in morphology but broadly reflect traditional taxonomy. We detected no signs of gene flow along the eastern edge of the Qinghai‐Tibetan plateau between lowland south‐eastern Chinese R. d. fohkienensis and high‐altitude R. d. tibetana. Largely different breeding and migration timing between these low and high altitude populations as indicated by phenology data suggests that allochrony might act as prezygotic isolation mechanism in the area where their ranges abut. Mongolian populations of R. d. tibetana, however, displayed signs of limited mixed ancestries with Central Asian R. d. diluta. Their ranges meet in the area of a well‐known avian migratory divide, where western lineages take a western migration route around the Qinghai‐Tibetan plateau to winter quarters in South Asia, and eastern lineages take an eastern route to Southeast Asia. This might also be the case between western R. d. diluta and eastern R. d. tibetana as indicated by differing wintering grounds. We hypothesize that hybrids might have nonoptimal intermediate migration routes and selection against them might restrict gene flow. Although further potential isolation mechanisms might exist in the pale sand martin, our study points towards contrasting migration behaviour as an important factor in maintaining evolutionary diversity under morphological stasis.
Collapse
Affiliation(s)
- Qindong Tang
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Natural History Museum, Bern, Switzerland
| | - Reto Burri
- Schweizerische Vogelwarte, Sempach, Switzerland
| | - Yang Liu
- State Key Laboratory of Biocontrol, College of Ecology School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Alexander Suh
- School of Biological Sciences-Organisms and the Environment, University of East Anglia, Norwich, UK.,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
| | - Gombobaatar Sundev
- National University of Mongolia and Mongolian Ornithological Society, Ulaanbaatar, Mongolia
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Manuel Schweizer
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Natural History Museum, Bern, Switzerland
| |
Collapse
|
25
|
Undin M, Lockhart PJ, Hills SFK, Armstrong DP, Castro I. Mixed Mating in a Multi-Origin Population Suggests High Potential for Genetic Rescue in North Island Brown Kiwi, Apteryx mantelli. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.702128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reinforcement translocations are increasingly utilised in conservation with the goal of achieving genetic rescue. However, concerns regarding undesirable results, such as genetic homogenisation or replacement, are widespread. One factor influencing translocation outcomes is the rate at which the resident and the introduced individuals interbreed. Consequently, post-release mate choice is a key behaviour to consider in conservation planning. Here we studied mating, and its consequences for genomic admixture, in the North Island brown kiwi Apteryx mantelli population on Ponui Island which was founded by two translocation events over 50 years ago. The two source populations used are now recognised as belonging to two separate management units between which birds differ in size and are genetically differentiated. We examined the correlation between male and female morphometrics for 17 known pairs and quantified the relatedness of 20 pairs from this admixed population. In addition, we compared the genetic similarity and makeup of 106 Ponui Island birds, including 23 known pairs, to birds representing the source populations for the original translocations. We found no evidence for size-assortative mating. On the contrary, genomic SNP data suggested that kiwi of one feather did not flock together, meaning that mate choice resulted in pairing between individuals that were less related than expected by random chance. Furthermore, the birds in the current Ponui Island population were found to fall along a gradient of genomic composition consistent with non-clustered representation of the two parental genomes. These findings indicate potential for successful genetic rescue in future Apteryx reinforcement translocations, a potential that is currently under utilised due to restrictive translocation policies. In light of our findings, we suggest that reconsideration of these policies could render great benefits for the future diversity of this iconic genus in New Zealand.
Collapse
|
26
|
|
27
|
Prasad A, Lorenzen ED, Westbury MV. Evaluating the role of reference-genome phylogenetic distance on evolutionary inference. Mol Ecol Resour 2021; 22:45-55. [PMID: 34176238 DOI: 10.1111/1755-0998.13457] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/26/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
When a high-quality genome assembly of a target species is unavailable, an option to avoid the costly de novo assembly process is a mapping-based assembly. However, mapping shotgun data to a distant relative may lead to biased or erroneous evolutionary inference. Here, we used short-read data from a mammal (beluga whale) and a bird species (rowi kiwi) to evaluate whether reference genome phylogenetic distance can impact downstream demographic (Pairwise Sequentially Markovian Coalescent) and genetic diversity (heterozygosity, runs of homozygosity) analyses. We mapped to assemblies of species of varying phylogenetic distance (from conspecific to genome-wide divergence of >7%), and de novo assemblies created using cross-species scaffolding. We show that while reference genome phylogenetic distance has an impact on demographic analyses, it is not pronounced until using a reference genome with >3% divergence from the target species. When mapping to cross-species scaffolded assemblies, we are unable to replicate the original beluga demographic results, but are able with the rowi kiwi, presumably reflecting the more fragmented nature of the beluga assemblies. We find that increased phylogenetic distance has a pronounced impact on genetic diversity estimates; heterozygosity estimates deviate incrementally with increasing phylogenetic distance. Moreover, runs of homozygosity are largely undetectable when mapping to any nonconspecific assembly. However, these biases can be reduced when mapping to a cross-species scaffolded assembly. Taken together, our results show that caution should be exercised when selecting reference genomes. Cross-species scaffolding may offer a way to avoid a costly, traditional de novo assembly, while still producing robust, evolutionary inference.
Collapse
Affiliation(s)
- Aparna Prasad
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
28
|
Thörn F, Rödin-Mörch P, Cortazar-Chinarro M, Richter-Boix A, Laurila A, Höglund J. The effects of drift and selection on latitudinal genetic variation in Scandinavian common toads (Bufo bufo) following postglacial recolonisation. Heredity (Edinb) 2021; 126:656-667. [PMID: 33564181 PMCID: PMC8115047 DOI: 10.1038/s41437-020-00400-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
Clinal variation is paramount for understanding the factors shaping genetic diversity in space and time. During the last glacial maximum, northern Europe was covered by glacial ice that rendered the region uninhabitable for most taxa. Different evolutionary processes during and after the recolonisation of this area from different glacial refugia have affected the genetic landscape of the present day European flora and fauna. In this study, we focus on the common toad (Bufo bufo) in Sweden and present evidence suggesting that these processes have resulted in two separate lineages of common toad, which colonised Sweden from two directions. Using ddRAD sequencing data for demographic modelling, structure analyses, and analysis of molecular variance (AMOVA), we provide evidence of a contact zone located between Uppland and Västerbotten in central Sweden. Genetic diversity was significantly higher in southern Sweden compared to the north, in accordance with a pattern of decreased genetic diversity with increasing distance from glacial refugia. Candidate genes under putative selection are identified through outlier detection and gene-environment association methods. We provide evidence of divergent selection related to stress response and developmental processes in these candidate genes. The colonisation of Sweden by two separate lineages may have implications for how future conservation efforts should be directed by identifying management units and putative local adaptations.
Collapse
Affiliation(s)
- Filip Thörn
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
- Department for Bioinformatics and Genetics, Swedish Natural History Museum, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Patrik Rödin-Mörch
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | | - Alex Richter-Boix
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Vieco‐Galvez D, Castro I, Morel PCH, Chua WH, Loh M. The eggshell structure in apteryx; form, function, and adaptation. Ecol Evol 2021; 11:3184-3202. [PMID: 33841776 PMCID: PMC8019059 DOI: 10.1002/ece3.7266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022] Open
Abstract
Apteryx is a genus of flightless birds endemic to New Zealand known to lay very large eggs in proportion to body weight. The eggshell of Apteryx is unusually thin and less porous than allometrically expected possibly as a compensation for a very long incubation period. Past studies have been carried out on Apteryx australis, a species which once comprised all kiwi with brown plumage, now separated into three distinct species. These species use different habitats and live at different latitudes and altitudes, therefore generating a need to revise our knowledge of the attributes of their eggshells. In this study, we measured the physical characteristics and water conductance on eggshell fragments of these three species and Great-spotted Kiwi and relate them to the environmental conditions of their respective environments; we also measured the water vapor conductance of Brown Kiwi eggs of late stages of incubation. We found that several trade-offs exist between incubation behavior, environmental conditions, and eggshell structure. We found differences between species in eggshell water vapor conductance seemingly related to altitude; Brown Kiwi and Rowi generally inhabiting lower altitudes had the highest conductance and Tokoeka, generally living in montane environments, the lowest. This is achieved by an increased eggshell thickness rather than a pore area reduction. Finally, the water vapor conductance late in incubation was 58% higher than infertile unincubated eggs, suggesting a drastic increase in conductance throughout the long incubation period. Using the values previously reported, we calculated the embryonic eggshell thinning to be 32.5% at the equatorial region of the eggshell. We describe several new features, such as triangular mineral particles in the cuticle, reported for the extinct Trigonoolithus amoei, and confirmed the existence of plugged pores. We suggest that these structures provide microbial protection needed by a burrow nesting species with a long incubation period.
Collapse
Affiliation(s)
- David Vieco‐Galvez
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Isabel Castro
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Patrick C. H. Morel
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Wei Hang Chua
- School of Health SciencesMassey UniversityPalmerston NorthNew Zealand
| | | |
Collapse
|
30
|
Laudanno G, Haegeman B, Rabosky DL, Etienne RS. Detecting Lineage-Specific Shifts in Diversification: A Proper Likelihood Approach. Syst Biol 2021; 70:389-407. [PMID: 32617585 PMCID: PMC7875465 DOI: 10.1093/sysbio/syaa048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 11/25/2022] Open
Abstract
The branching patterns of molecular phylogenies are generally assumed to contain information on rates of the underlying speciation and extinction processes. Simple birth-death models with constant, time-varying, or diversity-dependent rates have been invoked to explain these patterns. They have one assumption in common: all lineages have the same set of diversification rates at a given point in time. It seems likely, however, that there is variability in diversification rates across subclades in a phylogenetic tree. This has inspired the construction of models that allow multiple rate regimes across the phylogeny, with instantaneous shifts between these regimes. Several methods exist for calculating the likelihood of a phylogeny under a specified mapping of diversification regimes and for performing inference on the most likely diversification history that gave rise to a particular phylogenetic tree. Here, we show that the likelihood computation of these methods is not correct. We provide a new framework to compute the likelihood correctly and show, with simulations of a single shift, that the correct likelihood indeed leads to parameter estimates that are on average in much better agreement with the generating parameters than the incorrect likelihood. Moreover, we show that our corrected likelihood can be extended to multiple rate shifts in time-dependent and diversity-dependent models. We argue that identifying shifts in diversification rates is a nontrivial model selection exercise where one has to choose whether shifts in now-extinct lineages are taken into account or not. Hence, our framework also resolves the recent debate on such unobserved shifts. [Diversification; macroevolution; phylogeny; speciation].
Collapse
Affiliation(s)
- Giovanni Laudanno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700 CC, Groningen, The Netherlands
| | - Bart Haegeman
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, 09200, Moulis, France
| | - Daniel L Rabosky
- Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
31
|
Undin M, Lockhart PJ, Hills SFK, Castro I. Genetic Rescue and the Plight of Ponui Hybrids. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2020.622191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long-term sustainable and resilient populations is a key goal of conservation. How to best achieve this is controversial. There are, for instance, polarized views concerning the fitness and conservation value of hybrid populations founded through multi-origin translocations. A classic example concerns Apteryx (kiwi) in New Zealand. The A. mantelli of Ponui Island constitute a hybrid population where the birds are highly successful in their island habitat. A key dilemma for managers is understanding the reason for this success. Are the hybrid birds of Ponui Island of “no future conservation value” as recently asserted, or do they represent an outstanding example of genetic rescue and an important resource for future translocations? There has been a paradigm shift in scientific thinking concerning hybrids, but the ecological significance of admixed genomes remains difficult to assess. This limits what we can currently predict in conservation science. New understanding from genome science challenges the sufficiency of population genetic models to inform decision making and suggests instead that the contrasting outcomes of hybridization, “outbreeding depression” and “heterosis,” require understanding additional factors that modulate gene and protein expression and how these factors are influenced by the environment. We discuss these findings and the investigations that might help us to better understand the birds of Ponui, inform conservation management of kiwi and provide insight relevant for the future survival of Apteryx.
Collapse
|
32
|
Marske KA, Thomaz AT, Knowles LL. Dispersal barriers and opportunities drive multiple levels of phylogeographic concordance in the Southern Alps of New Zealand. Mol Ecol 2020; 29:4665-4679. [PMID: 32991032 DOI: 10.1111/mec.15655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/23/2020] [Accepted: 09/07/2020] [Indexed: 01/23/2023]
Abstract
Phylogeographic concordance, or the sharing of phylogeographic patterns among codistributed species, suggests similar responses to topography or climatic history. While the orientation and timing of breaks between lineages are routinely compared, spatial dynamics within regions occupied by individual lineages provide a second opportunity for comparing responses to past events. In environments with complex topography and glacial history, such as New Zealand's South Island, geographically nested comparisons can identify the processes leading to phylogeographic concordance between and within regional genomic clusters. Here, we used single nucleotide polymorphisms (obtained via ddRADseq) for two codistributed forest beetle species, Agyrtodes labralis (Leiodidae) and Brachynopus scutellaris (Staphylinidae), to evaluate the role of climate change and topography in shaping phylogeographic concordance at two, nested spatial scales: do species diverge over the same geographic barriers, with similar divergence times? And within regions delimited by these breaks, do species share similar spatial dynamics of directional expansion or isolation-by-distance? We found greater congruence of phylogeographic breaks between regions divided by the strongest dispersal barriers (i.e., the Southern Alps). However, these shared breaks were not indicative of shared spatial dynamics within the regions they delimit, and the most similar spatial dynamics between species occurred within regions with the strongest gradients in historical climatic stability. Our results indicate that lack of concordance as traditionally detected by lineage turnover does not rule out the possibility of shared histories, and variation in the presence and type of concordance may provide insights into the different processes shaping phylogeographic patterns across geologically dynamic regions.
Collapse
Affiliation(s)
- Katharine A Marske
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, OK, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andréa T Thomaz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá DC, Colombia
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Valente L, Etienne RS, Garcia-R JC. Deep Macroevolutionary Impact of Humans on New Zealand's Unique Avifauna. Curr Biol 2020; 29:2563-2569.e4. [PMID: 31386837 DOI: 10.1016/j.cub.2019.06.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 06/20/2019] [Indexed: 11/27/2022]
Abstract
Islands are at the frontline of the anthropogenic extinction crisis [1]. A vast number of island birds have gone extinct since human colonization [2], and an important proportion is currently threatened with extinction [3]. While the number of lost or threatened avian species has often been quantified [4], the macroevolutionary consequences of human impact on island biodiversity have rarely been measured [5]. Here, we estimate the amount of evolutionary time that has been lost or is under threat due to anthropogenic activity in a classic example, New Zealand. Half of its bird taxa have gone extinct since humans arrived [6, 7] and many are threatened [8], including lineages forming highly distinct branches in the avian tree of life [9-11]. Using paleontological and ancient DNA information, we compiled a dated phylogenetic dataset for New Zealand's terrestrial avifauna. We extend the method DAISIE developed for island biogeography [12] to allow for the fact that many of New Zealand's birds are evolutionarily isolated and use it to estimate natural rates of speciation, extinction, and colonization. Simulating under a range of human-induced extinction scenarios, we find that it would take approximately 50 million years (Ma) to recover the number of species lost since human colonization of New Zealand and up to 10 Ma to return to today's species numbers if currently threatened species go extinct. This study puts into macroevolutionary perspective the impact of humans in an isolated fauna and reveals how conservation decisions we take today will have repercussions for millions of years.
Collapse
Affiliation(s)
- Luis Valente
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany; Naturalis Biodiversity Center, Understanding Evolution Group, Darwinweg 2, 2333 CR Leiden, the Netherlands; University of Groningen, Groningen Institute for Evolutionary Life Sciences, P.O. Box 11103, 9700 CC Groningen, the Netherlands.
| | - Rampal S Etienne
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, P.O. Box 11103, 9700 CC Groningen, the Netherlands
| | - Juan C Garcia-R
- Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag, 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
34
|
De Cahsan B, Westbury MV. Complete mitochondrial genomes offer insights into the evolutionary relationships and comparative genetic diversity of New Zealand’s iconic kiwi (Apteryx spp.). NEW ZEALAND JOURNAL OF ZOOLOGY 2020. [DOI: 10.1080/03014223.2020.1766520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Binia De Cahsan
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael V. Westbury
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Fletcher NK, Acevedo P, Herman JS, Paupério J, Alves PC, Searle JB. Glacial cycles drive rapid divergence of cryptic field vole species. Ecol Evol 2019; 9:14101-14113. [PMID: 31938506 PMCID: PMC6953675 DOI: 10.1002/ece3.5846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 11/07/2022] Open
Abstract
Understanding the factors that contribute to the generation of reproductively isolated forms is a fundamental goal of evolutionary biology. Cryptic species are an especially interesting challenge to study in this context since they lack obvious morphological differentiation that provides clues to adaptive divergence that may drive reproductive isolation. Geographical isolation in refugial areas during glacial cycling is known to be important for generating genetically divergent populations, but its role in the origination of new species is still not fully understood and likely to be situation dependent. We combine analysis of 35,434 single-nucleotide polymorphisms (SNPs) with environmental niche modeling (ENM) to investigate genomic and ecological divergence in three cryptic species formerly classified as the field vole (Microtus agrestis). The SNPs demonstrate high genomic divergence (pairwise F ST values of 0.45-0.72) and little evidence of gene flow among the three field vole cryptic species, and we argue that genetic drift may have been a particularly important mechanism for divergence in the group. The ENM reveals three areas as potential glacial refugia for the cryptic species and differing climatic niches, although with spatial overlap between species pairs. This evidence underscores the role that glacial cycling has in promoting genetic differentiation and reproductive isolation by subdivision into disjunct distributions at glacial maxima in areas relatively close to ice sheets. Future investigation of the intrinsic barriers to gene flow between the field vole cryptic species is required to fully assess the mechanisms that contribute to reproductive isolation. In addition, the Portuguese field vole (M. rozianus) shows a high inbreeding coefficient and a restricted climatic niche, and warrants investigation into its conservation status.
Collapse
Affiliation(s)
| | - Pelayo Acevedo
- Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM‐CSIC‐JCCM)Ciudad RealSpain
| | - Jeremy S. Herman
- Department of Natural SciencesNational Museums ScotlandEdinburghUK
| | - Joana Paupério
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do Porto, Campus de VairãoVairãoPortugal
| | - Paulo C. Alves
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do Porto, Campus de VairãoVairãoPortugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do Porto, Campus de VairãoVairãoPortugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoPortoPortugal
| |
Collapse
|
36
|
Hanson JO, Schuster R, Strimas‐Mackey M, Bennett JR. Optimality in prioritizing conservation projects. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jeffrey O. Hanson
- School of Biological Sciences The University of Queensland Brisbane QLD Australia
| | - Richard Schuster
- Department of Biology Carleton University Ottawa ON Canada
- Ecosystem Science and Management Program University of Northern British Prince George BC Canada
| | | | | |
Collapse
|
37
|
González‐Serna MJ, Cordero PJ, Ortego J. Spatiotemporally explicit demographic modelling supports a joint effect of historical barriers to dispersal and contemporary landscape composition on structuring genomic variation in a red‐listed grasshopper. Mol Ecol 2019; 28:2155-2172. [DOI: 10.1111/mec.15086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/22/2019] [Indexed: 01/05/2023]
Affiliation(s)
- María José González‐Serna
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos – IREC – (CSIC, UCLM, JCCM) Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos – IREC – (CSIC, UCLM, JCCM) Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana – EBD – (CSIC) Seville Spain
| |
Collapse
|
38
|
Factors affecting abundance of different stages of the endophilic tick Ixodes anatis in brown kiwi (Apteryx mantelli) shelters. Ticks Tick Borne Dis 2019; 10:754-760. [PMID: 31031164 DOI: 10.1016/j.ttbdis.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 11/20/2022]
Abstract
Ixodes anatis is a species of endophilic (nidicolous) tick species parasitizing brown kiwi (Apteryx mantelli). Even though they are endemic to New Zealand like their host, very little is known about these ticks or their population dynamics and relationships with their hosts. We conducted a study from May 2013 to June 2014 to evaluate the effect of shelter location (one of three gullies), habitat (forest, scrub and pasture) and type (tree, soil and surface) on the abundance of the different life stages of I. anatis. In total, 12,172 ticks were collected from 63 shelters, which were sampled monthly for 11 months over the 14 month period. Un-engorged larvae predominated over other stages accounting for 87.2% of the samples collected. We found that location, habitat in which the shelters were located, and the type of shelter were significant predictors of I. anatis abundance. Tree shelters in forests had significantly higher tick abundance than those in scrub and pasture. Tree and soil shelters in general had significantly more ticks than surface shelters. Shelters located in Kauri Bush a drier site, had higher abundances than those in wetter sites. While some of these changes can be explained with the movement of the host, we believe more research needs to be done on the effect of shelters' microclimate on I. anatis' life cycle.
Collapse
|
39
|
Affiliation(s)
- Graham P. Wallis
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Kamp L, Pasinelli G, Milanesi P, Drovetski SV, Kosiński Z, Kossenko S, Robles H, Schweizer M. Significant Asia‐Europe divergence in the middle spotted woodpecker (Aves, Picidae). ZOOL SCR 2018. [DOI: 10.1111/zsc.12320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laura Kamp
- Naturhistorisches Museum der Burgergemeinde Bern Bern Switzerland
- Institute of Ecology and Evolution Universität Bern Bern Switzerland
- Swiss Ornithological Station Sempach Switzerland
| | | | | | - Sergei V. Drovetski
- Laboratories of Analytical Biology, National Museum of Natural History Smithsonian Institution Washington DC
| | - Ziemowit Kosiński
- Department of Avian Biology and Ecology, Institute of Environmental Biology, Faculty of Biology Adam Mickiewicz University Poznań Poland
| | - Serguei Kossenko
- State Nature Biosphere Reserve "Bryansky Les," Nerussa Station Bryansk Region Russia
| | - Hugo Robles
- Evolutionary Ecology Group (EVECO) University of Antwerp Wilrijk Belgium
| | - Manuel Schweizer
- Naturhistorisches Museum der Burgergemeinde Bern Bern Switzerland
| |
Collapse
|
41
|
Novel genetic variation in an isolated population of the nationally critical Haast tokoeka (Apteryx australis ‘Haast’) reveals extreme short-range structure within this cryptic and flightless bird. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1109-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Nevado B, Contreras-Ortiz N, Hughes C, Filatov DA. Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes. THE NEW PHYTOLOGIST 2018; 219:779-793. [PMID: 29862512 DOI: 10.1111/nph.15243] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/30/2018] [Indexed: 05/10/2023]
Abstract
Mountain ranges are amongst the most species-rich habitats, with many large and rapid evolutionary radiations. The tempo and mode of diversification in these systems are key unanswered questions in evolutionary biology. Here we study the Andean Lupinus radiation to understand the processes driving very rapid diversification in montane systems. We use genomic and transcriptomic data of multiple species and populations, and apply phylogenomic and demographic analyses to test whether diversification proceeded without interspecific gene flow - as expected if Andean orogeny and geographic isolation were the main drivers of diversification - or if diversification was accompanied by gene flow, in which case other processes were probably involved. We uncover several episodes of gene flow between species, including very recent events likely to have been prompted by changes in habitat connectivity during Pleistocene glacial cycles. Furthermore, we find that gene flow between species was heterogeneously distributed across the genome. We argue that exceptionally fast diversification of Andean Lupinus was partly a result of Late Pleistocene glacial cycles, with associated cycles of expansion and contraction driving geographic isolation or secondary contact of species. Furthermore, heterogeneous gene flow across the genome suggests a role for selection and ecological speciation in rapid diversification in this system.
Collapse
Affiliation(s)
- Bruno Nevado
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Natalia Contreras-Ortiz
- Laboratorio de Botánica y Sistemática, Departamento de Ciencias Biológicas, Universidad de los Andes, Apartado Aéreo, 4976, Bogotá, Colombia
- Jardín Botánico de Bogotá 'José Celestino Mutis', Avenida Calle 63 No. 68-95, Bogotá DC, Colombia
| | - Colin Hughes
- Department of Systematic & Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
43
|
Full Mitogenomes in the Critically Endangered Kākāpō Reveal Major Post-Glacial and Anthropogenic Effects on Neutral Genetic Diversity. Genes (Basel) 2018; 9:genes9040220. [PMID: 29671759 PMCID: PMC5924562 DOI: 10.3390/genes9040220] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/02/2022] Open
Abstract
Understanding how species respond to population declines is a central question in conservation and evolutionary biology. Population declines are often associated with loss of genetic diversity, inbreeding and accumulation of deleterious mutations, which can lead to a reduction in fitness and subsequently contribute to extinction. Using temporal approaches can help us understand the effects of population declines on genetic diversity in real time. Sequencing pre-decline as well as post-decline mitogenomes representing all the remaining mitochondrial diversity, we estimated the loss of genetic diversity in the critically endangered kākāpō (Strigops habroptilus). We detected a signal of population expansion coinciding with the end of the Pleistocene last glacial maximum (LGM). Also, we found some evidence for northern and southern lineages, supporting the hypothesis that the species may have been restricted to isolated northern and southern refugia during the LGM. We observed an important loss of neutral genetic diversity associated with European settlement in New Zealand but we could not exclude a population decline associated with Polynesian settlement in New Zealand. However, we did not find evidence for fixation of deleterious mutations. We argue that despite high pre-decline genetic diversity, a rapid and range-wide decline combined with the lek mating system, and life-history traits of kākāpō contributed to a rapid loss of genetic diversity following severe population declines.
Collapse
|
44
|
Barley AJ, Brown JM, Thomson RC. Impact of Model Violations on the Inference of Species Boundaries Under the Multispecies Coalescent. Syst Biol 2018; 67:269-284. [PMID: 28945903 DOI: 10.1093/sysbio/syx073] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
The use of genetic data for identifying species-level lineages across the tree of life has received increasing attention in the field of systematics over the past decade. The multispecies coalescent model provides a framework for understanding the process of lineage divergence and has become widely adopted for delimiting species. However, because these studies lack an explicit assessment of model fit, in many cases, the accuracy of the inferred species boundaries are unknown. This is concerning given the large amount of empirical data and theory that highlight the complexity of the speciation process. Here, we seek to fill this gap by using simulation to characterize the sensitivity of inference under the multispecies coalescent (MSC) to several violations of model assumptions thought to be common in empirical data. We also assess the fit of the MSC model to empirical data in the context of species delimitation. Our results show substantial variation in model fit across data sets. Posterior predictive tests find the poorest model performance in data sets that were hypothesized to be impacted by model violations. We also show that while the inferences assuming the MSC are robust to minor model violations, such inferences can be biased under some biologically plausible scenarios. Taken together, these results suggest that researchers can identify individual data sets in which species delimitation under the MSC is likely to be problematic, thereby highlighting the cases where additional lines of evidence to identify species boundaries are particularly important to collect. Our study supports a growing body of work highlighting the importance of model checking in phylogenetics, and the usefulness of tailoring tests of model fit to assess the reliability of particular inferences. [Populations structure, gene flow, demographic changes, posterior prediction, simulation, genetics.].
Collapse
Affiliation(s)
- Anthony J Barley
- Department of Biology, University of Hawai'i, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA
| | - Jeremy M Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Robert C Thomson
- Department of Biology, University of Hawai'i, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA
| |
Collapse
|
45
|
Noguerales V, Cordero PJ, Ortego J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Mol Ecol 2018; 27:1229-1244. [DOI: 10.1111/mec.14504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
46
|
Ramón‐Laca A, White DJ, Weir JT, Robertson HA. Extraction of DNA from captive-sourced feces and molted feathers provides a novel method for conservation management of New Zealand kiwi ( Apteryx spp.). Ecol Evol 2018; 8:3119-3130. [PMID: 29607011 PMCID: PMC5869209 DOI: 10.1002/ece3.3795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 11/01/2017] [Accepted: 12/06/2017] [Indexed: 11/17/2022] Open
Abstract
Although some taxa are increasing in number due to active management and predator control, the overall number of kiwi (Apteryx spp.) is declining. Kiwi are cryptic and rare, meaning current monitoring tools, such as call counts, radio telemetry, and surveys using detection dogs are labor-intensive, yield small datasets, and require substantial resources or provide inaccurate estimates of population sizes. A noninvasive genetic approach could help the conservation effort. We optimized a panel of 23 genetic markers (22 autosomal microsatellite loci and an allosomal marker) to discriminate between all species of kiwi and major lineages within species, while simultaneously determining sex. Markers successfully amplified from both fecal and shed feather DNA samples collected in captivity. We found that DNA extraction was more efficient from shed feathers, but DNA quality was greater with feces, although this was sampling dependent. Our microsatellite panel was able to distinguish between contemporary kiwi populations and lineages and provided PI values in the range of 4.3 × 10-5 to 2.0 × 10-19, which in some cases were sufficient for individualization and mark-recapture studies. As such, we have tested a wide-reaching, noninvasive molecular approach that will improve conservation management by providing better parameter estimates associated with population ecology and demographics such as abundance, growth rates, and genetic diversity.
Collapse
Affiliation(s)
| | - Daniel J. White
- Landcare ResearchAucklandNew Zealand
- School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Jason T. Weir
- Department of Biological SciencesUniversity of TorontoTorontoONCanada
- Department of Ecology and EvolutionUniversity of TorontoTorontoONCanada
| | - Hugh A. Robertson
- Department of ConservationNew Zealand GovernmentWellingtonNew Zealand
| |
Collapse
|
47
|
Fun A, Leitner T, Vandekerckhove L, Däumer M, Thielen A, Buchholz B, Hoepelman AIM, Gisolf EH, Schipper PJ, Wensing AMJ, Nijhuis M. Impact of the HIV-1 genetic background and HIV-1 population size on the evolution of raltegravir resistance. Retrovirology 2018; 15:1. [PMID: 29304821 PMCID: PMC5755036 DOI: 10.1186/s12977-017-0384-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/23/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. RESULTS Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway emerged in each individual culture. CONCLUSIONS The generation of a specific raltegravir resistant variant is not predisposed in the genetic background of the viral integrase CDS. Typically, in the early phases of therapy failure the sequence space is explored and multiple resistance pathways emerge and then compete for dominance which frequently results in a switch of the dominant population over time towards the fittest variant or even multiple variants of similar fitness that can coexist in the viral population.
Collapse
Affiliation(s)
- Axel Fun
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Heidelberglaan 100, HP G04.614, 3584 CX, Utrecht, The Netherlands
| | - Thomas Leitner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Linos Vandekerckhove
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Martin Däumer
- Institute of Immunology and Genetics, Kaiserslautern, Germany
| | | | - Bernd Buchholz
- Pediatric Clinic, University Medical Center Mannheim, Mannheim, Germany
| | - Andy I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elizabeth H Gisolf
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, The Netherlands
| | - Pauline J Schipper
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Heidelberglaan 100, HP G04.614, 3584 CX, Utrecht, The Netherlands
| | - Annemarie M J Wensing
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Heidelberglaan 100, HP G04.614, 3584 CX, Utrecht, The Netherlands.,Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Heidelberglaan 100, HP G04.614, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
48
|
Rawlence NJ, Till CE, Easton LJ, Spencer HG, Schuckard R, Melville DS, Scofield RP, Tennyson AJ, Rayner MJ, Waters JM, Kennedy M. Speciation, range contraction and extinction in the endemic New Zealand King Shag complex. Mol Phylogenet Evol 2017; 115:197-209. [DOI: 10.1016/j.ympev.2017.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/11/2017] [Accepted: 07/17/2017] [Indexed: 11/24/2022]
|
49
|
Cole TL, Wood JR. The ancient DNA revolution: the latest era in unearthing New Zealand’s faunal history. NEW ZEALAND JOURNAL OF ZOOLOGY 2017. [DOI: 10.1080/03014223.2017.1376690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Theresa L. Cole
- Department of Zoology, University of Otago, Dunedin, New Zealand
- Long Term Ecology Lab, Landcare Research, Lincoln, New Zealand
| | - Jamie R. Wood
- Long Term Ecology Lab, Landcare Research, Lincoln, New Zealand
| |
Collapse
|
50
|
Baker KH, Gray HWI, Ramovs V, Mertzanidou D, Akın Pekşen Ç, Bilgin CC, Sykes N, Hoelzel AR. Strong population structure in a species manipulated by humans since the Neolithic: the European fallow deer (Dama dama dama). Heredity (Edinb) 2017; 119:16-26. [PMID: 28353685 PMCID: PMC5520134 DOI: 10.1038/hdy.2017.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/24/2023] Open
Abstract
Species that have been translocated and otherwise manipulated by humans may show
patterns of population structure that reflect those interactions. At the same time,
natural processes shape populations, including behavioural characteristics like
dispersal potential and breeding system. In Europe, a key factor is the geography and
history of climate change through the Pleistocene. During glacial maxima throughout
that period, species in Europe with temperate distributions were forced south,
becoming distributed among the isolated peninsulas represented by Anatolia, Italy and
Iberia. Understanding modern patterns of diversity depends on understanding these
historical population dynamics. Traditionally, European fallow deer (Dama dama
dama) are thought to have been restricted to refugia in Anatolia and possibly
Sicily and the Balkans. However, the distribution of this species was also greatly
influenced by human-mediated translocations. We focus on fallow deer to better
understand the relative influence of these natural and anthropogenic processes. We
compared modern fallow deer putative populations across a broad geographic range
using microsatellite and mitochondrial DNA loci. The results revealed highly insular
populations, depauperate of genetic variation and significantly differentiated from
each other. This is consistent with the expectations of drift acting on populations
founded by small numbers of individuals, and reflects known founder populations in
the north. However, there was also evidence for differentiation among (but not
within) physically isolated regions in the south, including Iberia. In those regions
we find evidence for a stronger influence from natural processes than may be expected
for a species with such strong, known anthropogenic influence.
Collapse
Affiliation(s)
- K H Baker
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - H W I Gray
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - V Ramovs
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - D Mertzanidou
- Department of Biology, University of Athens, Athens, Greece
| | - Ç Akın Pekşen
- Department of Biology, Middle East Technical University, Ankara, Turkey.,Department of Molecular Biology and Genetics, Yüzüncü Yıl University, Van, Turkey
| | - C C Bilgin
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | - N Sykes
- Department of Archaeology, University of Nottingham, Nottinghamshire, UK
| | - A R Hoelzel
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| |
Collapse
|